b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * GTT virtualization |
| 3 | * |
| 4 | * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 7 | * copy of this software and associated documentation files (the "Software"), |
| 8 | * to deal in the Software without restriction, including without limitation |
| 9 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 10 | * and/or sell copies of the Software, and to permit persons to whom the |
| 11 | * Software is furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice (including the next |
| 14 | * paragraph) shall be included in all copies or substantial portions of the |
| 15 | * Software. |
| 16 | * |
| 17 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 18 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 19 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 20 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 21 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 22 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 23 | * SOFTWARE. |
| 24 | * |
| 25 | * Authors: |
| 26 | * Zhi Wang <zhi.a.wang@intel.com> |
| 27 | * Zhenyu Wang <zhenyuw@linux.intel.com> |
| 28 | * Xiao Zheng <xiao.zheng@intel.com> |
| 29 | * |
| 30 | * Contributors: |
| 31 | * Min He <min.he@intel.com> |
| 32 | * Bing Niu <bing.niu@intel.com> |
| 33 | * |
| 34 | */ |
| 35 | |
| 36 | #include "i915_drv.h" |
| 37 | #include "gvt.h" |
| 38 | #include "i915_pvinfo.h" |
| 39 | #include "trace.h" |
| 40 | |
| 41 | #if defined(VERBOSE_DEBUG) |
| 42 | #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) |
| 43 | #else |
| 44 | #define gvt_vdbg_mm(fmt, args...) |
| 45 | #endif |
| 46 | |
| 47 | static bool enable_out_of_sync = false; |
| 48 | static int preallocated_oos_pages = 8192; |
| 49 | |
| 50 | /* |
| 51 | * validate a gm address and related range size, |
| 52 | * translate it to host gm address |
| 53 | */ |
| 54 | bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) |
| 55 | { |
| 56 | if (size == 0) |
| 57 | return vgpu_gmadr_is_valid(vgpu, addr); |
| 58 | |
| 59 | if (vgpu_gmadr_is_aperture(vgpu, addr) && |
| 60 | vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) |
| 61 | return true; |
| 62 | else if (vgpu_gmadr_is_hidden(vgpu, addr) && |
| 63 | vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) |
| 64 | return true; |
| 65 | |
| 66 | gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", |
| 67 | addr, size); |
| 68 | return false; |
| 69 | } |
| 70 | |
| 71 | /* translate a guest gmadr to host gmadr */ |
| 72 | int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) |
| 73 | { |
| 74 | if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), |
| 75 | "invalid guest gmadr %llx\n", g_addr)) |
| 76 | return -EACCES; |
| 77 | |
| 78 | if (vgpu_gmadr_is_aperture(vgpu, g_addr)) |
| 79 | *h_addr = vgpu_aperture_gmadr_base(vgpu) |
| 80 | + (g_addr - vgpu_aperture_offset(vgpu)); |
| 81 | else |
| 82 | *h_addr = vgpu_hidden_gmadr_base(vgpu) |
| 83 | + (g_addr - vgpu_hidden_offset(vgpu)); |
| 84 | return 0; |
| 85 | } |
| 86 | |
| 87 | /* translate a host gmadr to guest gmadr */ |
| 88 | int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) |
| 89 | { |
| 90 | if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), |
| 91 | "invalid host gmadr %llx\n", h_addr)) |
| 92 | return -EACCES; |
| 93 | |
| 94 | if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) |
| 95 | *g_addr = vgpu_aperture_gmadr_base(vgpu) |
| 96 | + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); |
| 97 | else |
| 98 | *g_addr = vgpu_hidden_gmadr_base(vgpu) |
| 99 | + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); |
| 100 | return 0; |
| 101 | } |
| 102 | |
| 103 | int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, |
| 104 | unsigned long *h_index) |
| 105 | { |
| 106 | u64 h_addr; |
| 107 | int ret; |
| 108 | |
| 109 | ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, |
| 110 | &h_addr); |
| 111 | if (ret) |
| 112 | return ret; |
| 113 | |
| 114 | *h_index = h_addr >> I915_GTT_PAGE_SHIFT; |
| 115 | return 0; |
| 116 | } |
| 117 | |
| 118 | int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, |
| 119 | unsigned long *g_index) |
| 120 | { |
| 121 | u64 g_addr; |
| 122 | int ret; |
| 123 | |
| 124 | ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, |
| 125 | &g_addr); |
| 126 | if (ret) |
| 127 | return ret; |
| 128 | |
| 129 | *g_index = g_addr >> I915_GTT_PAGE_SHIFT; |
| 130 | return 0; |
| 131 | } |
| 132 | |
| 133 | #define gtt_type_is_entry(type) \ |
| 134 | (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ |
| 135 | && type != GTT_TYPE_PPGTT_PTE_ENTRY \ |
| 136 | && type != GTT_TYPE_PPGTT_ROOT_ENTRY) |
| 137 | |
| 138 | #define gtt_type_is_pt(type) \ |
| 139 | (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) |
| 140 | |
| 141 | #define gtt_type_is_pte_pt(type) \ |
| 142 | (type == GTT_TYPE_PPGTT_PTE_PT) |
| 143 | |
| 144 | #define gtt_type_is_root_pointer(type) \ |
| 145 | (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) |
| 146 | |
| 147 | #define gtt_init_entry(e, t, p, v) do { \ |
| 148 | (e)->type = t; \ |
| 149 | (e)->pdev = p; \ |
| 150 | memcpy(&(e)->val64, &v, sizeof(v)); \ |
| 151 | } while (0) |
| 152 | |
| 153 | /* |
| 154 | * Mappings between GTT_TYPE* enumerations. |
| 155 | * Following information can be found according to the given type: |
| 156 | * - type of next level page table |
| 157 | * - type of entry inside this level page table |
| 158 | * - type of entry with PSE set |
| 159 | * |
| 160 | * If the given type doesn't have such a kind of information, |
| 161 | * e.g. give a l4 root entry type, then request to get its PSE type, |
| 162 | * give a PTE page table type, then request to get its next level page |
| 163 | * table type, as we know l4 root entry doesn't have a PSE bit, |
| 164 | * and a PTE page table doesn't have a next level page table type, |
| 165 | * GTT_TYPE_INVALID will be returned. This is useful when traversing a |
| 166 | * page table. |
| 167 | */ |
| 168 | |
| 169 | struct gtt_type_table_entry { |
| 170 | int entry_type; |
| 171 | int pt_type; |
| 172 | int next_pt_type; |
| 173 | int pse_entry_type; |
| 174 | }; |
| 175 | |
| 176 | #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ |
| 177 | [type] = { \ |
| 178 | .entry_type = e_type, \ |
| 179 | .pt_type = cpt_type, \ |
| 180 | .next_pt_type = npt_type, \ |
| 181 | .pse_entry_type = pse_type, \ |
| 182 | } |
| 183 | |
| 184 | static struct gtt_type_table_entry gtt_type_table[] = { |
| 185 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, |
| 186 | GTT_TYPE_PPGTT_ROOT_L4_ENTRY, |
| 187 | GTT_TYPE_INVALID, |
| 188 | GTT_TYPE_PPGTT_PML4_PT, |
| 189 | GTT_TYPE_INVALID), |
| 190 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, |
| 191 | GTT_TYPE_PPGTT_PML4_ENTRY, |
| 192 | GTT_TYPE_PPGTT_PML4_PT, |
| 193 | GTT_TYPE_PPGTT_PDP_PT, |
| 194 | GTT_TYPE_INVALID), |
| 195 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, |
| 196 | GTT_TYPE_PPGTT_PML4_ENTRY, |
| 197 | GTT_TYPE_PPGTT_PML4_PT, |
| 198 | GTT_TYPE_PPGTT_PDP_PT, |
| 199 | GTT_TYPE_INVALID), |
| 200 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, |
| 201 | GTT_TYPE_PPGTT_PDP_ENTRY, |
| 202 | GTT_TYPE_PPGTT_PDP_PT, |
| 203 | GTT_TYPE_PPGTT_PDE_PT, |
| 204 | GTT_TYPE_PPGTT_PTE_1G_ENTRY), |
| 205 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, |
| 206 | GTT_TYPE_PPGTT_ROOT_L3_ENTRY, |
| 207 | GTT_TYPE_INVALID, |
| 208 | GTT_TYPE_PPGTT_PDE_PT, |
| 209 | GTT_TYPE_PPGTT_PTE_1G_ENTRY), |
| 210 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, |
| 211 | GTT_TYPE_PPGTT_PDP_ENTRY, |
| 212 | GTT_TYPE_PPGTT_PDP_PT, |
| 213 | GTT_TYPE_PPGTT_PDE_PT, |
| 214 | GTT_TYPE_PPGTT_PTE_1G_ENTRY), |
| 215 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, |
| 216 | GTT_TYPE_PPGTT_PDE_ENTRY, |
| 217 | GTT_TYPE_PPGTT_PDE_PT, |
| 218 | GTT_TYPE_PPGTT_PTE_PT, |
| 219 | GTT_TYPE_PPGTT_PTE_2M_ENTRY), |
| 220 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, |
| 221 | GTT_TYPE_PPGTT_PDE_ENTRY, |
| 222 | GTT_TYPE_PPGTT_PDE_PT, |
| 223 | GTT_TYPE_PPGTT_PTE_PT, |
| 224 | GTT_TYPE_PPGTT_PTE_2M_ENTRY), |
| 225 | /* We take IPS bit as 'PSE' for PTE level. */ |
| 226 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, |
| 227 | GTT_TYPE_PPGTT_PTE_4K_ENTRY, |
| 228 | GTT_TYPE_PPGTT_PTE_PT, |
| 229 | GTT_TYPE_INVALID, |
| 230 | GTT_TYPE_PPGTT_PTE_64K_ENTRY), |
| 231 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, |
| 232 | GTT_TYPE_PPGTT_PTE_4K_ENTRY, |
| 233 | GTT_TYPE_PPGTT_PTE_PT, |
| 234 | GTT_TYPE_INVALID, |
| 235 | GTT_TYPE_PPGTT_PTE_64K_ENTRY), |
| 236 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, |
| 237 | GTT_TYPE_PPGTT_PTE_4K_ENTRY, |
| 238 | GTT_TYPE_PPGTT_PTE_PT, |
| 239 | GTT_TYPE_INVALID, |
| 240 | GTT_TYPE_PPGTT_PTE_64K_ENTRY), |
| 241 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, |
| 242 | GTT_TYPE_PPGTT_PDE_ENTRY, |
| 243 | GTT_TYPE_PPGTT_PDE_PT, |
| 244 | GTT_TYPE_INVALID, |
| 245 | GTT_TYPE_PPGTT_PTE_2M_ENTRY), |
| 246 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, |
| 247 | GTT_TYPE_PPGTT_PDP_ENTRY, |
| 248 | GTT_TYPE_PPGTT_PDP_PT, |
| 249 | GTT_TYPE_INVALID, |
| 250 | GTT_TYPE_PPGTT_PTE_1G_ENTRY), |
| 251 | GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, |
| 252 | GTT_TYPE_GGTT_PTE, |
| 253 | GTT_TYPE_INVALID, |
| 254 | GTT_TYPE_INVALID, |
| 255 | GTT_TYPE_INVALID), |
| 256 | }; |
| 257 | |
| 258 | static inline int get_next_pt_type(int type) |
| 259 | { |
| 260 | return gtt_type_table[type].next_pt_type; |
| 261 | } |
| 262 | |
| 263 | static inline int get_pt_type(int type) |
| 264 | { |
| 265 | return gtt_type_table[type].pt_type; |
| 266 | } |
| 267 | |
| 268 | static inline int get_entry_type(int type) |
| 269 | { |
| 270 | return gtt_type_table[type].entry_type; |
| 271 | } |
| 272 | |
| 273 | static inline int get_pse_type(int type) |
| 274 | { |
| 275 | return gtt_type_table[type].pse_entry_type; |
| 276 | } |
| 277 | |
| 278 | static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) |
| 279 | { |
| 280 | void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; |
| 281 | |
| 282 | return readq(addr); |
| 283 | } |
| 284 | |
| 285 | static void ggtt_invalidate(struct drm_i915_private *dev_priv) |
| 286 | { |
| 287 | mmio_hw_access_pre(dev_priv); |
| 288 | I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| 289 | mmio_hw_access_post(dev_priv); |
| 290 | } |
| 291 | |
| 292 | static void write_pte64(struct drm_i915_private *dev_priv, |
| 293 | unsigned long index, u64 pte) |
| 294 | { |
| 295 | void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; |
| 296 | |
| 297 | writeq(pte, addr); |
| 298 | } |
| 299 | |
| 300 | static inline int gtt_get_entry64(void *pt, |
| 301 | struct intel_gvt_gtt_entry *e, |
| 302 | unsigned long index, bool hypervisor_access, unsigned long gpa, |
| 303 | struct intel_vgpu *vgpu) |
| 304 | { |
| 305 | const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; |
| 306 | int ret; |
| 307 | |
| 308 | if (WARN_ON(info->gtt_entry_size != 8)) |
| 309 | return -EINVAL; |
| 310 | |
| 311 | if (hypervisor_access) { |
| 312 | ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + |
| 313 | (index << info->gtt_entry_size_shift), |
| 314 | &e->val64, 8); |
| 315 | if (WARN_ON(ret)) |
| 316 | return ret; |
| 317 | } else if (!pt) { |
| 318 | e->val64 = read_pte64(vgpu->gvt->dev_priv, index); |
| 319 | } else { |
| 320 | e->val64 = *((u64 *)pt + index); |
| 321 | } |
| 322 | return 0; |
| 323 | } |
| 324 | |
| 325 | static inline int gtt_set_entry64(void *pt, |
| 326 | struct intel_gvt_gtt_entry *e, |
| 327 | unsigned long index, bool hypervisor_access, unsigned long gpa, |
| 328 | struct intel_vgpu *vgpu) |
| 329 | { |
| 330 | const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; |
| 331 | int ret; |
| 332 | |
| 333 | if (WARN_ON(info->gtt_entry_size != 8)) |
| 334 | return -EINVAL; |
| 335 | |
| 336 | if (hypervisor_access) { |
| 337 | ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + |
| 338 | (index << info->gtt_entry_size_shift), |
| 339 | &e->val64, 8); |
| 340 | if (WARN_ON(ret)) |
| 341 | return ret; |
| 342 | } else if (!pt) { |
| 343 | write_pte64(vgpu->gvt->dev_priv, index, e->val64); |
| 344 | } else { |
| 345 | *((u64 *)pt + index) = e->val64; |
| 346 | } |
| 347 | return 0; |
| 348 | } |
| 349 | |
| 350 | #define GTT_HAW 46 |
| 351 | |
| 352 | #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) |
| 353 | #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) |
| 354 | #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) |
| 355 | #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) |
| 356 | |
| 357 | #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) |
| 358 | #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ |
| 359 | |
| 360 | #define GTT_64K_PTE_STRIDE 16 |
| 361 | |
| 362 | static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) |
| 363 | { |
| 364 | unsigned long pfn; |
| 365 | |
| 366 | if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) |
| 367 | pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; |
| 368 | else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) |
| 369 | pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; |
| 370 | else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) |
| 371 | pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; |
| 372 | else |
| 373 | pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; |
| 374 | return pfn; |
| 375 | } |
| 376 | |
| 377 | static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) |
| 378 | { |
| 379 | if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { |
| 380 | e->val64 &= ~ADDR_1G_MASK; |
| 381 | pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); |
| 382 | } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { |
| 383 | e->val64 &= ~ADDR_2M_MASK; |
| 384 | pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); |
| 385 | } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { |
| 386 | e->val64 &= ~ADDR_64K_MASK; |
| 387 | pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); |
| 388 | } else { |
| 389 | e->val64 &= ~ADDR_4K_MASK; |
| 390 | pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); |
| 391 | } |
| 392 | |
| 393 | e->val64 |= (pfn << PAGE_SHIFT); |
| 394 | } |
| 395 | |
| 396 | static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) |
| 397 | { |
| 398 | return !!(e->val64 & _PAGE_PSE); |
| 399 | } |
| 400 | |
| 401 | static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) |
| 402 | { |
| 403 | if (gen8_gtt_test_pse(e)) { |
| 404 | switch (e->type) { |
| 405 | case GTT_TYPE_PPGTT_PTE_2M_ENTRY: |
| 406 | e->val64 &= ~_PAGE_PSE; |
| 407 | e->type = GTT_TYPE_PPGTT_PDE_ENTRY; |
| 408 | break; |
| 409 | case GTT_TYPE_PPGTT_PTE_1G_ENTRY: |
| 410 | e->type = GTT_TYPE_PPGTT_PDP_ENTRY; |
| 411 | e->val64 &= ~_PAGE_PSE; |
| 412 | break; |
| 413 | default: |
| 414 | WARN_ON(1); |
| 415 | } |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) |
| 420 | { |
| 421 | if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) |
| 422 | return false; |
| 423 | |
| 424 | return !!(e->val64 & GEN8_PDE_IPS_64K); |
| 425 | } |
| 426 | |
| 427 | static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) |
| 428 | { |
| 429 | if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) |
| 430 | return; |
| 431 | |
| 432 | e->val64 &= ~GEN8_PDE_IPS_64K; |
| 433 | } |
| 434 | |
| 435 | static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) |
| 436 | { |
| 437 | /* |
| 438 | * i915 writes PDP root pointer registers without present bit, |
| 439 | * it also works, so we need to treat root pointer entry |
| 440 | * specifically. |
| 441 | */ |
| 442 | if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY |
| 443 | || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) |
| 444 | return (e->val64 != 0); |
| 445 | else |
| 446 | return (e->val64 & _PAGE_PRESENT); |
| 447 | } |
| 448 | |
| 449 | static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) |
| 450 | { |
| 451 | e->val64 &= ~_PAGE_PRESENT; |
| 452 | } |
| 453 | |
| 454 | static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) |
| 455 | { |
| 456 | e->val64 |= _PAGE_PRESENT; |
| 457 | } |
| 458 | |
| 459 | static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) |
| 460 | { |
| 461 | return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); |
| 462 | } |
| 463 | |
| 464 | static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) |
| 465 | { |
| 466 | e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; |
| 467 | } |
| 468 | |
| 469 | static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) |
| 470 | { |
| 471 | e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * Per-platform GMA routines. |
| 476 | */ |
| 477 | static unsigned long gma_to_ggtt_pte_index(unsigned long gma) |
| 478 | { |
| 479 | unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); |
| 480 | |
| 481 | trace_gma_index(__func__, gma, x); |
| 482 | return x; |
| 483 | } |
| 484 | |
| 485 | #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ |
| 486 | static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ |
| 487 | { \ |
| 488 | unsigned long x = (exp); \ |
| 489 | trace_gma_index(__func__, gma, x); \ |
| 490 | return x; \ |
| 491 | } |
| 492 | |
| 493 | DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); |
| 494 | DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); |
| 495 | DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); |
| 496 | DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); |
| 497 | DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); |
| 498 | |
| 499 | static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { |
| 500 | .get_entry = gtt_get_entry64, |
| 501 | .set_entry = gtt_set_entry64, |
| 502 | .clear_present = gtt_entry_clear_present, |
| 503 | .set_present = gtt_entry_set_present, |
| 504 | .test_present = gen8_gtt_test_present, |
| 505 | .test_pse = gen8_gtt_test_pse, |
| 506 | .clear_pse = gen8_gtt_clear_pse, |
| 507 | .clear_ips = gen8_gtt_clear_ips, |
| 508 | .test_ips = gen8_gtt_test_ips, |
| 509 | .clear_64k_splited = gen8_gtt_clear_64k_splited, |
| 510 | .set_64k_splited = gen8_gtt_set_64k_splited, |
| 511 | .test_64k_splited = gen8_gtt_test_64k_splited, |
| 512 | .get_pfn = gen8_gtt_get_pfn, |
| 513 | .set_pfn = gen8_gtt_set_pfn, |
| 514 | }; |
| 515 | |
| 516 | static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { |
| 517 | .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, |
| 518 | .gma_to_pte_index = gen8_gma_to_pte_index, |
| 519 | .gma_to_pde_index = gen8_gma_to_pde_index, |
| 520 | .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, |
| 521 | .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, |
| 522 | .gma_to_pml4_index = gen8_gma_to_pml4_index, |
| 523 | }; |
| 524 | |
| 525 | /* Update entry type per pse and ips bit. */ |
| 526 | static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, |
| 527 | struct intel_gvt_gtt_entry *entry, bool ips) |
| 528 | { |
| 529 | switch (entry->type) { |
| 530 | case GTT_TYPE_PPGTT_PDE_ENTRY: |
| 531 | case GTT_TYPE_PPGTT_PDP_ENTRY: |
| 532 | if (pte_ops->test_pse(entry)) |
| 533 | entry->type = get_pse_type(entry->type); |
| 534 | break; |
| 535 | case GTT_TYPE_PPGTT_PTE_4K_ENTRY: |
| 536 | if (ips) |
| 537 | entry->type = get_pse_type(entry->type); |
| 538 | break; |
| 539 | default: |
| 540 | GEM_BUG_ON(!gtt_type_is_entry(entry->type)); |
| 541 | } |
| 542 | |
| 543 | GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * MM helpers. |
| 548 | */ |
| 549 | static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, |
| 550 | struct intel_gvt_gtt_entry *entry, unsigned long index, |
| 551 | bool guest) |
| 552 | { |
| 553 | struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; |
| 554 | |
| 555 | GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); |
| 556 | |
| 557 | entry->type = mm->ppgtt_mm.root_entry_type; |
| 558 | pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : |
| 559 | mm->ppgtt_mm.shadow_pdps, |
| 560 | entry, index, false, 0, mm->vgpu); |
| 561 | update_entry_type_for_real(pte_ops, entry, false); |
| 562 | } |
| 563 | |
| 564 | static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, |
| 565 | struct intel_gvt_gtt_entry *entry, unsigned long index) |
| 566 | { |
| 567 | _ppgtt_get_root_entry(mm, entry, index, true); |
| 568 | } |
| 569 | |
| 570 | static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, |
| 571 | struct intel_gvt_gtt_entry *entry, unsigned long index) |
| 572 | { |
| 573 | _ppgtt_get_root_entry(mm, entry, index, false); |
| 574 | } |
| 575 | |
| 576 | static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, |
| 577 | struct intel_gvt_gtt_entry *entry, unsigned long index, |
| 578 | bool guest) |
| 579 | { |
| 580 | struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; |
| 581 | |
| 582 | pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : |
| 583 | mm->ppgtt_mm.shadow_pdps, |
| 584 | entry, index, false, 0, mm->vgpu); |
| 585 | } |
| 586 | |
| 587 | static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm, |
| 588 | struct intel_gvt_gtt_entry *entry, unsigned long index) |
| 589 | { |
| 590 | _ppgtt_set_root_entry(mm, entry, index, true); |
| 591 | } |
| 592 | |
| 593 | static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, |
| 594 | struct intel_gvt_gtt_entry *entry, unsigned long index) |
| 595 | { |
| 596 | _ppgtt_set_root_entry(mm, entry, index, false); |
| 597 | } |
| 598 | |
| 599 | static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, |
| 600 | struct intel_gvt_gtt_entry *entry, unsigned long index) |
| 601 | { |
| 602 | struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; |
| 603 | |
| 604 | GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); |
| 605 | |
| 606 | entry->type = GTT_TYPE_GGTT_PTE; |
| 607 | pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, |
| 608 | false, 0, mm->vgpu); |
| 609 | } |
| 610 | |
| 611 | static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, |
| 612 | struct intel_gvt_gtt_entry *entry, unsigned long index) |
| 613 | { |
| 614 | struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; |
| 615 | |
| 616 | GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); |
| 617 | |
| 618 | pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, |
| 619 | false, 0, mm->vgpu); |
| 620 | } |
| 621 | |
| 622 | static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, |
| 623 | struct intel_gvt_gtt_entry *entry, unsigned long index) |
| 624 | { |
| 625 | struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; |
| 626 | |
| 627 | GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); |
| 628 | |
| 629 | pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); |
| 630 | } |
| 631 | |
| 632 | static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, |
| 633 | struct intel_gvt_gtt_entry *entry, unsigned long index) |
| 634 | { |
| 635 | struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; |
| 636 | |
| 637 | GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); |
| 638 | |
| 639 | pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * PPGTT shadow page table helpers. |
| 644 | */ |
| 645 | static inline int ppgtt_spt_get_entry( |
| 646 | struct intel_vgpu_ppgtt_spt *spt, |
| 647 | void *page_table, int type, |
| 648 | struct intel_gvt_gtt_entry *e, unsigned long index, |
| 649 | bool guest) |
| 650 | { |
| 651 | struct intel_gvt *gvt = spt->vgpu->gvt; |
| 652 | struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; |
| 653 | int ret; |
| 654 | |
| 655 | e->type = get_entry_type(type); |
| 656 | |
| 657 | if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) |
| 658 | return -EINVAL; |
| 659 | |
| 660 | ret = ops->get_entry(page_table, e, index, guest, |
| 661 | spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, |
| 662 | spt->vgpu); |
| 663 | if (ret) |
| 664 | return ret; |
| 665 | |
| 666 | update_entry_type_for_real(ops, e, guest ? |
| 667 | spt->guest_page.pde_ips : false); |
| 668 | |
| 669 | gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", |
| 670 | type, e->type, index, e->val64); |
| 671 | return 0; |
| 672 | } |
| 673 | |
| 674 | static inline int ppgtt_spt_set_entry( |
| 675 | struct intel_vgpu_ppgtt_spt *spt, |
| 676 | void *page_table, int type, |
| 677 | struct intel_gvt_gtt_entry *e, unsigned long index, |
| 678 | bool guest) |
| 679 | { |
| 680 | struct intel_gvt *gvt = spt->vgpu->gvt; |
| 681 | struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; |
| 682 | |
| 683 | if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) |
| 684 | return -EINVAL; |
| 685 | |
| 686 | gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", |
| 687 | type, e->type, index, e->val64); |
| 688 | |
| 689 | return ops->set_entry(page_table, e, index, guest, |
| 690 | spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, |
| 691 | spt->vgpu); |
| 692 | } |
| 693 | |
| 694 | #define ppgtt_get_guest_entry(spt, e, index) \ |
| 695 | ppgtt_spt_get_entry(spt, NULL, \ |
| 696 | spt->guest_page.type, e, index, true) |
| 697 | |
| 698 | #define ppgtt_set_guest_entry(spt, e, index) \ |
| 699 | ppgtt_spt_set_entry(spt, NULL, \ |
| 700 | spt->guest_page.type, e, index, true) |
| 701 | |
| 702 | #define ppgtt_get_shadow_entry(spt, e, index) \ |
| 703 | ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ |
| 704 | spt->shadow_page.type, e, index, false) |
| 705 | |
| 706 | #define ppgtt_set_shadow_entry(spt, e, index) \ |
| 707 | ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ |
| 708 | spt->shadow_page.type, e, index, false) |
| 709 | |
| 710 | static void *alloc_spt(gfp_t gfp_mask) |
| 711 | { |
| 712 | struct intel_vgpu_ppgtt_spt *spt; |
| 713 | |
| 714 | spt = kzalloc(sizeof(*spt), gfp_mask); |
| 715 | if (!spt) |
| 716 | return NULL; |
| 717 | |
| 718 | spt->shadow_page.page = alloc_page(gfp_mask); |
| 719 | if (!spt->shadow_page.page) { |
| 720 | kfree(spt); |
| 721 | return NULL; |
| 722 | } |
| 723 | return spt; |
| 724 | } |
| 725 | |
| 726 | static void free_spt(struct intel_vgpu_ppgtt_spt *spt) |
| 727 | { |
| 728 | __free_page(spt->shadow_page.page); |
| 729 | kfree(spt); |
| 730 | } |
| 731 | |
| 732 | static int detach_oos_page(struct intel_vgpu *vgpu, |
| 733 | struct intel_vgpu_oos_page *oos_page); |
| 734 | |
| 735 | static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) |
| 736 | { |
| 737 | struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev; |
| 738 | |
| 739 | trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); |
| 740 | |
| 741 | dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, |
| 742 | PCI_DMA_BIDIRECTIONAL); |
| 743 | |
| 744 | radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); |
| 745 | |
| 746 | if (spt->guest_page.gfn) { |
| 747 | if (spt->guest_page.oos_page) |
| 748 | detach_oos_page(spt->vgpu, spt->guest_page.oos_page); |
| 749 | |
| 750 | intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); |
| 751 | } |
| 752 | |
| 753 | list_del_init(&spt->post_shadow_list); |
| 754 | free_spt(spt); |
| 755 | } |
| 756 | |
| 757 | static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) |
| 758 | { |
| 759 | struct intel_vgpu_ppgtt_spt *spt, *spn; |
| 760 | struct radix_tree_iter iter; |
| 761 | LIST_HEAD(all_spt); |
| 762 | void __rcu **slot; |
| 763 | |
| 764 | rcu_read_lock(); |
| 765 | radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { |
| 766 | spt = radix_tree_deref_slot(slot); |
| 767 | list_move(&spt->post_shadow_list, &all_spt); |
| 768 | } |
| 769 | rcu_read_unlock(); |
| 770 | |
| 771 | list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) |
| 772 | ppgtt_free_spt(spt); |
| 773 | } |
| 774 | |
| 775 | static int ppgtt_handle_guest_write_page_table_bytes( |
| 776 | struct intel_vgpu_ppgtt_spt *spt, |
| 777 | u64 pa, void *p_data, int bytes); |
| 778 | |
| 779 | static int ppgtt_write_protection_handler( |
| 780 | struct intel_vgpu_page_track *page_track, |
| 781 | u64 gpa, void *data, int bytes) |
| 782 | { |
| 783 | struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; |
| 784 | |
| 785 | int ret; |
| 786 | |
| 787 | if (bytes != 4 && bytes != 8) |
| 788 | return -EINVAL; |
| 789 | |
| 790 | ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); |
| 791 | if (ret) |
| 792 | return ret; |
| 793 | return ret; |
| 794 | } |
| 795 | |
| 796 | /* Find a spt by guest gfn. */ |
| 797 | static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( |
| 798 | struct intel_vgpu *vgpu, unsigned long gfn) |
| 799 | { |
| 800 | struct intel_vgpu_page_track *track; |
| 801 | |
| 802 | track = intel_vgpu_find_page_track(vgpu, gfn); |
| 803 | if (track && track->handler == ppgtt_write_protection_handler) |
| 804 | return track->priv_data; |
| 805 | |
| 806 | return NULL; |
| 807 | } |
| 808 | |
| 809 | /* Find the spt by shadow page mfn. */ |
| 810 | static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( |
| 811 | struct intel_vgpu *vgpu, unsigned long mfn) |
| 812 | { |
| 813 | return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); |
| 814 | } |
| 815 | |
| 816 | static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); |
| 817 | |
| 818 | /* Allocate shadow page table without guest page. */ |
| 819 | static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( |
| 820 | struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) |
| 821 | { |
| 822 | struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; |
| 823 | struct intel_vgpu_ppgtt_spt *spt = NULL; |
| 824 | dma_addr_t daddr; |
| 825 | int ret; |
| 826 | |
| 827 | retry: |
| 828 | spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); |
| 829 | if (!spt) { |
| 830 | if (reclaim_one_ppgtt_mm(vgpu->gvt)) |
| 831 | goto retry; |
| 832 | |
| 833 | gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); |
| 834 | return ERR_PTR(-ENOMEM); |
| 835 | } |
| 836 | |
| 837 | spt->vgpu = vgpu; |
| 838 | atomic_set(&spt->refcount, 1); |
| 839 | INIT_LIST_HEAD(&spt->post_shadow_list); |
| 840 | |
| 841 | /* |
| 842 | * Init shadow_page. |
| 843 | */ |
| 844 | spt->shadow_page.type = type; |
| 845 | daddr = dma_map_page(kdev, spt->shadow_page.page, |
| 846 | 0, 4096, PCI_DMA_BIDIRECTIONAL); |
| 847 | if (dma_mapping_error(kdev, daddr)) { |
| 848 | gvt_vgpu_err("fail to map dma addr\n"); |
| 849 | ret = -EINVAL; |
| 850 | goto err_free_spt; |
| 851 | } |
| 852 | spt->shadow_page.vaddr = page_address(spt->shadow_page.page); |
| 853 | spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; |
| 854 | |
| 855 | ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); |
| 856 | if (ret) |
| 857 | goto err_unmap_dma; |
| 858 | |
| 859 | return spt; |
| 860 | |
| 861 | err_unmap_dma: |
| 862 | dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| 863 | err_free_spt: |
| 864 | free_spt(spt); |
| 865 | return ERR_PTR(ret); |
| 866 | } |
| 867 | |
| 868 | /* Allocate shadow page table associated with specific gfn. */ |
| 869 | static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( |
| 870 | struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, |
| 871 | unsigned long gfn, bool guest_pde_ips) |
| 872 | { |
| 873 | struct intel_vgpu_ppgtt_spt *spt; |
| 874 | int ret; |
| 875 | |
| 876 | spt = ppgtt_alloc_spt(vgpu, type); |
| 877 | if (IS_ERR(spt)) |
| 878 | return spt; |
| 879 | |
| 880 | /* |
| 881 | * Init guest_page. |
| 882 | */ |
| 883 | ret = intel_vgpu_register_page_track(vgpu, gfn, |
| 884 | ppgtt_write_protection_handler, spt); |
| 885 | if (ret) { |
| 886 | ppgtt_free_spt(spt); |
| 887 | return ERR_PTR(ret); |
| 888 | } |
| 889 | |
| 890 | spt->guest_page.type = type; |
| 891 | spt->guest_page.gfn = gfn; |
| 892 | spt->guest_page.pde_ips = guest_pde_ips; |
| 893 | |
| 894 | trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); |
| 895 | |
| 896 | return spt; |
| 897 | } |
| 898 | |
| 899 | #define pt_entry_size_shift(spt) \ |
| 900 | ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) |
| 901 | |
| 902 | #define pt_entries(spt) \ |
| 903 | (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) |
| 904 | |
| 905 | #define for_each_present_guest_entry(spt, e, i) \ |
| 906 | for (i = 0; i < pt_entries(spt); \ |
| 907 | i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ |
| 908 | if (!ppgtt_get_guest_entry(spt, e, i) && \ |
| 909 | spt->vgpu->gvt->gtt.pte_ops->test_present(e)) |
| 910 | |
| 911 | #define for_each_present_shadow_entry(spt, e, i) \ |
| 912 | for (i = 0; i < pt_entries(spt); \ |
| 913 | i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ |
| 914 | if (!ppgtt_get_shadow_entry(spt, e, i) && \ |
| 915 | spt->vgpu->gvt->gtt.pte_ops->test_present(e)) |
| 916 | |
| 917 | #define for_each_shadow_entry(spt, e, i) \ |
| 918 | for (i = 0; i < pt_entries(spt); \ |
| 919 | i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ |
| 920 | if (!ppgtt_get_shadow_entry(spt, e, i)) |
| 921 | |
| 922 | static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) |
| 923 | { |
| 924 | int v = atomic_read(&spt->refcount); |
| 925 | |
| 926 | trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); |
| 927 | atomic_inc(&spt->refcount); |
| 928 | } |
| 929 | |
| 930 | static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) |
| 931 | { |
| 932 | int v = atomic_read(&spt->refcount); |
| 933 | |
| 934 | trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); |
| 935 | return atomic_dec_return(&spt->refcount); |
| 936 | } |
| 937 | |
| 938 | static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); |
| 939 | |
| 940 | static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, |
| 941 | struct intel_gvt_gtt_entry *e) |
| 942 | { |
| 943 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 944 | struct intel_vgpu_ppgtt_spt *s; |
| 945 | enum intel_gvt_gtt_type cur_pt_type; |
| 946 | |
| 947 | GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); |
| 948 | |
| 949 | if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY |
| 950 | && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { |
| 951 | cur_pt_type = get_next_pt_type(e->type); |
| 952 | |
| 953 | if (!gtt_type_is_pt(cur_pt_type) || |
| 954 | !gtt_type_is_pt(cur_pt_type + 1)) { |
| 955 | WARN(1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type); |
| 956 | return -EINVAL; |
| 957 | } |
| 958 | |
| 959 | cur_pt_type += 1; |
| 960 | |
| 961 | if (ops->get_pfn(e) == |
| 962 | vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) |
| 963 | return 0; |
| 964 | } |
| 965 | s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); |
| 966 | if (!s) { |
| 967 | gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", |
| 968 | ops->get_pfn(e)); |
| 969 | return -ENXIO; |
| 970 | } |
| 971 | return ppgtt_invalidate_spt(s); |
| 972 | } |
| 973 | |
| 974 | static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, |
| 975 | struct intel_gvt_gtt_entry *entry) |
| 976 | { |
| 977 | struct intel_vgpu *vgpu = spt->vgpu; |
| 978 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 979 | unsigned long pfn; |
| 980 | int type; |
| 981 | |
| 982 | pfn = ops->get_pfn(entry); |
| 983 | type = spt->shadow_page.type; |
| 984 | |
| 985 | /* Uninitialized spte or unshadowed spte. */ |
| 986 | if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) |
| 987 | return; |
| 988 | |
| 989 | intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); |
| 990 | } |
| 991 | |
| 992 | static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) |
| 993 | { |
| 994 | struct intel_vgpu *vgpu = spt->vgpu; |
| 995 | struct intel_gvt_gtt_entry e; |
| 996 | unsigned long index; |
| 997 | int ret; |
| 998 | |
| 999 | trace_spt_change(spt->vgpu->id, "die", spt, |
| 1000 | spt->guest_page.gfn, spt->shadow_page.type); |
| 1001 | |
| 1002 | if (ppgtt_put_spt(spt) > 0) |
| 1003 | return 0; |
| 1004 | |
| 1005 | for_each_present_shadow_entry(spt, &e, index) { |
| 1006 | switch (e.type) { |
| 1007 | case GTT_TYPE_PPGTT_PTE_4K_ENTRY: |
| 1008 | gvt_vdbg_mm("invalidate 4K entry\n"); |
| 1009 | ppgtt_invalidate_pte(spt, &e); |
| 1010 | break; |
| 1011 | case GTT_TYPE_PPGTT_PTE_64K_ENTRY: |
| 1012 | /* We don't setup 64K shadow entry so far. */ |
| 1013 | WARN(1, "suspicious 64K gtt entry\n"); |
| 1014 | continue; |
| 1015 | case GTT_TYPE_PPGTT_PTE_2M_ENTRY: |
| 1016 | gvt_vdbg_mm("invalidate 2M entry\n"); |
| 1017 | continue; |
| 1018 | case GTT_TYPE_PPGTT_PTE_1G_ENTRY: |
| 1019 | WARN(1, "GVT doesn't support 1GB page\n"); |
| 1020 | continue; |
| 1021 | case GTT_TYPE_PPGTT_PML4_ENTRY: |
| 1022 | case GTT_TYPE_PPGTT_PDP_ENTRY: |
| 1023 | case GTT_TYPE_PPGTT_PDE_ENTRY: |
| 1024 | gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); |
| 1025 | ret = ppgtt_invalidate_spt_by_shadow_entry( |
| 1026 | spt->vgpu, &e); |
| 1027 | if (ret) |
| 1028 | goto fail; |
| 1029 | break; |
| 1030 | default: |
| 1031 | GEM_BUG_ON(1); |
| 1032 | } |
| 1033 | } |
| 1034 | |
| 1035 | trace_spt_change(spt->vgpu->id, "release", spt, |
| 1036 | spt->guest_page.gfn, spt->shadow_page.type); |
| 1037 | ppgtt_free_spt(spt); |
| 1038 | return 0; |
| 1039 | fail: |
| 1040 | gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", |
| 1041 | spt, e.val64, e.type); |
| 1042 | return ret; |
| 1043 | } |
| 1044 | |
| 1045 | static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) |
| 1046 | { |
| 1047 | struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; |
| 1048 | |
| 1049 | if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) { |
| 1050 | u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & |
| 1051 | GAMW_ECO_ENABLE_64K_IPS_FIELD; |
| 1052 | |
| 1053 | return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; |
| 1054 | } else if (INTEL_GEN(dev_priv) >= 11) { |
| 1055 | /* 64K paging only controlled by IPS bit in PTE now. */ |
| 1056 | return true; |
| 1057 | } else |
| 1058 | return false; |
| 1059 | } |
| 1060 | |
| 1061 | static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); |
| 1062 | |
| 1063 | static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( |
| 1064 | struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) |
| 1065 | { |
| 1066 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 1067 | struct intel_vgpu_ppgtt_spt *spt = NULL; |
| 1068 | bool ips = false; |
| 1069 | int ret; |
| 1070 | |
| 1071 | GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); |
| 1072 | |
| 1073 | if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) |
| 1074 | ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); |
| 1075 | |
| 1076 | spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); |
| 1077 | if (spt) { |
| 1078 | ppgtt_get_spt(spt); |
| 1079 | |
| 1080 | if (ips != spt->guest_page.pde_ips) { |
| 1081 | spt->guest_page.pde_ips = ips; |
| 1082 | |
| 1083 | gvt_dbg_mm("reshadow PDE since ips changed\n"); |
| 1084 | clear_page(spt->shadow_page.vaddr); |
| 1085 | ret = ppgtt_populate_spt(spt); |
| 1086 | if (ret) { |
| 1087 | ppgtt_put_spt(spt); |
| 1088 | goto err; |
| 1089 | } |
| 1090 | } |
| 1091 | } else { |
| 1092 | int type = get_next_pt_type(we->type); |
| 1093 | |
| 1094 | if (!gtt_type_is_pt(type)) { |
| 1095 | ret = -EINVAL; |
| 1096 | goto err; |
| 1097 | } |
| 1098 | |
| 1099 | spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); |
| 1100 | if (IS_ERR(spt)) { |
| 1101 | ret = PTR_ERR(spt); |
| 1102 | goto err; |
| 1103 | } |
| 1104 | |
| 1105 | ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); |
| 1106 | if (ret) |
| 1107 | goto err_free_spt; |
| 1108 | |
| 1109 | ret = ppgtt_populate_spt(spt); |
| 1110 | if (ret) |
| 1111 | goto err_free_spt; |
| 1112 | |
| 1113 | trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, |
| 1114 | spt->shadow_page.type); |
| 1115 | } |
| 1116 | return spt; |
| 1117 | |
| 1118 | err_free_spt: |
| 1119 | ppgtt_free_spt(spt); |
| 1120 | spt = NULL; |
| 1121 | err: |
| 1122 | gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", |
| 1123 | spt, we->val64, we->type); |
| 1124 | return ERR_PTR(ret); |
| 1125 | } |
| 1126 | |
| 1127 | static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, |
| 1128 | struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) |
| 1129 | { |
| 1130 | struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; |
| 1131 | |
| 1132 | se->type = ge->type; |
| 1133 | se->val64 = ge->val64; |
| 1134 | |
| 1135 | /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ |
| 1136 | if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) |
| 1137 | ops->clear_ips(se); |
| 1138 | |
| 1139 | ops->set_pfn(se, s->shadow_page.mfn); |
| 1140 | } |
| 1141 | |
| 1142 | /** |
| 1143 | * Check if can do 2M page |
| 1144 | * @vgpu: target vgpu |
| 1145 | * @entry: target pfn's gtt entry |
| 1146 | * |
| 1147 | * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition, |
| 1148 | * negtive if found err. |
| 1149 | */ |
| 1150 | static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, |
| 1151 | struct intel_gvt_gtt_entry *entry) |
| 1152 | { |
| 1153 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 1154 | unsigned long pfn; |
| 1155 | |
| 1156 | if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M)) |
| 1157 | return 0; |
| 1158 | |
| 1159 | pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); |
| 1160 | if (pfn == INTEL_GVT_INVALID_ADDR) |
| 1161 | return -EINVAL; |
| 1162 | |
| 1163 | return PageTransHuge(pfn_to_page(pfn)); |
| 1164 | } |
| 1165 | |
| 1166 | static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, |
| 1167 | struct intel_vgpu_ppgtt_spt *spt, unsigned long index, |
| 1168 | struct intel_gvt_gtt_entry *se) |
| 1169 | { |
| 1170 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 1171 | struct intel_vgpu_ppgtt_spt *sub_spt; |
| 1172 | struct intel_gvt_gtt_entry sub_se; |
| 1173 | unsigned long start_gfn; |
| 1174 | dma_addr_t dma_addr; |
| 1175 | unsigned long sub_index; |
| 1176 | int ret; |
| 1177 | |
| 1178 | gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); |
| 1179 | |
| 1180 | start_gfn = ops->get_pfn(se); |
| 1181 | |
| 1182 | sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); |
| 1183 | if (IS_ERR(sub_spt)) |
| 1184 | return PTR_ERR(sub_spt); |
| 1185 | |
| 1186 | for_each_shadow_entry(sub_spt, &sub_se, sub_index) { |
| 1187 | ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, |
| 1188 | start_gfn + sub_index, PAGE_SIZE, &dma_addr); |
| 1189 | if (ret) |
| 1190 | goto err; |
| 1191 | sub_se.val64 = se->val64; |
| 1192 | |
| 1193 | /* Copy the PAT field from PDE. */ |
| 1194 | sub_se.val64 &= ~_PAGE_PAT; |
| 1195 | sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; |
| 1196 | |
| 1197 | ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); |
| 1198 | ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); |
| 1199 | } |
| 1200 | |
| 1201 | /* Clear dirty field. */ |
| 1202 | se->val64 &= ~_PAGE_DIRTY; |
| 1203 | |
| 1204 | ops->clear_pse(se); |
| 1205 | ops->clear_ips(se); |
| 1206 | ops->set_pfn(se, sub_spt->shadow_page.mfn); |
| 1207 | ppgtt_set_shadow_entry(spt, se, index); |
| 1208 | return 0; |
| 1209 | err: |
| 1210 | /* Cancel the existing addess mappings of DMA addr. */ |
| 1211 | for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) { |
| 1212 | gvt_vdbg_mm("invalidate 4K entry\n"); |
| 1213 | ppgtt_invalidate_pte(sub_spt, &sub_se); |
| 1214 | } |
| 1215 | /* Release the new allocated spt. */ |
| 1216 | trace_spt_change(sub_spt->vgpu->id, "release", sub_spt, |
| 1217 | sub_spt->guest_page.gfn, sub_spt->shadow_page.type); |
| 1218 | ppgtt_free_spt(sub_spt); |
| 1219 | return ret; |
| 1220 | } |
| 1221 | |
| 1222 | static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, |
| 1223 | struct intel_vgpu_ppgtt_spt *spt, unsigned long index, |
| 1224 | struct intel_gvt_gtt_entry *se) |
| 1225 | { |
| 1226 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 1227 | struct intel_gvt_gtt_entry entry = *se; |
| 1228 | unsigned long start_gfn; |
| 1229 | dma_addr_t dma_addr; |
| 1230 | int i, ret; |
| 1231 | |
| 1232 | gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); |
| 1233 | |
| 1234 | GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); |
| 1235 | |
| 1236 | start_gfn = ops->get_pfn(se); |
| 1237 | |
| 1238 | entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; |
| 1239 | ops->set_64k_splited(&entry); |
| 1240 | |
| 1241 | for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { |
| 1242 | ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, |
| 1243 | start_gfn + i, PAGE_SIZE, &dma_addr); |
| 1244 | if (ret) |
| 1245 | return ret; |
| 1246 | |
| 1247 | ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); |
| 1248 | ppgtt_set_shadow_entry(spt, &entry, index + i); |
| 1249 | } |
| 1250 | return 0; |
| 1251 | } |
| 1252 | |
| 1253 | static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, |
| 1254 | struct intel_vgpu_ppgtt_spt *spt, unsigned long index, |
| 1255 | struct intel_gvt_gtt_entry *ge) |
| 1256 | { |
| 1257 | struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; |
| 1258 | struct intel_gvt_gtt_entry se = *ge; |
| 1259 | unsigned long gfn, page_size = PAGE_SIZE; |
| 1260 | dma_addr_t dma_addr; |
| 1261 | int ret; |
| 1262 | |
| 1263 | if (!pte_ops->test_present(ge)) |
| 1264 | return 0; |
| 1265 | |
| 1266 | gfn = pte_ops->get_pfn(ge); |
| 1267 | |
| 1268 | switch (ge->type) { |
| 1269 | case GTT_TYPE_PPGTT_PTE_4K_ENTRY: |
| 1270 | gvt_vdbg_mm("shadow 4K gtt entry\n"); |
| 1271 | break; |
| 1272 | case GTT_TYPE_PPGTT_PTE_64K_ENTRY: |
| 1273 | gvt_vdbg_mm("shadow 64K gtt entry\n"); |
| 1274 | /* |
| 1275 | * The layout of 64K page is special, the page size is |
| 1276 | * controlled by uper PDE. To be simple, we always split |
| 1277 | * 64K page to smaller 4K pages in shadow PT. |
| 1278 | */ |
| 1279 | return split_64KB_gtt_entry(vgpu, spt, index, &se); |
| 1280 | case GTT_TYPE_PPGTT_PTE_2M_ENTRY: |
| 1281 | gvt_vdbg_mm("shadow 2M gtt entry\n"); |
| 1282 | ret = is_2MB_gtt_possible(vgpu, ge); |
| 1283 | if (ret == 0) |
| 1284 | return split_2MB_gtt_entry(vgpu, spt, index, &se); |
| 1285 | else if (ret < 0) |
| 1286 | return ret; |
| 1287 | page_size = I915_GTT_PAGE_SIZE_2M; |
| 1288 | break; |
| 1289 | case GTT_TYPE_PPGTT_PTE_1G_ENTRY: |
| 1290 | gvt_vgpu_err("GVT doesn't support 1GB entry\n"); |
| 1291 | return -EINVAL; |
| 1292 | default: |
| 1293 | GEM_BUG_ON(1); |
| 1294 | }; |
| 1295 | |
| 1296 | /* direct shadow */ |
| 1297 | ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, |
| 1298 | &dma_addr); |
| 1299 | if (ret) |
| 1300 | return -ENXIO; |
| 1301 | |
| 1302 | pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); |
| 1303 | ppgtt_set_shadow_entry(spt, &se, index); |
| 1304 | return 0; |
| 1305 | } |
| 1306 | |
| 1307 | static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) |
| 1308 | { |
| 1309 | struct intel_vgpu *vgpu = spt->vgpu; |
| 1310 | struct intel_gvt *gvt = vgpu->gvt; |
| 1311 | struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; |
| 1312 | struct intel_vgpu_ppgtt_spt *s; |
| 1313 | struct intel_gvt_gtt_entry se, ge; |
| 1314 | unsigned long gfn, i; |
| 1315 | int ret; |
| 1316 | |
| 1317 | trace_spt_change(spt->vgpu->id, "born", spt, |
| 1318 | spt->guest_page.gfn, spt->shadow_page.type); |
| 1319 | |
| 1320 | for_each_present_guest_entry(spt, &ge, i) { |
| 1321 | if (gtt_type_is_pt(get_next_pt_type(ge.type))) { |
| 1322 | s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); |
| 1323 | if (IS_ERR(s)) { |
| 1324 | ret = PTR_ERR(s); |
| 1325 | goto fail; |
| 1326 | } |
| 1327 | ppgtt_get_shadow_entry(spt, &se, i); |
| 1328 | ppgtt_generate_shadow_entry(&se, s, &ge); |
| 1329 | ppgtt_set_shadow_entry(spt, &se, i); |
| 1330 | } else { |
| 1331 | gfn = ops->get_pfn(&ge); |
| 1332 | if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { |
| 1333 | ops->set_pfn(&se, gvt->gtt.scratch_mfn); |
| 1334 | ppgtt_set_shadow_entry(spt, &se, i); |
| 1335 | continue; |
| 1336 | } |
| 1337 | |
| 1338 | ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); |
| 1339 | if (ret) |
| 1340 | goto fail; |
| 1341 | } |
| 1342 | } |
| 1343 | return 0; |
| 1344 | fail: |
| 1345 | gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", |
| 1346 | spt, ge.val64, ge.type); |
| 1347 | return ret; |
| 1348 | } |
| 1349 | |
| 1350 | static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, |
| 1351 | struct intel_gvt_gtt_entry *se, unsigned long index) |
| 1352 | { |
| 1353 | struct intel_vgpu *vgpu = spt->vgpu; |
| 1354 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 1355 | int ret; |
| 1356 | |
| 1357 | trace_spt_guest_change(spt->vgpu->id, "remove", spt, |
| 1358 | spt->shadow_page.type, se->val64, index); |
| 1359 | |
| 1360 | gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", |
| 1361 | se->type, index, se->val64); |
| 1362 | |
| 1363 | if (!ops->test_present(se)) |
| 1364 | return 0; |
| 1365 | |
| 1366 | if (ops->get_pfn(se) == |
| 1367 | vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) |
| 1368 | return 0; |
| 1369 | |
| 1370 | if (gtt_type_is_pt(get_next_pt_type(se->type))) { |
| 1371 | struct intel_vgpu_ppgtt_spt *s = |
| 1372 | intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); |
| 1373 | if (!s) { |
| 1374 | gvt_vgpu_err("fail to find guest page\n"); |
| 1375 | ret = -ENXIO; |
| 1376 | goto fail; |
| 1377 | } |
| 1378 | ret = ppgtt_invalidate_spt(s); |
| 1379 | if (ret) |
| 1380 | goto fail; |
| 1381 | } else { |
| 1382 | /* We don't setup 64K shadow entry so far. */ |
| 1383 | WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, |
| 1384 | "suspicious 64K entry\n"); |
| 1385 | ppgtt_invalidate_pte(spt, se); |
| 1386 | } |
| 1387 | |
| 1388 | return 0; |
| 1389 | fail: |
| 1390 | gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", |
| 1391 | spt, se->val64, se->type); |
| 1392 | return ret; |
| 1393 | } |
| 1394 | |
| 1395 | static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, |
| 1396 | struct intel_gvt_gtt_entry *we, unsigned long index) |
| 1397 | { |
| 1398 | struct intel_vgpu *vgpu = spt->vgpu; |
| 1399 | struct intel_gvt_gtt_entry m; |
| 1400 | struct intel_vgpu_ppgtt_spt *s; |
| 1401 | int ret; |
| 1402 | |
| 1403 | trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, |
| 1404 | we->val64, index); |
| 1405 | |
| 1406 | gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", |
| 1407 | we->type, index, we->val64); |
| 1408 | |
| 1409 | if (gtt_type_is_pt(get_next_pt_type(we->type))) { |
| 1410 | s = ppgtt_populate_spt_by_guest_entry(vgpu, we); |
| 1411 | if (IS_ERR(s)) { |
| 1412 | ret = PTR_ERR(s); |
| 1413 | goto fail; |
| 1414 | } |
| 1415 | ppgtt_get_shadow_entry(spt, &m, index); |
| 1416 | ppgtt_generate_shadow_entry(&m, s, we); |
| 1417 | ppgtt_set_shadow_entry(spt, &m, index); |
| 1418 | } else { |
| 1419 | ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); |
| 1420 | if (ret) |
| 1421 | goto fail; |
| 1422 | } |
| 1423 | return 0; |
| 1424 | fail: |
| 1425 | gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", |
| 1426 | spt, we->val64, we->type); |
| 1427 | return ret; |
| 1428 | } |
| 1429 | |
| 1430 | static int sync_oos_page(struct intel_vgpu *vgpu, |
| 1431 | struct intel_vgpu_oos_page *oos_page) |
| 1432 | { |
| 1433 | const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; |
| 1434 | struct intel_gvt *gvt = vgpu->gvt; |
| 1435 | struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; |
| 1436 | struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; |
| 1437 | struct intel_gvt_gtt_entry old, new; |
| 1438 | int index; |
| 1439 | int ret; |
| 1440 | |
| 1441 | trace_oos_change(vgpu->id, "sync", oos_page->id, |
| 1442 | spt, spt->guest_page.type); |
| 1443 | |
| 1444 | old.type = new.type = get_entry_type(spt->guest_page.type); |
| 1445 | old.val64 = new.val64 = 0; |
| 1446 | |
| 1447 | for (index = 0; index < (I915_GTT_PAGE_SIZE >> |
| 1448 | info->gtt_entry_size_shift); index++) { |
| 1449 | ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); |
| 1450 | ops->get_entry(NULL, &new, index, true, |
| 1451 | spt->guest_page.gfn << PAGE_SHIFT, vgpu); |
| 1452 | |
| 1453 | if (old.val64 == new.val64 |
| 1454 | && !test_and_clear_bit(index, spt->post_shadow_bitmap)) |
| 1455 | continue; |
| 1456 | |
| 1457 | trace_oos_sync(vgpu->id, oos_page->id, |
| 1458 | spt, spt->guest_page.type, |
| 1459 | new.val64, index); |
| 1460 | |
| 1461 | ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); |
| 1462 | if (ret) |
| 1463 | return ret; |
| 1464 | |
| 1465 | ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); |
| 1466 | } |
| 1467 | |
| 1468 | spt->guest_page.write_cnt = 0; |
| 1469 | list_del_init(&spt->post_shadow_list); |
| 1470 | return 0; |
| 1471 | } |
| 1472 | |
| 1473 | static int detach_oos_page(struct intel_vgpu *vgpu, |
| 1474 | struct intel_vgpu_oos_page *oos_page) |
| 1475 | { |
| 1476 | struct intel_gvt *gvt = vgpu->gvt; |
| 1477 | struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; |
| 1478 | |
| 1479 | trace_oos_change(vgpu->id, "detach", oos_page->id, |
| 1480 | spt, spt->guest_page.type); |
| 1481 | |
| 1482 | spt->guest_page.write_cnt = 0; |
| 1483 | spt->guest_page.oos_page = NULL; |
| 1484 | oos_page->spt = NULL; |
| 1485 | |
| 1486 | list_del_init(&oos_page->vm_list); |
| 1487 | list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); |
| 1488 | |
| 1489 | return 0; |
| 1490 | } |
| 1491 | |
| 1492 | static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, |
| 1493 | struct intel_vgpu_ppgtt_spt *spt) |
| 1494 | { |
| 1495 | struct intel_gvt *gvt = spt->vgpu->gvt; |
| 1496 | int ret; |
| 1497 | |
| 1498 | ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, |
| 1499 | spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, |
| 1500 | oos_page->mem, I915_GTT_PAGE_SIZE); |
| 1501 | if (ret) |
| 1502 | return ret; |
| 1503 | |
| 1504 | oos_page->spt = spt; |
| 1505 | spt->guest_page.oos_page = oos_page; |
| 1506 | |
| 1507 | list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); |
| 1508 | |
| 1509 | trace_oos_change(spt->vgpu->id, "attach", oos_page->id, |
| 1510 | spt, spt->guest_page.type); |
| 1511 | return 0; |
| 1512 | } |
| 1513 | |
| 1514 | static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) |
| 1515 | { |
| 1516 | struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; |
| 1517 | int ret; |
| 1518 | |
| 1519 | ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); |
| 1520 | if (ret) |
| 1521 | return ret; |
| 1522 | |
| 1523 | trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, |
| 1524 | spt, spt->guest_page.type); |
| 1525 | |
| 1526 | list_del_init(&oos_page->vm_list); |
| 1527 | return sync_oos_page(spt->vgpu, oos_page); |
| 1528 | } |
| 1529 | |
| 1530 | static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) |
| 1531 | { |
| 1532 | struct intel_gvt *gvt = spt->vgpu->gvt; |
| 1533 | struct intel_gvt_gtt *gtt = &gvt->gtt; |
| 1534 | struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; |
| 1535 | int ret; |
| 1536 | |
| 1537 | WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); |
| 1538 | |
| 1539 | if (list_empty(>t->oos_page_free_list_head)) { |
| 1540 | oos_page = container_of(gtt->oos_page_use_list_head.next, |
| 1541 | struct intel_vgpu_oos_page, list); |
| 1542 | ret = ppgtt_set_guest_page_sync(oos_page->spt); |
| 1543 | if (ret) |
| 1544 | return ret; |
| 1545 | ret = detach_oos_page(spt->vgpu, oos_page); |
| 1546 | if (ret) |
| 1547 | return ret; |
| 1548 | } else |
| 1549 | oos_page = container_of(gtt->oos_page_free_list_head.next, |
| 1550 | struct intel_vgpu_oos_page, list); |
| 1551 | return attach_oos_page(oos_page, spt); |
| 1552 | } |
| 1553 | |
| 1554 | static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) |
| 1555 | { |
| 1556 | struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; |
| 1557 | |
| 1558 | if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) |
| 1559 | return -EINVAL; |
| 1560 | |
| 1561 | trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, |
| 1562 | spt, spt->guest_page.type); |
| 1563 | |
| 1564 | list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); |
| 1565 | return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); |
| 1566 | } |
| 1567 | |
| 1568 | /** |
| 1569 | * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU |
| 1570 | * @vgpu: a vGPU |
| 1571 | * |
| 1572 | * This function is called before submitting a guest workload to host, |
| 1573 | * to sync all the out-of-synced shadow for vGPU |
| 1574 | * |
| 1575 | * Returns: |
| 1576 | * Zero on success, negative error code if failed. |
| 1577 | */ |
| 1578 | int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) |
| 1579 | { |
| 1580 | struct list_head *pos, *n; |
| 1581 | struct intel_vgpu_oos_page *oos_page; |
| 1582 | int ret; |
| 1583 | |
| 1584 | if (!enable_out_of_sync) |
| 1585 | return 0; |
| 1586 | |
| 1587 | list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { |
| 1588 | oos_page = container_of(pos, |
| 1589 | struct intel_vgpu_oos_page, vm_list); |
| 1590 | ret = ppgtt_set_guest_page_sync(oos_page->spt); |
| 1591 | if (ret) |
| 1592 | return ret; |
| 1593 | } |
| 1594 | return 0; |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * The heart of PPGTT shadow page table. |
| 1599 | */ |
| 1600 | static int ppgtt_handle_guest_write_page_table( |
| 1601 | struct intel_vgpu_ppgtt_spt *spt, |
| 1602 | struct intel_gvt_gtt_entry *we, unsigned long index) |
| 1603 | { |
| 1604 | struct intel_vgpu *vgpu = spt->vgpu; |
| 1605 | int type = spt->shadow_page.type; |
| 1606 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 1607 | struct intel_gvt_gtt_entry old_se; |
| 1608 | int new_present; |
| 1609 | int i, ret; |
| 1610 | |
| 1611 | new_present = ops->test_present(we); |
| 1612 | |
| 1613 | /* |
| 1614 | * Adding the new entry first and then removing the old one, that can |
| 1615 | * guarantee the ppgtt table is validated during the window between |
| 1616 | * adding and removal. |
| 1617 | */ |
| 1618 | ppgtt_get_shadow_entry(spt, &old_se, index); |
| 1619 | |
| 1620 | if (new_present) { |
| 1621 | ret = ppgtt_handle_guest_entry_add(spt, we, index); |
| 1622 | if (ret) |
| 1623 | goto fail; |
| 1624 | } |
| 1625 | |
| 1626 | ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); |
| 1627 | if (ret) |
| 1628 | goto fail; |
| 1629 | |
| 1630 | if (!new_present) { |
| 1631 | /* For 64KB splited entries, we need clear them all. */ |
| 1632 | if (ops->test_64k_splited(&old_se) && |
| 1633 | !(index % GTT_64K_PTE_STRIDE)) { |
| 1634 | gvt_vdbg_mm("remove splited 64K shadow entries\n"); |
| 1635 | for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { |
| 1636 | ops->clear_64k_splited(&old_se); |
| 1637 | ops->set_pfn(&old_se, |
| 1638 | vgpu->gtt.scratch_pt[type].page_mfn); |
| 1639 | ppgtt_set_shadow_entry(spt, &old_se, index + i); |
| 1640 | } |
| 1641 | } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || |
| 1642 | old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { |
| 1643 | ops->clear_pse(&old_se); |
| 1644 | ops->set_pfn(&old_se, |
| 1645 | vgpu->gtt.scratch_pt[type].page_mfn); |
| 1646 | ppgtt_set_shadow_entry(spt, &old_se, index); |
| 1647 | } else { |
| 1648 | ops->set_pfn(&old_se, |
| 1649 | vgpu->gtt.scratch_pt[type].page_mfn); |
| 1650 | ppgtt_set_shadow_entry(spt, &old_se, index); |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | return 0; |
| 1655 | fail: |
| 1656 | gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", |
| 1657 | spt, we->val64, we->type); |
| 1658 | return ret; |
| 1659 | } |
| 1660 | |
| 1661 | |
| 1662 | |
| 1663 | static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) |
| 1664 | { |
| 1665 | return enable_out_of_sync |
| 1666 | && gtt_type_is_pte_pt(spt->guest_page.type) |
| 1667 | && spt->guest_page.write_cnt >= 2; |
| 1668 | } |
| 1669 | |
| 1670 | static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, |
| 1671 | unsigned long index) |
| 1672 | { |
| 1673 | set_bit(index, spt->post_shadow_bitmap); |
| 1674 | if (!list_empty(&spt->post_shadow_list)) |
| 1675 | return; |
| 1676 | |
| 1677 | list_add_tail(&spt->post_shadow_list, |
| 1678 | &spt->vgpu->gtt.post_shadow_list_head); |
| 1679 | } |
| 1680 | |
| 1681 | /** |
| 1682 | * intel_vgpu_flush_post_shadow - flush the post shadow transactions |
| 1683 | * @vgpu: a vGPU |
| 1684 | * |
| 1685 | * This function is called before submitting a guest workload to host, |
| 1686 | * to flush all the post shadows for a vGPU. |
| 1687 | * |
| 1688 | * Returns: |
| 1689 | * Zero on success, negative error code if failed. |
| 1690 | */ |
| 1691 | int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) |
| 1692 | { |
| 1693 | struct list_head *pos, *n; |
| 1694 | struct intel_vgpu_ppgtt_spt *spt; |
| 1695 | struct intel_gvt_gtt_entry ge; |
| 1696 | unsigned long index; |
| 1697 | int ret; |
| 1698 | |
| 1699 | list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { |
| 1700 | spt = container_of(pos, struct intel_vgpu_ppgtt_spt, |
| 1701 | post_shadow_list); |
| 1702 | |
| 1703 | for_each_set_bit(index, spt->post_shadow_bitmap, |
| 1704 | GTT_ENTRY_NUM_IN_ONE_PAGE) { |
| 1705 | ppgtt_get_guest_entry(spt, &ge, index); |
| 1706 | |
| 1707 | ret = ppgtt_handle_guest_write_page_table(spt, |
| 1708 | &ge, index); |
| 1709 | if (ret) |
| 1710 | return ret; |
| 1711 | clear_bit(index, spt->post_shadow_bitmap); |
| 1712 | } |
| 1713 | list_del_init(&spt->post_shadow_list); |
| 1714 | } |
| 1715 | return 0; |
| 1716 | } |
| 1717 | |
| 1718 | static int ppgtt_handle_guest_write_page_table_bytes( |
| 1719 | struct intel_vgpu_ppgtt_spt *spt, |
| 1720 | u64 pa, void *p_data, int bytes) |
| 1721 | { |
| 1722 | struct intel_vgpu *vgpu = spt->vgpu; |
| 1723 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 1724 | const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; |
| 1725 | struct intel_gvt_gtt_entry we, se; |
| 1726 | unsigned long index; |
| 1727 | int ret; |
| 1728 | |
| 1729 | index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; |
| 1730 | |
| 1731 | ppgtt_get_guest_entry(spt, &we, index); |
| 1732 | |
| 1733 | /* |
| 1734 | * For page table which has 64K gtt entry, only PTE#0, PTE#16, |
| 1735 | * PTE#32, ... PTE#496 are used. Unused PTEs update should be |
| 1736 | * ignored. |
| 1737 | */ |
| 1738 | if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && |
| 1739 | (index % GTT_64K_PTE_STRIDE)) { |
| 1740 | gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", |
| 1741 | index); |
| 1742 | return 0; |
| 1743 | } |
| 1744 | |
| 1745 | if (bytes == info->gtt_entry_size) { |
| 1746 | ret = ppgtt_handle_guest_write_page_table(spt, &we, index); |
| 1747 | if (ret) |
| 1748 | return ret; |
| 1749 | } else { |
| 1750 | if (!test_bit(index, spt->post_shadow_bitmap)) { |
| 1751 | int type = spt->shadow_page.type; |
| 1752 | |
| 1753 | ppgtt_get_shadow_entry(spt, &se, index); |
| 1754 | ret = ppgtt_handle_guest_entry_removal(spt, &se, index); |
| 1755 | if (ret) |
| 1756 | return ret; |
| 1757 | ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); |
| 1758 | ppgtt_set_shadow_entry(spt, &se, index); |
| 1759 | } |
| 1760 | ppgtt_set_post_shadow(spt, index); |
| 1761 | } |
| 1762 | |
| 1763 | if (!enable_out_of_sync) |
| 1764 | return 0; |
| 1765 | |
| 1766 | spt->guest_page.write_cnt++; |
| 1767 | |
| 1768 | if (spt->guest_page.oos_page) |
| 1769 | ops->set_entry(spt->guest_page.oos_page->mem, &we, index, |
| 1770 | false, 0, vgpu); |
| 1771 | |
| 1772 | if (can_do_out_of_sync(spt)) { |
| 1773 | if (!spt->guest_page.oos_page) |
| 1774 | ppgtt_allocate_oos_page(spt); |
| 1775 | |
| 1776 | ret = ppgtt_set_guest_page_oos(spt); |
| 1777 | if (ret < 0) |
| 1778 | return ret; |
| 1779 | } |
| 1780 | return 0; |
| 1781 | } |
| 1782 | |
| 1783 | static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) |
| 1784 | { |
| 1785 | struct intel_vgpu *vgpu = mm->vgpu; |
| 1786 | struct intel_gvt *gvt = vgpu->gvt; |
| 1787 | struct intel_gvt_gtt *gtt = &gvt->gtt; |
| 1788 | struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; |
| 1789 | struct intel_gvt_gtt_entry se; |
| 1790 | int index; |
| 1791 | |
| 1792 | if (!mm->ppgtt_mm.shadowed) |
| 1793 | return; |
| 1794 | |
| 1795 | for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { |
| 1796 | ppgtt_get_shadow_root_entry(mm, &se, index); |
| 1797 | |
| 1798 | if (!ops->test_present(&se)) |
| 1799 | continue; |
| 1800 | |
| 1801 | ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); |
| 1802 | se.val64 = 0; |
| 1803 | ppgtt_set_shadow_root_entry(mm, &se, index); |
| 1804 | |
| 1805 | trace_spt_guest_change(vgpu->id, "destroy root pointer", |
| 1806 | NULL, se.type, se.val64, index); |
| 1807 | } |
| 1808 | |
| 1809 | mm->ppgtt_mm.shadowed = false; |
| 1810 | } |
| 1811 | |
| 1812 | |
| 1813 | static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) |
| 1814 | { |
| 1815 | struct intel_vgpu *vgpu = mm->vgpu; |
| 1816 | struct intel_gvt *gvt = vgpu->gvt; |
| 1817 | struct intel_gvt_gtt *gtt = &gvt->gtt; |
| 1818 | struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; |
| 1819 | struct intel_vgpu_ppgtt_spt *spt; |
| 1820 | struct intel_gvt_gtt_entry ge, se; |
| 1821 | int index, ret; |
| 1822 | |
| 1823 | if (mm->ppgtt_mm.shadowed) |
| 1824 | return 0; |
| 1825 | |
| 1826 | mm->ppgtt_mm.shadowed = true; |
| 1827 | |
| 1828 | for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { |
| 1829 | ppgtt_get_guest_root_entry(mm, &ge, index); |
| 1830 | |
| 1831 | if (!ops->test_present(&ge)) |
| 1832 | continue; |
| 1833 | |
| 1834 | trace_spt_guest_change(vgpu->id, __func__, NULL, |
| 1835 | ge.type, ge.val64, index); |
| 1836 | |
| 1837 | spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); |
| 1838 | if (IS_ERR(spt)) { |
| 1839 | gvt_vgpu_err("fail to populate guest root pointer\n"); |
| 1840 | ret = PTR_ERR(spt); |
| 1841 | goto fail; |
| 1842 | } |
| 1843 | ppgtt_generate_shadow_entry(&se, spt, &ge); |
| 1844 | ppgtt_set_shadow_root_entry(mm, &se, index); |
| 1845 | |
| 1846 | trace_spt_guest_change(vgpu->id, "populate root pointer", |
| 1847 | NULL, se.type, se.val64, index); |
| 1848 | } |
| 1849 | |
| 1850 | return 0; |
| 1851 | fail: |
| 1852 | invalidate_ppgtt_mm(mm); |
| 1853 | return ret; |
| 1854 | } |
| 1855 | |
| 1856 | static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) |
| 1857 | { |
| 1858 | struct intel_vgpu_mm *mm; |
| 1859 | |
| 1860 | mm = kzalloc(sizeof(*mm), GFP_KERNEL); |
| 1861 | if (!mm) |
| 1862 | return NULL; |
| 1863 | |
| 1864 | mm->vgpu = vgpu; |
| 1865 | kref_init(&mm->ref); |
| 1866 | atomic_set(&mm->pincount, 0); |
| 1867 | |
| 1868 | return mm; |
| 1869 | } |
| 1870 | |
| 1871 | static void vgpu_free_mm(struct intel_vgpu_mm *mm) |
| 1872 | { |
| 1873 | kfree(mm); |
| 1874 | } |
| 1875 | |
| 1876 | /** |
| 1877 | * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU |
| 1878 | * @vgpu: a vGPU |
| 1879 | * @root_entry_type: ppgtt root entry type |
| 1880 | * @pdps: guest pdps. |
| 1881 | * |
| 1882 | * This function is used to create a ppgtt mm object for a vGPU. |
| 1883 | * |
| 1884 | * Returns: |
| 1885 | * Zero on success, negative error code in pointer if failed. |
| 1886 | */ |
| 1887 | struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, |
| 1888 | enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) |
| 1889 | { |
| 1890 | struct intel_gvt *gvt = vgpu->gvt; |
| 1891 | struct intel_vgpu_mm *mm; |
| 1892 | int ret; |
| 1893 | |
| 1894 | mm = vgpu_alloc_mm(vgpu); |
| 1895 | if (!mm) |
| 1896 | return ERR_PTR(-ENOMEM); |
| 1897 | |
| 1898 | mm->type = INTEL_GVT_MM_PPGTT; |
| 1899 | |
| 1900 | GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && |
| 1901 | root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); |
| 1902 | mm->ppgtt_mm.root_entry_type = root_entry_type; |
| 1903 | |
| 1904 | INIT_LIST_HEAD(&mm->ppgtt_mm.list); |
| 1905 | INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); |
| 1906 | |
| 1907 | if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) |
| 1908 | mm->ppgtt_mm.guest_pdps[0] = pdps[0]; |
| 1909 | else |
| 1910 | memcpy(mm->ppgtt_mm.guest_pdps, pdps, |
| 1911 | sizeof(mm->ppgtt_mm.guest_pdps)); |
| 1912 | |
| 1913 | ret = shadow_ppgtt_mm(mm); |
| 1914 | if (ret) { |
| 1915 | gvt_vgpu_err("failed to shadow ppgtt mm\n"); |
| 1916 | vgpu_free_mm(mm); |
| 1917 | return ERR_PTR(ret); |
| 1918 | } |
| 1919 | |
| 1920 | list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); |
| 1921 | |
| 1922 | mutex_lock(&gvt->gtt.ppgtt_mm_lock); |
| 1923 | list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); |
| 1924 | mutex_unlock(&gvt->gtt.ppgtt_mm_lock); |
| 1925 | |
| 1926 | return mm; |
| 1927 | } |
| 1928 | |
| 1929 | static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) |
| 1930 | { |
| 1931 | struct intel_vgpu_mm *mm; |
| 1932 | unsigned long nr_entries; |
| 1933 | |
| 1934 | mm = vgpu_alloc_mm(vgpu); |
| 1935 | if (!mm) |
| 1936 | return ERR_PTR(-ENOMEM); |
| 1937 | |
| 1938 | mm->type = INTEL_GVT_MM_GGTT; |
| 1939 | |
| 1940 | nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; |
| 1941 | mm->ggtt_mm.virtual_ggtt = |
| 1942 | vzalloc(array_size(nr_entries, |
| 1943 | vgpu->gvt->device_info.gtt_entry_size)); |
| 1944 | if (!mm->ggtt_mm.virtual_ggtt) { |
| 1945 | vgpu_free_mm(mm); |
| 1946 | return ERR_PTR(-ENOMEM); |
| 1947 | } |
| 1948 | |
| 1949 | return mm; |
| 1950 | } |
| 1951 | |
| 1952 | /** |
| 1953 | * _intel_vgpu_mm_release - destroy a mm object |
| 1954 | * @mm_ref: a kref object |
| 1955 | * |
| 1956 | * This function is used to destroy a mm object for vGPU |
| 1957 | * |
| 1958 | */ |
| 1959 | void _intel_vgpu_mm_release(struct kref *mm_ref) |
| 1960 | { |
| 1961 | struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); |
| 1962 | |
| 1963 | if (GEM_WARN_ON(atomic_read(&mm->pincount))) |
| 1964 | gvt_err("vgpu mm pin count bug detected\n"); |
| 1965 | |
| 1966 | if (mm->type == INTEL_GVT_MM_PPGTT) { |
| 1967 | list_del(&mm->ppgtt_mm.list); |
| 1968 | |
| 1969 | mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); |
| 1970 | list_del(&mm->ppgtt_mm.lru_list); |
| 1971 | mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); |
| 1972 | |
| 1973 | invalidate_ppgtt_mm(mm); |
| 1974 | } else { |
| 1975 | vfree(mm->ggtt_mm.virtual_ggtt); |
| 1976 | } |
| 1977 | |
| 1978 | vgpu_free_mm(mm); |
| 1979 | } |
| 1980 | |
| 1981 | /** |
| 1982 | * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object |
| 1983 | * @mm: a vGPU mm object |
| 1984 | * |
| 1985 | * This function is called when user doesn't want to use a vGPU mm object |
| 1986 | */ |
| 1987 | void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) |
| 1988 | { |
| 1989 | atomic_dec_if_positive(&mm->pincount); |
| 1990 | } |
| 1991 | |
| 1992 | /** |
| 1993 | * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object |
| 1994 | * @mm: target vgpu mm |
| 1995 | * |
| 1996 | * This function is called when user wants to use a vGPU mm object. If this |
| 1997 | * mm object hasn't been shadowed yet, the shadow will be populated at this |
| 1998 | * time. |
| 1999 | * |
| 2000 | * Returns: |
| 2001 | * Zero on success, negative error code if failed. |
| 2002 | */ |
| 2003 | int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) |
| 2004 | { |
| 2005 | int ret; |
| 2006 | |
| 2007 | atomic_inc(&mm->pincount); |
| 2008 | |
| 2009 | if (mm->type == INTEL_GVT_MM_PPGTT) { |
| 2010 | ret = shadow_ppgtt_mm(mm); |
| 2011 | if (ret) |
| 2012 | return ret; |
| 2013 | |
| 2014 | mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); |
| 2015 | list_move_tail(&mm->ppgtt_mm.lru_list, |
| 2016 | &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); |
| 2017 | mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); |
| 2018 | } |
| 2019 | |
| 2020 | return 0; |
| 2021 | } |
| 2022 | |
| 2023 | static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) |
| 2024 | { |
| 2025 | struct intel_vgpu_mm *mm; |
| 2026 | struct list_head *pos, *n; |
| 2027 | |
| 2028 | mutex_lock(&gvt->gtt.ppgtt_mm_lock); |
| 2029 | |
| 2030 | list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { |
| 2031 | mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); |
| 2032 | |
| 2033 | if (atomic_read(&mm->pincount)) |
| 2034 | continue; |
| 2035 | |
| 2036 | list_del_init(&mm->ppgtt_mm.lru_list); |
| 2037 | mutex_unlock(&gvt->gtt.ppgtt_mm_lock); |
| 2038 | invalidate_ppgtt_mm(mm); |
| 2039 | return 1; |
| 2040 | } |
| 2041 | mutex_unlock(&gvt->gtt.ppgtt_mm_lock); |
| 2042 | return 0; |
| 2043 | } |
| 2044 | |
| 2045 | /* |
| 2046 | * GMA translation APIs. |
| 2047 | */ |
| 2048 | static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, |
| 2049 | struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) |
| 2050 | { |
| 2051 | struct intel_vgpu *vgpu = mm->vgpu; |
| 2052 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 2053 | struct intel_vgpu_ppgtt_spt *s; |
| 2054 | |
| 2055 | s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); |
| 2056 | if (!s) |
| 2057 | return -ENXIO; |
| 2058 | |
| 2059 | if (!guest) |
| 2060 | ppgtt_get_shadow_entry(s, e, index); |
| 2061 | else |
| 2062 | ppgtt_get_guest_entry(s, e, index); |
| 2063 | return 0; |
| 2064 | } |
| 2065 | |
| 2066 | /** |
| 2067 | * intel_vgpu_gma_to_gpa - translate a gma to GPA |
| 2068 | * @mm: mm object. could be a PPGTT or GGTT mm object |
| 2069 | * @gma: graphics memory address in this mm object |
| 2070 | * |
| 2071 | * This function is used to translate a graphics memory address in specific |
| 2072 | * graphics memory space to guest physical address. |
| 2073 | * |
| 2074 | * Returns: |
| 2075 | * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. |
| 2076 | */ |
| 2077 | unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) |
| 2078 | { |
| 2079 | struct intel_vgpu *vgpu = mm->vgpu; |
| 2080 | struct intel_gvt *gvt = vgpu->gvt; |
| 2081 | struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; |
| 2082 | struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; |
| 2083 | unsigned long gpa = INTEL_GVT_INVALID_ADDR; |
| 2084 | unsigned long gma_index[4]; |
| 2085 | struct intel_gvt_gtt_entry e; |
| 2086 | int i, levels = 0; |
| 2087 | int ret; |
| 2088 | |
| 2089 | GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && |
| 2090 | mm->type != INTEL_GVT_MM_PPGTT); |
| 2091 | |
| 2092 | if (mm->type == INTEL_GVT_MM_GGTT) { |
| 2093 | if (!vgpu_gmadr_is_valid(vgpu, gma)) |
| 2094 | goto err; |
| 2095 | |
| 2096 | ggtt_get_guest_entry(mm, &e, |
| 2097 | gma_ops->gma_to_ggtt_pte_index(gma)); |
| 2098 | |
| 2099 | gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) |
| 2100 | + (gma & ~I915_GTT_PAGE_MASK); |
| 2101 | |
| 2102 | trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); |
| 2103 | } else { |
| 2104 | switch (mm->ppgtt_mm.root_entry_type) { |
| 2105 | case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: |
| 2106 | ppgtt_get_shadow_root_entry(mm, &e, 0); |
| 2107 | |
| 2108 | gma_index[0] = gma_ops->gma_to_pml4_index(gma); |
| 2109 | gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); |
| 2110 | gma_index[2] = gma_ops->gma_to_pde_index(gma); |
| 2111 | gma_index[3] = gma_ops->gma_to_pte_index(gma); |
| 2112 | levels = 4; |
| 2113 | break; |
| 2114 | case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: |
| 2115 | ppgtt_get_shadow_root_entry(mm, &e, |
| 2116 | gma_ops->gma_to_l3_pdp_index(gma)); |
| 2117 | |
| 2118 | gma_index[0] = gma_ops->gma_to_pde_index(gma); |
| 2119 | gma_index[1] = gma_ops->gma_to_pte_index(gma); |
| 2120 | levels = 2; |
| 2121 | break; |
| 2122 | default: |
| 2123 | GEM_BUG_ON(1); |
| 2124 | } |
| 2125 | |
| 2126 | /* walk the shadow page table and get gpa from guest entry */ |
| 2127 | for (i = 0; i < levels; i++) { |
| 2128 | ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], |
| 2129 | (i == levels - 1)); |
| 2130 | if (ret) |
| 2131 | goto err; |
| 2132 | |
| 2133 | if (!pte_ops->test_present(&e)) { |
| 2134 | gvt_dbg_core("GMA 0x%lx is not present\n", gma); |
| 2135 | goto err; |
| 2136 | } |
| 2137 | } |
| 2138 | |
| 2139 | gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + |
| 2140 | (gma & ~I915_GTT_PAGE_MASK); |
| 2141 | trace_gma_translate(vgpu->id, "ppgtt", 0, |
| 2142 | mm->ppgtt_mm.root_entry_type, gma, gpa); |
| 2143 | } |
| 2144 | |
| 2145 | return gpa; |
| 2146 | err: |
| 2147 | gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); |
| 2148 | return INTEL_GVT_INVALID_ADDR; |
| 2149 | } |
| 2150 | |
| 2151 | static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, |
| 2152 | unsigned int off, void *p_data, unsigned int bytes) |
| 2153 | { |
| 2154 | struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; |
| 2155 | const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; |
| 2156 | unsigned long index = off >> info->gtt_entry_size_shift; |
| 2157 | unsigned long gma; |
| 2158 | struct intel_gvt_gtt_entry e; |
| 2159 | |
| 2160 | if (bytes != 4 && bytes != 8) |
| 2161 | return -EINVAL; |
| 2162 | |
| 2163 | gma = index << I915_GTT_PAGE_SHIFT; |
| 2164 | if (!intel_gvt_ggtt_validate_range(vgpu, |
| 2165 | gma, 1 << I915_GTT_PAGE_SHIFT)) { |
| 2166 | gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); |
| 2167 | memset(p_data, 0, bytes); |
| 2168 | return 0; |
| 2169 | } |
| 2170 | |
| 2171 | ggtt_get_guest_entry(ggtt_mm, &e, index); |
| 2172 | memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), |
| 2173 | bytes); |
| 2174 | return 0; |
| 2175 | } |
| 2176 | |
| 2177 | /** |
| 2178 | * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read |
| 2179 | * @vgpu: a vGPU |
| 2180 | * @off: register offset |
| 2181 | * @p_data: data will be returned to guest |
| 2182 | * @bytes: data length |
| 2183 | * |
| 2184 | * This function is used to emulate the GTT MMIO register read |
| 2185 | * |
| 2186 | * Returns: |
| 2187 | * Zero on success, error code if failed. |
| 2188 | */ |
| 2189 | int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, |
| 2190 | void *p_data, unsigned int bytes) |
| 2191 | { |
| 2192 | const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; |
| 2193 | int ret; |
| 2194 | |
| 2195 | if (bytes != 4 && bytes != 8) |
| 2196 | return -EINVAL; |
| 2197 | |
| 2198 | off -= info->gtt_start_offset; |
| 2199 | ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); |
| 2200 | return ret; |
| 2201 | } |
| 2202 | |
| 2203 | static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, |
| 2204 | struct intel_gvt_gtt_entry *entry) |
| 2205 | { |
| 2206 | struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; |
| 2207 | unsigned long pfn; |
| 2208 | |
| 2209 | pfn = pte_ops->get_pfn(entry); |
| 2210 | if (pfn != vgpu->gvt->gtt.scratch_mfn) |
| 2211 | intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, |
| 2212 | pfn << PAGE_SHIFT); |
| 2213 | } |
| 2214 | |
| 2215 | static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, |
| 2216 | void *p_data, unsigned int bytes) |
| 2217 | { |
| 2218 | struct intel_gvt *gvt = vgpu->gvt; |
| 2219 | const struct intel_gvt_device_info *info = &gvt->device_info; |
| 2220 | struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; |
| 2221 | struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; |
| 2222 | unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; |
| 2223 | unsigned long gma, gfn; |
| 2224 | struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; |
| 2225 | struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; |
| 2226 | dma_addr_t dma_addr; |
| 2227 | int ret; |
| 2228 | struct intel_gvt_partial_pte *partial_pte, *pos, *n; |
| 2229 | bool partial_update = false; |
| 2230 | |
| 2231 | if (bytes != 4 && bytes != 8) |
| 2232 | return -EINVAL; |
| 2233 | |
| 2234 | gma = g_gtt_index << I915_GTT_PAGE_SHIFT; |
| 2235 | |
| 2236 | /* the VM may configure the whole GM space when ballooning is used */ |
| 2237 | if (!vgpu_gmadr_is_valid(vgpu, gma)) |
| 2238 | return 0; |
| 2239 | |
| 2240 | e.type = GTT_TYPE_GGTT_PTE; |
| 2241 | memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, |
| 2242 | bytes); |
| 2243 | |
| 2244 | /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes |
| 2245 | * write, save the first 4 bytes in a list and update virtual |
| 2246 | * PTE. Only update shadow PTE when the second 4 bytes comes. |
| 2247 | */ |
| 2248 | if (bytes < info->gtt_entry_size) { |
| 2249 | bool found = false; |
| 2250 | |
| 2251 | list_for_each_entry_safe(pos, n, |
| 2252 | &ggtt_mm->ggtt_mm.partial_pte_list, list) { |
| 2253 | if (g_gtt_index == pos->offset >> |
| 2254 | info->gtt_entry_size_shift) { |
| 2255 | if (off != pos->offset) { |
| 2256 | /* the second partial part*/ |
| 2257 | int last_off = pos->offset & |
| 2258 | (info->gtt_entry_size - 1); |
| 2259 | |
| 2260 | memcpy((void *)&e.val64 + last_off, |
| 2261 | (void *)&pos->data + last_off, |
| 2262 | bytes); |
| 2263 | |
| 2264 | list_del(&pos->list); |
| 2265 | kfree(pos); |
| 2266 | found = true; |
| 2267 | break; |
| 2268 | } |
| 2269 | |
| 2270 | /* update of the first partial part */ |
| 2271 | pos->data = e.val64; |
| 2272 | ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); |
| 2273 | return 0; |
| 2274 | } |
| 2275 | } |
| 2276 | |
| 2277 | if (!found) { |
| 2278 | /* the first partial part */ |
| 2279 | partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); |
| 2280 | if (!partial_pte) |
| 2281 | return -ENOMEM; |
| 2282 | partial_pte->offset = off; |
| 2283 | partial_pte->data = e.val64; |
| 2284 | list_add_tail(&partial_pte->list, |
| 2285 | &ggtt_mm->ggtt_mm.partial_pte_list); |
| 2286 | partial_update = true; |
| 2287 | } |
| 2288 | } |
| 2289 | |
| 2290 | if (!partial_update && (ops->test_present(&e))) { |
| 2291 | gfn = ops->get_pfn(&e); |
| 2292 | m.val64 = e.val64; |
| 2293 | m.type = e.type; |
| 2294 | |
| 2295 | /* one PTE update may be issued in multiple writes and the |
| 2296 | * first write may not construct a valid gfn |
| 2297 | */ |
| 2298 | if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { |
| 2299 | ops->set_pfn(&m, gvt->gtt.scratch_mfn); |
| 2300 | goto out; |
| 2301 | } |
| 2302 | |
| 2303 | ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, |
| 2304 | PAGE_SIZE, &dma_addr); |
| 2305 | if (ret) { |
| 2306 | gvt_vgpu_err("fail to populate guest ggtt entry\n"); |
| 2307 | /* guest driver may read/write the entry when partial |
| 2308 | * update the entry in this situation p2m will fail |
| 2309 | * settting the shadow entry to point to a scratch page |
| 2310 | */ |
| 2311 | ops->set_pfn(&m, gvt->gtt.scratch_mfn); |
| 2312 | } else |
| 2313 | ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); |
| 2314 | } else { |
| 2315 | ops->set_pfn(&m, gvt->gtt.scratch_mfn); |
| 2316 | ops->clear_present(&m); |
| 2317 | } |
| 2318 | |
| 2319 | out: |
| 2320 | ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); |
| 2321 | |
| 2322 | ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); |
| 2323 | ggtt_invalidate_pte(vgpu, &e); |
| 2324 | |
| 2325 | ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); |
| 2326 | ggtt_invalidate(gvt->dev_priv); |
| 2327 | return 0; |
| 2328 | } |
| 2329 | |
| 2330 | /* |
| 2331 | * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write |
| 2332 | * @vgpu: a vGPU |
| 2333 | * @off: register offset |
| 2334 | * @p_data: data from guest write |
| 2335 | * @bytes: data length |
| 2336 | * |
| 2337 | * This function is used to emulate the GTT MMIO register write |
| 2338 | * |
| 2339 | * Returns: |
| 2340 | * Zero on success, error code if failed. |
| 2341 | */ |
| 2342 | int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, |
| 2343 | unsigned int off, void *p_data, unsigned int bytes) |
| 2344 | { |
| 2345 | const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; |
| 2346 | int ret; |
| 2347 | |
| 2348 | if (bytes != 4 && bytes != 8) |
| 2349 | return -EINVAL; |
| 2350 | |
| 2351 | off -= info->gtt_start_offset; |
| 2352 | ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); |
| 2353 | return ret; |
| 2354 | } |
| 2355 | |
| 2356 | static int alloc_scratch_pages(struct intel_vgpu *vgpu, |
| 2357 | enum intel_gvt_gtt_type type) |
| 2358 | { |
| 2359 | struct intel_vgpu_gtt *gtt = &vgpu->gtt; |
| 2360 | struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; |
| 2361 | int page_entry_num = I915_GTT_PAGE_SIZE >> |
| 2362 | vgpu->gvt->device_info.gtt_entry_size_shift; |
| 2363 | void *scratch_pt; |
| 2364 | int i; |
| 2365 | struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; |
| 2366 | dma_addr_t daddr; |
| 2367 | |
| 2368 | if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) |
| 2369 | return -EINVAL; |
| 2370 | |
| 2371 | scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); |
| 2372 | if (!scratch_pt) { |
| 2373 | gvt_vgpu_err("fail to allocate scratch page\n"); |
| 2374 | return -ENOMEM; |
| 2375 | } |
| 2376 | |
| 2377 | daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, |
| 2378 | 4096, PCI_DMA_BIDIRECTIONAL); |
| 2379 | if (dma_mapping_error(dev, daddr)) { |
| 2380 | gvt_vgpu_err("fail to dmamap scratch_pt\n"); |
| 2381 | __free_page(virt_to_page(scratch_pt)); |
| 2382 | return -ENOMEM; |
| 2383 | } |
| 2384 | gtt->scratch_pt[type].page_mfn = |
| 2385 | (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); |
| 2386 | gtt->scratch_pt[type].page = virt_to_page(scratch_pt); |
| 2387 | gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", |
| 2388 | vgpu->id, type, gtt->scratch_pt[type].page_mfn); |
| 2389 | |
| 2390 | /* Build the tree by full filled the scratch pt with the entries which |
| 2391 | * point to the next level scratch pt or scratch page. The |
| 2392 | * scratch_pt[type] indicate the scratch pt/scratch page used by the |
| 2393 | * 'type' pt. |
| 2394 | * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by |
| 2395 | * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self |
| 2396 | * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. |
| 2397 | */ |
| 2398 | if (type > GTT_TYPE_PPGTT_PTE_PT) { |
| 2399 | struct intel_gvt_gtt_entry se; |
| 2400 | |
| 2401 | memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); |
| 2402 | se.type = get_entry_type(type - 1); |
| 2403 | ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); |
| 2404 | |
| 2405 | /* The entry parameters like present/writeable/cache type |
| 2406 | * set to the same as i915's scratch page tree. |
| 2407 | */ |
| 2408 | se.val64 |= _PAGE_PRESENT | _PAGE_RW; |
| 2409 | if (type == GTT_TYPE_PPGTT_PDE_PT) |
| 2410 | se.val64 |= PPAT_CACHED; |
| 2411 | |
| 2412 | for (i = 0; i < page_entry_num; i++) |
| 2413 | ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); |
| 2414 | } |
| 2415 | |
| 2416 | return 0; |
| 2417 | } |
| 2418 | |
| 2419 | static int release_scratch_page_tree(struct intel_vgpu *vgpu) |
| 2420 | { |
| 2421 | int i; |
| 2422 | struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; |
| 2423 | dma_addr_t daddr; |
| 2424 | |
| 2425 | for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { |
| 2426 | if (vgpu->gtt.scratch_pt[i].page != NULL) { |
| 2427 | daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << |
| 2428 | I915_GTT_PAGE_SHIFT); |
| 2429 | dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); |
| 2430 | __free_page(vgpu->gtt.scratch_pt[i].page); |
| 2431 | vgpu->gtt.scratch_pt[i].page = NULL; |
| 2432 | vgpu->gtt.scratch_pt[i].page_mfn = 0; |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | return 0; |
| 2437 | } |
| 2438 | |
| 2439 | static int create_scratch_page_tree(struct intel_vgpu *vgpu) |
| 2440 | { |
| 2441 | int i, ret; |
| 2442 | |
| 2443 | for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { |
| 2444 | ret = alloc_scratch_pages(vgpu, i); |
| 2445 | if (ret) |
| 2446 | goto err; |
| 2447 | } |
| 2448 | |
| 2449 | return 0; |
| 2450 | |
| 2451 | err: |
| 2452 | release_scratch_page_tree(vgpu); |
| 2453 | return ret; |
| 2454 | } |
| 2455 | |
| 2456 | /** |
| 2457 | * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization |
| 2458 | * @vgpu: a vGPU |
| 2459 | * |
| 2460 | * This function is used to initialize per-vGPU graphics memory virtualization |
| 2461 | * components. |
| 2462 | * |
| 2463 | * Returns: |
| 2464 | * Zero on success, error code if failed. |
| 2465 | */ |
| 2466 | int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) |
| 2467 | { |
| 2468 | struct intel_vgpu_gtt *gtt = &vgpu->gtt; |
| 2469 | |
| 2470 | INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); |
| 2471 | |
| 2472 | INIT_LIST_HEAD(>t->ppgtt_mm_list_head); |
| 2473 | INIT_LIST_HEAD(>t->oos_page_list_head); |
| 2474 | INIT_LIST_HEAD(>t->post_shadow_list_head); |
| 2475 | |
| 2476 | gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); |
| 2477 | if (IS_ERR(gtt->ggtt_mm)) { |
| 2478 | gvt_vgpu_err("fail to create mm for ggtt.\n"); |
| 2479 | return PTR_ERR(gtt->ggtt_mm); |
| 2480 | } |
| 2481 | |
| 2482 | intel_vgpu_reset_ggtt(vgpu, false); |
| 2483 | |
| 2484 | INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); |
| 2485 | |
| 2486 | return create_scratch_page_tree(vgpu); |
| 2487 | } |
| 2488 | |
| 2489 | static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) |
| 2490 | { |
| 2491 | struct list_head *pos, *n; |
| 2492 | struct intel_vgpu_mm *mm; |
| 2493 | |
| 2494 | list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { |
| 2495 | mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); |
| 2496 | intel_vgpu_destroy_mm(mm); |
| 2497 | } |
| 2498 | |
| 2499 | if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) |
| 2500 | gvt_err("vgpu ppgtt mm is not fully destroyed\n"); |
| 2501 | |
| 2502 | if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { |
| 2503 | gvt_err("Why we still has spt not freed?\n"); |
| 2504 | ppgtt_free_all_spt(vgpu); |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) |
| 2509 | { |
| 2510 | struct intel_gvt_partial_pte *pos, *next; |
| 2511 | |
| 2512 | list_for_each_entry_safe(pos, next, |
| 2513 | &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, |
| 2514 | list) { |
| 2515 | gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", |
| 2516 | pos->offset, pos->data); |
| 2517 | kfree(pos); |
| 2518 | } |
| 2519 | intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); |
| 2520 | vgpu->gtt.ggtt_mm = NULL; |
| 2521 | } |
| 2522 | |
| 2523 | /** |
| 2524 | * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization |
| 2525 | * @vgpu: a vGPU |
| 2526 | * |
| 2527 | * This function is used to clean up per-vGPU graphics memory virtualization |
| 2528 | * components. |
| 2529 | * |
| 2530 | * Returns: |
| 2531 | * Zero on success, error code if failed. |
| 2532 | */ |
| 2533 | void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) |
| 2534 | { |
| 2535 | intel_vgpu_destroy_all_ppgtt_mm(vgpu); |
| 2536 | intel_vgpu_destroy_ggtt_mm(vgpu); |
| 2537 | release_scratch_page_tree(vgpu); |
| 2538 | } |
| 2539 | |
| 2540 | static void clean_spt_oos(struct intel_gvt *gvt) |
| 2541 | { |
| 2542 | struct intel_gvt_gtt *gtt = &gvt->gtt; |
| 2543 | struct list_head *pos, *n; |
| 2544 | struct intel_vgpu_oos_page *oos_page; |
| 2545 | |
| 2546 | WARN(!list_empty(>t->oos_page_use_list_head), |
| 2547 | "someone is still using oos page\n"); |
| 2548 | |
| 2549 | list_for_each_safe(pos, n, >t->oos_page_free_list_head) { |
| 2550 | oos_page = container_of(pos, struct intel_vgpu_oos_page, list); |
| 2551 | list_del(&oos_page->list); |
| 2552 | free_page((unsigned long)oos_page->mem); |
| 2553 | kfree(oos_page); |
| 2554 | } |
| 2555 | } |
| 2556 | |
| 2557 | static int setup_spt_oos(struct intel_gvt *gvt) |
| 2558 | { |
| 2559 | struct intel_gvt_gtt *gtt = &gvt->gtt; |
| 2560 | struct intel_vgpu_oos_page *oos_page; |
| 2561 | int i; |
| 2562 | int ret; |
| 2563 | |
| 2564 | INIT_LIST_HEAD(>t->oos_page_free_list_head); |
| 2565 | INIT_LIST_HEAD(>t->oos_page_use_list_head); |
| 2566 | |
| 2567 | for (i = 0; i < preallocated_oos_pages; i++) { |
| 2568 | oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); |
| 2569 | if (!oos_page) { |
| 2570 | ret = -ENOMEM; |
| 2571 | goto fail; |
| 2572 | } |
| 2573 | oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); |
| 2574 | if (!oos_page->mem) { |
| 2575 | ret = -ENOMEM; |
| 2576 | kfree(oos_page); |
| 2577 | goto fail; |
| 2578 | } |
| 2579 | |
| 2580 | INIT_LIST_HEAD(&oos_page->list); |
| 2581 | INIT_LIST_HEAD(&oos_page->vm_list); |
| 2582 | oos_page->id = i; |
| 2583 | list_add_tail(&oos_page->list, >t->oos_page_free_list_head); |
| 2584 | } |
| 2585 | |
| 2586 | gvt_dbg_mm("%d oos pages preallocated\n", i); |
| 2587 | |
| 2588 | return 0; |
| 2589 | fail: |
| 2590 | clean_spt_oos(gvt); |
| 2591 | return ret; |
| 2592 | } |
| 2593 | |
| 2594 | /** |
| 2595 | * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object |
| 2596 | * @vgpu: a vGPU |
| 2597 | * @pdps: pdp root array |
| 2598 | * |
| 2599 | * This function is used to find a PPGTT mm object from mm object pool |
| 2600 | * |
| 2601 | * Returns: |
| 2602 | * pointer to mm object on success, NULL if failed. |
| 2603 | */ |
| 2604 | struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, |
| 2605 | u64 pdps[]) |
| 2606 | { |
| 2607 | struct intel_vgpu_mm *mm; |
| 2608 | struct list_head *pos; |
| 2609 | |
| 2610 | list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { |
| 2611 | mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); |
| 2612 | |
| 2613 | switch (mm->ppgtt_mm.root_entry_type) { |
| 2614 | case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: |
| 2615 | if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) |
| 2616 | return mm; |
| 2617 | break; |
| 2618 | case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: |
| 2619 | if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, |
| 2620 | sizeof(mm->ppgtt_mm.guest_pdps))) |
| 2621 | return mm; |
| 2622 | break; |
| 2623 | default: |
| 2624 | GEM_BUG_ON(1); |
| 2625 | } |
| 2626 | } |
| 2627 | return NULL; |
| 2628 | } |
| 2629 | |
| 2630 | /** |
| 2631 | * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. |
| 2632 | * @vgpu: a vGPU |
| 2633 | * @root_entry_type: ppgtt root entry type |
| 2634 | * @pdps: guest pdps |
| 2635 | * |
| 2636 | * This function is used to find or create a PPGTT mm object from a guest. |
| 2637 | * |
| 2638 | * Returns: |
| 2639 | * Zero on success, negative error code if failed. |
| 2640 | */ |
| 2641 | struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, |
| 2642 | enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) |
| 2643 | { |
| 2644 | struct intel_vgpu_mm *mm; |
| 2645 | |
| 2646 | mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); |
| 2647 | if (mm) { |
| 2648 | intel_vgpu_mm_get(mm); |
| 2649 | } else { |
| 2650 | mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); |
| 2651 | if (IS_ERR(mm)) |
| 2652 | gvt_vgpu_err("fail to create mm\n"); |
| 2653 | } |
| 2654 | return mm; |
| 2655 | } |
| 2656 | |
| 2657 | /** |
| 2658 | * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. |
| 2659 | * @vgpu: a vGPU |
| 2660 | * @pdps: guest pdps |
| 2661 | * |
| 2662 | * This function is used to find a PPGTT mm object from a guest and destroy it. |
| 2663 | * |
| 2664 | * Returns: |
| 2665 | * Zero on success, negative error code if failed. |
| 2666 | */ |
| 2667 | int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) |
| 2668 | { |
| 2669 | struct intel_vgpu_mm *mm; |
| 2670 | |
| 2671 | mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); |
| 2672 | if (!mm) { |
| 2673 | gvt_vgpu_err("fail to find ppgtt instance.\n"); |
| 2674 | return -EINVAL; |
| 2675 | } |
| 2676 | intel_vgpu_mm_put(mm); |
| 2677 | return 0; |
| 2678 | } |
| 2679 | |
| 2680 | /** |
| 2681 | * intel_gvt_init_gtt - initialize mm components of a GVT device |
| 2682 | * @gvt: GVT device |
| 2683 | * |
| 2684 | * This function is called at the initialization stage, to initialize |
| 2685 | * the mm components of a GVT device. |
| 2686 | * |
| 2687 | * Returns: |
| 2688 | * zero on success, negative error code if failed. |
| 2689 | */ |
| 2690 | int intel_gvt_init_gtt(struct intel_gvt *gvt) |
| 2691 | { |
| 2692 | int ret; |
| 2693 | void *page; |
| 2694 | struct device *dev = &gvt->dev_priv->drm.pdev->dev; |
| 2695 | dma_addr_t daddr; |
| 2696 | |
| 2697 | gvt_dbg_core("init gtt\n"); |
| 2698 | |
| 2699 | gvt->gtt.pte_ops = &gen8_gtt_pte_ops; |
| 2700 | gvt->gtt.gma_ops = &gen8_gtt_gma_ops; |
| 2701 | |
| 2702 | page = (void *)get_zeroed_page(GFP_KERNEL); |
| 2703 | if (!page) { |
| 2704 | gvt_err("fail to allocate scratch ggtt page\n"); |
| 2705 | return -ENOMEM; |
| 2706 | } |
| 2707 | |
| 2708 | daddr = dma_map_page(dev, virt_to_page(page), 0, |
| 2709 | 4096, PCI_DMA_BIDIRECTIONAL); |
| 2710 | if (dma_mapping_error(dev, daddr)) { |
| 2711 | gvt_err("fail to dmamap scratch ggtt page\n"); |
| 2712 | __free_page(virt_to_page(page)); |
| 2713 | return -ENOMEM; |
| 2714 | } |
| 2715 | |
| 2716 | gvt->gtt.scratch_page = virt_to_page(page); |
| 2717 | gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); |
| 2718 | |
| 2719 | if (enable_out_of_sync) { |
| 2720 | ret = setup_spt_oos(gvt); |
| 2721 | if (ret) { |
| 2722 | gvt_err("fail to initialize SPT oos\n"); |
| 2723 | dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); |
| 2724 | __free_page(gvt->gtt.scratch_page); |
| 2725 | return ret; |
| 2726 | } |
| 2727 | } |
| 2728 | INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); |
| 2729 | mutex_init(&gvt->gtt.ppgtt_mm_lock); |
| 2730 | return 0; |
| 2731 | } |
| 2732 | |
| 2733 | /** |
| 2734 | * intel_gvt_clean_gtt - clean up mm components of a GVT device |
| 2735 | * @gvt: GVT device |
| 2736 | * |
| 2737 | * This function is called at the driver unloading stage, to clean up the |
| 2738 | * the mm components of a GVT device. |
| 2739 | * |
| 2740 | */ |
| 2741 | void intel_gvt_clean_gtt(struct intel_gvt *gvt) |
| 2742 | { |
| 2743 | struct device *dev = &gvt->dev_priv->drm.pdev->dev; |
| 2744 | dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << |
| 2745 | I915_GTT_PAGE_SHIFT); |
| 2746 | |
| 2747 | dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); |
| 2748 | |
| 2749 | __free_page(gvt->gtt.scratch_page); |
| 2750 | |
| 2751 | if (enable_out_of_sync) |
| 2752 | clean_spt_oos(gvt); |
| 2753 | } |
| 2754 | |
| 2755 | /** |
| 2756 | * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances |
| 2757 | * @vgpu: a vGPU |
| 2758 | * |
| 2759 | * This function is called when invalidate all PPGTT instances of a vGPU. |
| 2760 | * |
| 2761 | */ |
| 2762 | void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) |
| 2763 | { |
| 2764 | struct list_head *pos, *n; |
| 2765 | struct intel_vgpu_mm *mm; |
| 2766 | |
| 2767 | list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { |
| 2768 | mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); |
| 2769 | if (mm->type == INTEL_GVT_MM_PPGTT) { |
| 2770 | mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); |
| 2771 | list_del_init(&mm->ppgtt_mm.lru_list); |
| 2772 | mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); |
| 2773 | if (mm->ppgtt_mm.shadowed) |
| 2774 | invalidate_ppgtt_mm(mm); |
| 2775 | } |
| 2776 | } |
| 2777 | } |
| 2778 | |
| 2779 | /** |
| 2780 | * intel_vgpu_reset_ggtt - reset the GGTT entry |
| 2781 | * @vgpu: a vGPU |
| 2782 | * @invalidate_old: invalidate old entries |
| 2783 | * |
| 2784 | * This function is called at the vGPU create stage |
| 2785 | * to reset all the GGTT entries. |
| 2786 | * |
| 2787 | */ |
| 2788 | void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) |
| 2789 | { |
| 2790 | struct intel_gvt *gvt = vgpu->gvt; |
| 2791 | struct drm_i915_private *dev_priv = gvt->dev_priv; |
| 2792 | struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; |
| 2793 | struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; |
| 2794 | struct intel_gvt_gtt_entry old_entry; |
| 2795 | u32 index; |
| 2796 | u32 num_entries; |
| 2797 | |
| 2798 | pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); |
| 2799 | pte_ops->set_present(&entry); |
| 2800 | |
| 2801 | index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; |
| 2802 | num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; |
| 2803 | while (num_entries--) { |
| 2804 | if (invalidate_old) { |
| 2805 | ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); |
| 2806 | ggtt_invalidate_pte(vgpu, &old_entry); |
| 2807 | } |
| 2808 | ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); |
| 2809 | } |
| 2810 | |
| 2811 | index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; |
| 2812 | num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; |
| 2813 | while (num_entries--) { |
| 2814 | if (invalidate_old) { |
| 2815 | ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); |
| 2816 | ggtt_invalidate_pte(vgpu, &old_entry); |
| 2817 | } |
| 2818 | ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); |
| 2819 | } |
| 2820 | |
| 2821 | ggtt_invalidate(dev_priv); |
| 2822 | } |
| 2823 | |
| 2824 | /** |
| 2825 | * intel_vgpu_reset_gtt - reset the all GTT related status |
| 2826 | * @vgpu: a vGPU |
| 2827 | * |
| 2828 | * This function is called from vfio core to reset reset all |
| 2829 | * GTT related status, including GGTT, PPGTT, scratch page. |
| 2830 | * |
| 2831 | */ |
| 2832 | void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) |
| 2833 | { |
| 2834 | /* Shadow pages are only created when there is no page |
| 2835 | * table tracking data, so remove page tracking data after |
| 2836 | * removing the shadow pages. |
| 2837 | */ |
| 2838 | intel_vgpu_destroy_all_ppgtt_mm(vgpu); |
| 2839 | intel_vgpu_reset_ggtt(vgpu, true); |
| 2840 | } |