blob: a7913410003d85efa7cf4bc37051a6a43b25cf6a [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36#include "i915_drv.h"
37#include "gvt.h"
38#include "i915_pvinfo.h"
39#include "trace.h"
40
41#if defined(VERBOSE_DEBUG)
42#define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43#else
44#define gvt_vdbg_mm(fmt, args...)
45#endif
46
47static bool enable_out_of_sync = false;
48static int preallocated_oos_pages = 8192;
49
50/*
51 * validate a gm address and related range size,
52 * translate it to host gm address
53 */
54bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55{
56 if (size == 0)
57 return vgpu_gmadr_is_valid(vgpu, addr);
58
59 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61 return true;
62 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64 return true;
65
66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67 addr, size);
68 return false;
69}
70
71/* translate a guest gmadr to host gmadr */
72int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73{
74 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
75 "invalid guest gmadr %llx\n", g_addr))
76 return -EACCES;
77
78 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
79 *h_addr = vgpu_aperture_gmadr_base(vgpu)
80 + (g_addr - vgpu_aperture_offset(vgpu));
81 else
82 *h_addr = vgpu_hidden_gmadr_base(vgpu)
83 + (g_addr - vgpu_hidden_offset(vgpu));
84 return 0;
85}
86
87/* translate a host gmadr to guest gmadr */
88int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
89{
90 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
91 "invalid host gmadr %llx\n", h_addr))
92 return -EACCES;
93
94 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
95 *g_addr = vgpu_aperture_gmadr_base(vgpu)
96 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
97 else
98 *g_addr = vgpu_hidden_gmadr_base(vgpu)
99 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
100 return 0;
101}
102
103int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
104 unsigned long *h_index)
105{
106 u64 h_addr;
107 int ret;
108
109 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
110 &h_addr);
111 if (ret)
112 return ret;
113
114 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
115 return 0;
116}
117
118int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
119 unsigned long *g_index)
120{
121 u64 g_addr;
122 int ret;
123
124 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
125 &g_addr);
126 if (ret)
127 return ret;
128
129 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
130 return 0;
131}
132
133#define gtt_type_is_entry(type) \
134 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
135 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
136 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
137
138#define gtt_type_is_pt(type) \
139 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
140
141#define gtt_type_is_pte_pt(type) \
142 (type == GTT_TYPE_PPGTT_PTE_PT)
143
144#define gtt_type_is_root_pointer(type) \
145 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
146
147#define gtt_init_entry(e, t, p, v) do { \
148 (e)->type = t; \
149 (e)->pdev = p; \
150 memcpy(&(e)->val64, &v, sizeof(v)); \
151} while (0)
152
153/*
154 * Mappings between GTT_TYPE* enumerations.
155 * Following information can be found according to the given type:
156 * - type of next level page table
157 * - type of entry inside this level page table
158 * - type of entry with PSE set
159 *
160 * If the given type doesn't have such a kind of information,
161 * e.g. give a l4 root entry type, then request to get its PSE type,
162 * give a PTE page table type, then request to get its next level page
163 * table type, as we know l4 root entry doesn't have a PSE bit,
164 * and a PTE page table doesn't have a next level page table type,
165 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
166 * page table.
167 */
168
169struct gtt_type_table_entry {
170 int entry_type;
171 int pt_type;
172 int next_pt_type;
173 int pse_entry_type;
174};
175
176#define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
177 [type] = { \
178 .entry_type = e_type, \
179 .pt_type = cpt_type, \
180 .next_pt_type = npt_type, \
181 .pse_entry_type = pse_type, \
182 }
183
184static struct gtt_type_table_entry gtt_type_table[] = {
185 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
186 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
187 GTT_TYPE_INVALID,
188 GTT_TYPE_PPGTT_PML4_PT,
189 GTT_TYPE_INVALID),
190 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
191 GTT_TYPE_PPGTT_PML4_ENTRY,
192 GTT_TYPE_PPGTT_PML4_PT,
193 GTT_TYPE_PPGTT_PDP_PT,
194 GTT_TYPE_INVALID),
195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
196 GTT_TYPE_PPGTT_PML4_ENTRY,
197 GTT_TYPE_PPGTT_PML4_PT,
198 GTT_TYPE_PPGTT_PDP_PT,
199 GTT_TYPE_INVALID),
200 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
201 GTT_TYPE_PPGTT_PDP_ENTRY,
202 GTT_TYPE_PPGTT_PDP_PT,
203 GTT_TYPE_PPGTT_PDE_PT,
204 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
205 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
206 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
207 GTT_TYPE_INVALID,
208 GTT_TYPE_PPGTT_PDE_PT,
209 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
210 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
211 GTT_TYPE_PPGTT_PDP_ENTRY,
212 GTT_TYPE_PPGTT_PDP_PT,
213 GTT_TYPE_PPGTT_PDE_PT,
214 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
216 GTT_TYPE_PPGTT_PDE_ENTRY,
217 GTT_TYPE_PPGTT_PDE_PT,
218 GTT_TYPE_PPGTT_PTE_PT,
219 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
221 GTT_TYPE_PPGTT_PDE_ENTRY,
222 GTT_TYPE_PPGTT_PDE_PT,
223 GTT_TYPE_PPGTT_PTE_PT,
224 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
225 /* We take IPS bit as 'PSE' for PTE level. */
226 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
227 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
228 GTT_TYPE_PPGTT_PTE_PT,
229 GTT_TYPE_INVALID,
230 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
231 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
233 GTT_TYPE_PPGTT_PTE_PT,
234 GTT_TYPE_INVALID,
235 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
236 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
237 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238 GTT_TYPE_PPGTT_PTE_PT,
239 GTT_TYPE_INVALID,
240 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
241 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
242 GTT_TYPE_PPGTT_PDE_ENTRY,
243 GTT_TYPE_PPGTT_PDE_PT,
244 GTT_TYPE_INVALID,
245 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
246 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
247 GTT_TYPE_PPGTT_PDP_ENTRY,
248 GTT_TYPE_PPGTT_PDP_PT,
249 GTT_TYPE_INVALID,
250 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
251 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
252 GTT_TYPE_GGTT_PTE,
253 GTT_TYPE_INVALID,
254 GTT_TYPE_INVALID,
255 GTT_TYPE_INVALID),
256};
257
258static inline int get_next_pt_type(int type)
259{
260 return gtt_type_table[type].next_pt_type;
261}
262
263static inline int get_pt_type(int type)
264{
265 return gtt_type_table[type].pt_type;
266}
267
268static inline int get_entry_type(int type)
269{
270 return gtt_type_table[type].entry_type;
271}
272
273static inline int get_pse_type(int type)
274{
275 return gtt_type_table[type].pse_entry_type;
276}
277
278static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
279{
280 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
281
282 return readq(addr);
283}
284
285static void ggtt_invalidate(struct drm_i915_private *dev_priv)
286{
287 mmio_hw_access_pre(dev_priv);
288 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
289 mmio_hw_access_post(dev_priv);
290}
291
292static void write_pte64(struct drm_i915_private *dev_priv,
293 unsigned long index, u64 pte)
294{
295 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
296
297 writeq(pte, addr);
298}
299
300static inline int gtt_get_entry64(void *pt,
301 struct intel_gvt_gtt_entry *e,
302 unsigned long index, bool hypervisor_access, unsigned long gpa,
303 struct intel_vgpu *vgpu)
304{
305 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
306 int ret;
307
308 if (WARN_ON(info->gtt_entry_size != 8))
309 return -EINVAL;
310
311 if (hypervisor_access) {
312 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
313 (index << info->gtt_entry_size_shift),
314 &e->val64, 8);
315 if (WARN_ON(ret))
316 return ret;
317 } else if (!pt) {
318 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
319 } else {
320 e->val64 = *((u64 *)pt + index);
321 }
322 return 0;
323}
324
325static inline int gtt_set_entry64(void *pt,
326 struct intel_gvt_gtt_entry *e,
327 unsigned long index, bool hypervisor_access, unsigned long gpa,
328 struct intel_vgpu *vgpu)
329{
330 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
331 int ret;
332
333 if (WARN_ON(info->gtt_entry_size != 8))
334 return -EINVAL;
335
336 if (hypervisor_access) {
337 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
338 (index << info->gtt_entry_size_shift),
339 &e->val64, 8);
340 if (WARN_ON(ret))
341 return ret;
342 } else if (!pt) {
343 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
344 } else {
345 *((u64 *)pt + index) = e->val64;
346 }
347 return 0;
348}
349
350#define GTT_HAW 46
351
352#define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
353#define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
354#define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
355#define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
356
357#define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
358#define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
359
360#define GTT_64K_PTE_STRIDE 16
361
362static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
363{
364 unsigned long pfn;
365
366 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
367 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
368 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
369 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
370 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
371 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
372 else
373 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
374 return pfn;
375}
376
377static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
378{
379 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
380 e->val64 &= ~ADDR_1G_MASK;
381 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
382 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
383 e->val64 &= ~ADDR_2M_MASK;
384 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
385 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
386 e->val64 &= ~ADDR_64K_MASK;
387 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
388 } else {
389 e->val64 &= ~ADDR_4K_MASK;
390 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
391 }
392
393 e->val64 |= (pfn << PAGE_SHIFT);
394}
395
396static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
397{
398 return !!(e->val64 & _PAGE_PSE);
399}
400
401static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
402{
403 if (gen8_gtt_test_pse(e)) {
404 switch (e->type) {
405 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
406 e->val64 &= ~_PAGE_PSE;
407 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
408 break;
409 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
410 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
411 e->val64 &= ~_PAGE_PSE;
412 break;
413 default:
414 WARN_ON(1);
415 }
416 }
417}
418
419static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
420{
421 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
422 return false;
423
424 return !!(e->val64 & GEN8_PDE_IPS_64K);
425}
426
427static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
428{
429 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
430 return;
431
432 e->val64 &= ~GEN8_PDE_IPS_64K;
433}
434
435static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
436{
437 /*
438 * i915 writes PDP root pointer registers without present bit,
439 * it also works, so we need to treat root pointer entry
440 * specifically.
441 */
442 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
443 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
444 return (e->val64 != 0);
445 else
446 return (e->val64 & _PAGE_PRESENT);
447}
448
449static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
450{
451 e->val64 &= ~_PAGE_PRESENT;
452}
453
454static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
455{
456 e->val64 |= _PAGE_PRESENT;
457}
458
459static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
460{
461 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
462}
463
464static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
465{
466 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
467}
468
469static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
470{
471 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
472}
473
474/*
475 * Per-platform GMA routines.
476 */
477static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
478{
479 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
480
481 trace_gma_index(__func__, gma, x);
482 return x;
483}
484
485#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
486static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
487{ \
488 unsigned long x = (exp); \
489 trace_gma_index(__func__, gma, x); \
490 return x; \
491}
492
493DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
494DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
495DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
496DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
497DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
498
499static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
500 .get_entry = gtt_get_entry64,
501 .set_entry = gtt_set_entry64,
502 .clear_present = gtt_entry_clear_present,
503 .set_present = gtt_entry_set_present,
504 .test_present = gen8_gtt_test_present,
505 .test_pse = gen8_gtt_test_pse,
506 .clear_pse = gen8_gtt_clear_pse,
507 .clear_ips = gen8_gtt_clear_ips,
508 .test_ips = gen8_gtt_test_ips,
509 .clear_64k_splited = gen8_gtt_clear_64k_splited,
510 .set_64k_splited = gen8_gtt_set_64k_splited,
511 .test_64k_splited = gen8_gtt_test_64k_splited,
512 .get_pfn = gen8_gtt_get_pfn,
513 .set_pfn = gen8_gtt_set_pfn,
514};
515
516static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
517 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
518 .gma_to_pte_index = gen8_gma_to_pte_index,
519 .gma_to_pde_index = gen8_gma_to_pde_index,
520 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
521 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
522 .gma_to_pml4_index = gen8_gma_to_pml4_index,
523};
524
525/* Update entry type per pse and ips bit. */
526static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
527 struct intel_gvt_gtt_entry *entry, bool ips)
528{
529 switch (entry->type) {
530 case GTT_TYPE_PPGTT_PDE_ENTRY:
531 case GTT_TYPE_PPGTT_PDP_ENTRY:
532 if (pte_ops->test_pse(entry))
533 entry->type = get_pse_type(entry->type);
534 break;
535 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
536 if (ips)
537 entry->type = get_pse_type(entry->type);
538 break;
539 default:
540 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
541 }
542
543 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
544}
545
546/*
547 * MM helpers.
548 */
549static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
550 struct intel_gvt_gtt_entry *entry, unsigned long index,
551 bool guest)
552{
553 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
554
555 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
556
557 entry->type = mm->ppgtt_mm.root_entry_type;
558 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
559 mm->ppgtt_mm.shadow_pdps,
560 entry, index, false, 0, mm->vgpu);
561 update_entry_type_for_real(pte_ops, entry, false);
562}
563
564static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
565 struct intel_gvt_gtt_entry *entry, unsigned long index)
566{
567 _ppgtt_get_root_entry(mm, entry, index, true);
568}
569
570static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
571 struct intel_gvt_gtt_entry *entry, unsigned long index)
572{
573 _ppgtt_get_root_entry(mm, entry, index, false);
574}
575
576static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
577 struct intel_gvt_gtt_entry *entry, unsigned long index,
578 bool guest)
579{
580 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
581
582 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
583 mm->ppgtt_mm.shadow_pdps,
584 entry, index, false, 0, mm->vgpu);
585}
586
587static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
588 struct intel_gvt_gtt_entry *entry, unsigned long index)
589{
590 _ppgtt_set_root_entry(mm, entry, index, true);
591}
592
593static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
594 struct intel_gvt_gtt_entry *entry, unsigned long index)
595{
596 _ppgtt_set_root_entry(mm, entry, index, false);
597}
598
599static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
600 struct intel_gvt_gtt_entry *entry, unsigned long index)
601{
602 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
603
604 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
605
606 entry->type = GTT_TYPE_GGTT_PTE;
607 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
608 false, 0, mm->vgpu);
609}
610
611static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
612 struct intel_gvt_gtt_entry *entry, unsigned long index)
613{
614 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
615
616 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
617
618 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
619 false, 0, mm->vgpu);
620}
621
622static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
623 struct intel_gvt_gtt_entry *entry, unsigned long index)
624{
625 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
626
627 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
628
629 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
630}
631
632static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
633 struct intel_gvt_gtt_entry *entry, unsigned long index)
634{
635 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
636
637 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
638
639 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
640}
641
642/*
643 * PPGTT shadow page table helpers.
644 */
645static inline int ppgtt_spt_get_entry(
646 struct intel_vgpu_ppgtt_spt *spt,
647 void *page_table, int type,
648 struct intel_gvt_gtt_entry *e, unsigned long index,
649 bool guest)
650{
651 struct intel_gvt *gvt = spt->vgpu->gvt;
652 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
653 int ret;
654
655 e->type = get_entry_type(type);
656
657 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
658 return -EINVAL;
659
660 ret = ops->get_entry(page_table, e, index, guest,
661 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
662 spt->vgpu);
663 if (ret)
664 return ret;
665
666 update_entry_type_for_real(ops, e, guest ?
667 spt->guest_page.pde_ips : false);
668
669 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
670 type, e->type, index, e->val64);
671 return 0;
672}
673
674static inline int ppgtt_spt_set_entry(
675 struct intel_vgpu_ppgtt_spt *spt,
676 void *page_table, int type,
677 struct intel_gvt_gtt_entry *e, unsigned long index,
678 bool guest)
679{
680 struct intel_gvt *gvt = spt->vgpu->gvt;
681 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
682
683 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
684 return -EINVAL;
685
686 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
687 type, e->type, index, e->val64);
688
689 return ops->set_entry(page_table, e, index, guest,
690 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
691 spt->vgpu);
692}
693
694#define ppgtt_get_guest_entry(spt, e, index) \
695 ppgtt_spt_get_entry(spt, NULL, \
696 spt->guest_page.type, e, index, true)
697
698#define ppgtt_set_guest_entry(spt, e, index) \
699 ppgtt_spt_set_entry(spt, NULL, \
700 spt->guest_page.type, e, index, true)
701
702#define ppgtt_get_shadow_entry(spt, e, index) \
703 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
704 spt->shadow_page.type, e, index, false)
705
706#define ppgtt_set_shadow_entry(spt, e, index) \
707 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
708 spt->shadow_page.type, e, index, false)
709
710static void *alloc_spt(gfp_t gfp_mask)
711{
712 struct intel_vgpu_ppgtt_spt *spt;
713
714 spt = kzalloc(sizeof(*spt), gfp_mask);
715 if (!spt)
716 return NULL;
717
718 spt->shadow_page.page = alloc_page(gfp_mask);
719 if (!spt->shadow_page.page) {
720 kfree(spt);
721 return NULL;
722 }
723 return spt;
724}
725
726static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
727{
728 __free_page(spt->shadow_page.page);
729 kfree(spt);
730}
731
732static int detach_oos_page(struct intel_vgpu *vgpu,
733 struct intel_vgpu_oos_page *oos_page);
734
735static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
736{
737 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
738
739 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
740
741 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
742 PCI_DMA_BIDIRECTIONAL);
743
744 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
745
746 if (spt->guest_page.gfn) {
747 if (spt->guest_page.oos_page)
748 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
749
750 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
751 }
752
753 list_del_init(&spt->post_shadow_list);
754 free_spt(spt);
755}
756
757static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
758{
759 struct intel_vgpu_ppgtt_spt *spt, *spn;
760 struct radix_tree_iter iter;
761 LIST_HEAD(all_spt);
762 void __rcu **slot;
763
764 rcu_read_lock();
765 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
766 spt = radix_tree_deref_slot(slot);
767 list_move(&spt->post_shadow_list, &all_spt);
768 }
769 rcu_read_unlock();
770
771 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
772 ppgtt_free_spt(spt);
773}
774
775static int ppgtt_handle_guest_write_page_table_bytes(
776 struct intel_vgpu_ppgtt_spt *spt,
777 u64 pa, void *p_data, int bytes);
778
779static int ppgtt_write_protection_handler(
780 struct intel_vgpu_page_track *page_track,
781 u64 gpa, void *data, int bytes)
782{
783 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
784
785 int ret;
786
787 if (bytes != 4 && bytes != 8)
788 return -EINVAL;
789
790 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
791 if (ret)
792 return ret;
793 return ret;
794}
795
796/* Find a spt by guest gfn. */
797static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
798 struct intel_vgpu *vgpu, unsigned long gfn)
799{
800 struct intel_vgpu_page_track *track;
801
802 track = intel_vgpu_find_page_track(vgpu, gfn);
803 if (track && track->handler == ppgtt_write_protection_handler)
804 return track->priv_data;
805
806 return NULL;
807}
808
809/* Find the spt by shadow page mfn. */
810static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
811 struct intel_vgpu *vgpu, unsigned long mfn)
812{
813 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
814}
815
816static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
817
818/* Allocate shadow page table without guest page. */
819static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
820 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
821{
822 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
823 struct intel_vgpu_ppgtt_spt *spt = NULL;
824 dma_addr_t daddr;
825 int ret;
826
827retry:
828 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
829 if (!spt) {
830 if (reclaim_one_ppgtt_mm(vgpu->gvt))
831 goto retry;
832
833 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
834 return ERR_PTR(-ENOMEM);
835 }
836
837 spt->vgpu = vgpu;
838 atomic_set(&spt->refcount, 1);
839 INIT_LIST_HEAD(&spt->post_shadow_list);
840
841 /*
842 * Init shadow_page.
843 */
844 spt->shadow_page.type = type;
845 daddr = dma_map_page(kdev, spt->shadow_page.page,
846 0, 4096, PCI_DMA_BIDIRECTIONAL);
847 if (dma_mapping_error(kdev, daddr)) {
848 gvt_vgpu_err("fail to map dma addr\n");
849 ret = -EINVAL;
850 goto err_free_spt;
851 }
852 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
853 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
854
855 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
856 if (ret)
857 goto err_unmap_dma;
858
859 return spt;
860
861err_unmap_dma:
862 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
863err_free_spt:
864 free_spt(spt);
865 return ERR_PTR(ret);
866}
867
868/* Allocate shadow page table associated with specific gfn. */
869static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
870 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
871 unsigned long gfn, bool guest_pde_ips)
872{
873 struct intel_vgpu_ppgtt_spt *spt;
874 int ret;
875
876 spt = ppgtt_alloc_spt(vgpu, type);
877 if (IS_ERR(spt))
878 return spt;
879
880 /*
881 * Init guest_page.
882 */
883 ret = intel_vgpu_register_page_track(vgpu, gfn,
884 ppgtt_write_protection_handler, spt);
885 if (ret) {
886 ppgtt_free_spt(spt);
887 return ERR_PTR(ret);
888 }
889
890 spt->guest_page.type = type;
891 spt->guest_page.gfn = gfn;
892 spt->guest_page.pde_ips = guest_pde_ips;
893
894 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
895
896 return spt;
897}
898
899#define pt_entry_size_shift(spt) \
900 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
901
902#define pt_entries(spt) \
903 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
904
905#define for_each_present_guest_entry(spt, e, i) \
906 for (i = 0; i < pt_entries(spt); \
907 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
908 if (!ppgtt_get_guest_entry(spt, e, i) && \
909 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
910
911#define for_each_present_shadow_entry(spt, e, i) \
912 for (i = 0; i < pt_entries(spt); \
913 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
914 if (!ppgtt_get_shadow_entry(spt, e, i) && \
915 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
916
917#define for_each_shadow_entry(spt, e, i) \
918 for (i = 0; i < pt_entries(spt); \
919 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
920 if (!ppgtt_get_shadow_entry(spt, e, i))
921
922static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
923{
924 int v = atomic_read(&spt->refcount);
925
926 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
927 atomic_inc(&spt->refcount);
928}
929
930static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
931{
932 int v = atomic_read(&spt->refcount);
933
934 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
935 return atomic_dec_return(&spt->refcount);
936}
937
938static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
939
940static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
941 struct intel_gvt_gtt_entry *e)
942{
943 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
944 struct intel_vgpu_ppgtt_spt *s;
945 enum intel_gvt_gtt_type cur_pt_type;
946
947 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
948
949 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
950 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
951 cur_pt_type = get_next_pt_type(e->type);
952
953 if (!gtt_type_is_pt(cur_pt_type) ||
954 !gtt_type_is_pt(cur_pt_type + 1)) {
955 WARN(1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type);
956 return -EINVAL;
957 }
958
959 cur_pt_type += 1;
960
961 if (ops->get_pfn(e) ==
962 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
963 return 0;
964 }
965 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
966 if (!s) {
967 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
968 ops->get_pfn(e));
969 return -ENXIO;
970 }
971 return ppgtt_invalidate_spt(s);
972}
973
974static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
975 struct intel_gvt_gtt_entry *entry)
976{
977 struct intel_vgpu *vgpu = spt->vgpu;
978 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
979 unsigned long pfn;
980 int type;
981
982 pfn = ops->get_pfn(entry);
983 type = spt->shadow_page.type;
984
985 /* Uninitialized spte or unshadowed spte. */
986 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
987 return;
988
989 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
990}
991
992static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
993{
994 struct intel_vgpu *vgpu = spt->vgpu;
995 struct intel_gvt_gtt_entry e;
996 unsigned long index;
997 int ret;
998
999 trace_spt_change(spt->vgpu->id, "die", spt,
1000 spt->guest_page.gfn, spt->shadow_page.type);
1001
1002 if (ppgtt_put_spt(spt) > 0)
1003 return 0;
1004
1005 for_each_present_shadow_entry(spt, &e, index) {
1006 switch (e.type) {
1007 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1008 gvt_vdbg_mm("invalidate 4K entry\n");
1009 ppgtt_invalidate_pte(spt, &e);
1010 break;
1011 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1012 /* We don't setup 64K shadow entry so far. */
1013 WARN(1, "suspicious 64K gtt entry\n");
1014 continue;
1015 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1016 gvt_vdbg_mm("invalidate 2M entry\n");
1017 continue;
1018 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1019 WARN(1, "GVT doesn't support 1GB page\n");
1020 continue;
1021 case GTT_TYPE_PPGTT_PML4_ENTRY:
1022 case GTT_TYPE_PPGTT_PDP_ENTRY:
1023 case GTT_TYPE_PPGTT_PDE_ENTRY:
1024 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1025 ret = ppgtt_invalidate_spt_by_shadow_entry(
1026 spt->vgpu, &e);
1027 if (ret)
1028 goto fail;
1029 break;
1030 default:
1031 GEM_BUG_ON(1);
1032 }
1033 }
1034
1035 trace_spt_change(spt->vgpu->id, "release", spt,
1036 spt->guest_page.gfn, spt->shadow_page.type);
1037 ppgtt_free_spt(spt);
1038 return 0;
1039fail:
1040 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1041 spt, e.val64, e.type);
1042 return ret;
1043}
1044
1045static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1046{
1047 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1048
1049 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1050 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1051 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1052
1053 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1054 } else if (INTEL_GEN(dev_priv) >= 11) {
1055 /* 64K paging only controlled by IPS bit in PTE now. */
1056 return true;
1057 } else
1058 return false;
1059}
1060
1061static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1062
1063static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1064 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1065{
1066 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1067 struct intel_vgpu_ppgtt_spt *spt = NULL;
1068 bool ips = false;
1069 int ret;
1070
1071 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1072
1073 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1074 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1075
1076 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1077 if (spt) {
1078 ppgtt_get_spt(spt);
1079
1080 if (ips != spt->guest_page.pde_ips) {
1081 spt->guest_page.pde_ips = ips;
1082
1083 gvt_dbg_mm("reshadow PDE since ips changed\n");
1084 clear_page(spt->shadow_page.vaddr);
1085 ret = ppgtt_populate_spt(spt);
1086 if (ret) {
1087 ppgtt_put_spt(spt);
1088 goto err;
1089 }
1090 }
1091 } else {
1092 int type = get_next_pt_type(we->type);
1093
1094 if (!gtt_type_is_pt(type)) {
1095 ret = -EINVAL;
1096 goto err;
1097 }
1098
1099 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1100 if (IS_ERR(spt)) {
1101 ret = PTR_ERR(spt);
1102 goto err;
1103 }
1104
1105 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1106 if (ret)
1107 goto err_free_spt;
1108
1109 ret = ppgtt_populate_spt(spt);
1110 if (ret)
1111 goto err_free_spt;
1112
1113 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1114 spt->shadow_page.type);
1115 }
1116 return spt;
1117
1118err_free_spt:
1119 ppgtt_free_spt(spt);
1120 spt = NULL;
1121err:
1122 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1123 spt, we->val64, we->type);
1124 return ERR_PTR(ret);
1125}
1126
1127static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1128 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1129{
1130 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1131
1132 se->type = ge->type;
1133 se->val64 = ge->val64;
1134
1135 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1136 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1137 ops->clear_ips(se);
1138
1139 ops->set_pfn(se, s->shadow_page.mfn);
1140}
1141
1142/**
1143 * Check if can do 2M page
1144 * @vgpu: target vgpu
1145 * @entry: target pfn's gtt entry
1146 *
1147 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1148 * negtive if found err.
1149 */
1150static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1151 struct intel_gvt_gtt_entry *entry)
1152{
1153 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1154 unsigned long pfn;
1155
1156 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1157 return 0;
1158
1159 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1160 if (pfn == INTEL_GVT_INVALID_ADDR)
1161 return -EINVAL;
1162
1163 return PageTransHuge(pfn_to_page(pfn));
1164}
1165
1166static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1167 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1168 struct intel_gvt_gtt_entry *se)
1169{
1170 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1171 struct intel_vgpu_ppgtt_spt *sub_spt;
1172 struct intel_gvt_gtt_entry sub_se;
1173 unsigned long start_gfn;
1174 dma_addr_t dma_addr;
1175 unsigned long sub_index;
1176 int ret;
1177
1178 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1179
1180 start_gfn = ops->get_pfn(se);
1181
1182 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1183 if (IS_ERR(sub_spt))
1184 return PTR_ERR(sub_spt);
1185
1186 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1187 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1188 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1189 if (ret)
1190 goto err;
1191 sub_se.val64 = se->val64;
1192
1193 /* Copy the PAT field from PDE. */
1194 sub_se.val64 &= ~_PAGE_PAT;
1195 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1196
1197 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1198 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1199 }
1200
1201 /* Clear dirty field. */
1202 se->val64 &= ~_PAGE_DIRTY;
1203
1204 ops->clear_pse(se);
1205 ops->clear_ips(se);
1206 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1207 ppgtt_set_shadow_entry(spt, se, index);
1208 return 0;
1209err:
1210 /* Cancel the existing addess mappings of DMA addr. */
1211 for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1212 gvt_vdbg_mm("invalidate 4K entry\n");
1213 ppgtt_invalidate_pte(sub_spt, &sub_se);
1214 }
1215 /* Release the new allocated spt. */
1216 trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
1217 sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
1218 ppgtt_free_spt(sub_spt);
1219 return ret;
1220}
1221
1222static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1223 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1224 struct intel_gvt_gtt_entry *se)
1225{
1226 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1227 struct intel_gvt_gtt_entry entry = *se;
1228 unsigned long start_gfn;
1229 dma_addr_t dma_addr;
1230 int i, ret;
1231
1232 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1233
1234 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1235
1236 start_gfn = ops->get_pfn(se);
1237
1238 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1239 ops->set_64k_splited(&entry);
1240
1241 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1242 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1243 start_gfn + i, PAGE_SIZE, &dma_addr);
1244 if (ret)
1245 return ret;
1246
1247 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1248 ppgtt_set_shadow_entry(spt, &entry, index + i);
1249 }
1250 return 0;
1251}
1252
1253static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1254 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1255 struct intel_gvt_gtt_entry *ge)
1256{
1257 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1258 struct intel_gvt_gtt_entry se = *ge;
1259 unsigned long gfn, page_size = PAGE_SIZE;
1260 dma_addr_t dma_addr;
1261 int ret;
1262
1263 if (!pte_ops->test_present(ge))
1264 return 0;
1265
1266 gfn = pte_ops->get_pfn(ge);
1267
1268 switch (ge->type) {
1269 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1270 gvt_vdbg_mm("shadow 4K gtt entry\n");
1271 break;
1272 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1273 gvt_vdbg_mm("shadow 64K gtt entry\n");
1274 /*
1275 * The layout of 64K page is special, the page size is
1276 * controlled by uper PDE. To be simple, we always split
1277 * 64K page to smaller 4K pages in shadow PT.
1278 */
1279 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1280 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1281 gvt_vdbg_mm("shadow 2M gtt entry\n");
1282 ret = is_2MB_gtt_possible(vgpu, ge);
1283 if (ret == 0)
1284 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1285 else if (ret < 0)
1286 return ret;
1287 page_size = I915_GTT_PAGE_SIZE_2M;
1288 break;
1289 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1290 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1291 return -EINVAL;
1292 default:
1293 GEM_BUG_ON(1);
1294 };
1295
1296 /* direct shadow */
1297 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1298 &dma_addr);
1299 if (ret)
1300 return -ENXIO;
1301
1302 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1303 ppgtt_set_shadow_entry(spt, &se, index);
1304 return 0;
1305}
1306
1307static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1308{
1309 struct intel_vgpu *vgpu = spt->vgpu;
1310 struct intel_gvt *gvt = vgpu->gvt;
1311 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1312 struct intel_vgpu_ppgtt_spt *s;
1313 struct intel_gvt_gtt_entry se, ge;
1314 unsigned long gfn, i;
1315 int ret;
1316
1317 trace_spt_change(spt->vgpu->id, "born", spt,
1318 spt->guest_page.gfn, spt->shadow_page.type);
1319
1320 for_each_present_guest_entry(spt, &ge, i) {
1321 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1322 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1323 if (IS_ERR(s)) {
1324 ret = PTR_ERR(s);
1325 goto fail;
1326 }
1327 ppgtt_get_shadow_entry(spt, &se, i);
1328 ppgtt_generate_shadow_entry(&se, s, &ge);
1329 ppgtt_set_shadow_entry(spt, &se, i);
1330 } else {
1331 gfn = ops->get_pfn(&ge);
1332 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1333 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1334 ppgtt_set_shadow_entry(spt, &se, i);
1335 continue;
1336 }
1337
1338 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1339 if (ret)
1340 goto fail;
1341 }
1342 }
1343 return 0;
1344fail:
1345 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1346 spt, ge.val64, ge.type);
1347 return ret;
1348}
1349
1350static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1351 struct intel_gvt_gtt_entry *se, unsigned long index)
1352{
1353 struct intel_vgpu *vgpu = spt->vgpu;
1354 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1355 int ret;
1356
1357 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1358 spt->shadow_page.type, se->val64, index);
1359
1360 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1361 se->type, index, se->val64);
1362
1363 if (!ops->test_present(se))
1364 return 0;
1365
1366 if (ops->get_pfn(se) ==
1367 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1368 return 0;
1369
1370 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1371 struct intel_vgpu_ppgtt_spt *s =
1372 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1373 if (!s) {
1374 gvt_vgpu_err("fail to find guest page\n");
1375 ret = -ENXIO;
1376 goto fail;
1377 }
1378 ret = ppgtt_invalidate_spt(s);
1379 if (ret)
1380 goto fail;
1381 } else {
1382 /* We don't setup 64K shadow entry so far. */
1383 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1384 "suspicious 64K entry\n");
1385 ppgtt_invalidate_pte(spt, se);
1386 }
1387
1388 return 0;
1389fail:
1390 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1391 spt, se->val64, se->type);
1392 return ret;
1393}
1394
1395static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1396 struct intel_gvt_gtt_entry *we, unsigned long index)
1397{
1398 struct intel_vgpu *vgpu = spt->vgpu;
1399 struct intel_gvt_gtt_entry m;
1400 struct intel_vgpu_ppgtt_spt *s;
1401 int ret;
1402
1403 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1404 we->val64, index);
1405
1406 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1407 we->type, index, we->val64);
1408
1409 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1410 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1411 if (IS_ERR(s)) {
1412 ret = PTR_ERR(s);
1413 goto fail;
1414 }
1415 ppgtt_get_shadow_entry(spt, &m, index);
1416 ppgtt_generate_shadow_entry(&m, s, we);
1417 ppgtt_set_shadow_entry(spt, &m, index);
1418 } else {
1419 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1420 if (ret)
1421 goto fail;
1422 }
1423 return 0;
1424fail:
1425 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1426 spt, we->val64, we->type);
1427 return ret;
1428}
1429
1430static int sync_oos_page(struct intel_vgpu *vgpu,
1431 struct intel_vgpu_oos_page *oos_page)
1432{
1433 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1434 struct intel_gvt *gvt = vgpu->gvt;
1435 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1436 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1437 struct intel_gvt_gtt_entry old, new;
1438 int index;
1439 int ret;
1440
1441 trace_oos_change(vgpu->id, "sync", oos_page->id,
1442 spt, spt->guest_page.type);
1443
1444 old.type = new.type = get_entry_type(spt->guest_page.type);
1445 old.val64 = new.val64 = 0;
1446
1447 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1448 info->gtt_entry_size_shift); index++) {
1449 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1450 ops->get_entry(NULL, &new, index, true,
1451 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1452
1453 if (old.val64 == new.val64
1454 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1455 continue;
1456
1457 trace_oos_sync(vgpu->id, oos_page->id,
1458 spt, spt->guest_page.type,
1459 new.val64, index);
1460
1461 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1462 if (ret)
1463 return ret;
1464
1465 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1466 }
1467
1468 spt->guest_page.write_cnt = 0;
1469 list_del_init(&spt->post_shadow_list);
1470 return 0;
1471}
1472
1473static int detach_oos_page(struct intel_vgpu *vgpu,
1474 struct intel_vgpu_oos_page *oos_page)
1475{
1476 struct intel_gvt *gvt = vgpu->gvt;
1477 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1478
1479 trace_oos_change(vgpu->id, "detach", oos_page->id,
1480 spt, spt->guest_page.type);
1481
1482 spt->guest_page.write_cnt = 0;
1483 spt->guest_page.oos_page = NULL;
1484 oos_page->spt = NULL;
1485
1486 list_del_init(&oos_page->vm_list);
1487 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1488
1489 return 0;
1490}
1491
1492static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1493 struct intel_vgpu_ppgtt_spt *spt)
1494{
1495 struct intel_gvt *gvt = spt->vgpu->gvt;
1496 int ret;
1497
1498 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1499 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1500 oos_page->mem, I915_GTT_PAGE_SIZE);
1501 if (ret)
1502 return ret;
1503
1504 oos_page->spt = spt;
1505 spt->guest_page.oos_page = oos_page;
1506
1507 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1508
1509 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1510 spt, spt->guest_page.type);
1511 return 0;
1512}
1513
1514static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1515{
1516 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1517 int ret;
1518
1519 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1520 if (ret)
1521 return ret;
1522
1523 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1524 spt, spt->guest_page.type);
1525
1526 list_del_init(&oos_page->vm_list);
1527 return sync_oos_page(spt->vgpu, oos_page);
1528}
1529
1530static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1531{
1532 struct intel_gvt *gvt = spt->vgpu->gvt;
1533 struct intel_gvt_gtt *gtt = &gvt->gtt;
1534 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1535 int ret;
1536
1537 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1538
1539 if (list_empty(&gtt->oos_page_free_list_head)) {
1540 oos_page = container_of(gtt->oos_page_use_list_head.next,
1541 struct intel_vgpu_oos_page, list);
1542 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1543 if (ret)
1544 return ret;
1545 ret = detach_oos_page(spt->vgpu, oos_page);
1546 if (ret)
1547 return ret;
1548 } else
1549 oos_page = container_of(gtt->oos_page_free_list_head.next,
1550 struct intel_vgpu_oos_page, list);
1551 return attach_oos_page(oos_page, spt);
1552}
1553
1554static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1555{
1556 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1557
1558 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1559 return -EINVAL;
1560
1561 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1562 spt, spt->guest_page.type);
1563
1564 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1565 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1566}
1567
1568/**
1569 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1570 * @vgpu: a vGPU
1571 *
1572 * This function is called before submitting a guest workload to host,
1573 * to sync all the out-of-synced shadow for vGPU
1574 *
1575 * Returns:
1576 * Zero on success, negative error code if failed.
1577 */
1578int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1579{
1580 struct list_head *pos, *n;
1581 struct intel_vgpu_oos_page *oos_page;
1582 int ret;
1583
1584 if (!enable_out_of_sync)
1585 return 0;
1586
1587 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1588 oos_page = container_of(pos,
1589 struct intel_vgpu_oos_page, vm_list);
1590 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1591 if (ret)
1592 return ret;
1593 }
1594 return 0;
1595}
1596
1597/*
1598 * The heart of PPGTT shadow page table.
1599 */
1600static int ppgtt_handle_guest_write_page_table(
1601 struct intel_vgpu_ppgtt_spt *spt,
1602 struct intel_gvt_gtt_entry *we, unsigned long index)
1603{
1604 struct intel_vgpu *vgpu = spt->vgpu;
1605 int type = spt->shadow_page.type;
1606 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1607 struct intel_gvt_gtt_entry old_se;
1608 int new_present;
1609 int i, ret;
1610
1611 new_present = ops->test_present(we);
1612
1613 /*
1614 * Adding the new entry first and then removing the old one, that can
1615 * guarantee the ppgtt table is validated during the window between
1616 * adding and removal.
1617 */
1618 ppgtt_get_shadow_entry(spt, &old_se, index);
1619
1620 if (new_present) {
1621 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1622 if (ret)
1623 goto fail;
1624 }
1625
1626 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1627 if (ret)
1628 goto fail;
1629
1630 if (!new_present) {
1631 /* For 64KB splited entries, we need clear them all. */
1632 if (ops->test_64k_splited(&old_se) &&
1633 !(index % GTT_64K_PTE_STRIDE)) {
1634 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1635 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1636 ops->clear_64k_splited(&old_se);
1637 ops->set_pfn(&old_se,
1638 vgpu->gtt.scratch_pt[type].page_mfn);
1639 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1640 }
1641 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1642 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1643 ops->clear_pse(&old_se);
1644 ops->set_pfn(&old_se,
1645 vgpu->gtt.scratch_pt[type].page_mfn);
1646 ppgtt_set_shadow_entry(spt, &old_se, index);
1647 } else {
1648 ops->set_pfn(&old_se,
1649 vgpu->gtt.scratch_pt[type].page_mfn);
1650 ppgtt_set_shadow_entry(spt, &old_se, index);
1651 }
1652 }
1653
1654 return 0;
1655fail:
1656 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1657 spt, we->val64, we->type);
1658 return ret;
1659}
1660
1661
1662
1663static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1664{
1665 return enable_out_of_sync
1666 && gtt_type_is_pte_pt(spt->guest_page.type)
1667 && spt->guest_page.write_cnt >= 2;
1668}
1669
1670static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1671 unsigned long index)
1672{
1673 set_bit(index, spt->post_shadow_bitmap);
1674 if (!list_empty(&spt->post_shadow_list))
1675 return;
1676
1677 list_add_tail(&spt->post_shadow_list,
1678 &spt->vgpu->gtt.post_shadow_list_head);
1679}
1680
1681/**
1682 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1683 * @vgpu: a vGPU
1684 *
1685 * This function is called before submitting a guest workload to host,
1686 * to flush all the post shadows for a vGPU.
1687 *
1688 * Returns:
1689 * Zero on success, negative error code if failed.
1690 */
1691int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1692{
1693 struct list_head *pos, *n;
1694 struct intel_vgpu_ppgtt_spt *spt;
1695 struct intel_gvt_gtt_entry ge;
1696 unsigned long index;
1697 int ret;
1698
1699 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1700 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1701 post_shadow_list);
1702
1703 for_each_set_bit(index, spt->post_shadow_bitmap,
1704 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1705 ppgtt_get_guest_entry(spt, &ge, index);
1706
1707 ret = ppgtt_handle_guest_write_page_table(spt,
1708 &ge, index);
1709 if (ret)
1710 return ret;
1711 clear_bit(index, spt->post_shadow_bitmap);
1712 }
1713 list_del_init(&spt->post_shadow_list);
1714 }
1715 return 0;
1716}
1717
1718static int ppgtt_handle_guest_write_page_table_bytes(
1719 struct intel_vgpu_ppgtt_spt *spt,
1720 u64 pa, void *p_data, int bytes)
1721{
1722 struct intel_vgpu *vgpu = spt->vgpu;
1723 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1724 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1725 struct intel_gvt_gtt_entry we, se;
1726 unsigned long index;
1727 int ret;
1728
1729 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1730
1731 ppgtt_get_guest_entry(spt, &we, index);
1732
1733 /*
1734 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1735 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1736 * ignored.
1737 */
1738 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1739 (index % GTT_64K_PTE_STRIDE)) {
1740 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1741 index);
1742 return 0;
1743 }
1744
1745 if (bytes == info->gtt_entry_size) {
1746 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1747 if (ret)
1748 return ret;
1749 } else {
1750 if (!test_bit(index, spt->post_shadow_bitmap)) {
1751 int type = spt->shadow_page.type;
1752
1753 ppgtt_get_shadow_entry(spt, &se, index);
1754 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1755 if (ret)
1756 return ret;
1757 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1758 ppgtt_set_shadow_entry(spt, &se, index);
1759 }
1760 ppgtt_set_post_shadow(spt, index);
1761 }
1762
1763 if (!enable_out_of_sync)
1764 return 0;
1765
1766 spt->guest_page.write_cnt++;
1767
1768 if (spt->guest_page.oos_page)
1769 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1770 false, 0, vgpu);
1771
1772 if (can_do_out_of_sync(spt)) {
1773 if (!spt->guest_page.oos_page)
1774 ppgtt_allocate_oos_page(spt);
1775
1776 ret = ppgtt_set_guest_page_oos(spt);
1777 if (ret < 0)
1778 return ret;
1779 }
1780 return 0;
1781}
1782
1783static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1784{
1785 struct intel_vgpu *vgpu = mm->vgpu;
1786 struct intel_gvt *gvt = vgpu->gvt;
1787 struct intel_gvt_gtt *gtt = &gvt->gtt;
1788 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789 struct intel_gvt_gtt_entry se;
1790 int index;
1791
1792 if (!mm->ppgtt_mm.shadowed)
1793 return;
1794
1795 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1796 ppgtt_get_shadow_root_entry(mm, &se, index);
1797
1798 if (!ops->test_present(&se))
1799 continue;
1800
1801 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1802 se.val64 = 0;
1803 ppgtt_set_shadow_root_entry(mm, &se, index);
1804
1805 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1806 NULL, se.type, se.val64, index);
1807 }
1808
1809 mm->ppgtt_mm.shadowed = false;
1810}
1811
1812
1813static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1814{
1815 struct intel_vgpu *vgpu = mm->vgpu;
1816 struct intel_gvt *gvt = vgpu->gvt;
1817 struct intel_gvt_gtt *gtt = &gvt->gtt;
1818 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1819 struct intel_vgpu_ppgtt_spt *spt;
1820 struct intel_gvt_gtt_entry ge, se;
1821 int index, ret;
1822
1823 if (mm->ppgtt_mm.shadowed)
1824 return 0;
1825
1826 mm->ppgtt_mm.shadowed = true;
1827
1828 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1829 ppgtt_get_guest_root_entry(mm, &ge, index);
1830
1831 if (!ops->test_present(&ge))
1832 continue;
1833
1834 trace_spt_guest_change(vgpu->id, __func__, NULL,
1835 ge.type, ge.val64, index);
1836
1837 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1838 if (IS_ERR(spt)) {
1839 gvt_vgpu_err("fail to populate guest root pointer\n");
1840 ret = PTR_ERR(spt);
1841 goto fail;
1842 }
1843 ppgtt_generate_shadow_entry(&se, spt, &ge);
1844 ppgtt_set_shadow_root_entry(mm, &se, index);
1845
1846 trace_spt_guest_change(vgpu->id, "populate root pointer",
1847 NULL, se.type, se.val64, index);
1848 }
1849
1850 return 0;
1851fail:
1852 invalidate_ppgtt_mm(mm);
1853 return ret;
1854}
1855
1856static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1857{
1858 struct intel_vgpu_mm *mm;
1859
1860 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1861 if (!mm)
1862 return NULL;
1863
1864 mm->vgpu = vgpu;
1865 kref_init(&mm->ref);
1866 atomic_set(&mm->pincount, 0);
1867
1868 return mm;
1869}
1870
1871static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1872{
1873 kfree(mm);
1874}
1875
1876/**
1877 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1878 * @vgpu: a vGPU
1879 * @root_entry_type: ppgtt root entry type
1880 * @pdps: guest pdps.
1881 *
1882 * This function is used to create a ppgtt mm object for a vGPU.
1883 *
1884 * Returns:
1885 * Zero on success, negative error code in pointer if failed.
1886 */
1887struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1888 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1889{
1890 struct intel_gvt *gvt = vgpu->gvt;
1891 struct intel_vgpu_mm *mm;
1892 int ret;
1893
1894 mm = vgpu_alloc_mm(vgpu);
1895 if (!mm)
1896 return ERR_PTR(-ENOMEM);
1897
1898 mm->type = INTEL_GVT_MM_PPGTT;
1899
1900 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1901 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1902 mm->ppgtt_mm.root_entry_type = root_entry_type;
1903
1904 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1905 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1906
1907 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1908 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1909 else
1910 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1911 sizeof(mm->ppgtt_mm.guest_pdps));
1912
1913 ret = shadow_ppgtt_mm(mm);
1914 if (ret) {
1915 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1916 vgpu_free_mm(mm);
1917 return ERR_PTR(ret);
1918 }
1919
1920 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1921
1922 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1923 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1924 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1925
1926 return mm;
1927}
1928
1929static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1930{
1931 struct intel_vgpu_mm *mm;
1932 unsigned long nr_entries;
1933
1934 mm = vgpu_alloc_mm(vgpu);
1935 if (!mm)
1936 return ERR_PTR(-ENOMEM);
1937
1938 mm->type = INTEL_GVT_MM_GGTT;
1939
1940 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1941 mm->ggtt_mm.virtual_ggtt =
1942 vzalloc(array_size(nr_entries,
1943 vgpu->gvt->device_info.gtt_entry_size));
1944 if (!mm->ggtt_mm.virtual_ggtt) {
1945 vgpu_free_mm(mm);
1946 return ERR_PTR(-ENOMEM);
1947 }
1948
1949 return mm;
1950}
1951
1952/**
1953 * _intel_vgpu_mm_release - destroy a mm object
1954 * @mm_ref: a kref object
1955 *
1956 * This function is used to destroy a mm object for vGPU
1957 *
1958 */
1959void _intel_vgpu_mm_release(struct kref *mm_ref)
1960{
1961 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1962
1963 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1964 gvt_err("vgpu mm pin count bug detected\n");
1965
1966 if (mm->type == INTEL_GVT_MM_PPGTT) {
1967 list_del(&mm->ppgtt_mm.list);
1968
1969 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1970 list_del(&mm->ppgtt_mm.lru_list);
1971 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1972
1973 invalidate_ppgtt_mm(mm);
1974 } else {
1975 vfree(mm->ggtt_mm.virtual_ggtt);
1976 }
1977
1978 vgpu_free_mm(mm);
1979}
1980
1981/**
1982 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1983 * @mm: a vGPU mm object
1984 *
1985 * This function is called when user doesn't want to use a vGPU mm object
1986 */
1987void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1988{
1989 atomic_dec_if_positive(&mm->pincount);
1990}
1991
1992/**
1993 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1994 * @mm: target vgpu mm
1995 *
1996 * This function is called when user wants to use a vGPU mm object. If this
1997 * mm object hasn't been shadowed yet, the shadow will be populated at this
1998 * time.
1999 *
2000 * Returns:
2001 * Zero on success, negative error code if failed.
2002 */
2003int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2004{
2005 int ret;
2006
2007 atomic_inc(&mm->pincount);
2008
2009 if (mm->type == INTEL_GVT_MM_PPGTT) {
2010 ret = shadow_ppgtt_mm(mm);
2011 if (ret)
2012 return ret;
2013
2014 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2015 list_move_tail(&mm->ppgtt_mm.lru_list,
2016 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2017 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2018 }
2019
2020 return 0;
2021}
2022
2023static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2024{
2025 struct intel_vgpu_mm *mm;
2026 struct list_head *pos, *n;
2027
2028 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2029
2030 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2031 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2032
2033 if (atomic_read(&mm->pincount))
2034 continue;
2035
2036 list_del_init(&mm->ppgtt_mm.lru_list);
2037 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2038 invalidate_ppgtt_mm(mm);
2039 return 1;
2040 }
2041 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2042 return 0;
2043}
2044
2045/*
2046 * GMA translation APIs.
2047 */
2048static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2049 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2050{
2051 struct intel_vgpu *vgpu = mm->vgpu;
2052 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2053 struct intel_vgpu_ppgtt_spt *s;
2054
2055 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2056 if (!s)
2057 return -ENXIO;
2058
2059 if (!guest)
2060 ppgtt_get_shadow_entry(s, e, index);
2061 else
2062 ppgtt_get_guest_entry(s, e, index);
2063 return 0;
2064}
2065
2066/**
2067 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2068 * @mm: mm object. could be a PPGTT or GGTT mm object
2069 * @gma: graphics memory address in this mm object
2070 *
2071 * This function is used to translate a graphics memory address in specific
2072 * graphics memory space to guest physical address.
2073 *
2074 * Returns:
2075 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2076 */
2077unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2078{
2079 struct intel_vgpu *vgpu = mm->vgpu;
2080 struct intel_gvt *gvt = vgpu->gvt;
2081 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2082 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2083 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2084 unsigned long gma_index[4];
2085 struct intel_gvt_gtt_entry e;
2086 int i, levels = 0;
2087 int ret;
2088
2089 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2090 mm->type != INTEL_GVT_MM_PPGTT);
2091
2092 if (mm->type == INTEL_GVT_MM_GGTT) {
2093 if (!vgpu_gmadr_is_valid(vgpu, gma))
2094 goto err;
2095
2096 ggtt_get_guest_entry(mm, &e,
2097 gma_ops->gma_to_ggtt_pte_index(gma));
2098
2099 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2100 + (gma & ~I915_GTT_PAGE_MASK);
2101
2102 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2103 } else {
2104 switch (mm->ppgtt_mm.root_entry_type) {
2105 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2106 ppgtt_get_shadow_root_entry(mm, &e, 0);
2107
2108 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2109 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2110 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2111 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2112 levels = 4;
2113 break;
2114 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2115 ppgtt_get_shadow_root_entry(mm, &e,
2116 gma_ops->gma_to_l3_pdp_index(gma));
2117
2118 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2119 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2120 levels = 2;
2121 break;
2122 default:
2123 GEM_BUG_ON(1);
2124 }
2125
2126 /* walk the shadow page table and get gpa from guest entry */
2127 for (i = 0; i < levels; i++) {
2128 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2129 (i == levels - 1));
2130 if (ret)
2131 goto err;
2132
2133 if (!pte_ops->test_present(&e)) {
2134 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2135 goto err;
2136 }
2137 }
2138
2139 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2140 (gma & ~I915_GTT_PAGE_MASK);
2141 trace_gma_translate(vgpu->id, "ppgtt", 0,
2142 mm->ppgtt_mm.root_entry_type, gma, gpa);
2143 }
2144
2145 return gpa;
2146err:
2147 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2148 return INTEL_GVT_INVALID_ADDR;
2149}
2150
2151static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2152 unsigned int off, void *p_data, unsigned int bytes)
2153{
2154 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2155 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2156 unsigned long index = off >> info->gtt_entry_size_shift;
2157 unsigned long gma;
2158 struct intel_gvt_gtt_entry e;
2159
2160 if (bytes != 4 && bytes != 8)
2161 return -EINVAL;
2162
2163 gma = index << I915_GTT_PAGE_SHIFT;
2164 if (!intel_gvt_ggtt_validate_range(vgpu,
2165 gma, 1 << I915_GTT_PAGE_SHIFT)) {
2166 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2167 memset(p_data, 0, bytes);
2168 return 0;
2169 }
2170
2171 ggtt_get_guest_entry(ggtt_mm, &e, index);
2172 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2173 bytes);
2174 return 0;
2175}
2176
2177/**
2178 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2179 * @vgpu: a vGPU
2180 * @off: register offset
2181 * @p_data: data will be returned to guest
2182 * @bytes: data length
2183 *
2184 * This function is used to emulate the GTT MMIO register read
2185 *
2186 * Returns:
2187 * Zero on success, error code if failed.
2188 */
2189int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2190 void *p_data, unsigned int bytes)
2191{
2192 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2193 int ret;
2194
2195 if (bytes != 4 && bytes != 8)
2196 return -EINVAL;
2197
2198 off -= info->gtt_start_offset;
2199 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2200 return ret;
2201}
2202
2203static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2204 struct intel_gvt_gtt_entry *entry)
2205{
2206 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2207 unsigned long pfn;
2208
2209 pfn = pte_ops->get_pfn(entry);
2210 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2211 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2212 pfn << PAGE_SHIFT);
2213}
2214
2215static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2216 void *p_data, unsigned int bytes)
2217{
2218 struct intel_gvt *gvt = vgpu->gvt;
2219 const struct intel_gvt_device_info *info = &gvt->device_info;
2220 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2221 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2222 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2223 unsigned long gma, gfn;
2224 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2225 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2226 dma_addr_t dma_addr;
2227 int ret;
2228 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2229 bool partial_update = false;
2230
2231 if (bytes != 4 && bytes != 8)
2232 return -EINVAL;
2233
2234 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2235
2236 /* the VM may configure the whole GM space when ballooning is used */
2237 if (!vgpu_gmadr_is_valid(vgpu, gma))
2238 return 0;
2239
2240 e.type = GTT_TYPE_GGTT_PTE;
2241 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2242 bytes);
2243
2244 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2245 * write, save the first 4 bytes in a list and update virtual
2246 * PTE. Only update shadow PTE when the second 4 bytes comes.
2247 */
2248 if (bytes < info->gtt_entry_size) {
2249 bool found = false;
2250
2251 list_for_each_entry_safe(pos, n,
2252 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2253 if (g_gtt_index == pos->offset >>
2254 info->gtt_entry_size_shift) {
2255 if (off != pos->offset) {
2256 /* the second partial part*/
2257 int last_off = pos->offset &
2258 (info->gtt_entry_size - 1);
2259
2260 memcpy((void *)&e.val64 + last_off,
2261 (void *)&pos->data + last_off,
2262 bytes);
2263
2264 list_del(&pos->list);
2265 kfree(pos);
2266 found = true;
2267 break;
2268 }
2269
2270 /* update of the first partial part */
2271 pos->data = e.val64;
2272 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2273 return 0;
2274 }
2275 }
2276
2277 if (!found) {
2278 /* the first partial part */
2279 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2280 if (!partial_pte)
2281 return -ENOMEM;
2282 partial_pte->offset = off;
2283 partial_pte->data = e.val64;
2284 list_add_tail(&partial_pte->list,
2285 &ggtt_mm->ggtt_mm.partial_pte_list);
2286 partial_update = true;
2287 }
2288 }
2289
2290 if (!partial_update && (ops->test_present(&e))) {
2291 gfn = ops->get_pfn(&e);
2292 m.val64 = e.val64;
2293 m.type = e.type;
2294
2295 /* one PTE update may be issued in multiple writes and the
2296 * first write may not construct a valid gfn
2297 */
2298 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2299 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2300 goto out;
2301 }
2302
2303 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2304 PAGE_SIZE, &dma_addr);
2305 if (ret) {
2306 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2307 /* guest driver may read/write the entry when partial
2308 * update the entry in this situation p2m will fail
2309 * settting the shadow entry to point to a scratch page
2310 */
2311 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2312 } else
2313 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2314 } else {
2315 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2316 ops->clear_present(&m);
2317 }
2318
2319out:
2320 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2321
2322 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2323 ggtt_invalidate_pte(vgpu, &e);
2324
2325 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2326 ggtt_invalidate(gvt->dev_priv);
2327 return 0;
2328}
2329
2330/*
2331 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2332 * @vgpu: a vGPU
2333 * @off: register offset
2334 * @p_data: data from guest write
2335 * @bytes: data length
2336 *
2337 * This function is used to emulate the GTT MMIO register write
2338 *
2339 * Returns:
2340 * Zero on success, error code if failed.
2341 */
2342int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2343 unsigned int off, void *p_data, unsigned int bytes)
2344{
2345 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2346 int ret;
2347
2348 if (bytes != 4 && bytes != 8)
2349 return -EINVAL;
2350
2351 off -= info->gtt_start_offset;
2352 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2353 return ret;
2354}
2355
2356static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2357 enum intel_gvt_gtt_type type)
2358{
2359 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2360 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2361 int page_entry_num = I915_GTT_PAGE_SIZE >>
2362 vgpu->gvt->device_info.gtt_entry_size_shift;
2363 void *scratch_pt;
2364 int i;
2365 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2366 dma_addr_t daddr;
2367
2368 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2369 return -EINVAL;
2370
2371 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2372 if (!scratch_pt) {
2373 gvt_vgpu_err("fail to allocate scratch page\n");
2374 return -ENOMEM;
2375 }
2376
2377 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2378 4096, PCI_DMA_BIDIRECTIONAL);
2379 if (dma_mapping_error(dev, daddr)) {
2380 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2381 __free_page(virt_to_page(scratch_pt));
2382 return -ENOMEM;
2383 }
2384 gtt->scratch_pt[type].page_mfn =
2385 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2386 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2387 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2388 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2389
2390 /* Build the tree by full filled the scratch pt with the entries which
2391 * point to the next level scratch pt or scratch page. The
2392 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2393 * 'type' pt.
2394 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2395 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2396 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2397 */
2398 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2399 struct intel_gvt_gtt_entry se;
2400
2401 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2402 se.type = get_entry_type(type - 1);
2403 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2404
2405 /* The entry parameters like present/writeable/cache type
2406 * set to the same as i915's scratch page tree.
2407 */
2408 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2409 if (type == GTT_TYPE_PPGTT_PDE_PT)
2410 se.val64 |= PPAT_CACHED;
2411
2412 for (i = 0; i < page_entry_num; i++)
2413 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2414 }
2415
2416 return 0;
2417}
2418
2419static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2420{
2421 int i;
2422 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2423 dma_addr_t daddr;
2424
2425 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2426 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2427 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2428 I915_GTT_PAGE_SHIFT);
2429 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2430 __free_page(vgpu->gtt.scratch_pt[i].page);
2431 vgpu->gtt.scratch_pt[i].page = NULL;
2432 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2433 }
2434 }
2435
2436 return 0;
2437}
2438
2439static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2440{
2441 int i, ret;
2442
2443 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2444 ret = alloc_scratch_pages(vgpu, i);
2445 if (ret)
2446 goto err;
2447 }
2448
2449 return 0;
2450
2451err:
2452 release_scratch_page_tree(vgpu);
2453 return ret;
2454}
2455
2456/**
2457 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2458 * @vgpu: a vGPU
2459 *
2460 * This function is used to initialize per-vGPU graphics memory virtualization
2461 * components.
2462 *
2463 * Returns:
2464 * Zero on success, error code if failed.
2465 */
2466int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2467{
2468 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2469
2470 INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2471
2472 INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2473 INIT_LIST_HEAD(&gtt->oos_page_list_head);
2474 INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2475
2476 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2477 if (IS_ERR(gtt->ggtt_mm)) {
2478 gvt_vgpu_err("fail to create mm for ggtt.\n");
2479 return PTR_ERR(gtt->ggtt_mm);
2480 }
2481
2482 intel_vgpu_reset_ggtt(vgpu, false);
2483
2484 INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2485
2486 return create_scratch_page_tree(vgpu);
2487}
2488
2489static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2490{
2491 struct list_head *pos, *n;
2492 struct intel_vgpu_mm *mm;
2493
2494 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2495 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2496 intel_vgpu_destroy_mm(mm);
2497 }
2498
2499 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2500 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2501
2502 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2503 gvt_err("Why we still has spt not freed?\n");
2504 ppgtt_free_all_spt(vgpu);
2505 }
2506}
2507
2508static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2509{
2510 struct intel_gvt_partial_pte *pos, *next;
2511
2512 list_for_each_entry_safe(pos, next,
2513 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2514 list) {
2515 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2516 pos->offset, pos->data);
2517 kfree(pos);
2518 }
2519 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2520 vgpu->gtt.ggtt_mm = NULL;
2521}
2522
2523/**
2524 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2525 * @vgpu: a vGPU
2526 *
2527 * This function is used to clean up per-vGPU graphics memory virtualization
2528 * components.
2529 *
2530 * Returns:
2531 * Zero on success, error code if failed.
2532 */
2533void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2534{
2535 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2536 intel_vgpu_destroy_ggtt_mm(vgpu);
2537 release_scratch_page_tree(vgpu);
2538}
2539
2540static void clean_spt_oos(struct intel_gvt *gvt)
2541{
2542 struct intel_gvt_gtt *gtt = &gvt->gtt;
2543 struct list_head *pos, *n;
2544 struct intel_vgpu_oos_page *oos_page;
2545
2546 WARN(!list_empty(&gtt->oos_page_use_list_head),
2547 "someone is still using oos page\n");
2548
2549 list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2550 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2551 list_del(&oos_page->list);
2552 free_page((unsigned long)oos_page->mem);
2553 kfree(oos_page);
2554 }
2555}
2556
2557static int setup_spt_oos(struct intel_gvt *gvt)
2558{
2559 struct intel_gvt_gtt *gtt = &gvt->gtt;
2560 struct intel_vgpu_oos_page *oos_page;
2561 int i;
2562 int ret;
2563
2564 INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2565 INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2566
2567 for (i = 0; i < preallocated_oos_pages; i++) {
2568 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2569 if (!oos_page) {
2570 ret = -ENOMEM;
2571 goto fail;
2572 }
2573 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2574 if (!oos_page->mem) {
2575 ret = -ENOMEM;
2576 kfree(oos_page);
2577 goto fail;
2578 }
2579
2580 INIT_LIST_HEAD(&oos_page->list);
2581 INIT_LIST_HEAD(&oos_page->vm_list);
2582 oos_page->id = i;
2583 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2584 }
2585
2586 gvt_dbg_mm("%d oos pages preallocated\n", i);
2587
2588 return 0;
2589fail:
2590 clean_spt_oos(gvt);
2591 return ret;
2592}
2593
2594/**
2595 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2596 * @vgpu: a vGPU
2597 * @pdps: pdp root array
2598 *
2599 * This function is used to find a PPGTT mm object from mm object pool
2600 *
2601 * Returns:
2602 * pointer to mm object on success, NULL if failed.
2603 */
2604struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2605 u64 pdps[])
2606{
2607 struct intel_vgpu_mm *mm;
2608 struct list_head *pos;
2609
2610 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2611 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2612
2613 switch (mm->ppgtt_mm.root_entry_type) {
2614 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2615 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2616 return mm;
2617 break;
2618 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2619 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2620 sizeof(mm->ppgtt_mm.guest_pdps)))
2621 return mm;
2622 break;
2623 default:
2624 GEM_BUG_ON(1);
2625 }
2626 }
2627 return NULL;
2628}
2629
2630/**
2631 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2632 * @vgpu: a vGPU
2633 * @root_entry_type: ppgtt root entry type
2634 * @pdps: guest pdps
2635 *
2636 * This function is used to find or create a PPGTT mm object from a guest.
2637 *
2638 * Returns:
2639 * Zero on success, negative error code if failed.
2640 */
2641struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2642 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2643{
2644 struct intel_vgpu_mm *mm;
2645
2646 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2647 if (mm) {
2648 intel_vgpu_mm_get(mm);
2649 } else {
2650 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2651 if (IS_ERR(mm))
2652 gvt_vgpu_err("fail to create mm\n");
2653 }
2654 return mm;
2655}
2656
2657/**
2658 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2659 * @vgpu: a vGPU
2660 * @pdps: guest pdps
2661 *
2662 * This function is used to find a PPGTT mm object from a guest and destroy it.
2663 *
2664 * Returns:
2665 * Zero on success, negative error code if failed.
2666 */
2667int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2668{
2669 struct intel_vgpu_mm *mm;
2670
2671 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2672 if (!mm) {
2673 gvt_vgpu_err("fail to find ppgtt instance.\n");
2674 return -EINVAL;
2675 }
2676 intel_vgpu_mm_put(mm);
2677 return 0;
2678}
2679
2680/**
2681 * intel_gvt_init_gtt - initialize mm components of a GVT device
2682 * @gvt: GVT device
2683 *
2684 * This function is called at the initialization stage, to initialize
2685 * the mm components of a GVT device.
2686 *
2687 * Returns:
2688 * zero on success, negative error code if failed.
2689 */
2690int intel_gvt_init_gtt(struct intel_gvt *gvt)
2691{
2692 int ret;
2693 void *page;
2694 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2695 dma_addr_t daddr;
2696
2697 gvt_dbg_core("init gtt\n");
2698
2699 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2700 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2701
2702 page = (void *)get_zeroed_page(GFP_KERNEL);
2703 if (!page) {
2704 gvt_err("fail to allocate scratch ggtt page\n");
2705 return -ENOMEM;
2706 }
2707
2708 daddr = dma_map_page(dev, virt_to_page(page), 0,
2709 4096, PCI_DMA_BIDIRECTIONAL);
2710 if (dma_mapping_error(dev, daddr)) {
2711 gvt_err("fail to dmamap scratch ggtt page\n");
2712 __free_page(virt_to_page(page));
2713 return -ENOMEM;
2714 }
2715
2716 gvt->gtt.scratch_page = virt_to_page(page);
2717 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2718
2719 if (enable_out_of_sync) {
2720 ret = setup_spt_oos(gvt);
2721 if (ret) {
2722 gvt_err("fail to initialize SPT oos\n");
2723 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2724 __free_page(gvt->gtt.scratch_page);
2725 return ret;
2726 }
2727 }
2728 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2729 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2730 return 0;
2731}
2732
2733/**
2734 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2735 * @gvt: GVT device
2736 *
2737 * This function is called at the driver unloading stage, to clean up the
2738 * the mm components of a GVT device.
2739 *
2740 */
2741void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2742{
2743 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2744 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2745 I915_GTT_PAGE_SHIFT);
2746
2747 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2748
2749 __free_page(gvt->gtt.scratch_page);
2750
2751 if (enable_out_of_sync)
2752 clean_spt_oos(gvt);
2753}
2754
2755/**
2756 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2757 * @vgpu: a vGPU
2758 *
2759 * This function is called when invalidate all PPGTT instances of a vGPU.
2760 *
2761 */
2762void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2763{
2764 struct list_head *pos, *n;
2765 struct intel_vgpu_mm *mm;
2766
2767 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2768 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2769 if (mm->type == INTEL_GVT_MM_PPGTT) {
2770 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2771 list_del_init(&mm->ppgtt_mm.lru_list);
2772 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2773 if (mm->ppgtt_mm.shadowed)
2774 invalidate_ppgtt_mm(mm);
2775 }
2776 }
2777}
2778
2779/**
2780 * intel_vgpu_reset_ggtt - reset the GGTT entry
2781 * @vgpu: a vGPU
2782 * @invalidate_old: invalidate old entries
2783 *
2784 * This function is called at the vGPU create stage
2785 * to reset all the GGTT entries.
2786 *
2787 */
2788void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2789{
2790 struct intel_gvt *gvt = vgpu->gvt;
2791 struct drm_i915_private *dev_priv = gvt->dev_priv;
2792 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2793 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2794 struct intel_gvt_gtt_entry old_entry;
2795 u32 index;
2796 u32 num_entries;
2797
2798 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2799 pte_ops->set_present(&entry);
2800
2801 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2802 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2803 while (num_entries--) {
2804 if (invalidate_old) {
2805 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2806 ggtt_invalidate_pte(vgpu, &old_entry);
2807 }
2808 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2809 }
2810
2811 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2812 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2813 while (num_entries--) {
2814 if (invalidate_old) {
2815 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2816 ggtt_invalidate_pte(vgpu, &old_entry);
2817 }
2818 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2819 }
2820
2821 ggtt_invalidate(dev_priv);
2822}
2823
2824/**
2825 * intel_vgpu_reset_gtt - reset the all GTT related status
2826 * @vgpu: a vGPU
2827 *
2828 * This function is called from vfio core to reset reset all
2829 * GTT related status, including GGTT, PPGTT, scratch page.
2830 *
2831 */
2832void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2833{
2834 /* Shadow pages are only created when there is no page
2835 * table tracking data, so remove page tracking data after
2836 * removing the shadow pages.
2837 */
2838 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2839 intel_vgpu_reset_ggtt(vgpu, true);
2840}