b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Fence mechanism for dma-buf and to allow for asynchronous dma access |
| 4 | * |
| 5 | * Copyright (C) 2012 Canonical Ltd |
| 6 | * Copyright (C) 2012 Texas Instruments |
| 7 | * |
| 8 | * Authors: |
| 9 | * Rob Clark <robdclark@gmail.com> |
| 10 | * Maarten Lankhorst <maarten.lankhorst@canonical.com> |
| 11 | */ |
| 12 | |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/export.h> |
| 15 | #include <linux/atomic.h> |
| 16 | #include <linux/dma-fence.h> |
| 17 | #include <linux/sched/signal.h> |
| 18 | |
| 19 | #define CREATE_TRACE_POINTS |
| 20 | #include <trace/events/dma_fence.h> |
| 21 | |
| 22 | EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit); |
| 23 | EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal); |
| 24 | EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled); |
| 25 | |
| 26 | static DEFINE_SPINLOCK(dma_fence_stub_lock); |
| 27 | static struct dma_fence dma_fence_stub; |
| 28 | |
| 29 | /* |
| 30 | * fence context counter: each execution context should have its own |
| 31 | * fence context, this allows checking if fences belong to the same |
| 32 | * context or not. One device can have multiple separate contexts, |
| 33 | * and they're used if some engine can run independently of another. |
| 34 | */ |
| 35 | static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1); |
| 36 | |
| 37 | /** |
| 38 | * DOC: DMA fences overview |
| 39 | * |
| 40 | * DMA fences, represented by &struct dma_fence, are the kernel internal |
| 41 | * synchronization primitive for DMA operations like GPU rendering, video |
| 42 | * encoding/decoding, or displaying buffers on a screen. |
| 43 | * |
| 44 | * A fence is initialized using dma_fence_init() and completed using |
| 45 | * dma_fence_signal(). Fences are associated with a context, allocated through |
| 46 | * dma_fence_context_alloc(), and all fences on the same context are |
| 47 | * fully ordered. |
| 48 | * |
| 49 | * Since the purposes of fences is to facilitate cross-device and |
| 50 | * cross-application synchronization, there's multiple ways to use one: |
| 51 | * |
| 52 | * - Individual fences can be exposed as a &sync_file, accessed as a file |
| 53 | * descriptor from userspace, created by calling sync_file_create(). This is |
| 54 | * called explicit fencing, since userspace passes around explicit |
| 55 | * synchronization points. |
| 56 | * |
| 57 | * - Some subsystems also have their own explicit fencing primitives, like |
| 58 | * &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying |
| 59 | * fence to be updated. |
| 60 | * |
| 61 | * - Then there's also implicit fencing, where the synchronization points are |
| 62 | * implicitly passed around as part of shared &dma_buf instances. Such |
| 63 | * implicit fences are stored in &struct dma_resv through the |
| 64 | * &dma_buf.resv pointer. |
| 65 | */ |
| 66 | |
| 67 | static const char *dma_fence_stub_get_name(struct dma_fence *fence) |
| 68 | { |
| 69 | return "stub"; |
| 70 | } |
| 71 | |
| 72 | static const struct dma_fence_ops dma_fence_stub_ops = { |
| 73 | .get_driver_name = dma_fence_stub_get_name, |
| 74 | .get_timeline_name = dma_fence_stub_get_name, |
| 75 | }; |
| 76 | |
| 77 | /** |
| 78 | * dma_fence_get_stub - return a signaled fence |
| 79 | * |
| 80 | * Return a stub fence which is already signaled. |
| 81 | */ |
| 82 | struct dma_fence *dma_fence_get_stub(void) |
| 83 | { |
| 84 | spin_lock(&dma_fence_stub_lock); |
| 85 | if (!dma_fence_stub.ops) { |
| 86 | dma_fence_init(&dma_fence_stub, |
| 87 | &dma_fence_stub_ops, |
| 88 | &dma_fence_stub_lock, |
| 89 | 0, 0); |
| 90 | dma_fence_signal_locked(&dma_fence_stub); |
| 91 | } |
| 92 | spin_unlock(&dma_fence_stub_lock); |
| 93 | |
| 94 | return dma_fence_get(&dma_fence_stub); |
| 95 | } |
| 96 | EXPORT_SYMBOL(dma_fence_get_stub); |
| 97 | |
| 98 | /** |
| 99 | * dma_fence_context_alloc - allocate an array of fence contexts |
| 100 | * @num: amount of contexts to allocate |
| 101 | * |
| 102 | * This function will return the first index of the number of fence contexts |
| 103 | * allocated. The fence context is used for setting &dma_fence.context to a |
| 104 | * unique number by passing the context to dma_fence_init(). |
| 105 | */ |
| 106 | u64 dma_fence_context_alloc(unsigned num) |
| 107 | { |
| 108 | WARN_ON(!num); |
| 109 | return atomic64_add_return(num, &dma_fence_context_counter) - num; |
| 110 | } |
| 111 | EXPORT_SYMBOL(dma_fence_context_alloc); |
| 112 | |
| 113 | /** |
| 114 | * dma_fence_signal_locked - signal completion of a fence |
| 115 | * @fence: the fence to signal |
| 116 | * |
| 117 | * Signal completion for software callbacks on a fence, this will unblock |
| 118 | * dma_fence_wait() calls and run all the callbacks added with |
| 119 | * dma_fence_add_callback(). Can be called multiple times, but since a fence |
| 120 | * can only go from the unsignaled to the signaled state and not back, it will |
| 121 | * only be effective the first time. |
| 122 | * |
| 123 | * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock |
| 124 | * held. |
| 125 | * |
| 126 | * Returns 0 on success and a negative error value when @fence has been |
| 127 | * signalled already. |
| 128 | */ |
| 129 | int dma_fence_signal_locked(struct dma_fence *fence) |
| 130 | { |
| 131 | struct dma_fence_cb *cur, *tmp; |
| 132 | struct list_head cb_list; |
| 133 | |
| 134 | lockdep_assert_held(fence->lock); |
| 135 | |
| 136 | if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, |
| 137 | &fence->flags))) |
| 138 | return -EINVAL; |
| 139 | |
| 140 | /* Stash the cb_list before replacing it with the timestamp */ |
| 141 | list_replace(&fence->cb_list, &cb_list); |
| 142 | |
| 143 | fence->timestamp = ktime_get(); |
| 144 | set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); |
| 145 | trace_dma_fence_signaled(fence); |
| 146 | |
| 147 | list_for_each_entry_safe(cur, tmp, &cb_list, node) { |
| 148 | INIT_LIST_HEAD(&cur->node); |
| 149 | cur->func(fence, cur); |
| 150 | } |
| 151 | |
| 152 | return 0; |
| 153 | } |
| 154 | EXPORT_SYMBOL(dma_fence_signal_locked); |
| 155 | |
| 156 | /** |
| 157 | * dma_fence_signal - signal completion of a fence |
| 158 | * @fence: the fence to signal |
| 159 | * |
| 160 | * Signal completion for software callbacks on a fence, this will unblock |
| 161 | * dma_fence_wait() calls and run all the callbacks added with |
| 162 | * dma_fence_add_callback(). Can be called multiple times, but since a fence |
| 163 | * can only go from the unsignaled to the signaled state and not back, it will |
| 164 | * only be effective the first time. |
| 165 | * |
| 166 | * Returns 0 on success and a negative error value when @fence has been |
| 167 | * signalled already. |
| 168 | */ |
| 169 | int dma_fence_signal(struct dma_fence *fence) |
| 170 | { |
| 171 | unsigned long flags; |
| 172 | int ret; |
| 173 | |
| 174 | if (!fence) |
| 175 | return -EINVAL; |
| 176 | |
| 177 | spin_lock_irqsave(fence->lock, flags); |
| 178 | ret = dma_fence_signal_locked(fence); |
| 179 | spin_unlock_irqrestore(fence->lock, flags); |
| 180 | |
| 181 | return ret; |
| 182 | } |
| 183 | EXPORT_SYMBOL(dma_fence_signal); |
| 184 | |
| 185 | /** |
| 186 | * dma_fence_wait_timeout - sleep until the fence gets signaled |
| 187 | * or until timeout elapses |
| 188 | * @fence: the fence to wait on |
| 189 | * @intr: if true, do an interruptible wait |
| 190 | * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT |
| 191 | * |
| 192 | * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the |
| 193 | * remaining timeout in jiffies on success. Other error values may be |
| 194 | * returned on custom implementations. |
| 195 | * |
| 196 | * Performs a synchronous wait on this fence. It is assumed the caller |
| 197 | * directly or indirectly (buf-mgr between reservation and committing) |
| 198 | * holds a reference to the fence, otherwise the fence might be |
| 199 | * freed before return, resulting in undefined behavior. |
| 200 | * |
| 201 | * See also dma_fence_wait() and dma_fence_wait_any_timeout(). |
| 202 | */ |
| 203 | signed long |
| 204 | dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout) |
| 205 | { |
| 206 | signed long ret; |
| 207 | |
| 208 | if (WARN_ON(timeout < 0)) |
| 209 | return -EINVAL; |
| 210 | |
| 211 | trace_dma_fence_wait_start(fence); |
| 212 | if (fence->ops->wait) |
| 213 | ret = fence->ops->wait(fence, intr, timeout); |
| 214 | else |
| 215 | ret = dma_fence_default_wait(fence, intr, timeout); |
| 216 | trace_dma_fence_wait_end(fence); |
| 217 | return ret; |
| 218 | } |
| 219 | EXPORT_SYMBOL(dma_fence_wait_timeout); |
| 220 | |
| 221 | /** |
| 222 | * dma_fence_release - default relese function for fences |
| 223 | * @kref: &dma_fence.recfount |
| 224 | * |
| 225 | * This is the default release functions for &dma_fence. Drivers shouldn't call |
| 226 | * this directly, but instead call dma_fence_put(). |
| 227 | */ |
| 228 | void dma_fence_release(struct kref *kref) |
| 229 | { |
| 230 | struct dma_fence *fence = |
| 231 | container_of(kref, struct dma_fence, refcount); |
| 232 | |
| 233 | trace_dma_fence_destroy(fence); |
| 234 | |
| 235 | if (WARN(!list_empty(&fence->cb_list) && |
| 236 | !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags), |
| 237 | "Fence %s:%s:%llx:%llx released with pending signals!\n", |
| 238 | fence->ops->get_driver_name(fence), |
| 239 | fence->ops->get_timeline_name(fence), |
| 240 | fence->context, fence->seqno)) { |
| 241 | unsigned long flags; |
| 242 | |
| 243 | /* |
| 244 | * Failed to signal before release, likely a refcounting issue. |
| 245 | * |
| 246 | * This should never happen, but if it does make sure that we |
| 247 | * don't leave chains dangling. We set the error flag first |
| 248 | * so that the callbacks know this signal is due to an error. |
| 249 | */ |
| 250 | spin_lock_irqsave(fence->lock, flags); |
| 251 | fence->error = -EDEADLK; |
| 252 | dma_fence_signal_locked(fence); |
| 253 | spin_unlock_irqrestore(fence->lock, flags); |
| 254 | } |
| 255 | |
| 256 | if (fence->ops->release) |
| 257 | fence->ops->release(fence); |
| 258 | else |
| 259 | dma_fence_free(fence); |
| 260 | } |
| 261 | EXPORT_SYMBOL(dma_fence_release); |
| 262 | |
| 263 | /** |
| 264 | * dma_fence_free - default release function for &dma_fence. |
| 265 | * @fence: fence to release |
| 266 | * |
| 267 | * This is the default implementation for &dma_fence_ops.release. It calls |
| 268 | * kfree_rcu() on @fence. |
| 269 | */ |
| 270 | void dma_fence_free(struct dma_fence *fence) |
| 271 | { |
| 272 | kfree_rcu(fence, rcu); |
| 273 | } |
| 274 | EXPORT_SYMBOL(dma_fence_free); |
| 275 | |
| 276 | static bool __dma_fence_enable_signaling(struct dma_fence *fence) |
| 277 | { |
| 278 | bool was_set; |
| 279 | |
| 280 | lockdep_assert_held(fence->lock); |
| 281 | |
| 282 | was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, |
| 283 | &fence->flags); |
| 284 | |
| 285 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 286 | return false; |
| 287 | |
| 288 | if (!was_set && fence->ops->enable_signaling) { |
| 289 | trace_dma_fence_enable_signal(fence); |
| 290 | |
| 291 | if (!fence->ops->enable_signaling(fence)) { |
| 292 | dma_fence_signal_locked(fence); |
| 293 | return false; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | return true; |
| 298 | } |
| 299 | |
| 300 | /** |
| 301 | * dma_fence_enable_sw_signaling - enable signaling on fence |
| 302 | * @fence: the fence to enable |
| 303 | * |
| 304 | * This will request for sw signaling to be enabled, to make the fence |
| 305 | * complete as soon as possible. This calls &dma_fence_ops.enable_signaling |
| 306 | * internally. |
| 307 | */ |
| 308 | void dma_fence_enable_sw_signaling(struct dma_fence *fence) |
| 309 | { |
| 310 | unsigned long flags; |
| 311 | |
| 312 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 313 | return; |
| 314 | |
| 315 | spin_lock_irqsave(fence->lock, flags); |
| 316 | __dma_fence_enable_signaling(fence); |
| 317 | spin_unlock_irqrestore(fence->lock, flags); |
| 318 | } |
| 319 | EXPORT_SYMBOL(dma_fence_enable_sw_signaling); |
| 320 | |
| 321 | /** |
| 322 | * dma_fence_add_callback - add a callback to be called when the fence |
| 323 | * is signaled |
| 324 | * @fence: the fence to wait on |
| 325 | * @cb: the callback to register |
| 326 | * @func: the function to call |
| 327 | * |
| 328 | * @cb will be initialized by dma_fence_add_callback(), no initialization |
| 329 | * by the caller is required. Any number of callbacks can be registered |
| 330 | * to a fence, but a callback can only be registered to one fence at a time. |
| 331 | * |
| 332 | * Note that the callback can be called from an atomic context. If |
| 333 | * fence is already signaled, this function will return -ENOENT (and |
| 334 | * *not* call the callback). |
| 335 | * |
| 336 | * Add a software callback to the fence. Same restrictions apply to |
| 337 | * refcount as it does to dma_fence_wait(), however the caller doesn't need to |
| 338 | * keep a refcount to fence afterward dma_fence_add_callback() has returned: |
| 339 | * when software access is enabled, the creator of the fence is required to keep |
| 340 | * the fence alive until after it signals with dma_fence_signal(). The callback |
| 341 | * itself can be called from irq context. |
| 342 | * |
| 343 | * Returns 0 in case of success, -ENOENT if the fence is already signaled |
| 344 | * and -EINVAL in case of error. |
| 345 | */ |
| 346 | int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb, |
| 347 | dma_fence_func_t func) |
| 348 | { |
| 349 | unsigned long flags; |
| 350 | int ret = 0; |
| 351 | |
| 352 | if (WARN_ON(!fence || !func)) |
| 353 | return -EINVAL; |
| 354 | |
| 355 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { |
| 356 | INIT_LIST_HEAD(&cb->node); |
| 357 | return -ENOENT; |
| 358 | } |
| 359 | |
| 360 | spin_lock_irqsave(fence->lock, flags); |
| 361 | |
| 362 | if (__dma_fence_enable_signaling(fence)) { |
| 363 | cb->func = func; |
| 364 | list_add_tail(&cb->node, &fence->cb_list); |
| 365 | } else { |
| 366 | INIT_LIST_HEAD(&cb->node); |
| 367 | ret = -ENOENT; |
| 368 | } |
| 369 | |
| 370 | spin_unlock_irqrestore(fence->lock, flags); |
| 371 | |
| 372 | return ret; |
| 373 | } |
| 374 | EXPORT_SYMBOL(dma_fence_add_callback); |
| 375 | |
| 376 | /** |
| 377 | * dma_fence_get_status - returns the status upon completion |
| 378 | * @fence: the dma_fence to query |
| 379 | * |
| 380 | * This wraps dma_fence_get_status_locked() to return the error status |
| 381 | * condition on a signaled fence. See dma_fence_get_status_locked() for more |
| 382 | * details. |
| 383 | * |
| 384 | * Returns 0 if the fence has not yet been signaled, 1 if the fence has |
| 385 | * been signaled without an error condition, or a negative error code |
| 386 | * if the fence has been completed in err. |
| 387 | */ |
| 388 | int dma_fence_get_status(struct dma_fence *fence) |
| 389 | { |
| 390 | unsigned long flags; |
| 391 | int status; |
| 392 | |
| 393 | spin_lock_irqsave(fence->lock, flags); |
| 394 | status = dma_fence_get_status_locked(fence); |
| 395 | spin_unlock_irqrestore(fence->lock, flags); |
| 396 | |
| 397 | return status; |
| 398 | } |
| 399 | EXPORT_SYMBOL(dma_fence_get_status); |
| 400 | |
| 401 | /** |
| 402 | * dma_fence_remove_callback - remove a callback from the signaling list |
| 403 | * @fence: the fence to wait on |
| 404 | * @cb: the callback to remove |
| 405 | * |
| 406 | * Remove a previously queued callback from the fence. This function returns |
| 407 | * true if the callback is successfully removed, or false if the fence has |
| 408 | * already been signaled. |
| 409 | * |
| 410 | * *WARNING*: |
| 411 | * Cancelling a callback should only be done if you really know what you're |
| 412 | * doing, since deadlocks and race conditions could occur all too easily. For |
| 413 | * this reason, it should only ever be done on hardware lockup recovery, |
| 414 | * with a reference held to the fence. |
| 415 | * |
| 416 | * Behaviour is undefined if @cb has not been added to @fence using |
| 417 | * dma_fence_add_callback() beforehand. |
| 418 | */ |
| 419 | bool |
| 420 | dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb) |
| 421 | { |
| 422 | unsigned long flags; |
| 423 | bool ret; |
| 424 | |
| 425 | spin_lock_irqsave(fence->lock, flags); |
| 426 | |
| 427 | ret = !list_empty(&cb->node); |
| 428 | if (ret) |
| 429 | list_del_init(&cb->node); |
| 430 | |
| 431 | spin_unlock_irqrestore(fence->lock, flags); |
| 432 | |
| 433 | return ret; |
| 434 | } |
| 435 | EXPORT_SYMBOL(dma_fence_remove_callback); |
| 436 | |
| 437 | struct default_wait_cb { |
| 438 | struct dma_fence_cb base; |
| 439 | struct task_struct *task; |
| 440 | }; |
| 441 | |
| 442 | static void |
| 443 | dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) |
| 444 | { |
| 445 | struct default_wait_cb *wait = |
| 446 | container_of(cb, struct default_wait_cb, base); |
| 447 | |
| 448 | wake_up_state(wait->task, TASK_NORMAL); |
| 449 | } |
| 450 | |
| 451 | /** |
| 452 | * dma_fence_default_wait - default sleep until the fence gets signaled |
| 453 | * or until timeout elapses |
| 454 | * @fence: the fence to wait on |
| 455 | * @intr: if true, do an interruptible wait |
| 456 | * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT |
| 457 | * |
| 458 | * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the |
| 459 | * remaining timeout in jiffies on success. If timeout is zero the value one is |
| 460 | * returned if the fence is already signaled for consistency with other |
| 461 | * functions taking a jiffies timeout. |
| 462 | */ |
| 463 | signed long |
| 464 | dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout) |
| 465 | { |
| 466 | struct default_wait_cb cb; |
| 467 | unsigned long flags; |
| 468 | signed long ret = timeout ? timeout : 1; |
| 469 | |
| 470 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 471 | return ret; |
| 472 | |
| 473 | spin_lock_irqsave(fence->lock, flags); |
| 474 | |
| 475 | if (intr && signal_pending(current)) { |
| 476 | ret = -ERESTARTSYS; |
| 477 | goto out; |
| 478 | } |
| 479 | |
| 480 | if (!__dma_fence_enable_signaling(fence)) |
| 481 | goto out; |
| 482 | |
| 483 | if (!timeout) { |
| 484 | ret = 0; |
| 485 | goto out; |
| 486 | } |
| 487 | |
| 488 | cb.base.func = dma_fence_default_wait_cb; |
| 489 | cb.task = current; |
| 490 | list_add(&cb.base.node, &fence->cb_list); |
| 491 | |
| 492 | while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) { |
| 493 | if (intr) |
| 494 | __set_current_state(TASK_INTERRUPTIBLE); |
| 495 | else |
| 496 | __set_current_state(TASK_UNINTERRUPTIBLE); |
| 497 | spin_unlock_irqrestore(fence->lock, flags); |
| 498 | |
| 499 | ret = schedule_timeout(ret); |
| 500 | |
| 501 | spin_lock_irqsave(fence->lock, flags); |
| 502 | if (ret > 0 && intr && signal_pending(current)) |
| 503 | ret = -ERESTARTSYS; |
| 504 | } |
| 505 | |
| 506 | if (!list_empty(&cb.base.node)) |
| 507 | list_del(&cb.base.node); |
| 508 | __set_current_state(TASK_RUNNING); |
| 509 | |
| 510 | out: |
| 511 | spin_unlock_irqrestore(fence->lock, flags); |
| 512 | return ret; |
| 513 | } |
| 514 | EXPORT_SYMBOL(dma_fence_default_wait); |
| 515 | |
| 516 | static bool |
| 517 | dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count, |
| 518 | uint32_t *idx) |
| 519 | { |
| 520 | int i; |
| 521 | |
| 522 | for (i = 0; i < count; ++i) { |
| 523 | struct dma_fence *fence = fences[i]; |
| 524 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { |
| 525 | if (idx) |
| 526 | *idx = i; |
| 527 | return true; |
| 528 | } |
| 529 | } |
| 530 | return false; |
| 531 | } |
| 532 | |
| 533 | /** |
| 534 | * dma_fence_wait_any_timeout - sleep until any fence gets signaled |
| 535 | * or until timeout elapses |
| 536 | * @fences: array of fences to wait on |
| 537 | * @count: number of fences to wait on |
| 538 | * @intr: if true, do an interruptible wait |
| 539 | * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT |
| 540 | * @idx: used to store the first signaled fence index, meaningful only on |
| 541 | * positive return |
| 542 | * |
| 543 | * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if |
| 544 | * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies |
| 545 | * on success. |
| 546 | * |
| 547 | * Synchronous waits for the first fence in the array to be signaled. The |
| 548 | * caller needs to hold a reference to all fences in the array, otherwise a |
| 549 | * fence might be freed before return, resulting in undefined behavior. |
| 550 | * |
| 551 | * See also dma_fence_wait() and dma_fence_wait_timeout(). |
| 552 | */ |
| 553 | signed long |
| 554 | dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count, |
| 555 | bool intr, signed long timeout, uint32_t *idx) |
| 556 | { |
| 557 | struct default_wait_cb *cb; |
| 558 | signed long ret = timeout; |
| 559 | unsigned i; |
| 560 | |
| 561 | if (WARN_ON(!fences || !count || timeout < 0)) |
| 562 | return -EINVAL; |
| 563 | |
| 564 | if (timeout == 0) { |
| 565 | for (i = 0; i < count; ++i) |
| 566 | if (dma_fence_is_signaled(fences[i])) { |
| 567 | if (idx) |
| 568 | *idx = i; |
| 569 | return 1; |
| 570 | } |
| 571 | |
| 572 | return 0; |
| 573 | } |
| 574 | |
| 575 | cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL); |
| 576 | if (cb == NULL) { |
| 577 | ret = -ENOMEM; |
| 578 | goto err_free_cb; |
| 579 | } |
| 580 | |
| 581 | for (i = 0; i < count; ++i) { |
| 582 | struct dma_fence *fence = fences[i]; |
| 583 | |
| 584 | cb[i].task = current; |
| 585 | if (dma_fence_add_callback(fence, &cb[i].base, |
| 586 | dma_fence_default_wait_cb)) { |
| 587 | /* This fence is already signaled */ |
| 588 | if (idx) |
| 589 | *idx = i; |
| 590 | goto fence_rm_cb; |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | while (ret > 0) { |
| 595 | if (intr) |
| 596 | set_current_state(TASK_INTERRUPTIBLE); |
| 597 | else |
| 598 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 599 | |
| 600 | if (dma_fence_test_signaled_any(fences, count, idx)) |
| 601 | break; |
| 602 | |
| 603 | ret = schedule_timeout(ret); |
| 604 | |
| 605 | if (ret > 0 && intr && signal_pending(current)) |
| 606 | ret = -ERESTARTSYS; |
| 607 | } |
| 608 | |
| 609 | __set_current_state(TASK_RUNNING); |
| 610 | |
| 611 | fence_rm_cb: |
| 612 | while (i-- > 0) |
| 613 | dma_fence_remove_callback(fences[i], &cb[i].base); |
| 614 | |
| 615 | err_free_cb: |
| 616 | kfree(cb); |
| 617 | |
| 618 | return ret; |
| 619 | } |
| 620 | EXPORT_SYMBOL(dma_fence_wait_any_timeout); |
| 621 | |
| 622 | /** |
| 623 | * dma_fence_init - Initialize a custom fence. |
| 624 | * @fence: the fence to initialize |
| 625 | * @ops: the dma_fence_ops for operations on this fence |
| 626 | * @lock: the irqsafe spinlock to use for locking this fence |
| 627 | * @context: the execution context this fence is run on |
| 628 | * @seqno: a linear increasing sequence number for this context |
| 629 | * |
| 630 | * Initializes an allocated fence, the caller doesn't have to keep its |
| 631 | * refcount after committing with this fence, but it will need to hold a |
| 632 | * refcount again if &dma_fence_ops.enable_signaling gets called. |
| 633 | * |
| 634 | * context and seqno are used for easy comparison between fences, allowing |
| 635 | * to check which fence is later by simply using dma_fence_later(). |
| 636 | */ |
| 637 | void |
| 638 | dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops, |
| 639 | spinlock_t *lock, u64 context, u64 seqno) |
| 640 | { |
| 641 | BUG_ON(!lock); |
| 642 | BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name); |
| 643 | |
| 644 | kref_init(&fence->refcount); |
| 645 | fence->ops = ops; |
| 646 | INIT_LIST_HEAD(&fence->cb_list); |
| 647 | fence->lock = lock; |
| 648 | fence->context = context; |
| 649 | fence->seqno = seqno; |
| 650 | fence->flags = 0UL; |
| 651 | fence->error = 0; |
| 652 | |
| 653 | trace_dma_fence_init(fence); |
| 654 | } |
| 655 | EXPORT_SYMBOL(dma_fence_init); |