blob: 12e459599c30a18c3c6d196509297de6bdaf6f43 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for OHCI 1394 controllers
4 *
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bitops.h>
9#include <linux/bug.h>
10#include <linux/compiler.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/firewire.h>
15#include <linux/firewire-constants.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/moduleparam.h>
24#include <linux/mutex.h>
25#include <linux/pci.h>
26#include <linux/pci_ids.h>
27#include <linux/slab.h>
28#include <linux/spinlock.h>
29#include <linux/string.h>
30#include <linux/time.h>
31#include <linux/vmalloc.h>
32#include <linux/workqueue.h>
33
34#include <asm/byteorder.h>
35#include <asm/page.h>
36
37#ifdef CONFIG_PPC_PMAC
38#include <asm/pmac_feature.h>
39#endif
40
41#include "core.h"
42#include "ohci.h"
43
44#define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
45#define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
46#define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
47
48#define DESCRIPTOR_OUTPUT_MORE 0
49#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
50#define DESCRIPTOR_INPUT_MORE (2 << 12)
51#define DESCRIPTOR_INPUT_LAST (3 << 12)
52#define DESCRIPTOR_STATUS (1 << 11)
53#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
54#define DESCRIPTOR_PING (1 << 7)
55#define DESCRIPTOR_YY (1 << 6)
56#define DESCRIPTOR_NO_IRQ (0 << 4)
57#define DESCRIPTOR_IRQ_ERROR (1 << 4)
58#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
59#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
60#define DESCRIPTOR_WAIT (3 << 0)
61
62#define DESCRIPTOR_CMD (0xf << 12)
63
64struct descriptor {
65 __le16 req_count;
66 __le16 control;
67 __le32 data_address;
68 __le32 branch_address;
69 __le16 res_count;
70 __le16 transfer_status;
71} __attribute__((aligned(16)));
72
73#define CONTROL_SET(regs) (regs)
74#define CONTROL_CLEAR(regs) ((regs) + 4)
75#define COMMAND_PTR(regs) ((regs) + 12)
76#define CONTEXT_MATCH(regs) ((regs) + 16)
77
78#define AR_BUFFER_SIZE (32*1024)
79#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80/* we need at least two pages for proper list management */
81#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83#define MAX_ASYNC_PAYLOAD 4096
84#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
85#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87struct ar_context {
88 struct fw_ohci *ohci;
89 struct page *pages[AR_BUFFERS];
90 void *buffer;
91 struct descriptor *descriptors;
92 dma_addr_t descriptors_bus;
93 void *pointer;
94 unsigned int last_buffer_index;
95 u32 regs;
96 struct tasklet_struct tasklet;
97};
98
99struct context;
100
101typedef int (*descriptor_callback_t)(struct context *ctx,
102 struct descriptor *d,
103 struct descriptor *last);
104
105/*
106 * A buffer that contains a block of DMA-able coherent memory used for
107 * storing a portion of a DMA descriptor program.
108 */
109struct descriptor_buffer {
110 struct list_head list;
111 dma_addr_t buffer_bus;
112 size_t buffer_size;
113 size_t used;
114 struct descriptor buffer[0];
115};
116
117struct context {
118 struct fw_ohci *ohci;
119 u32 regs;
120 int total_allocation;
121 u32 current_bus;
122 bool running;
123 bool flushing;
124
125 /*
126 * List of page-sized buffers for storing DMA descriptors.
127 * Head of list contains buffers in use and tail of list contains
128 * free buffers.
129 */
130 struct list_head buffer_list;
131
132 /*
133 * Pointer to a buffer inside buffer_list that contains the tail
134 * end of the current DMA program.
135 */
136 struct descriptor_buffer *buffer_tail;
137
138 /*
139 * The descriptor containing the branch address of the first
140 * descriptor that has not yet been filled by the device.
141 */
142 struct descriptor *last;
143
144 /*
145 * The last descriptor block in the DMA program. It contains the branch
146 * address that must be updated upon appending a new descriptor.
147 */
148 struct descriptor *prev;
149 int prev_z;
150
151 descriptor_callback_t callback;
152
153 struct tasklet_struct tasklet;
154};
155
156#define IT_HEADER_SY(v) ((v) << 0)
157#define IT_HEADER_TCODE(v) ((v) << 4)
158#define IT_HEADER_CHANNEL(v) ((v) << 8)
159#define IT_HEADER_TAG(v) ((v) << 14)
160#define IT_HEADER_SPEED(v) ((v) << 16)
161#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163struct iso_context {
164 struct fw_iso_context base;
165 struct context context;
166 void *header;
167 size_t header_length;
168 unsigned long flushing_completions;
169 u32 mc_buffer_bus;
170 u16 mc_completed;
171 u16 last_timestamp;
172 u8 sync;
173 u8 tags;
174};
175
176#define CONFIG_ROM_SIZE 1024
177
178struct fw_ohci {
179 struct fw_card card;
180
181 __iomem char *registers;
182 int node_id;
183 int generation;
184 int request_generation; /* for timestamping incoming requests */
185 unsigned quirks;
186 unsigned int pri_req_max;
187 u32 bus_time;
188 bool bus_time_running;
189 bool is_root;
190 bool csr_state_setclear_abdicate;
191 int n_ir;
192 int n_it;
193 /*
194 * Spinlock for accessing fw_ohci data. Never call out of
195 * this driver with this lock held.
196 */
197 spinlock_t lock;
198
199 struct mutex phy_reg_mutex;
200
201 void *misc_buffer;
202 dma_addr_t misc_buffer_bus;
203
204 struct ar_context ar_request_ctx;
205 struct ar_context ar_response_ctx;
206 struct context at_request_ctx;
207 struct context at_response_ctx;
208
209 u32 it_context_support;
210 u32 it_context_mask; /* unoccupied IT contexts */
211 struct iso_context *it_context_list;
212 u64 ir_context_channels; /* unoccupied channels */
213 u32 ir_context_support;
214 u32 ir_context_mask; /* unoccupied IR contexts */
215 struct iso_context *ir_context_list;
216 u64 mc_channels; /* channels in use by the multichannel IR context */
217 bool mc_allocated;
218
219 __be32 *config_rom;
220 dma_addr_t config_rom_bus;
221 __be32 *next_config_rom;
222 dma_addr_t next_config_rom_bus;
223 __be32 next_header;
224
225 __le32 *self_id;
226 dma_addr_t self_id_bus;
227 struct work_struct bus_reset_work;
228
229 u32 self_id_buffer[512];
230};
231
232static struct workqueue_struct *selfid_workqueue;
233
234static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235{
236 return container_of(card, struct fw_ohci, card);
237}
238
239#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240#define IR_CONTEXT_BUFFER_FILL 0x80000000
241#define IR_CONTEXT_ISOCH_HEADER 0x40000000
242#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
245
246#define CONTEXT_RUN 0x8000
247#define CONTEXT_WAKE 0x1000
248#define CONTEXT_DEAD 0x0800
249#define CONTEXT_ACTIVE 0x0400
250
251#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
254
255#define OHCI1394_REGISTER_SIZE 0x800
256#define OHCI1394_PCI_HCI_Control 0x40
257#define SELF_ID_BUF_SIZE 0x800
258#define OHCI_TCODE_PHY_PACKET 0x0e
259#define OHCI_VERSION_1_1 0x010010
260
261static char ohci_driver_name[] = KBUILD_MODNAME;
262
263#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264#define PCI_DEVICE_ID_AGERE_FW643 0x5901
265#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270#define PCI_DEVICE_ID_VIA_VT630X 0x3044
271#define PCI_REV_ID_VIA_VT6306 0x46
272#define PCI_DEVICE_ID_VIA_VT6315 0x3403
273
274#define QUIRK_CYCLE_TIMER 0x1
275#define QUIRK_RESET_PACKET 0x2
276#define QUIRK_BE_HEADERS 0x4
277#define QUIRK_NO_1394A 0x8
278#define QUIRK_NO_MSI 0x10
279#define QUIRK_TI_SLLZ059 0x20
280#define QUIRK_IR_WAKE 0x40
281
282// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286// while it is probable due to detection of any type of PCIe error.
287#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
288
289#if IS_ENABLED(CONFIG_X86)
290
291static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292{
293 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294}
295
296#define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
297
298static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299{
300 const struct pci_dev *pcie_to_pci_bridge;
301
302 // Detect any type of AMD Ryzen machine.
303 if (!static_cpu_has(X86_FEATURE_ZEN))
304 return false;
305
306 // Detect VIA VT6306/6307/6308.
307 if (pdev->vendor != PCI_VENDOR_ID_VIA)
308 return false;
309 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310 return false;
311
312 // Detect Asmedia ASM1083/1085.
313 pcie_to_pci_bridge = pdev->bus->self;
314 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315 return false;
316 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317 return false;
318
319 return true;
320}
321
322#else
323#define has_reboot_by_cycle_timer_read_quirk(ohci) false
324#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
325#endif
326
327/* In case of multiple matches in ohci_quirks[], only the first one is used. */
328static const struct {
329 unsigned short vendor, device, revision, flags;
330} ohci_quirks[] = {
331 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332 QUIRK_CYCLE_TIMER},
333
334 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335 QUIRK_BE_HEADERS},
336
337 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338 QUIRK_NO_MSI},
339
340 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341 QUIRK_RESET_PACKET},
342
343 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344 QUIRK_NO_MSI},
345
346 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347 QUIRK_CYCLE_TIMER},
348
349 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350 QUIRK_NO_MSI},
351
352 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365 QUIRK_RESET_PACKET},
366
367 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374 QUIRK_NO_MSI},
375
376 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378};
379
380/* This overrides anything that was found in ohci_quirks[]. */
381static int param_quirks;
382module_param_named(quirks, param_quirks, int, 0644);
383MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
385 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
386 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
387 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
388 ", disable MSI = " __stringify(QUIRK_NO_MSI)
389 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
390 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
391 ")");
392
393#define OHCI_PARAM_DEBUG_AT_AR 1
394#define OHCI_PARAM_DEBUG_SELFIDS 2
395#define OHCI_PARAM_DEBUG_IRQS 4
396#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
397
398static int param_debug;
399module_param_named(debug, param_debug, int, 0644);
400MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
402 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
403 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
404 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
405 ", or a combination, or all = -1)");
406
407static bool param_remote_dma;
408module_param_named(remote_dma, param_remote_dma, bool, 0444);
409MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
410
411static void log_irqs(struct fw_ohci *ohci, u32 evt)
412{
413 if (likely(!(param_debug &
414 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
415 return;
416
417 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
418 !(evt & OHCI1394_busReset))
419 return;
420
421 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
422 evt & OHCI1394_selfIDComplete ? " selfID" : "",
423 evt & OHCI1394_RQPkt ? " AR_req" : "",
424 evt & OHCI1394_RSPkt ? " AR_resp" : "",
425 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
426 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
427 evt & OHCI1394_isochRx ? " IR" : "",
428 evt & OHCI1394_isochTx ? " IT" : "",
429 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
430 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
431 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
432 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
433 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
434 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
435 evt & OHCI1394_busReset ? " busReset" : "",
436 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
437 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
438 OHCI1394_respTxComplete | OHCI1394_isochRx |
439 OHCI1394_isochTx | OHCI1394_postedWriteErr |
440 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
441 OHCI1394_cycleInconsistent |
442 OHCI1394_regAccessFail | OHCI1394_busReset)
443 ? " ?" : "");
444}
445
446static const char *speed[] = {
447 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
448};
449static const char *power[] = {
450 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
451 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
452};
453static const char port[] = { '.', '-', 'p', 'c', };
454
455static char _p(u32 *s, int shift)
456{
457 return port[*s >> shift & 3];
458}
459
460static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
461{
462 u32 *s;
463
464 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
465 return;
466
467 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
468 self_id_count, generation, ohci->node_id);
469
470 for (s = ohci->self_id_buffer; self_id_count--; ++s)
471 if ((*s & 1 << 23) == 0)
472 ohci_notice(ohci,
473 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
474 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
475 speed[*s >> 14 & 3], *s >> 16 & 63,
476 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
477 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
478 else
479 ohci_notice(ohci,
480 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
481 *s, *s >> 24 & 63,
482 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
483 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
484}
485
486static const char *evts[] = {
487 [0x00] = "evt_no_status", [0x01] = "-reserved-",
488 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
489 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
490 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
491 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
492 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
493 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
494 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
495 [0x10] = "-reserved-", [0x11] = "ack_complete",
496 [0x12] = "ack_pending ", [0x13] = "-reserved-",
497 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
498 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
499 [0x18] = "-reserved-", [0x19] = "-reserved-",
500 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
501 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
502 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
503 [0x20] = "pending/cancelled",
504};
505static const char *tcodes[] = {
506 [0x0] = "QW req", [0x1] = "BW req",
507 [0x2] = "W resp", [0x3] = "-reserved-",
508 [0x4] = "QR req", [0x5] = "BR req",
509 [0x6] = "QR resp", [0x7] = "BR resp",
510 [0x8] = "cycle start", [0x9] = "Lk req",
511 [0xa] = "async stream packet", [0xb] = "Lk resp",
512 [0xc] = "-reserved-", [0xd] = "-reserved-",
513 [0xe] = "link internal", [0xf] = "-reserved-",
514};
515
516static void log_ar_at_event(struct fw_ohci *ohci,
517 char dir, int speed, u32 *header, int evt)
518{
519 int tcode = header[0] >> 4 & 0xf;
520 char specific[12];
521
522 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
523 return;
524
525 if (unlikely(evt >= ARRAY_SIZE(evts)))
526 evt = 0x1f;
527
528 if (evt == OHCI1394_evt_bus_reset) {
529 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
530 dir, (header[2] >> 16) & 0xff);
531 return;
532 }
533
534 switch (tcode) {
535 case 0x0: case 0x6: case 0x8:
536 snprintf(specific, sizeof(specific), " = %08x",
537 be32_to_cpu((__force __be32)header[3]));
538 break;
539 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
540 snprintf(specific, sizeof(specific), " %x,%x",
541 header[3] >> 16, header[3] & 0xffff);
542 break;
543 default:
544 specific[0] = '\0';
545 }
546
547 switch (tcode) {
548 case 0xa:
549 ohci_notice(ohci, "A%c %s, %s\n",
550 dir, evts[evt], tcodes[tcode]);
551 break;
552 case 0xe:
553 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
554 dir, evts[evt], header[1], header[2]);
555 break;
556 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
557 ohci_notice(ohci,
558 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
559 dir, speed, header[0] >> 10 & 0x3f,
560 header[1] >> 16, header[0] >> 16, evts[evt],
561 tcodes[tcode], header[1] & 0xffff, header[2], specific);
562 break;
563 default:
564 ohci_notice(ohci,
565 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
566 dir, speed, header[0] >> 10 & 0x3f,
567 header[1] >> 16, header[0] >> 16, evts[evt],
568 tcodes[tcode], specific);
569 }
570}
571
572static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
573{
574 writel(data, ohci->registers + offset);
575}
576
577static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
578{
579 return readl(ohci->registers + offset);
580}
581
582static inline void flush_writes(const struct fw_ohci *ohci)
583{
584 /* Do a dummy read to flush writes. */
585 reg_read(ohci, OHCI1394_Version);
586}
587
588/*
589 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
590 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
591 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
592 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
593 */
594static int read_phy_reg(struct fw_ohci *ohci, int addr)
595{
596 u32 val;
597 int i;
598
599 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
600 for (i = 0; i < 3 + 100; i++) {
601 val = reg_read(ohci, OHCI1394_PhyControl);
602 if (!~val)
603 return -ENODEV; /* Card was ejected. */
604
605 if (val & OHCI1394_PhyControl_ReadDone)
606 return OHCI1394_PhyControl_ReadData(val);
607
608 /*
609 * Try a few times without waiting. Sleeping is necessary
610 * only when the link/PHY interface is busy.
611 */
612 if (i >= 3)
613 msleep(1);
614 }
615 ohci_err(ohci, "failed to read phy reg %d\n", addr);
616 dump_stack();
617
618 return -EBUSY;
619}
620
621static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
622{
623 int i;
624
625 reg_write(ohci, OHCI1394_PhyControl,
626 OHCI1394_PhyControl_Write(addr, val));
627 for (i = 0; i < 3 + 100; i++) {
628 val = reg_read(ohci, OHCI1394_PhyControl);
629 if (!~val)
630 return -ENODEV; /* Card was ejected. */
631
632 if (!(val & OHCI1394_PhyControl_WritePending))
633 return 0;
634
635 if (i >= 3)
636 msleep(1);
637 }
638 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
639 dump_stack();
640
641 return -EBUSY;
642}
643
644static int update_phy_reg(struct fw_ohci *ohci, int addr,
645 int clear_bits, int set_bits)
646{
647 int ret = read_phy_reg(ohci, addr);
648 if (ret < 0)
649 return ret;
650
651 /*
652 * The interrupt status bits are cleared by writing a one bit.
653 * Avoid clearing them unless explicitly requested in set_bits.
654 */
655 if (addr == 5)
656 clear_bits |= PHY_INT_STATUS_BITS;
657
658 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
659}
660
661static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
662{
663 int ret;
664
665 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
666 if (ret < 0)
667 return ret;
668
669 return read_phy_reg(ohci, addr);
670}
671
672static int ohci_read_phy_reg(struct fw_card *card, int addr)
673{
674 struct fw_ohci *ohci = fw_ohci(card);
675 int ret;
676
677 mutex_lock(&ohci->phy_reg_mutex);
678 ret = read_phy_reg(ohci, addr);
679 mutex_unlock(&ohci->phy_reg_mutex);
680
681 return ret;
682}
683
684static int ohci_update_phy_reg(struct fw_card *card, int addr,
685 int clear_bits, int set_bits)
686{
687 struct fw_ohci *ohci = fw_ohci(card);
688 int ret;
689
690 mutex_lock(&ohci->phy_reg_mutex);
691 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
692 mutex_unlock(&ohci->phy_reg_mutex);
693
694 return ret;
695}
696
697static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
698{
699 return page_private(ctx->pages[i]);
700}
701
702static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
703{
704 struct descriptor *d;
705
706 d = &ctx->descriptors[index];
707 d->branch_address &= cpu_to_le32(~0xf);
708 d->res_count = cpu_to_le16(PAGE_SIZE);
709 d->transfer_status = 0;
710
711 wmb(); /* finish init of new descriptors before branch_address update */
712 d = &ctx->descriptors[ctx->last_buffer_index];
713 d->branch_address |= cpu_to_le32(1);
714
715 ctx->last_buffer_index = index;
716
717 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
718}
719
720static void ar_context_release(struct ar_context *ctx)
721{
722 unsigned int i;
723
724 vunmap(ctx->buffer);
725
726 for (i = 0; i < AR_BUFFERS; i++)
727 if (ctx->pages[i]) {
728 dma_unmap_page(ctx->ohci->card.device,
729 ar_buffer_bus(ctx, i),
730 PAGE_SIZE, DMA_FROM_DEVICE);
731 __free_page(ctx->pages[i]);
732 }
733}
734
735static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
736{
737 struct fw_ohci *ohci = ctx->ohci;
738
739 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
740 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
741 flush_writes(ohci);
742
743 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
744 }
745 /* FIXME: restart? */
746}
747
748static inline unsigned int ar_next_buffer_index(unsigned int index)
749{
750 return (index + 1) % AR_BUFFERS;
751}
752
753static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
754{
755 return ar_next_buffer_index(ctx->last_buffer_index);
756}
757
758/*
759 * We search for the buffer that contains the last AR packet DMA data written
760 * by the controller.
761 */
762static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
763 unsigned int *buffer_offset)
764{
765 unsigned int i, next_i, last = ctx->last_buffer_index;
766 __le16 res_count, next_res_count;
767
768 i = ar_first_buffer_index(ctx);
769 res_count = READ_ONCE(ctx->descriptors[i].res_count);
770
771 /* A buffer that is not yet completely filled must be the last one. */
772 while (i != last && res_count == 0) {
773
774 /* Peek at the next descriptor. */
775 next_i = ar_next_buffer_index(i);
776 rmb(); /* read descriptors in order */
777 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
778 /*
779 * If the next descriptor is still empty, we must stop at this
780 * descriptor.
781 */
782 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
783 /*
784 * The exception is when the DMA data for one packet is
785 * split over three buffers; in this case, the middle
786 * buffer's descriptor might be never updated by the
787 * controller and look still empty, and we have to peek
788 * at the third one.
789 */
790 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
791 next_i = ar_next_buffer_index(next_i);
792 rmb();
793 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
794 if (next_res_count != cpu_to_le16(PAGE_SIZE))
795 goto next_buffer_is_active;
796 }
797
798 break;
799 }
800
801next_buffer_is_active:
802 i = next_i;
803 res_count = next_res_count;
804 }
805
806 rmb(); /* read res_count before the DMA data */
807
808 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
809 if (*buffer_offset > PAGE_SIZE) {
810 *buffer_offset = 0;
811 ar_context_abort(ctx, "corrupted descriptor");
812 }
813
814 return i;
815}
816
817static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
818 unsigned int end_buffer_index,
819 unsigned int end_buffer_offset)
820{
821 unsigned int i;
822
823 i = ar_first_buffer_index(ctx);
824 while (i != end_buffer_index) {
825 dma_sync_single_for_cpu(ctx->ohci->card.device,
826 ar_buffer_bus(ctx, i),
827 PAGE_SIZE, DMA_FROM_DEVICE);
828 i = ar_next_buffer_index(i);
829 }
830 if (end_buffer_offset > 0)
831 dma_sync_single_for_cpu(ctx->ohci->card.device,
832 ar_buffer_bus(ctx, i),
833 end_buffer_offset, DMA_FROM_DEVICE);
834}
835
836#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
837#define cond_le32_to_cpu(v) \
838 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
839#else
840#define cond_le32_to_cpu(v) le32_to_cpu(v)
841#endif
842
843static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
844{
845 struct fw_ohci *ohci = ctx->ohci;
846 struct fw_packet p;
847 u32 status, length, tcode;
848 int evt;
849
850 p.header[0] = cond_le32_to_cpu(buffer[0]);
851 p.header[1] = cond_le32_to_cpu(buffer[1]);
852 p.header[2] = cond_le32_to_cpu(buffer[2]);
853
854 tcode = (p.header[0] >> 4) & 0x0f;
855 switch (tcode) {
856 case TCODE_WRITE_QUADLET_REQUEST:
857 case TCODE_READ_QUADLET_RESPONSE:
858 p.header[3] = (__force __u32) buffer[3];
859 p.header_length = 16;
860 p.payload_length = 0;
861 break;
862
863 case TCODE_READ_BLOCK_REQUEST :
864 p.header[3] = cond_le32_to_cpu(buffer[3]);
865 p.header_length = 16;
866 p.payload_length = 0;
867 break;
868
869 case TCODE_WRITE_BLOCK_REQUEST:
870 case TCODE_READ_BLOCK_RESPONSE:
871 case TCODE_LOCK_REQUEST:
872 case TCODE_LOCK_RESPONSE:
873 p.header[3] = cond_le32_to_cpu(buffer[3]);
874 p.header_length = 16;
875 p.payload_length = p.header[3] >> 16;
876 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
877 ar_context_abort(ctx, "invalid packet length");
878 return NULL;
879 }
880 break;
881
882 case TCODE_WRITE_RESPONSE:
883 case TCODE_READ_QUADLET_REQUEST:
884 case OHCI_TCODE_PHY_PACKET:
885 p.header_length = 12;
886 p.payload_length = 0;
887 break;
888
889 default:
890 ar_context_abort(ctx, "invalid tcode");
891 return NULL;
892 }
893
894 p.payload = (void *) buffer + p.header_length;
895
896 /* FIXME: What to do about evt_* errors? */
897 length = (p.header_length + p.payload_length + 3) / 4;
898 status = cond_le32_to_cpu(buffer[length]);
899 evt = (status >> 16) & 0x1f;
900
901 p.ack = evt - 16;
902 p.speed = (status >> 21) & 0x7;
903 p.timestamp = status & 0xffff;
904 p.generation = ohci->request_generation;
905
906 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
907
908 /*
909 * Several controllers, notably from NEC and VIA, forget to
910 * write ack_complete status at PHY packet reception.
911 */
912 if (evt == OHCI1394_evt_no_status &&
913 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
914 p.ack = ACK_COMPLETE;
915
916 /*
917 * The OHCI bus reset handler synthesizes a PHY packet with
918 * the new generation number when a bus reset happens (see
919 * section 8.4.2.3). This helps us determine when a request
920 * was received and make sure we send the response in the same
921 * generation. We only need this for requests; for responses
922 * we use the unique tlabel for finding the matching
923 * request.
924 *
925 * Alas some chips sometimes emit bus reset packets with a
926 * wrong generation. We set the correct generation for these
927 * at a slightly incorrect time (in bus_reset_work).
928 */
929 if (evt == OHCI1394_evt_bus_reset) {
930 if (!(ohci->quirks & QUIRK_RESET_PACKET))
931 ohci->request_generation = (p.header[2] >> 16) & 0xff;
932 } else if (ctx == &ohci->ar_request_ctx) {
933 fw_core_handle_request(&ohci->card, &p);
934 } else {
935 fw_core_handle_response(&ohci->card, &p);
936 }
937
938 return buffer + length + 1;
939}
940
941static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
942{
943 void *next;
944
945 while (p < end) {
946 next = handle_ar_packet(ctx, p);
947 if (!next)
948 return p;
949 p = next;
950 }
951
952 return p;
953}
954
955static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
956{
957 unsigned int i;
958
959 i = ar_first_buffer_index(ctx);
960 while (i != end_buffer) {
961 dma_sync_single_for_device(ctx->ohci->card.device,
962 ar_buffer_bus(ctx, i),
963 PAGE_SIZE, DMA_FROM_DEVICE);
964 ar_context_link_page(ctx, i);
965 i = ar_next_buffer_index(i);
966 }
967}
968
969static void ar_context_tasklet(unsigned long data)
970{
971 struct ar_context *ctx = (struct ar_context *)data;
972 unsigned int end_buffer_index, end_buffer_offset;
973 void *p, *end;
974
975 p = ctx->pointer;
976 if (!p)
977 return;
978
979 end_buffer_index = ar_search_last_active_buffer(ctx,
980 &end_buffer_offset);
981 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
982 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
983
984 if (end_buffer_index < ar_first_buffer_index(ctx)) {
985 /*
986 * The filled part of the overall buffer wraps around; handle
987 * all packets up to the buffer end here. If the last packet
988 * wraps around, its tail will be visible after the buffer end
989 * because the buffer start pages are mapped there again.
990 */
991 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
992 p = handle_ar_packets(ctx, p, buffer_end);
993 if (p < buffer_end)
994 goto error;
995 /* adjust p to point back into the actual buffer */
996 p -= AR_BUFFERS * PAGE_SIZE;
997 }
998
999 p = handle_ar_packets(ctx, p, end);
1000 if (p != end) {
1001 if (p > end)
1002 ar_context_abort(ctx, "inconsistent descriptor");
1003 goto error;
1004 }
1005
1006 ctx->pointer = p;
1007 ar_recycle_buffers(ctx, end_buffer_index);
1008
1009 return;
1010
1011error:
1012 ctx->pointer = NULL;
1013}
1014
1015static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1016 unsigned int descriptors_offset, u32 regs)
1017{
1018 unsigned int i;
1019 dma_addr_t dma_addr;
1020 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1021 struct descriptor *d;
1022
1023 ctx->regs = regs;
1024 ctx->ohci = ohci;
1025 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1026
1027 for (i = 0; i < AR_BUFFERS; i++) {
1028 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
1029 if (!ctx->pages[i])
1030 goto out_of_memory;
1031 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1032 0, PAGE_SIZE, DMA_FROM_DEVICE);
1033 if (dma_mapping_error(ohci->card.device, dma_addr)) {
1034 __free_page(ctx->pages[i]);
1035 ctx->pages[i] = NULL;
1036 goto out_of_memory;
1037 }
1038 set_page_private(ctx->pages[i], dma_addr);
1039 }
1040
1041 for (i = 0; i < AR_BUFFERS; i++)
1042 pages[i] = ctx->pages[i];
1043 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1044 pages[AR_BUFFERS + i] = ctx->pages[i];
1045 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1046 if (!ctx->buffer)
1047 goto out_of_memory;
1048
1049 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1050 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1051
1052 for (i = 0; i < AR_BUFFERS; i++) {
1053 d = &ctx->descriptors[i];
1054 d->req_count = cpu_to_le16(PAGE_SIZE);
1055 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1056 DESCRIPTOR_STATUS |
1057 DESCRIPTOR_BRANCH_ALWAYS);
1058 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1059 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1060 ar_next_buffer_index(i) * sizeof(struct descriptor));
1061 }
1062
1063 return 0;
1064
1065out_of_memory:
1066 ar_context_release(ctx);
1067
1068 return -ENOMEM;
1069}
1070
1071static void ar_context_run(struct ar_context *ctx)
1072{
1073 unsigned int i;
1074
1075 for (i = 0; i < AR_BUFFERS; i++)
1076 ar_context_link_page(ctx, i);
1077
1078 ctx->pointer = ctx->buffer;
1079
1080 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1081 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1082}
1083
1084static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1085{
1086 __le16 branch;
1087
1088 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1089
1090 /* figure out which descriptor the branch address goes in */
1091 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1092 return d;
1093 else
1094 return d + z - 1;
1095}
1096
1097static void context_tasklet(unsigned long data)
1098{
1099 struct context *ctx = (struct context *) data;
1100 struct descriptor *d, *last;
1101 u32 address;
1102 int z;
1103 struct descriptor_buffer *desc;
1104
1105 desc = list_entry(ctx->buffer_list.next,
1106 struct descriptor_buffer, list);
1107 last = ctx->last;
1108 while (last->branch_address != 0) {
1109 struct descriptor_buffer *old_desc = desc;
1110 address = le32_to_cpu(last->branch_address);
1111 z = address & 0xf;
1112 address &= ~0xf;
1113 ctx->current_bus = address;
1114
1115 /* If the branch address points to a buffer outside of the
1116 * current buffer, advance to the next buffer. */
1117 if (address < desc->buffer_bus ||
1118 address >= desc->buffer_bus + desc->used)
1119 desc = list_entry(desc->list.next,
1120 struct descriptor_buffer, list);
1121 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1122 last = find_branch_descriptor(d, z);
1123
1124 if (!ctx->callback(ctx, d, last))
1125 break;
1126
1127 if (old_desc != desc) {
1128 /* If we've advanced to the next buffer, move the
1129 * previous buffer to the free list. */
1130 unsigned long flags;
1131 old_desc->used = 0;
1132 spin_lock_irqsave(&ctx->ohci->lock, flags);
1133 list_move_tail(&old_desc->list, &ctx->buffer_list);
1134 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1135 }
1136 ctx->last = last;
1137 }
1138}
1139
1140/*
1141 * Allocate a new buffer and add it to the list of free buffers for this
1142 * context. Must be called with ohci->lock held.
1143 */
1144static int context_add_buffer(struct context *ctx)
1145{
1146 struct descriptor_buffer *desc;
1147 dma_addr_t bus_addr;
1148 int offset;
1149
1150 /*
1151 * 16MB of descriptors should be far more than enough for any DMA
1152 * program. This will catch run-away userspace or DoS attacks.
1153 */
1154 if (ctx->total_allocation >= 16*1024*1024)
1155 return -ENOMEM;
1156
1157 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1158 &bus_addr, GFP_ATOMIC);
1159 if (!desc)
1160 return -ENOMEM;
1161
1162 offset = (void *)&desc->buffer - (void *)desc;
1163 /*
1164 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1165 * for descriptors, even 0x10-byte ones. This can cause page faults when
1166 * an IOMMU is in use and the oversized read crosses a page boundary.
1167 * Work around this by always leaving at least 0x10 bytes of padding.
1168 */
1169 desc->buffer_size = PAGE_SIZE - offset - 0x10;
1170 desc->buffer_bus = bus_addr + offset;
1171 desc->used = 0;
1172
1173 list_add_tail(&desc->list, &ctx->buffer_list);
1174 ctx->total_allocation += PAGE_SIZE;
1175
1176 return 0;
1177}
1178
1179static int context_init(struct context *ctx, struct fw_ohci *ohci,
1180 u32 regs, descriptor_callback_t callback)
1181{
1182 ctx->ohci = ohci;
1183 ctx->regs = regs;
1184 ctx->total_allocation = 0;
1185
1186 INIT_LIST_HEAD(&ctx->buffer_list);
1187 if (context_add_buffer(ctx) < 0)
1188 return -ENOMEM;
1189
1190 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1191 struct descriptor_buffer, list);
1192
1193 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1194 ctx->callback = callback;
1195
1196 /*
1197 * We put a dummy descriptor in the buffer that has a NULL
1198 * branch address and looks like it's been sent. That way we
1199 * have a descriptor to append DMA programs to.
1200 */
1201 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1202 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1203 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1204 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1205 ctx->last = ctx->buffer_tail->buffer;
1206 ctx->prev = ctx->buffer_tail->buffer;
1207 ctx->prev_z = 1;
1208
1209 return 0;
1210}
1211
1212static void context_release(struct context *ctx)
1213{
1214 struct fw_card *card = &ctx->ohci->card;
1215 struct descriptor_buffer *desc, *tmp;
1216
1217 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1218 dma_free_coherent(card->device, PAGE_SIZE, desc,
1219 desc->buffer_bus -
1220 ((void *)&desc->buffer - (void *)desc));
1221}
1222
1223/* Must be called with ohci->lock held */
1224static struct descriptor *context_get_descriptors(struct context *ctx,
1225 int z, dma_addr_t *d_bus)
1226{
1227 struct descriptor *d = NULL;
1228 struct descriptor_buffer *desc = ctx->buffer_tail;
1229
1230 if (z * sizeof(*d) > desc->buffer_size)
1231 return NULL;
1232
1233 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1234 /* No room for the descriptor in this buffer, so advance to the
1235 * next one. */
1236
1237 if (desc->list.next == &ctx->buffer_list) {
1238 /* If there is no free buffer next in the list,
1239 * allocate one. */
1240 if (context_add_buffer(ctx) < 0)
1241 return NULL;
1242 }
1243 desc = list_entry(desc->list.next,
1244 struct descriptor_buffer, list);
1245 ctx->buffer_tail = desc;
1246 }
1247
1248 d = desc->buffer + desc->used / sizeof(*d);
1249 memset(d, 0, z * sizeof(*d));
1250 *d_bus = desc->buffer_bus + desc->used;
1251
1252 return d;
1253}
1254
1255static void context_run(struct context *ctx, u32 extra)
1256{
1257 struct fw_ohci *ohci = ctx->ohci;
1258
1259 reg_write(ohci, COMMAND_PTR(ctx->regs),
1260 le32_to_cpu(ctx->last->branch_address));
1261 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1262 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1263 ctx->running = true;
1264 flush_writes(ohci);
1265}
1266
1267static void context_append(struct context *ctx,
1268 struct descriptor *d, int z, int extra)
1269{
1270 dma_addr_t d_bus;
1271 struct descriptor_buffer *desc = ctx->buffer_tail;
1272 struct descriptor *d_branch;
1273
1274 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1275
1276 desc->used += (z + extra) * sizeof(*d);
1277
1278 wmb(); /* finish init of new descriptors before branch_address update */
1279
1280 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1281 d_branch->branch_address = cpu_to_le32(d_bus | z);
1282
1283 /*
1284 * VT6306 incorrectly checks only the single descriptor at the
1285 * CommandPtr when the wake bit is written, so if it's a
1286 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1287 * the branch address in the first descriptor.
1288 *
1289 * Not doing this for transmit contexts since not sure how it interacts
1290 * with skip addresses.
1291 */
1292 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1293 d_branch != ctx->prev &&
1294 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1295 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1296 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1297 }
1298
1299 ctx->prev = d;
1300 ctx->prev_z = z;
1301}
1302
1303static void context_stop(struct context *ctx)
1304{
1305 struct fw_ohci *ohci = ctx->ohci;
1306 u32 reg;
1307 int i;
1308
1309 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1310 ctx->running = false;
1311
1312 for (i = 0; i < 1000; i++) {
1313 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1314 if ((reg & CONTEXT_ACTIVE) == 0)
1315 return;
1316
1317 if (i)
1318 udelay(10);
1319 }
1320 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1321}
1322
1323struct driver_data {
1324 u8 inline_data[8];
1325 struct fw_packet *packet;
1326};
1327
1328/*
1329 * This function apppends a packet to the DMA queue for transmission.
1330 * Must always be called with the ochi->lock held to ensure proper
1331 * generation handling and locking around packet queue manipulation.
1332 */
1333static int at_context_queue_packet(struct context *ctx,
1334 struct fw_packet *packet)
1335{
1336 struct fw_ohci *ohci = ctx->ohci;
1337 dma_addr_t d_bus, payload_bus;
1338 struct driver_data *driver_data;
1339 struct descriptor *d, *last;
1340 __le32 *header;
1341 int z, tcode;
1342
1343 d = context_get_descriptors(ctx, 4, &d_bus);
1344 if (d == NULL) {
1345 packet->ack = RCODE_SEND_ERROR;
1346 return -1;
1347 }
1348
1349 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1350 d[0].res_count = cpu_to_le16(packet->timestamp);
1351
1352 /*
1353 * The DMA format for asynchronous link packets is different
1354 * from the IEEE1394 layout, so shift the fields around
1355 * accordingly.
1356 */
1357
1358 tcode = (packet->header[0] >> 4) & 0x0f;
1359 header = (__le32 *) &d[1];
1360 switch (tcode) {
1361 case TCODE_WRITE_QUADLET_REQUEST:
1362 case TCODE_WRITE_BLOCK_REQUEST:
1363 case TCODE_WRITE_RESPONSE:
1364 case TCODE_READ_QUADLET_REQUEST:
1365 case TCODE_READ_BLOCK_REQUEST:
1366 case TCODE_READ_QUADLET_RESPONSE:
1367 case TCODE_READ_BLOCK_RESPONSE:
1368 case TCODE_LOCK_REQUEST:
1369 case TCODE_LOCK_RESPONSE:
1370 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1371 (packet->speed << 16));
1372 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1373 (packet->header[0] & 0xffff0000));
1374 header[2] = cpu_to_le32(packet->header[2]);
1375
1376 if (TCODE_IS_BLOCK_PACKET(tcode))
1377 header[3] = cpu_to_le32(packet->header[3]);
1378 else
1379 header[3] = (__force __le32) packet->header[3];
1380
1381 d[0].req_count = cpu_to_le16(packet->header_length);
1382 break;
1383
1384 case TCODE_LINK_INTERNAL:
1385 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1386 (packet->speed << 16));
1387 header[1] = cpu_to_le32(packet->header[1]);
1388 header[2] = cpu_to_le32(packet->header[2]);
1389 d[0].req_count = cpu_to_le16(12);
1390
1391 if (is_ping_packet(&packet->header[1]))
1392 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1393 break;
1394
1395 case TCODE_STREAM_DATA:
1396 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1397 (packet->speed << 16));
1398 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1399 d[0].req_count = cpu_to_le16(8);
1400 break;
1401
1402 default:
1403 /* BUG(); */
1404 packet->ack = RCODE_SEND_ERROR;
1405 return -1;
1406 }
1407
1408 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1409 driver_data = (struct driver_data *) &d[3];
1410 driver_data->packet = packet;
1411 packet->driver_data = driver_data;
1412
1413 if (packet->payload_length > 0) {
1414 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1415 payload_bus = dma_map_single(ohci->card.device,
1416 packet->payload,
1417 packet->payload_length,
1418 DMA_TO_DEVICE);
1419 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1420 packet->ack = RCODE_SEND_ERROR;
1421 return -1;
1422 }
1423 packet->payload_bus = payload_bus;
1424 packet->payload_mapped = true;
1425 } else {
1426 memcpy(driver_data->inline_data, packet->payload,
1427 packet->payload_length);
1428 payload_bus = d_bus + 3 * sizeof(*d);
1429 }
1430
1431 d[2].req_count = cpu_to_le16(packet->payload_length);
1432 d[2].data_address = cpu_to_le32(payload_bus);
1433 last = &d[2];
1434 z = 3;
1435 } else {
1436 last = &d[0];
1437 z = 2;
1438 }
1439
1440 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1441 DESCRIPTOR_IRQ_ALWAYS |
1442 DESCRIPTOR_BRANCH_ALWAYS);
1443
1444 /* FIXME: Document how the locking works. */
1445 if (ohci->generation != packet->generation) {
1446 if (packet->payload_mapped)
1447 dma_unmap_single(ohci->card.device, payload_bus,
1448 packet->payload_length, DMA_TO_DEVICE);
1449 packet->ack = RCODE_GENERATION;
1450 return -1;
1451 }
1452
1453 context_append(ctx, d, z, 4 - z);
1454
1455 if (ctx->running)
1456 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1457 else
1458 context_run(ctx, 0);
1459
1460 return 0;
1461}
1462
1463static void at_context_flush(struct context *ctx)
1464{
1465 tasklet_disable(&ctx->tasklet);
1466
1467 ctx->flushing = true;
1468 context_tasklet((unsigned long)ctx);
1469 ctx->flushing = false;
1470
1471 tasklet_enable(&ctx->tasklet);
1472}
1473
1474static int handle_at_packet(struct context *context,
1475 struct descriptor *d,
1476 struct descriptor *last)
1477{
1478 struct driver_data *driver_data;
1479 struct fw_packet *packet;
1480 struct fw_ohci *ohci = context->ohci;
1481 int evt;
1482
1483 if (last->transfer_status == 0 && !context->flushing)
1484 /* This descriptor isn't done yet, stop iteration. */
1485 return 0;
1486
1487 driver_data = (struct driver_data *) &d[3];
1488 packet = driver_data->packet;
1489 if (packet == NULL)
1490 /* This packet was cancelled, just continue. */
1491 return 1;
1492
1493 if (packet->payload_mapped)
1494 dma_unmap_single(ohci->card.device, packet->payload_bus,
1495 packet->payload_length, DMA_TO_DEVICE);
1496
1497 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1498 packet->timestamp = le16_to_cpu(last->res_count);
1499
1500 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1501
1502 switch (evt) {
1503 case OHCI1394_evt_timeout:
1504 /* Async response transmit timed out. */
1505 packet->ack = RCODE_CANCELLED;
1506 break;
1507
1508 case OHCI1394_evt_flushed:
1509 /*
1510 * The packet was flushed should give same error as
1511 * when we try to use a stale generation count.
1512 */
1513 packet->ack = RCODE_GENERATION;
1514 break;
1515
1516 case OHCI1394_evt_missing_ack:
1517 if (context->flushing)
1518 packet->ack = RCODE_GENERATION;
1519 else {
1520 /*
1521 * Using a valid (current) generation count, but the
1522 * node is not on the bus or not sending acks.
1523 */
1524 packet->ack = RCODE_NO_ACK;
1525 }
1526 break;
1527
1528 case ACK_COMPLETE + 0x10:
1529 case ACK_PENDING + 0x10:
1530 case ACK_BUSY_X + 0x10:
1531 case ACK_BUSY_A + 0x10:
1532 case ACK_BUSY_B + 0x10:
1533 case ACK_DATA_ERROR + 0x10:
1534 case ACK_TYPE_ERROR + 0x10:
1535 packet->ack = evt - 0x10;
1536 break;
1537
1538 case OHCI1394_evt_no_status:
1539 if (context->flushing) {
1540 packet->ack = RCODE_GENERATION;
1541 break;
1542 }
1543 /* fall through */
1544
1545 default:
1546 packet->ack = RCODE_SEND_ERROR;
1547 break;
1548 }
1549
1550 packet->callback(packet, &ohci->card, packet->ack);
1551
1552 return 1;
1553}
1554
1555#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1556#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1557#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1558#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1559#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1560
1561static void handle_local_rom(struct fw_ohci *ohci,
1562 struct fw_packet *packet, u32 csr)
1563{
1564 struct fw_packet response;
1565 int tcode, length, i;
1566
1567 tcode = HEADER_GET_TCODE(packet->header[0]);
1568 if (TCODE_IS_BLOCK_PACKET(tcode))
1569 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1570 else
1571 length = 4;
1572
1573 i = csr - CSR_CONFIG_ROM;
1574 if (i + length > CONFIG_ROM_SIZE) {
1575 fw_fill_response(&response, packet->header,
1576 RCODE_ADDRESS_ERROR, NULL, 0);
1577 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1578 fw_fill_response(&response, packet->header,
1579 RCODE_TYPE_ERROR, NULL, 0);
1580 } else {
1581 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1582 (void *) ohci->config_rom + i, length);
1583 }
1584
1585 fw_core_handle_response(&ohci->card, &response);
1586}
1587
1588static void handle_local_lock(struct fw_ohci *ohci,
1589 struct fw_packet *packet, u32 csr)
1590{
1591 struct fw_packet response;
1592 int tcode, length, ext_tcode, sel, try;
1593 __be32 *payload, lock_old;
1594 u32 lock_arg, lock_data;
1595
1596 tcode = HEADER_GET_TCODE(packet->header[0]);
1597 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1598 payload = packet->payload;
1599 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1600
1601 if (tcode == TCODE_LOCK_REQUEST &&
1602 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1603 lock_arg = be32_to_cpu(payload[0]);
1604 lock_data = be32_to_cpu(payload[1]);
1605 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1606 lock_arg = 0;
1607 lock_data = 0;
1608 } else {
1609 fw_fill_response(&response, packet->header,
1610 RCODE_TYPE_ERROR, NULL, 0);
1611 goto out;
1612 }
1613
1614 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1615 reg_write(ohci, OHCI1394_CSRData, lock_data);
1616 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1617 reg_write(ohci, OHCI1394_CSRControl, sel);
1618
1619 for (try = 0; try < 20; try++)
1620 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1621 lock_old = cpu_to_be32(reg_read(ohci,
1622 OHCI1394_CSRData));
1623 fw_fill_response(&response, packet->header,
1624 RCODE_COMPLETE,
1625 &lock_old, sizeof(lock_old));
1626 goto out;
1627 }
1628
1629 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1630 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1631
1632 out:
1633 fw_core_handle_response(&ohci->card, &response);
1634}
1635
1636static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1637{
1638 u64 offset, csr;
1639
1640 if (ctx == &ctx->ohci->at_request_ctx) {
1641 packet->ack = ACK_PENDING;
1642 packet->callback(packet, &ctx->ohci->card, packet->ack);
1643 }
1644
1645 offset =
1646 ((unsigned long long)
1647 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1648 packet->header[2];
1649 csr = offset - CSR_REGISTER_BASE;
1650
1651 /* Handle config rom reads. */
1652 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1653 handle_local_rom(ctx->ohci, packet, csr);
1654 else switch (csr) {
1655 case CSR_BUS_MANAGER_ID:
1656 case CSR_BANDWIDTH_AVAILABLE:
1657 case CSR_CHANNELS_AVAILABLE_HI:
1658 case CSR_CHANNELS_AVAILABLE_LO:
1659 handle_local_lock(ctx->ohci, packet, csr);
1660 break;
1661 default:
1662 if (ctx == &ctx->ohci->at_request_ctx)
1663 fw_core_handle_request(&ctx->ohci->card, packet);
1664 else
1665 fw_core_handle_response(&ctx->ohci->card, packet);
1666 break;
1667 }
1668
1669 if (ctx == &ctx->ohci->at_response_ctx) {
1670 packet->ack = ACK_COMPLETE;
1671 packet->callback(packet, &ctx->ohci->card, packet->ack);
1672 }
1673}
1674
1675static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1676{
1677 unsigned long flags;
1678 int ret;
1679
1680 spin_lock_irqsave(&ctx->ohci->lock, flags);
1681
1682 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1683 ctx->ohci->generation == packet->generation) {
1684 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1685 handle_local_request(ctx, packet);
1686 return;
1687 }
1688
1689 ret = at_context_queue_packet(ctx, packet);
1690 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1691
1692 if (ret < 0)
1693 packet->callback(packet, &ctx->ohci->card, packet->ack);
1694
1695}
1696
1697static void detect_dead_context(struct fw_ohci *ohci,
1698 const char *name, unsigned int regs)
1699{
1700 u32 ctl;
1701
1702 ctl = reg_read(ohci, CONTROL_SET(regs));
1703 if (ctl & CONTEXT_DEAD)
1704 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1705 name, evts[ctl & 0x1f]);
1706}
1707
1708static void handle_dead_contexts(struct fw_ohci *ohci)
1709{
1710 unsigned int i;
1711 char name[8];
1712
1713 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1714 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1715 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1716 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1717 for (i = 0; i < 32; ++i) {
1718 if (!(ohci->it_context_support & (1 << i)))
1719 continue;
1720 sprintf(name, "IT%u", i);
1721 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1722 }
1723 for (i = 0; i < 32; ++i) {
1724 if (!(ohci->ir_context_support & (1 << i)))
1725 continue;
1726 sprintf(name, "IR%u", i);
1727 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1728 }
1729 /* TODO: maybe try to flush and restart the dead contexts */
1730}
1731
1732static u32 cycle_timer_ticks(u32 cycle_timer)
1733{
1734 u32 ticks;
1735
1736 ticks = cycle_timer & 0xfff;
1737 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1738 ticks += (3072 * 8000) * (cycle_timer >> 25);
1739
1740 return ticks;
1741}
1742
1743/*
1744 * Some controllers exhibit one or more of the following bugs when updating the
1745 * iso cycle timer register:
1746 * - When the lowest six bits are wrapping around to zero, a read that happens
1747 * at the same time will return garbage in the lowest ten bits.
1748 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1749 * not incremented for about 60 ns.
1750 * - Occasionally, the entire register reads zero.
1751 *
1752 * To catch these, we read the register three times and ensure that the
1753 * difference between each two consecutive reads is approximately the same, i.e.
1754 * less than twice the other. Furthermore, any negative difference indicates an
1755 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1756 * execute, so we have enough precision to compute the ratio of the differences.)
1757 */
1758static u32 get_cycle_time(struct fw_ohci *ohci)
1759{
1760 u32 c0, c1, c2;
1761 u32 t0, t1, t2;
1762 s32 diff01, diff12;
1763 int i;
1764
1765 if (has_reboot_by_cycle_timer_read_quirk(ohci))
1766 return 0;
1767
1768 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1769
1770 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1771 i = 0;
1772 c1 = c2;
1773 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1774 do {
1775 c0 = c1;
1776 c1 = c2;
1777 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1778 t0 = cycle_timer_ticks(c0);
1779 t1 = cycle_timer_ticks(c1);
1780 t2 = cycle_timer_ticks(c2);
1781 diff01 = t1 - t0;
1782 diff12 = t2 - t1;
1783 } while ((diff01 <= 0 || diff12 <= 0 ||
1784 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1785 && i++ < 20);
1786 }
1787
1788 return c2;
1789}
1790
1791/*
1792 * This function has to be called at least every 64 seconds. The bus_time
1793 * field stores not only the upper 25 bits of the BUS_TIME register but also
1794 * the most significant bit of the cycle timer in bit 6 so that we can detect
1795 * changes in this bit.
1796 */
1797static u32 update_bus_time(struct fw_ohci *ohci)
1798{
1799 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1800
1801 if (unlikely(!ohci->bus_time_running)) {
1802 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1803 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1804 (cycle_time_seconds & 0x40);
1805 ohci->bus_time_running = true;
1806 }
1807
1808 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1809 ohci->bus_time += 0x40;
1810
1811 return ohci->bus_time | cycle_time_seconds;
1812}
1813
1814static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1815{
1816 int reg;
1817
1818 mutex_lock(&ohci->phy_reg_mutex);
1819 reg = write_phy_reg(ohci, 7, port_index);
1820 if (reg >= 0)
1821 reg = read_phy_reg(ohci, 8);
1822 mutex_unlock(&ohci->phy_reg_mutex);
1823 if (reg < 0)
1824 return reg;
1825
1826 switch (reg & 0x0f) {
1827 case 0x06:
1828 return 2; /* is child node (connected to parent node) */
1829 case 0x0e:
1830 return 3; /* is parent node (connected to child node) */
1831 }
1832 return 1; /* not connected */
1833}
1834
1835static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1836 int self_id_count)
1837{
1838 int i;
1839 u32 entry;
1840
1841 for (i = 0; i < self_id_count; i++) {
1842 entry = ohci->self_id_buffer[i];
1843 if ((self_id & 0xff000000) == (entry & 0xff000000))
1844 return -1;
1845 if ((self_id & 0xff000000) < (entry & 0xff000000))
1846 return i;
1847 }
1848 return i;
1849}
1850
1851static int initiated_reset(struct fw_ohci *ohci)
1852{
1853 int reg;
1854 int ret = 0;
1855
1856 mutex_lock(&ohci->phy_reg_mutex);
1857 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1858 if (reg >= 0) {
1859 reg = read_phy_reg(ohci, 8);
1860 reg |= 0x40;
1861 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1862 if (reg >= 0) {
1863 reg = read_phy_reg(ohci, 12); /* read register 12 */
1864 if (reg >= 0) {
1865 if ((reg & 0x08) == 0x08) {
1866 /* bit 3 indicates "initiated reset" */
1867 ret = 0x2;
1868 }
1869 }
1870 }
1871 }
1872 mutex_unlock(&ohci->phy_reg_mutex);
1873 return ret;
1874}
1875
1876/*
1877 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1878 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1879 * Construct the selfID from phy register contents.
1880 */
1881static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1882{
1883 int reg, i, pos, status;
1884 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1885 u32 self_id = 0x8040c800;
1886
1887 reg = reg_read(ohci, OHCI1394_NodeID);
1888 if (!(reg & OHCI1394_NodeID_idValid)) {
1889 ohci_notice(ohci,
1890 "node ID not valid, new bus reset in progress\n");
1891 return -EBUSY;
1892 }
1893 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1894
1895 reg = ohci_read_phy_reg(&ohci->card, 4);
1896 if (reg < 0)
1897 return reg;
1898 self_id |= ((reg & 0x07) << 8); /* power class */
1899
1900 reg = ohci_read_phy_reg(&ohci->card, 1);
1901 if (reg < 0)
1902 return reg;
1903 self_id |= ((reg & 0x3f) << 16); /* gap count */
1904
1905 for (i = 0; i < 3; i++) {
1906 status = get_status_for_port(ohci, i);
1907 if (status < 0)
1908 return status;
1909 self_id |= ((status & 0x3) << (6 - (i * 2)));
1910 }
1911
1912 self_id |= initiated_reset(ohci);
1913
1914 pos = get_self_id_pos(ohci, self_id, self_id_count);
1915 if (pos >= 0) {
1916 memmove(&(ohci->self_id_buffer[pos+1]),
1917 &(ohci->self_id_buffer[pos]),
1918 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1919 ohci->self_id_buffer[pos] = self_id;
1920 self_id_count++;
1921 }
1922 return self_id_count;
1923}
1924
1925static void bus_reset_work(struct work_struct *work)
1926{
1927 struct fw_ohci *ohci =
1928 container_of(work, struct fw_ohci, bus_reset_work);
1929 int self_id_count, generation, new_generation, i, j;
1930 u32 reg;
1931 void *free_rom = NULL;
1932 dma_addr_t free_rom_bus = 0;
1933 bool is_new_root;
1934
1935 reg = reg_read(ohci, OHCI1394_NodeID);
1936 if (!(reg & OHCI1394_NodeID_idValid)) {
1937 ohci_notice(ohci,
1938 "node ID not valid, new bus reset in progress\n");
1939 return;
1940 }
1941 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1942 ohci_notice(ohci, "malconfigured bus\n");
1943 return;
1944 }
1945 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1946 OHCI1394_NodeID_nodeNumber);
1947
1948 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1949 if (!(ohci->is_root && is_new_root))
1950 reg_write(ohci, OHCI1394_LinkControlSet,
1951 OHCI1394_LinkControl_cycleMaster);
1952 ohci->is_root = is_new_root;
1953
1954 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1955 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1956 ohci_notice(ohci, "self ID receive error\n");
1957 return;
1958 }
1959 /*
1960 * The count in the SelfIDCount register is the number of
1961 * bytes in the self ID receive buffer. Since we also receive
1962 * the inverted quadlets and a header quadlet, we shift one
1963 * bit extra to get the actual number of self IDs.
1964 */
1965 self_id_count = (reg >> 3) & 0xff;
1966
1967 if (self_id_count > 252) {
1968 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1969 return;
1970 }
1971
1972 generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1973 rmb();
1974
1975 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1976 u32 id = cond_le32_to_cpu(ohci->self_id[i]);
1977 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1978
1979 if (id != ~id2) {
1980 /*
1981 * If the invalid data looks like a cycle start packet,
1982 * it's likely to be the result of the cycle master
1983 * having a wrong gap count. In this case, the self IDs
1984 * so far are valid and should be processed so that the
1985 * bus manager can then correct the gap count.
1986 */
1987 if (id == 0xffff008f) {
1988 ohci_notice(ohci, "ignoring spurious self IDs\n");
1989 self_id_count = j;
1990 break;
1991 }
1992
1993 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1994 j, self_id_count, id, id2);
1995 return;
1996 }
1997 ohci->self_id_buffer[j] = id;
1998 }
1999
2000 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2001 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2002 if (self_id_count < 0) {
2003 ohci_notice(ohci,
2004 "could not construct local self ID\n");
2005 return;
2006 }
2007 }
2008
2009 if (self_id_count == 0) {
2010 ohci_notice(ohci, "no self IDs\n");
2011 return;
2012 }
2013 rmb();
2014
2015 /*
2016 * Check the consistency of the self IDs we just read. The
2017 * problem we face is that a new bus reset can start while we
2018 * read out the self IDs from the DMA buffer. If this happens,
2019 * the DMA buffer will be overwritten with new self IDs and we
2020 * will read out inconsistent data. The OHCI specification
2021 * (section 11.2) recommends a technique similar to
2022 * linux/seqlock.h, where we remember the generation of the
2023 * self IDs in the buffer before reading them out and compare
2024 * it to the current generation after reading them out. If
2025 * the two generations match we know we have a consistent set
2026 * of self IDs.
2027 */
2028
2029 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2030 if (new_generation != generation) {
2031 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2032 return;
2033 }
2034
2035 /* FIXME: Document how the locking works. */
2036 spin_lock_irq(&ohci->lock);
2037
2038 ohci->generation = -1; /* prevent AT packet queueing */
2039 context_stop(&ohci->at_request_ctx);
2040 context_stop(&ohci->at_response_ctx);
2041
2042 spin_unlock_irq(&ohci->lock);
2043
2044 /*
2045 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2046 * packets in the AT queues and software needs to drain them.
2047 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2048 */
2049 at_context_flush(&ohci->at_request_ctx);
2050 at_context_flush(&ohci->at_response_ctx);
2051
2052 spin_lock_irq(&ohci->lock);
2053
2054 ohci->generation = generation;
2055 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2056 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2057 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2058
2059 if (ohci->quirks & QUIRK_RESET_PACKET)
2060 ohci->request_generation = generation;
2061
2062 /*
2063 * This next bit is unrelated to the AT context stuff but we
2064 * have to do it under the spinlock also. If a new config rom
2065 * was set up before this reset, the old one is now no longer
2066 * in use and we can free it. Update the config rom pointers
2067 * to point to the current config rom and clear the
2068 * next_config_rom pointer so a new update can take place.
2069 */
2070
2071 if (ohci->next_config_rom != NULL) {
2072 if (ohci->next_config_rom != ohci->config_rom) {
2073 free_rom = ohci->config_rom;
2074 free_rom_bus = ohci->config_rom_bus;
2075 }
2076 ohci->config_rom = ohci->next_config_rom;
2077 ohci->config_rom_bus = ohci->next_config_rom_bus;
2078 ohci->next_config_rom = NULL;
2079
2080 /*
2081 * Restore config_rom image and manually update
2082 * config_rom registers. Writing the header quadlet
2083 * will indicate that the config rom is ready, so we
2084 * do that last.
2085 */
2086 reg_write(ohci, OHCI1394_BusOptions,
2087 be32_to_cpu(ohci->config_rom[2]));
2088 ohci->config_rom[0] = ohci->next_header;
2089 reg_write(ohci, OHCI1394_ConfigROMhdr,
2090 be32_to_cpu(ohci->next_header));
2091 }
2092
2093 if (param_remote_dma) {
2094 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2095 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2096 }
2097
2098 spin_unlock_irq(&ohci->lock);
2099
2100 if (free_rom)
2101 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2102 free_rom, free_rom_bus);
2103
2104 log_selfids(ohci, generation, self_id_count);
2105
2106 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2107 self_id_count, ohci->self_id_buffer,
2108 ohci->csr_state_setclear_abdicate);
2109 ohci->csr_state_setclear_abdicate = false;
2110}
2111
2112static irqreturn_t irq_handler(int irq, void *data)
2113{
2114 struct fw_ohci *ohci = data;
2115 u32 event, iso_event;
2116 int i;
2117
2118 event = reg_read(ohci, OHCI1394_IntEventClear);
2119
2120 if (!event || !~event)
2121 return IRQ_NONE;
2122
2123 /*
2124 * busReset and postedWriteErr events must not be cleared yet
2125 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2126 */
2127 reg_write(ohci, OHCI1394_IntEventClear,
2128 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2129 log_irqs(ohci, event);
2130 if (event & OHCI1394_busReset)
2131 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2132
2133 if (event & OHCI1394_selfIDComplete)
2134 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2135
2136 if (event & OHCI1394_RQPkt)
2137 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2138
2139 if (event & OHCI1394_RSPkt)
2140 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2141
2142 if (event & OHCI1394_reqTxComplete)
2143 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2144
2145 if (event & OHCI1394_respTxComplete)
2146 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2147
2148 if (event & OHCI1394_isochRx) {
2149 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2150 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2151
2152 while (iso_event) {
2153 i = ffs(iso_event) - 1;
2154 tasklet_schedule(
2155 &ohci->ir_context_list[i].context.tasklet);
2156 iso_event &= ~(1 << i);
2157 }
2158 }
2159
2160 if (event & OHCI1394_isochTx) {
2161 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2162 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2163
2164 while (iso_event) {
2165 i = ffs(iso_event) - 1;
2166 tasklet_schedule(
2167 &ohci->it_context_list[i].context.tasklet);
2168 iso_event &= ~(1 << i);
2169 }
2170 }
2171
2172 if (unlikely(event & OHCI1394_regAccessFail))
2173 ohci_err(ohci, "register access failure\n");
2174
2175 if (unlikely(event & OHCI1394_postedWriteErr)) {
2176 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2177 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2178 reg_write(ohci, OHCI1394_IntEventClear,
2179 OHCI1394_postedWriteErr);
2180 if (printk_ratelimit())
2181 ohci_err(ohci, "PCI posted write error\n");
2182 }
2183
2184 if (unlikely(event & OHCI1394_cycleTooLong)) {
2185 if (printk_ratelimit())
2186 ohci_notice(ohci, "isochronous cycle too long\n");
2187 reg_write(ohci, OHCI1394_LinkControlSet,
2188 OHCI1394_LinkControl_cycleMaster);
2189 }
2190
2191 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2192 /*
2193 * We need to clear this event bit in order to make
2194 * cycleMatch isochronous I/O work. In theory we should
2195 * stop active cycleMatch iso contexts now and restart
2196 * them at least two cycles later. (FIXME?)
2197 */
2198 if (printk_ratelimit())
2199 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2200 }
2201
2202 if (unlikely(event & OHCI1394_unrecoverableError))
2203 handle_dead_contexts(ohci);
2204
2205 if (event & OHCI1394_cycle64Seconds) {
2206 spin_lock(&ohci->lock);
2207 update_bus_time(ohci);
2208 spin_unlock(&ohci->lock);
2209 } else
2210 flush_writes(ohci);
2211
2212 return IRQ_HANDLED;
2213}
2214
2215static int software_reset(struct fw_ohci *ohci)
2216{
2217 u32 val;
2218 int i;
2219
2220 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2221 for (i = 0; i < 500; i++) {
2222 val = reg_read(ohci, OHCI1394_HCControlSet);
2223 if (!~val)
2224 return -ENODEV; /* Card was ejected. */
2225
2226 if (!(val & OHCI1394_HCControl_softReset))
2227 return 0;
2228
2229 msleep(1);
2230 }
2231
2232 return -EBUSY;
2233}
2234
2235static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2236{
2237 size_t size = length * 4;
2238
2239 memcpy(dest, src, size);
2240 if (size < CONFIG_ROM_SIZE)
2241 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2242}
2243
2244static int configure_1394a_enhancements(struct fw_ohci *ohci)
2245{
2246 bool enable_1394a;
2247 int ret, clear, set, offset;
2248
2249 /* Check if the driver should configure link and PHY. */
2250 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2251 OHCI1394_HCControl_programPhyEnable))
2252 return 0;
2253
2254 /* Paranoia: check whether the PHY supports 1394a, too. */
2255 enable_1394a = false;
2256 ret = read_phy_reg(ohci, 2);
2257 if (ret < 0)
2258 return ret;
2259 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2260 ret = read_paged_phy_reg(ohci, 1, 8);
2261 if (ret < 0)
2262 return ret;
2263 if (ret >= 1)
2264 enable_1394a = true;
2265 }
2266
2267 if (ohci->quirks & QUIRK_NO_1394A)
2268 enable_1394a = false;
2269
2270 /* Configure PHY and link consistently. */
2271 if (enable_1394a) {
2272 clear = 0;
2273 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2274 } else {
2275 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2276 set = 0;
2277 }
2278 ret = update_phy_reg(ohci, 5, clear, set);
2279 if (ret < 0)
2280 return ret;
2281
2282 if (enable_1394a)
2283 offset = OHCI1394_HCControlSet;
2284 else
2285 offset = OHCI1394_HCControlClear;
2286 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2287
2288 /* Clean up: configuration has been taken care of. */
2289 reg_write(ohci, OHCI1394_HCControlClear,
2290 OHCI1394_HCControl_programPhyEnable);
2291
2292 return 0;
2293}
2294
2295static int probe_tsb41ba3d(struct fw_ohci *ohci)
2296{
2297 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2298 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2299 int reg, i;
2300
2301 reg = read_phy_reg(ohci, 2);
2302 if (reg < 0)
2303 return reg;
2304 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2305 return 0;
2306
2307 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2308 reg = read_paged_phy_reg(ohci, 1, i + 10);
2309 if (reg < 0)
2310 return reg;
2311 if (reg != id[i])
2312 return 0;
2313 }
2314 return 1;
2315}
2316
2317static int ohci_enable(struct fw_card *card,
2318 const __be32 *config_rom, size_t length)
2319{
2320 struct fw_ohci *ohci = fw_ohci(card);
2321 u32 lps, version, irqs;
2322 int i, ret;
2323
2324 ret = software_reset(ohci);
2325 if (ret < 0) {
2326 ohci_err(ohci, "failed to reset ohci card\n");
2327 return ret;
2328 }
2329
2330 /*
2331 * Now enable LPS, which we need in order to start accessing
2332 * most of the registers. In fact, on some cards (ALI M5251),
2333 * accessing registers in the SClk domain without LPS enabled
2334 * will lock up the machine. Wait 50msec to make sure we have
2335 * full link enabled. However, with some cards (well, at least
2336 * a JMicron PCIe card), we have to try again sometimes.
2337 *
2338 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2339 * cannot actually use the phy at that time. These need tens of
2340 * millisecods pause between LPS write and first phy access too.
2341 */
2342
2343 reg_write(ohci, OHCI1394_HCControlSet,
2344 OHCI1394_HCControl_LPS |
2345 OHCI1394_HCControl_postedWriteEnable);
2346 flush_writes(ohci);
2347
2348 for (lps = 0, i = 0; !lps && i < 3; i++) {
2349 msleep(50);
2350 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2351 OHCI1394_HCControl_LPS;
2352 }
2353
2354 if (!lps) {
2355 ohci_err(ohci, "failed to set Link Power Status\n");
2356 return -EIO;
2357 }
2358
2359 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2360 ret = probe_tsb41ba3d(ohci);
2361 if (ret < 0)
2362 return ret;
2363 if (ret)
2364 ohci_notice(ohci, "local TSB41BA3D phy\n");
2365 else
2366 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2367 }
2368
2369 reg_write(ohci, OHCI1394_HCControlClear,
2370 OHCI1394_HCControl_noByteSwapData);
2371
2372 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2373 reg_write(ohci, OHCI1394_LinkControlSet,
2374 OHCI1394_LinkControl_cycleTimerEnable |
2375 OHCI1394_LinkControl_cycleMaster);
2376
2377 reg_write(ohci, OHCI1394_ATRetries,
2378 OHCI1394_MAX_AT_REQ_RETRIES |
2379 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2380 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2381 (200 << 16));
2382
2383 ohci->bus_time_running = false;
2384
2385 for (i = 0; i < 32; i++)
2386 if (ohci->ir_context_support & (1 << i))
2387 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2388 IR_CONTEXT_MULTI_CHANNEL_MODE);
2389
2390 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2391 if (version >= OHCI_VERSION_1_1) {
2392 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2393 0xfffffffe);
2394 card->broadcast_channel_auto_allocated = true;
2395 }
2396
2397 /* Get implemented bits of the priority arbitration request counter. */
2398 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2399 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2400 reg_write(ohci, OHCI1394_FairnessControl, 0);
2401 card->priority_budget_implemented = ohci->pri_req_max != 0;
2402
2403 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2404 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2405 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2406
2407 ret = configure_1394a_enhancements(ohci);
2408 if (ret < 0)
2409 return ret;
2410
2411 /* Activate link_on bit and contender bit in our self ID packets.*/
2412 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2413 if (ret < 0)
2414 return ret;
2415
2416 /*
2417 * When the link is not yet enabled, the atomic config rom
2418 * update mechanism described below in ohci_set_config_rom()
2419 * is not active. We have to update ConfigRomHeader and
2420 * BusOptions manually, and the write to ConfigROMmap takes
2421 * effect immediately. We tie this to the enabling of the
2422 * link, so we have a valid config rom before enabling - the
2423 * OHCI requires that ConfigROMhdr and BusOptions have valid
2424 * values before enabling.
2425 *
2426 * However, when the ConfigROMmap is written, some controllers
2427 * always read back quadlets 0 and 2 from the config rom to
2428 * the ConfigRomHeader and BusOptions registers on bus reset.
2429 * They shouldn't do that in this initial case where the link
2430 * isn't enabled. This means we have to use the same
2431 * workaround here, setting the bus header to 0 and then write
2432 * the right values in the bus reset tasklet.
2433 */
2434
2435 if (config_rom) {
2436 ohci->next_config_rom =
2437 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2438 &ohci->next_config_rom_bus,
2439 GFP_KERNEL);
2440 if (ohci->next_config_rom == NULL)
2441 return -ENOMEM;
2442
2443 copy_config_rom(ohci->next_config_rom, config_rom, length);
2444 } else {
2445 /*
2446 * In the suspend case, config_rom is NULL, which
2447 * means that we just reuse the old config rom.
2448 */
2449 ohci->next_config_rom = ohci->config_rom;
2450 ohci->next_config_rom_bus = ohci->config_rom_bus;
2451 }
2452
2453 ohci->next_header = ohci->next_config_rom[0];
2454 ohci->next_config_rom[0] = 0;
2455 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2456 reg_write(ohci, OHCI1394_BusOptions,
2457 be32_to_cpu(ohci->next_config_rom[2]));
2458 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2459
2460 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2461
2462 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2463 OHCI1394_RQPkt | OHCI1394_RSPkt |
2464 OHCI1394_isochTx | OHCI1394_isochRx |
2465 OHCI1394_postedWriteErr |
2466 OHCI1394_selfIDComplete |
2467 OHCI1394_regAccessFail |
2468 OHCI1394_cycleInconsistent |
2469 OHCI1394_unrecoverableError |
2470 OHCI1394_cycleTooLong |
2471 OHCI1394_masterIntEnable;
2472 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2473 irqs |= OHCI1394_busReset;
2474 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2475
2476 reg_write(ohci, OHCI1394_HCControlSet,
2477 OHCI1394_HCControl_linkEnable |
2478 OHCI1394_HCControl_BIBimageValid);
2479
2480 reg_write(ohci, OHCI1394_LinkControlSet,
2481 OHCI1394_LinkControl_rcvSelfID |
2482 OHCI1394_LinkControl_rcvPhyPkt);
2483
2484 ar_context_run(&ohci->ar_request_ctx);
2485 ar_context_run(&ohci->ar_response_ctx);
2486
2487 flush_writes(ohci);
2488
2489 /* We are ready to go, reset bus to finish initialization. */
2490 fw_schedule_bus_reset(&ohci->card, false, true);
2491
2492 return 0;
2493}
2494
2495static int ohci_set_config_rom(struct fw_card *card,
2496 const __be32 *config_rom, size_t length)
2497{
2498 struct fw_ohci *ohci;
2499 __be32 *next_config_rom;
2500 dma_addr_t next_config_rom_bus;
2501
2502 ohci = fw_ohci(card);
2503
2504 /*
2505 * When the OHCI controller is enabled, the config rom update
2506 * mechanism is a bit tricky, but easy enough to use. See
2507 * section 5.5.6 in the OHCI specification.
2508 *
2509 * The OHCI controller caches the new config rom address in a
2510 * shadow register (ConfigROMmapNext) and needs a bus reset
2511 * for the changes to take place. When the bus reset is
2512 * detected, the controller loads the new values for the
2513 * ConfigRomHeader and BusOptions registers from the specified
2514 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2515 * shadow register. All automatically and atomically.
2516 *
2517 * Now, there's a twist to this story. The automatic load of
2518 * ConfigRomHeader and BusOptions doesn't honor the
2519 * noByteSwapData bit, so with a be32 config rom, the
2520 * controller will load be32 values in to these registers
2521 * during the atomic update, even on litte endian
2522 * architectures. The workaround we use is to put a 0 in the
2523 * header quadlet; 0 is endian agnostic and means that the
2524 * config rom isn't ready yet. In the bus reset tasklet we
2525 * then set up the real values for the two registers.
2526 *
2527 * We use ohci->lock to avoid racing with the code that sets
2528 * ohci->next_config_rom to NULL (see bus_reset_work).
2529 */
2530
2531 next_config_rom =
2532 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2533 &next_config_rom_bus, GFP_KERNEL);
2534 if (next_config_rom == NULL)
2535 return -ENOMEM;
2536
2537 spin_lock_irq(&ohci->lock);
2538
2539 /*
2540 * If there is not an already pending config_rom update,
2541 * push our new allocation into the ohci->next_config_rom
2542 * and then mark the local variable as null so that we
2543 * won't deallocate the new buffer.
2544 *
2545 * OTOH, if there is a pending config_rom update, just
2546 * use that buffer with the new config_rom data, and
2547 * let this routine free the unused DMA allocation.
2548 */
2549
2550 if (ohci->next_config_rom == NULL) {
2551 ohci->next_config_rom = next_config_rom;
2552 ohci->next_config_rom_bus = next_config_rom_bus;
2553 next_config_rom = NULL;
2554 }
2555
2556 copy_config_rom(ohci->next_config_rom, config_rom, length);
2557
2558 ohci->next_header = config_rom[0];
2559 ohci->next_config_rom[0] = 0;
2560
2561 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2562
2563 spin_unlock_irq(&ohci->lock);
2564
2565 /* If we didn't use the DMA allocation, delete it. */
2566 if (next_config_rom != NULL)
2567 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2568 next_config_rom, next_config_rom_bus);
2569
2570 /*
2571 * Now initiate a bus reset to have the changes take
2572 * effect. We clean up the old config rom memory and DMA
2573 * mappings in the bus reset tasklet, since the OHCI
2574 * controller could need to access it before the bus reset
2575 * takes effect.
2576 */
2577
2578 fw_schedule_bus_reset(&ohci->card, true, true);
2579
2580 return 0;
2581}
2582
2583static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2584{
2585 struct fw_ohci *ohci = fw_ohci(card);
2586
2587 at_context_transmit(&ohci->at_request_ctx, packet);
2588}
2589
2590static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2591{
2592 struct fw_ohci *ohci = fw_ohci(card);
2593
2594 at_context_transmit(&ohci->at_response_ctx, packet);
2595}
2596
2597static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2598{
2599 struct fw_ohci *ohci = fw_ohci(card);
2600 struct context *ctx = &ohci->at_request_ctx;
2601 struct driver_data *driver_data = packet->driver_data;
2602 int ret = -ENOENT;
2603
2604 tasklet_disable(&ctx->tasklet);
2605
2606 if (packet->ack != 0)
2607 goto out;
2608
2609 if (packet->payload_mapped)
2610 dma_unmap_single(ohci->card.device, packet->payload_bus,
2611 packet->payload_length, DMA_TO_DEVICE);
2612
2613 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2614 driver_data->packet = NULL;
2615 packet->ack = RCODE_CANCELLED;
2616 packet->callback(packet, &ohci->card, packet->ack);
2617 ret = 0;
2618 out:
2619 tasklet_enable(&ctx->tasklet);
2620
2621 return ret;
2622}
2623
2624static int ohci_enable_phys_dma(struct fw_card *card,
2625 int node_id, int generation)
2626{
2627 struct fw_ohci *ohci = fw_ohci(card);
2628 unsigned long flags;
2629 int n, ret = 0;
2630
2631 if (param_remote_dma)
2632 return 0;
2633
2634 /*
2635 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2636 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2637 */
2638
2639 spin_lock_irqsave(&ohci->lock, flags);
2640
2641 if (ohci->generation != generation) {
2642 ret = -ESTALE;
2643 goto out;
2644 }
2645
2646 /*
2647 * Note, if the node ID contains a non-local bus ID, physical DMA is
2648 * enabled for _all_ nodes on remote buses.
2649 */
2650
2651 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2652 if (n < 32)
2653 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2654 else
2655 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2656
2657 flush_writes(ohci);
2658 out:
2659 spin_unlock_irqrestore(&ohci->lock, flags);
2660
2661 return ret;
2662}
2663
2664static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2665{
2666 struct fw_ohci *ohci = fw_ohci(card);
2667 unsigned long flags;
2668 u32 value;
2669
2670 switch (csr_offset) {
2671 case CSR_STATE_CLEAR:
2672 case CSR_STATE_SET:
2673 if (ohci->is_root &&
2674 (reg_read(ohci, OHCI1394_LinkControlSet) &
2675 OHCI1394_LinkControl_cycleMaster))
2676 value = CSR_STATE_BIT_CMSTR;
2677 else
2678 value = 0;
2679 if (ohci->csr_state_setclear_abdicate)
2680 value |= CSR_STATE_BIT_ABDICATE;
2681
2682 return value;
2683
2684 case CSR_NODE_IDS:
2685 return reg_read(ohci, OHCI1394_NodeID) << 16;
2686
2687 case CSR_CYCLE_TIME:
2688 return get_cycle_time(ohci);
2689
2690 case CSR_BUS_TIME:
2691 /*
2692 * We might be called just after the cycle timer has wrapped
2693 * around but just before the cycle64Seconds handler, so we
2694 * better check here, too, if the bus time needs to be updated.
2695 */
2696 spin_lock_irqsave(&ohci->lock, flags);
2697 value = update_bus_time(ohci);
2698 spin_unlock_irqrestore(&ohci->lock, flags);
2699 return value;
2700
2701 case CSR_BUSY_TIMEOUT:
2702 value = reg_read(ohci, OHCI1394_ATRetries);
2703 return (value >> 4) & 0x0ffff00f;
2704
2705 case CSR_PRIORITY_BUDGET:
2706 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2707 (ohci->pri_req_max << 8);
2708
2709 default:
2710 WARN_ON(1);
2711 return 0;
2712 }
2713}
2714
2715static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2716{
2717 struct fw_ohci *ohci = fw_ohci(card);
2718 unsigned long flags;
2719
2720 switch (csr_offset) {
2721 case CSR_STATE_CLEAR:
2722 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2723 reg_write(ohci, OHCI1394_LinkControlClear,
2724 OHCI1394_LinkControl_cycleMaster);
2725 flush_writes(ohci);
2726 }
2727 if (value & CSR_STATE_BIT_ABDICATE)
2728 ohci->csr_state_setclear_abdicate = false;
2729 break;
2730
2731 case CSR_STATE_SET:
2732 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2733 reg_write(ohci, OHCI1394_LinkControlSet,
2734 OHCI1394_LinkControl_cycleMaster);
2735 flush_writes(ohci);
2736 }
2737 if (value & CSR_STATE_BIT_ABDICATE)
2738 ohci->csr_state_setclear_abdicate = true;
2739 break;
2740
2741 case CSR_NODE_IDS:
2742 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2743 flush_writes(ohci);
2744 break;
2745
2746 case CSR_CYCLE_TIME:
2747 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2748 reg_write(ohci, OHCI1394_IntEventSet,
2749 OHCI1394_cycleInconsistent);
2750 flush_writes(ohci);
2751 break;
2752
2753 case CSR_BUS_TIME:
2754 spin_lock_irqsave(&ohci->lock, flags);
2755 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2756 (value & ~0x7f);
2757 spin_unlock_irqrestore(&ohci->lock, flags);
2758 break;
2759
2760 case CSR_BUSY_TIMEOUT:
2761 value = (value & 0xf) | ((value & 0xf) << 4) |
2762 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2763 reg_write(ohci, OHCI1394_ATRetries, value);
2764 flush_writes(ohci);
2765 break;
2766
2767 case CSR_PRIORITY_BUDGET:
2768 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2769 flush_writes(ohci);
2770 break;
2771
2772 default:
2773 WARN_ON(1);
2774 break;
2775 }
2776}
2777
2778static void flush_iso_completions(struct iso_context *ctx)
2779{
2780 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2781 ctx->header_length, ctx->header,
2782 ctx->base.callback_data);
2783 ctx->header_length = 0;
2784}
2785
2786static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2787{
2788 u32 *ctx_hdr;
2789
2790 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2791 if (ctx->base.drop_overflow_headers)
2792 return;
2793 flush_iso_completions(ctx);
2794 }
2795
2796 ctx_hdr = ctx->header + ctx->header_length;
2797 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2798
2799 /*
2800 * The two iso header quadlets are byteswapped to little
2801 * endian by the controller, but we want to present them
2802 * as big endian for consistency with the bus endianness.
2803 */
2804 if (ctx->base.header_size > 0)
2805 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2806 if (ctx->base.header_size > 4)
2807 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2808 if (ctx->base.header_size > 8)
2809 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2810 ctx->header_length += ctx->base.header_size;
2811}
2812
2813static int handle_ir_packet_per_buffer(struct context *context,
2814 struct descriptor *d,
2815 struct descriptor *last)
2816{
2817 struct iso_context *ctx =
2818 container_of(context, struct iso_context, context);
2819 struct descriptor *pd;
2820 u32 buffer_dma;
2821
2822 for (pd = d; pd <= last; pd++)
2823 if (pd->transfer_status)
2824 break;
2825 if (pd > last)
2826 /* Descriptor(s) not done yet, stop iteration */
2827 return 0;
2828
2829 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2830 d++;
2831 buffer_dma = le32_to_cpu(d->data_address);
2832 dma_sync_single_range_for_cpu(context->ohci->card.device,
2833 buffer_dma & PAGE_MASK,
2834 buffer_dma & ~PAGE_MASK,
2835 le16_to_cpu(d->req_count),
2836 DMA_FROM_DEVICE);
2837 }
2838
2839 copy_iso_headers(ctx, (u32 *) (last + 1));
2840
2841 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2842 flush_iso_completions(ctx);
2843
2844 return 1;
2845}
2846
2847/* d == last because each descriptor block is only a single descriptor. */
2848static int handle_ir_buffer_fill(struct context *context,
2849 struct descriptor *d,
2850 struct descriptor *last)
2851{
2852 struct iso_context *ctx =
2853 container_of(context, struct iso_context, context);
2854 unsigned int req_count, res_count, completed;
2855 u32 buffer_dma;
2856
2857 req_count = le16_to_cpu(last->req_count);
2858 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2859 completed = req_count - res_count;
2860 buffer_dma = le32_to_cpu(last->data_address);
2861
2862 if (completed > 0) {
2863 ctx->mc_buffer_bus = buffer_dma;
2864 ctx->mc_completed = completed;
2865 }
2866
2867 if (res_count != 0)
2868 /* Descriptor(s) not done yet, stop iteration */
2869 return 0;
2870
2871 dma_sync_single_range_for_cpu(context->ohci->card.device,
2872 buffer_dma & PAGE_MASK,
2873 buffer_dma & ~PAGE_MASK,
2874 completed, DMA_FROM_DEVICE);
2875
2876 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2877 ctx->base.callback.mc(&ctx->base,
2878 buffer_dma + completed,
2879 ctx->base.callback_data);
2880 ctx->mc_completed = 0;
2881 }
2882
2883 return 1;
2884}
2885
2886static void flush_ir_buffer_fill(struct iso_context *ctx)
2887{
2888 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2889 ctx->mc_buffer_bus & PAGE_MASK,
2890 ctx->mc_buffer_bus & ~PAGE_MASK,
2891 ctx->mc_completed, DMA_FROM_DEVICE);
2892
2893 ctx->base.callback.mc(&ctx->base,
2894 ctx->mc_buffer_bus + ctx->mc_completed,
2895 ctx->base.callback_data);
2896 ctx->mc_completed = 0;
2897}
2898
2899static inline void sync_it_packet_for_cpu(struct context *context,
2900 struct descriptor *pd)
2901{
2902 __le16 control;
2903 u32 buffer_dma;
2904
2905 /* only packets beginning with OUTPUT_MORE* have data buffers */
2906 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2907 return;
2908
2909 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2910 pd += 2;
2911
2912 /*
2913 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2914 * data buffer is in the context program's coherent page and must not
2915 * be synced.
2916 */
2917 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2918 (context->current_bus & PAGE_MASK)) {
2919 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2920 return;
2921 pd++;
2922 }
2923
2924 do {
2925 buffer_dma = le32_to_cpu(pd->data_address);
2926 dma_sync_single_range_for_cpu(context->ohci->card.device,
2927 buffer_dma & PAGE_MASK,
2928 buffer_dma & ~PAGE_MASK,
2929 le16_to_cpu(pd->req_count),
2930 DMA_TO_DEVICE);
2931 control = pd->control;
2932 pd++;
2933 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2934}
2935
2936static int handle_it_packet(struct context *context,
2937 struct descriptor *d,
2938 struct descriptor *last)
2939{
2940 struct iso_context *ctx =
2941 container_of(context, struct iso_context, context);
2942 struct descriptor *pd;
2943 __be32 *ctx_hdr;
2944
2945 for (pd = d; pd <= last; pd++)
2946 if (pd->transfer_status)
2947 break;
2948 if (pd > last)
2949 /* Descriptor(s) not done yet, stop iteration */
2950 return 0;
2951
2952 sync_it_packet_for_cpu(context, d);
2953
2954 if (ctx->header_length + 4 > PAGE_SIZE) {
2955 if (ctx->base.drop_overflow_headers)
2956 return 1;
2957 flush_iso_completions(ctx);
2958 }
2959
2960 ctx_hdr = ctx->header + ctx->header_length;
2961 ctx->last_timestamp = le16_to_cpu(last->res_count);
2962 /* Present this value as big-endian to match the receive code */
2963 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2964 le16_to_cpu(pd->res_count));
2965 ctx->header_length += 4;
2966
2967 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2968 flush_iso_completions(ctx);
2969
2970 return 1;
2971}
2972
2973static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2974{
2975 u32 hi = channels >> 32, lo = channels;
2976
2977 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2978 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2979 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2980 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2981 ohci->mc_channels = channels;
2982}
2983
2984static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2985 int type, int channel, size_t header_size)
2986{
2987 struct fw_ohci *ohci = fw_ohci(card);
2988 struct iso_context *ctx;
2989 descriptor_callback_t callback;
2990 u64 *channels;
2991 u32 *mask, regs;
2992 int index, ret = -EBUSY;
2993
2994 spin_lock_irq(&ohci->lock);
2995
2996 switch (type) {
2997 case FW_ISO_CONTEXT_TRANSMIT:
2998 mask = &ohci->it_context_mask;
2999 callback = handle_it_packet;
3000 index = ffs(*mask) - 1;
3001 if (index >= 0) {
3002 *mask &= ~(1 << index);
3003 regs = OHCI1394_IsoXmitContextBase(index);
3004 ctx = &ohci->it_context_list[index];
3005 }
3006 break;
3007
3008 case FW_ISO_CONTEXT_RECEIVE:
3009 channels = &ohci->ir_context_channels;
3010 mask = &ohci->ir_context_mask;
3011 callback = handle_ir_packet_per_buffer;
3012 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3013 if (index >= 0) {
3014 *channels &= ~(1ULL << channel);
3015 *mask &= ~(1 << index);
3016 regs = OHCI1394_IsoRcvContextBase(index);
3017 ctx = &ohci->ir_context_list[index];
3018 }
3019 break;
3020
3021 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3022 mask = &ohci->ir_context_mask;
3023 callback = handle_ir_buffer_fill;
3024 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3025 if (index >= 0) {
3026 ohci->mc_allocated = true;
3027 *mask &= ~(1 << index);
3028 regs = OHCI1394_IsoRcvContextBase(index);
3029 ctx = &ohci->ir_context_list[index];
3030 }
3031 break;
3032
3033 default:
3034 index = -1;
3035 ret = -ENOSYS;
3036 }
3037
3038 spin_unlock_irq(&ohci->lock);
3039
3040 if (index < 0)
3041 return ERR_PTR(ret);
3042
3043 memset(ctx, 0, sizeof(*ctx));
3044 ctx->header_length = 0;
3045 ctx->header = (void *) __get_free_page(GFP_KERNEL);
3046 if (ctx->header == NULL) {
3047 ret = -ENOMEM;
3048 goto out;
3049 }
3050 ret = context_init(&ctx->context, ohci, regs, callback);
3051 if (ret < 0)
3052 goto out_with_header;
3053
3054 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3055 set_multichannel_mask(ohci, 0);
3056 ctx->mc_completed = 0;
3057 }
3058
3059 return &ctx->base;
3060
3061 out_with_header:
3062 free_page((unsigned long)ctx->header);
3063 out:
3064 spin_lock_irq(&ohci->lock);
3065
3066 switch (type) {
3067 case FW_ISO_CONTEXT_RECEIVE:
3068 *channels |= 1ULL << channel;
3069 break;
3070
3071 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3072 ohci->mc_allocated = false;
3073 break;
3074 }
3075 *mask |= 1 << index;
3076
3077 spin_unlock_irq(&ohci->lock);
3078
3079 return ERR_PTR(ret);
3080}
3081
3082static int ohci_start_iso(struct fw_iso_context *base,
3083 s32 cycle, u32 sync, u32 tags)
3084{
3085 struct iso_context *ctx = container_of(base, struct iso_context, base);
3086 struct fw_ohci *ohci = ctx->context.ohci;
3087 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3088 int index;
3089
3090 /* the controller cannot start without any queued packets */
3091 if (ctx->context.last->branch_address == 0)
3092 return -ENODATA;
3093
3094 switch (ctx->base.type) {
3095 case FW_ISO_CONTEXT_TRANSMIT:
3096 index = ctx - ohci->it_context_list;
3097 match = 0;
3098 if (cycle >= 0)
3099 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3100 (cycle & 0x7fff) << 16;
3101
3102 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3103 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3104 context_run(&ctx->context, match);
3105 break;
3106
3107 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3108 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3109 /* fall through */
3110 case FW_ISO_CONTEXT_RECEIVE:
3111 index = ctx - ohci->ir_context_list;
3112 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3113 if (cycle >= 0) {
3114 match |= (cycle & 0x07fff) << 12;
3115 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3116 }
3117
3118 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3119 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3120 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3121 context_run(&ctx->context, control);
3122
3123 ctx->sync = sync;
3124 ctx->tags = tags;
3125
3126 break;
3127 }
3128
3129 return 0;
3130}
3131
3132static int ohci_stop_iso(struct fw_iso_context *base)
3133{
3134 struct fw_ohci *ohci = fw_ohci(base->card);
3135 struct iso_context *ctx = container_of(base, struct iso_context, base);
3136 int index;
3137
3138 switch (ctx->base.type) {
3139 case FW_ISO_CONTEXT_TRANSMIT:
3140 index = ctx - ohci->it_context_list;
3141 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3142 break;
3143
3144 case FW_ISO_CONTEXT_RECEIVE:
3145 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3146 index = ctx - ohci->ir_context_list;
3147 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3148 break;
3149 }
3150 flush_writes(ohci);
3151 context_stop(&ctx->context);
3152 tasklet_kill(&ctx->context.tasklet);
3153
3154 return 0;
3155}
3156
3157static void ohci_free_iso_context(struct fw_iso_context *base)
3158{
3159 struct fw_ohci *ohci = fw_ohci(base->card);
3160 struct iso_context *ctx = container_of(base, struct iso_context, base);
3161 unsigned long flags;
3162 int index;
3163
3164 ohci_stop_iso(base);
3165 context_release(&ctx->context);
3166 free_page((unsigned long)ctx->header);
3167
3168 spin_lock_irqsave(&ohci->lock, flags);
3169
3170 switch (base->type) {
3171 case FW_ISO_CONTEXT_TRANSMIT:
3172 index = ctx - ohci->it_context_list;
3173 ohci->it_context_mask |= 1 << index;
3174 break;
3175
3176 case FW_ISO_CONTEXT_RECEIVE:
3177 index = ctx - ohci->ir_context_list;
3178 ohci->ir_context_mask |= 1 << index;
3179 ohci->ir_context_channels |= 1ULL << base->channel;
3180 break;
3181
3182 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3183 index = ctx - ohci->ir_context_list;
3184 ohci->ir_context_mask |= 1 << index;
3185 ohci->ir_context_channels |= ohci->mc_channels;
3186 ohci->mc_channels = 0;
3187 ohci->mc_allocated = false;
3188 break;
3189 }
3190
3191 spin_unlock_irqrestore(&ohci->lock, flags);
3192}
3193
3194static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3195{
3196 struct fw_ohci *ohci = fw_ohci(base->card);
3197 unsigned long flags;
3198 int ret;
3199
3200 switch (base->type) {
3201 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3202
3203 spin_lock_irqsave(&ohci->lock, flags);
3204
3205 /* Don't allow multichannel to grab other contexts' channels. */
3206 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3207 *channels = ohci->ir_context_channels;
3208 ret = -EBUSY;
3209 } else {
3210 set_multichannel_mask(ohci, *channels);
3211 ret = 0;
3212 }
3213
3214 spin_unlock_irqrestore(&ohci->lock, flags);
3215
3216 break;
3217 default:
3218 ret = -EINVAL;
3219 }
3220
3221 return ret;
3222}
3223
3224#ifdef CONFIG_PM
3225static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3226{
3227 int i;
3228 struct iso_context *ctx;
3229
3230 for (i = 0 ; i < ohci->n_ir ; i++) {
3231 ctx = &ohci->ir_context_list[i];
3232 if (ctx->context.running)
3233 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3234 }
3235
3236 for (i = 0 ; i < ohci->n_it ; i++) {
3237 ctx = &ohci->it_context_list[i];
3238 if (ctx->context.running)
3239 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3240 }
3241}
3242#endif
3243
3244static int queue_iso_transmit(struct iso_context *ctx,
3245 struct fw_iso_packet *packet,
3246 struct fw_iso_buffer *buffer,
3247 unsigned long payload)
3248{
3249 struct descriptor *d, *last, *pd;
3250 struct fw_iso_packet *p;
3251 __le32 *header;
3252 dma_addr_t d_bus, page_bus;
3253 u32 z, header_z, payload_z, irq;
3254 u32 payload_index, payload_end_index, next_page_index;
3255 int page, end_page, i, length, offset;
3256
3257 p = packet;
3258 payload_index = payload;
3259
3260 if (p->skip)
3261 z = 1;
3262 else
3263 z = 2;
3264 if (p->header_length > 0)
3265 z++;
3266
3267 /* Determine the first page the payload isn't contained in. */
3268 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3269 if (p->payload_length > 0)
3270 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3271 else
3272 payload_z = 0;
3273
3274 z += payload_z;
3275
3276 /* Get header size in number of descriptors. */
3277 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3278
3279 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3280 if (d == NULL)
3281 return -ENOMEM;
3282
3283 if (!p->skip) {
3284 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3285 d[0].req_count = cpu_to_le16(8);
3286 /*
3287 * Link the skip address to this descriptor itself. This causes
3288 * a context to skip a cycle whenever lost cycles or FIFO
3289 * overruns occur, without dropping the data. The application
3290 * should then decide whether this is an error condition or not.
3291 * FIXME: Make the context's cycle-lost behaviour configurable?
3292 */
3293 d[0].branch_address = cpu_to_le32(d_bus | z);
3294
3295 header = (__le32 *) &d[1];
3296 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3297 IT_HEADER_TAG(p->tag) |
3298 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3299 IT_HEADER_CHANNEL(ctx->base.channel) |
3300 IT_HEADER_SPEED(ctx->base.speed));
3301 header[1] =
3302 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3303 p->payload_length));
3304 }
3305
3306 if (p->header_length > 0) {
3307 d[2].req_count = cpu_to_le16(p->header_length);
3308 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3309 memcpy(&d[z], p->header, p->header_length);
3310 }
3311
3312 pd = d + z - payload_z;
3313 payload_end_index = payload_index + p->payload_length;
3314 for (i = 0; i < payload_z; i++) {
3315 page = payload_index >> PAGE_SHIFT;
3316 offset = payload_index & ~PAGE_MASK;
3317 next_page_index = (page + 1) << PAGE_SHIFT;
3318 length =
3319 min(next_page_index, payload_end_index) - payload_index;
3320 pd[i].req_count = cpu_to_le16(length);
3321
3322 page_bus = page_private(buffer->pages[page]);
3323 pd[i].data_address = cpu_to_le32(page_bus + offset);
3324
3325 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3326 page_bus, offset, length,
3327 DMA_TO_DEVICE);
3328
3329 payload_index += length;
3330 }
3331
3332 if (p->interrupt)
3333 irq = DESCRIPTOR_IRQ_ALWAYS;
3334 else
3335 irq = DESCRIPTOR_NO_IRQ;
3336
3337 last = z == 2 ? d : d + z - 1;
3338 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3339 DESCRIPTOR_STATUS |
3340 DESCRIPTOR_BRANCH_ALWAYS |
3341 irq);
3342
3343 context_append(&ctx->context, d, z, header_z);
3344
3345 return 0;
3346}
3347
3348static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3349 struct fw_iso_packet *packet,
3350 struct fw_iso_buffer *buffer,
3351 unsigned long payload)
3352{
3353 struct device *device = ctx->context.ohci->card.device;
3354 struct descriptor *d, *pd;
3355 dma_addr_t d_bus, page_bus;
3356 u32 z, header_z, rest;
3357 int i, j, length;
3358 int page, offset, packet_count, header_size, payload_per_buffer;
3359
3360 /*
3361 * The OHCI controller puts the isochronous header and trailer in the
3362 * buffer, so we need at least 8 bytes.
3363 */
3364 packet_count = packet->header_length / ctx->base.header_size;
3365 header_size = max(ctx->base.header_size, (size_t)8);
3366
3367 /* Get header size in number of descriptors. */
3368 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3369 page = payload >> PAGE_SHIFT;
3370 offset = payload & ~PAGE_MASK;
3371 payload_per_buffer = packet->payload_length / packet_count;
3372
3373 for (i = 0; i < packet_count; i++) {
3374 /* d points to the header descriptor */
3375 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3376 d = context_get_descriptors(&ctx->context,
3377 z + header_z, &d_bus);
3378 if (d == NULL)
3379 return -ENOMEM;
3380
3381 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3382 DESCRIPTOR_INPUT_MORE);
3383 if (packet->skip && i == 0)
3384 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3385 d->req_count = cpu_to_le16(header_size);
3386 d->res_count = d->req_count;
3387 d->transfer_status = 0;
3388 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3389
3390 rest = payload_per_buffer;
3391 pd = d;
3392 for (j = 1; j < z; j++) {
3393 pd++;
3394 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3395 DESCRIPTOR_INPUT_MORE);
3396
3397 if (offset + rest < PAGE_SIZE)
3398 length = rest;
3399 else
3400 length = PAGE_SIZE - offset;
3401 pd->req_count = cpu_to_le16(length);
3402 pd->res_count = pd->req_count;
3403 pd->transfer_status = 0;
3404
3405 page_bus = page_private(buffer->pages[page]);
3406 pd->data_address = cpu_to_le32(page_bus + offset);
3407
3408 dma_sync_single_range_for_device(device, page_bus,
3409 offset, length,
3410 DMA_FROM_DEVICE);
3411
3412 offset = (offset + length) & ~PAGE_MASK;
3413 rest -= length;
3414 if (offset == 0)
3415 page++;
3416 }
3417 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3418 DESCRIPTOR_INPUT_LAST |
3419 DESCRIPTOR_BRANCH_ALWAYS);
3420 if (packet->interrupt && i == packet_count - 1)
3421 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3422
3423 context_append(&ctx->context, d, z, header_z);
3424 }
3425
3426 return 0;
3427}
3428
3429static int queue_iso_buffer_fill(struct iso_context *ctx,
3430 struct fw_iso_packet *packet,
3431 struct fw_iso_buffer *buffer,
3432 unsigned long payload)
3433{
3434 struct descriptor *d;
3435 dma_addr_t d_bus, page_bus;
3436 int page, offset, rest, z, i, length;
3437
3438 page = payload >> PAGE_SHIFT;
3439 offset = payload & ~PAGE_MASK;
3440 rest = packet->payload_length;
3441
3442 /* We need one descriptor for each page in the buffer. */
3443 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3444
3445 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3446 return -EFAULT;
3447
3448 for (i = 0; i < z; i++) {
3449 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3450 if (d == NULL)
3451 return -ENOMEM;
3452
3453 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3454 DESCRIPTOR_BRANCH_ALWAYS);
3455 if (packet->skip && i == 0)
3456 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3457 if (packet->interrupt && i == z - 1)
3458 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3459
3460 if (offset + rest < PAGE_SIZE)
3461 length = rest;
3462 else
3463 length = PAGE_SIZE - offset;
3464 d->req_count = cpu_to_le16(length);
3465 d->res_count = d->req_count;
3466 d->transfer_status = 0;
3467
3468 page_bus = page_private(buffer->pages[page]);
3469 d->data_address = cpu_to_le32(page_bus + offset);
3470
3471 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3472 page_bus, offset, length,
3473 DMA_FROM_DEVICE);
3474
3475 rest -= length;
3476 offset = 0;
3477 page++;
3478
3479 context_append(&ctx->context, d, 1, 0);
3480 }
3481
3482 return 0;
3483}
3484
3485static int ohci_queue_iso(struct fw_iso_context *base,
3486 struct fw_iso_packet *packet,
3487 struct fw_iso_buffer *buffer,
3488 unsigned long payload)
3489{
3490 struct iso_context *ctx = container_of(base, struct iso_context, base);
3491 unsigned long flags;
3492 int ret = -ENOSYS;
3493
3494 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3495 switch (base->type) {
3496 case FW_ISO_CONTEXT_TRANSMIT:
3497 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3498 break;
3499 case FW_ISO_CONTEXT_RECEIVE:
3500 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3501 break;
3502 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3503 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3504 break;
3505 }
3506 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3507
3508 return ret;
3509}
3510
3511static void ohci_flush_queue_iso(struct fw_iso_context *base)
3512{
3513 struct context *ctx =
3514 &container_of(base, struct iso_context, base)->context;
3515
3516 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3517}
3518
3519static int ohci_flush_iso_completions(struct fw_iso_context *base)
3520{
3521 struct iso_context *ctx = container_of(base, struct iso_context, base);
3522 int ret = 0;
3523
3524 tasklet_disable(&ctx->context.tasklet);
3525
3526 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3527 context_tasklet((unsigned long)&ctx->context);
3528
3529 switch (base->type) {
3530 case FW_ISO_CONTEXT_TRANSMIT:
3531 case FW_ISO_CONTEXT_RECEIVE:
3532 if (ctx->header_length != 0)
3533 flush_iso_completions(ctx);
3534 break;
3535 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3536 if (ctx->mc_completed != 0)
3537 flush_ir_buffer_fill(ctx);
3538 break;
3539 default:
3540 ret = -ENOSYS;
3541 }
3542
3543 clear_bit_unlock(0, &ctx->flushing_completions);
3544 smp_mb__after_atomic();
3545 }
3546
3547 tasklet_enable(&ctx->context.tasklet);
3548
3549 return ret;
3550}
3551
3552static const struct fw_card_driver ohci_driver = {
3553 .enable = ohci_enable,
3554 .read_phy_reg = ohci_read_phy_reg,
3555 .update_phy_reg = ohci_update_phy_reg,
3556 .set_config_rom = ohci_set_config_rom,
3557 .send_request = ohci_send_request,
3558 .send_response = ohci_send_response,
3559 .cancel_packet = ohci_cancel_packet,
3560 .enable_phys_dma = ohci_enable_phys_dma,
3561 .read_csr = ohci_read_csr,
3562 .write_csr = ohci_write_csr,
3563
3564 .allocate_iso_context = ohci_allocate_iso_context,
3565 .free_iso_context = ohci_free_iso_context,
3566 .set_iso_channels = ohci_set_iso_channels,
3567 .queue_iso = ohci_queue_iso,
3568 .flush_queue_iso = ohci_flush_queue_iso,
3569 .flush_iso_completions = ohci_flush_iso_completions,
3570 .start_iso = ohci_start_iso,
3571 .stop_iso = ohci_stop_iso,
3572};
3573
3574#ifdef CONFIG_PPC_PMAC
3575static void pmac_ohci_on(struct pci_dev *dev)
3576{
3577 if (machine_is(powermac)) {
3578 struct device_node *ofn = pci_device_to_OF_node(dev);
3579
3580 if (ofn) {
3581 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3582 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3583 }
3584 }
3585}
3586
3587static void pmac_ohci_off(struct pci_dev *dev)
3588{
3589 if (machine_is(powermac)) {
3590 struct device_node *ofn = pci_device_to_OF_node(dev);
3591
3592 if (ofn) {
3593 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3594 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3595 }
3596 }
3597}
3598#else
3599static inline void pmac_ohci_on(struct pci_dev *dev) {}
3600static inline void pmac_ohci_off(struct pci_dev *dev) {}
3601#endif /* CONFIG_PPC_PMAC */
3602
3603static int pci_probe(struct pci_dev *dev,
3604 const struct pci_device_id *ent)
3605{
3606 struct fw_ohci *ohci;
3607 u32 bus_options, max_receive, link_speed, version;
3608 u64 guid;
3609 int i, err;
3610 size_t size;
3611
3612 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3613 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3614 return -ENOSYS;
3615 }
3616
3617 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3618 if (ohci == NULL) {
3619 err = -ENOMEM;
3620 goto fail;
3621 }
3622
3623 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3624
3625 pmac_ohci_on(dev);
3626
3627 err = pci_enable_device(dev);
3628 if (err) {
3629 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3630 goto fail_free;
3631 }
3632
3633 pci_set_master(dev);
3634 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3635 pci_set_drvdata(dev, ohci);
3636
3637 spin_lock_init(&ohci->lock);
3638 mutex_init(&ohci->phy_reg_mutex);
3639
3640 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3641
3642 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3643 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3644 ohci_err(ohci, "invalid MMIO resource\n");
3645 err = -ENXIO;
3646 goto fail_disable;
3647 }
3648
3649 err = pci_request_region(dev, 0, ohci_driver_name);
3650 if (err) {
3651 ohci_err(ohci, "MMIO resource unavailable\n");
3652 goto fail_disable;
3653 }
3654
3655 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3656 if (ohci->registers == NULL) {
3657 ohci_err(ohci, "failed to remap registers\n");
3658 err = -ENXIO;
3659 goto fail_iomem;
3660 }
3661
3662 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3663 if ((ohci_quirks[i].vendor == dev->vendor) &&
3664 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3665 ohci_quirks[i].device == dev->device) &&
3666 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3667 ohci_quirks[i].revision >= dev->revision)) {
3668 ohci->quirks = ohci_quirks[i].flags;
3669 break;
3670 }
3671 if (param_quirks)
3672 ohci->quirks = param_quirks;
3673
3674 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3675 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3676
3677 /*
3678 * Because dma_alloc_coherent() allocates at least one page,
3679 * we save space by using a common buffer for the AR request/
3680 * response descriptors and the self IDs buffer.
3681 */
3682 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3683 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3684 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3685 PAGE_SIZE,
3686 &ohci->misc_buffer_bus,
3687 GFP_KERNEL);
3688 if (!ohci->misc_buffer) {
3689 err = -ENOMEM;
3690 goto fail_iounmap;
3691 }
3692
3693 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3694 OHCI1394_AsReqRcvContextControlSet);
3695 if (err < 0)
3696 goto fail_misc_buf;
3697
3698 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3699 OHCI1394_AsRspRcvContextControlSet);
3700 if (err < 0)
3701 goto fail_arreq_ctx;
3702
3703 err = context_init(&ohci->at_request_ctx, ohci,
3704 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3705 if (err < 0)
3706 goto fail_arrsp_ctx;
3707
3708 err = context_init(&ohci->at_response_ctx, ohci,
3709 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3710 if (err < 0)
3711 goto fail_atreq_ctx;
3712
3713 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3714 ohci->ir_context_channels = ~0ULL;
3715 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3716 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3717 ohci->ir_context_mask = ohci->ir_context_support;
3718 ohci->n_ir = hweight32(ohci->ir_context_mask);
3719 size = sizeof(struct iso_context) * ohci->n_ir;
3720 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3721
3722 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3723 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3724 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3725 if (!ohci->it_context_support) {
3726 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3727 ohci->it_context_support = 0xf;
3728 }
3729 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3730 ohci->it_context_mask = ohci->it_context_support;
3731 ohci->n_it = hweight32(ohci->it_context_mask);
3732 size = sizeof(struct iso_context) * ohci->n_it;
3733 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3734
3735 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3736 err = -ENOMEM;
3737 goto fail_contexts;
3738 }
3739
3740 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3741 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3742
3743 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3744 max_receive = (bus_options >> 12) & 0xf;
3745 link_speed = bus_options & 0x7;
3746 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3747 reg_read(ohci, OHCI1394_GUIDLo);
3748
3749 if (!(ohci->quirks & QUIRK_NO_MSI))
3750 pci_enable_msi(dev);
3751 if (request_irq(dev->irq, irq_handler,
3752 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3753 ohci_driver_name, ohci)) {
3754 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3755 err = -EIO;
3756 goto fail_msi;
3757 }
3758
3759 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3760 if (err)
3761 goto fail_irq;
3762
3763 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3764 ohci_notice(ohci,
3765 "added OHCI v%x.%x device as card %d, "
3766 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3767 version >> 16, version & 0xff, ohci->card.index,
3768 ohci->n_ir, ohci->n_it, ohci->quirks,
3769 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3770 ", physUB" : "");
3771
3772 return 0;
3773
3774 fail_irq:
3775 free_irq(dev->irq, ohci);
3776 fail_msi:
3777 pci_disable_msi(dev);
3778 fail_contexts:
3779 kfree(ohci->ir_context_list);
3780 kfree(ohci->it_context_list);
3781 context_release(&ohci->at_response_ctx);
3782 fail_atreq_ctx:
3783 context_release(&ohci->at_request_ctx);
3784 fail_arrsp_ctx:
3785 ar_context_release(&ohci->ar_response_ctx);
3786 fail_arreq_ctx:
3787 ar_context_release(&ohci->ar_request_ctx);
3788 fail_misc_buf:
3789 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3790 ohci->misc_buffer, ohci->misc_buffer_bus);
3791 fail_iounmap:
3792 pci_iounmap(dev, ohci->registers);
3793 fail_iomem:
3794 pci_release_region(dev, 0);
3795 fail_disable:
3796 pci_disable_device(dev);
3797 fail_free:
3798 kfree(ohci);
3799 pmac_ohci_off(dev);
3800 fail:
3801 return err;
3802}
3803
3804static void pci_remove(struct pci_dev *dev)
3805{
3806 struct fw_ohci *ohci = pci_get_drvdata(dev);
3807
3808 /*
3809 * If the removal is happening from the suspend state, LPS won't be
3810 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3811 */
3812 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3813 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3814 flush_writes(ohci);
3815 }
3816 cancel_work_sync(&ohci->bus_reset_work);
3817 fw_core_remove_card(&ohci->card);
3818
3819 /*
3820 * FIXME: Fail all pending packets here, now that the upper
3821 * layers can't queue any more.
3822 */
3823
3824 software_reset(ohci);
3825 free_irq(dev->irq, ohci);
3826
3827 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3828 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3829 ohci->next_config_rom, ohci->next_config_rom_bus);
3830 if (ohci->config_rom)
3831 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3832 ohci->config_rom, ohci->config_rom_bus);
3833 ar_context_release(&ohci->ar_request_ctx);
3834 ar_context_release(&ohci->ar_response_ctx);
3835 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3836 ohci->misc_buffer, ohci->misc_buffer_bus);
3837 context_release(&ohci->at_request_ctx);
3838 context_release(&ohci->at_response_ctx);
3839 kfree(ohci->it_context_list);
3840 kfree(ohci->ir_context_list);
3841 pci_disable_msi(dev);
3842 pci_iounmap(dev, ohci->registers);
3843 pci_release_region(dev, 0);
3844 pci_disable_device(dev);
3845 kfree(ohci);
3846 pmac_ohci_off(dev);
3847
3848 dev_notice(&dev->dev, "removed fw-ohci device\n");
3849}
3850
3851#ifdef CONFIG_PM
3852static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3853{
3854 struct fw_ohci *ohci = pci_get_drvdata(dev);
3855 int err;
3856
3857 software_reset(ohci);
3858 err = pci_save_state(dev);
3859 if (err) {
3860 ohci_err(ohci, "pci_save_state failed\n");
3861 return err;
3862 }
3863 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3864 if (err)
3865 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3866 pmac_ohci_off(dev);
3867
3868 return 0;
3869}
3870
3871static int pci_resume(struct pci_dev *dev)
3872{
3873 struct fw_ohci *ohci = pci_get_drvdata(dev);
3874 int err;
3875
3876 pmac_ohci_on(dev);
3877 pci_set_power_state(dev, PCI_D0);
3878 pci_restore_state(dev);
3879 err = pci_enable_device(dev);
3880 if (err) {
3881 ohci_err(ohci, "pci_enable_device failed\n");
3882 return err;
3883 }
3884
3885 /* Some systems don't setup GUID register on resume from ram */
3886 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3887 !reg_read(ohci, OHCI1394_GUIDHi)) {
3888 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3889 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3890 }
3891
3892 err = ohci_enable(&ohci->card, NULL, 0);
3893 if (err)
3894 return err;
3895
3896 ohci_resume_iso_dma(ohci);
3897
3898 return 0;
3899}
3900#endif
3901
3902static const struct pci_device_id pci_table[] = {
3903 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3904 { }
3905};
3906
3907MODULE_DEVICE_TABLE(pci, pci_table);
3908
3909static struct pci_driver fw_ohci_pci_driver = {
3910 .name = ohci_driver_name,
3911 .id_table = pci_table,
3912 .probe = pci_probe,
3913 .remove = pci_remove,
3914#ifdef CONFIG_PM
3915 .resume = pci_resume,
3916 .suspend = pci_suspend,
3917#endif
3918};
3919
3920static int __init fw_ohci_init(void)
3921{
3922 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3923 if (!selfid_workqueue)
3924 return -ENOMEM;
3925
3926 return pci_register_driver(&fw_ohci_pci_driver);
3927}
3928
3929static void __exit fw_ohci_cleanup(void)
3930{
3931 pci_unregister_driver(&fw_ohci_pci_driver);
3932 destroy_workqueue(selfid_workqueue);
3933}
3934
3935module_init(fw_ohci_init);
3936module_exit(fw_ohci_cleanup);
3937
3938MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3939MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3940MODULE_LICENSE("GPL");
3941
3942/* Provide a module alias so root-on-sbp2 initrds don't break. */
3943MODULE_ALIAS("ohci1394");