blob: c1dc225d84361e7ae7fadab333f8eab0daa3fafc [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Zhi Wang <zhi.a.wang@intel.com>
25 *
26 * Contributors:
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
33 *
34 */
35
36#include <linux/kthread.h>
37
38#include "gem/i915_gem_context.h"
39#include "gem/i915_gem_pm.h"
40#include "gt/intel_context.h"
41
42#include "i915_drv.h"
43#include "gvt.h"
44
45#define RING_CTX_OFF(x) \
46 offsetof(struct execlist_ring_context, x)
47
48static void set_context_pdp_root_pointer(
49 struct execlist_ring_context *ring_context,
50 u32 pdp[8])
51{
52 int i;
53
54 for (i = 0; i < 8; i++)
55 ring_context->pdps[i].val = pdp[7 - i];
56}
57
58static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59{
60 struct drm_i915_gem_object *ctx_obj =
61 workload->req->hw_context->state->obj;
62 struct execlist_ring_context *shadow_ring_context;
63 struct page *page;
64
65 if (WARN_ON(!workload->shadow_mm))
66 return;
67
68 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69 return;
70
71 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72 shadow_ring_context = kmap(page);
73 set_context_pdp_root_pointer(shadow_ring_context,
74 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 kunmap(page);
76}
77
78/*
79 * when populating shadow ctx from guest, we should not overrride oa related
80 * registers, so that they will not be overlapped by guest oa configs. Thus
81 * made it possible to capture oa data from host for both host and guests.
82 */
83static void sr_oa_regs(struct intel_vgpu_workload *workload,
84 u32 *reg_state, bool save)
85{
86 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
88 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
89 int i = 0;
90 u32 flex_mmio[] = {
91 i915_mmio_reg_offset(EU_PERF_CNTL0),
92 i915_mmio_reg_offset(EU_PERF_CNTL1),
93 i915_mmio_reg_offset(EU_PERF_CNTL2),
94 i915_mmio_reg_offset(EU_PERF_CNTL3),
95 i915_mmio_reg_offset(EU_PERF_CNTL4),
96 i915_mmio_reg_offset(EU_PERF_CNTL5),
97 i915_mmio_reg_offset(EU_PERF_CNTL6),
98 };
99
100 if (workload->ring_id != RCS0)
101 return;
102
103 if (save) {
104 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105
106 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107 u32 state_offset = ctx_flexeu0 + i * 2;
108
109 workload->flex_mmio[i] = reg_state[state_offset + 1];
110 }
111 } else {
112 reg_state[ctx_oactxctrl] =
113 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115
116 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117 u32 state_offset = ctx_flexeu0 + i * 2;
118 u32 mmio = flex_mmio[i];
119
120 reg_state[state_offset] = mmio;
121 reg_state[state_offset + 1] = workload->flex_mmio[i];
122 }
123 }
124}
125
126static int populate_shadow_context(struct intel_vgpu_workload *workload)
127{
128 struct intel_vgpu *vgpu = workload->vgpu;
129 struct intel_gvt *gvt = vgpu->gvt;
130 int ring_id = workload->ring_id;
131 struct drm_i915_gem_object *ctx_obj =
132 workload->req->hw_context->state->obj;
133 struct execlist_ring_context *shadow_ring_context;
134 struct page *page;
135 void *dst;
136 unsigned long context_gpa, context_page_num;
137 int i;
138
139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 shadow_ring_context = kmap(page);
141
142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143#define COPY_REG(name) \
144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146#define COPY_REG_MASKED(name) {\
147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 + RING_CTX_OFF(name.val),\
149 &shadow_ring_context->name.val, 4);\
150 shadow_ring_context->name.val |= 0xffff << 16;\
151 }
152
153 COPY_REG_MASKED(ctx_ctrl);
154 COPY_REG(ctx_timestamp);
155
156 if (ring_id == RCS0) {
157 COPY_REG(bb_per_ctx_ptr);
158 COPY_REG(rcs_indirect_ctx);
159 COPY_REG(rcs_indirect_ctx_offset);
160 }
161#undef COPY_REG
162#undef COPY_REG_MASKED
163
164 intel_gvt_hypervisor_read_gpa(vgpu,
165 workload->ring_context_gpa +
166 sizeof(*shadow_ring_context),
167 (void *)shadow_ring_context +
168 sizeof(*shadow_ring_context),
169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 kunmap(page);
173
174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 return 0;
176
177 gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178 workload->ctx_desc.lrca);
179
180 context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181
182 context_page_num = context_page_num >> PAGE_SHIFT;
183
184 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185 context_page_num = 19;
186
187 i = 2;
188 while (i < context_page_num) {
189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 (u32)((workload->ctx_desc.lrca + i) <<
191 I915_GTT_PAGE_SHIFT));
192 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 gvt_vgpu_err("Invalid guest context descriptor\n");
194 return -EFAULT;
195 }
196
197 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198 dst = kmap(page);
199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 I915_GTT_PAGE_SIZE);
201 kunmap(page);
202 i++;
203 }
204 return 0;
205}
206
207static inline bool is_gvt_request(struct i915_request *req)
208{
209 return i915_gem_context_force_single_submission(req->gem_context);
210}
211
212static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213{
214 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215 u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216 i915_reg_t reg;
217
218 reg = RING_INSTDONE(ring_base);
219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 reg = RING_ACTHD(ring_base);
221 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222 reg = RING_ACTHD_UDW(ring_base);
223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224}
225
226static int shadow_context_status_change(struct notifier_block *nb,
227 unsigned long action, void *data)
228{
229 struct i915_request *req = data;
230 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231 shadow_ctx_notifier_block[req->engine->id]);
232 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233 enum intel_engine_id ring_id = req->engine->id;
234 struct intel_vgpu_workload *workload;
235 unsigned long flags;
236
237 if (!is_gvt_request(req)) {
238 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240 scheduler->engine_owner[ring_id]) {
241 /* Switch ring from vGPU to host. */
242 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243 NULL, ring_id);
244 scheduler->engine_owner[ring_id] = NULL;
245 }
246 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247
248 return NOTIFY_OK;
249 }
250
251 workload = scheduler->current_workload[ring_id];
252 if (unlikely(!workload))
253 return NOTIFY_OK;
254
255 switch (action) {
256 case INTEL_CONTEXT_SCHEDULE_IN:
257 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259 /* Switch ring from host to vGPU or vGPU to vGPU. */
260 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261 workload->vgpu, ring_id);
262 scheduler->engine_owner[ring_id] = workload->vgpu;
263 } else
264 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265 ring_id, workload->vgpu->id);
266 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267 atomic_set(&workload->shadow_ctx_active, 1);
268 break;
269 case INTEL_CONTEXT_SCHEDULE_OUT:
270 save_ring_hw_state(workload->vgpu, ring_id);
271 atomic_set(&workload->shadow_ctx_active, 0);
272 break;
273 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274 save_ring_hw_state(workload->vgpu, ring_id);
275 break;
276 default:
277 WARN_ON(1);
278 return NOTIFY_OK;
279 }
280 wake_up(&workload->shadow_ctx_status_wq);
281 return NOTIFY_OK;
282}
283
284static void
285shadow_context_descriptor_update(struct intel_context *ce,
286 struct intel_vgpu_workload *workload)
287{
288 u64 desc = ce->lrc_desc;
289
290 /*
291 * Update bits 0-11 of the context descriptor which includes flags
292 * like GEN8_CTX_* cached in desc_template
293 */
294 desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
295 desc |= workload->ctx_desc.addressing_mode <<
296 GEN8_CTX_ADDRESSING_MODE_SHIFT;
297
298 ce->lrc_desc = desc;
299}
300
301static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
302{
303 struct intel_vgpu *vgpu = workload->vgpu;
304 struct i915_request *req = workload->req;
305 void *shadow_ring_buffer_va;
306 u32 *cs;
307 int err;
308
309 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
310 intel_vgpu_restore_inhibit_context(vgpu, req);
311
312 /*
313 * To track whether a request has started on HW, we can emit a
314 * breadcrumb at the beginning of the request and check its
315 * timeline's HWSP to see if the breadcrumb has advanced past the
316 * start of this request. Actually, the request must have the
317 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
318 * scheduler might get a wrong state of it during reset. Since the
319 * requests from gvt always set the has_init_breadcrumb flag, here
320 * need to do the emit_init_breadcrumb for all the requests.
321 */
322 if (req->engine->emit_init_breadcrumb) {
323 err = req->engine->emit_init_breadcrumb(req);
324 if (err) {
325 gvt_vgpu_err("fail to emit init breadcrumb\n");
326 return err;
327 }
328 }
329
330 /* allocate shadow ring buffer */
331 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
332 if (IS_ERR(cs)) {
333 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
334 workload->rb_len);
335 return PTR_ERR(cs);
336 }
337
338 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
339
340 /* get shadow ring buffer va */
341 workload->shadow_ring_buffer_va = cs;
342
343 memcpy(cs, shadow_ring_buffer_va,
344 workload->rb_len);
345
346 cs += workload->rb_len / sizeof(u32);
347 intel_ring_advance(workload->req, cs);
348
349 return 0;
350}
351
352static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
353{
354 if (!wa_ctx->indirect_ctx.obj)
355 return;
356
357 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
358 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
359
360 wa_ctx->indirect_ctx.obj = NULL;
361 wa_ctx->indirect_ctx.shadow_va = NULL;
362}
363
364static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
365 struct i915_gem_context *ctx)
366{
367 struct intel_vgpu_mm *mm = workload->shadow_mm;
368 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
369 int i = 0;
370
371 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
372 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
373 } else {
374 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
375 struct i915_page_directory * const pd =
376 i915_pd_entry(ppgtt->pd, i);
377 /* skip now as current i915 ppgtt alloc won't allocate
378 top level pdp for non 4-level table, won't impact
379 shadow ppgtt. */
380 if (!pd)
381 break;
382 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
383 }
384 }
385}
386
387static int
388intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
389{
390 struct intel_vgpu *vgpu = workload->vgpu;
391 struct intel_vgpu_submission *s = &vgpu->submission;
392 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
393 struct i915_request *rq;
394
395 lockdep_assert_held(&dev_priv->drm.struct_mutex);
396
397 if (workload->req)
398 return 0;
399
400 rq = i915_request_create(s->shadow[workload->ring_id]);
401 if (IS_ERR(rq)) {
402 gvt_vgpu_err("fail to allocate gem request\n");
403 return PTR_ERR(rq);
404 }
405
406 workload->req = i915_request_get(rq);
407 return 0;
408}
409
410/**
411 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
412 * shadow it as well, include ringbuffer,wa_ctx and ctx.
413 * @workload: an abstract entity for each execlist submission.
414 *
415 * This function is called before the workload submitting to i915, to make
416 * sure the content of the workload is valid.
417 */
418int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
419{
420 struct intel_vgpu *vgpu = workload->vgpu;
421 struct intel_vgpu_submission *s = &vgpu->submission;
422 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
423 int ret;
424
425 lockdep_assert_held(&dev_priv->drm.struct_mutex);
426
427 if (workload->shadow)
428 return 0;
429
430 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
431 shadow_context_descriptor_update(s->shadow[workload->ring_id],
432 workload);
433
434 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
435 if (ret)
436 return ret;
437
438 if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
439 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
440 if (ret)
441 goto err_shadow;
442 }
443
444 workload->shadow = true;
445 return 0;
446err_shadow:
447 release_shadow_wa_ctx(&workload->wa_ctx);
448 return ret;
449}
450
451static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
452
453static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
454{
455 struct intel_gvt *gvt = workload->vgpu->gvt;
456 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
457 struct intel_vgpu_shadow_bb *bb;
458 int ret;
459
460 list_for_each_entry(bb, &workload->shadow_bb, list) {
461 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
462 * is only updated into ring_scan_buffer, not real ring address
463 * allocated in later copy_workload_to_ring_buffer. pls be noted
464 * shadow_ring_buffer_va is now pointed to real ring buffer va
465 * in copy_workload_to_ring_buffer.
466 */
467
468 if (bb->bb_offset)
469 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
470 + bb->bb_offset;
471
472 if (bb->ppgtt) {
473 /* for non-priv bb, scan&shadow is only for
474 * debugging purpose, so the content of shadow bb
475 * is the same as original bb. Therefore,
476 * here, rather than switch to shadow bb's gma
477 * address, we directly use original batch buffer's
478 * gma address, and send original bb to hardware
479 * directly
480 */
481 if (bb->clflush & CLFLUSH_AFTER) {
482 drm_clflush_virt_range(bb->va,
483 bb->obj->base.size);
484 bb->clflush &= ~CLFLUSH_AFTER;
485 }
486 i915_gem_object_finish_access(bb->obj);
487 bb->accessing = false;
488
489 } else {
490 bb->vma = i915_gem_object_ggtt_pin(bb->obj,
491 NULL, 0, 0, 0);
492 if (IS_ERR(bb->vma)) {
493 ret = PTR_ERR(bb->vma);
494 goto err;
495 }
496
497 /* relocate shadow batch buffer */
498 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
499 if (gmadr_bytes == 8)
500 bb->bb_start_cmd_va[2] = 0;
501
502 /* No one is going to touch shadow bb from now on. */
503 if (bb->clflush & CLFLUSH_AFTER) {
504 drm_clflush_virt_range(bb->va,
505 bb->obj->base.size);
506 bb->clflush &= ~CLFLUSH_AFTER;
507 }
508
509 ret = i915_gem_object_set_to_gtt_domain(bb->obj,
510 false);
511 if (ret)
512 goto err;
513
514 ret = i915_vma_move_to_active(bb->vma,
515 workload->req,
516 0);
517 if (ret)
518 goto err;
519
520 i915_gem_object_finish_access(bb->obj);
521 bb->accessing = false;
522 }
523 }
524 return 0;
525err:
526 release_shadow_batch_buffer(workload);
527 return ret;
528}
529
530static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
531{
532 struct intel_vgpu_workload *workload =
533 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
534 struct i915_request *rq = workload->req;
535 struct execlist_ring_context *shadow_ring_context =
536 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
537
538 shadow_ring_context->bb_per_ctx_ptr.val =
539 (shadow_ring_context->bb_per_ctx_ptr.val &
540 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
541 shadow_ring_context->rcs_indirect_ctx.val =
542 (shadow_ring_context->rcs_indirect_ctx.val &
543 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
544}
545
546static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
547{
548 struct i915_vma *vma;
549 unsigned char *per_ctx_va =
550 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
551 wa_ctx->indirect_ctx.size;
552
553 if (wa_ctx->indirect_ctx.size == 0)
554 return 0;
555
556 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
557 0, CACHELINE_BYTES, 0);
558 if (IS_ERR(vma))
559 return PTR_ERR(vma);
560
561 /* FIXME: we are not tracking our pinned VMA leaving it
562 * up to the core to fix up the stray pin_count upon
563 * free.
564 */
565
566 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
567
568 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
569 memset(per_ctx_va, 0, CACHELINE_BYTES);
570
571 update_wa_ctx_2_shadow_ctx(wa_ctx);
572 return 0;
573}
574
575static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
576{
577 struct intel_vgpu *vgpu = workload->vgpu;
578 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
579 u32 ring_base;
580
581 ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
582 vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start;
583}
584
585static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
586{
587 struct intel_vgpu *vgpu = workload->vgpu;
588 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
589 struct intel_vgpu_shadow_bb *bb, *pos;
590
591 if (list_empty(&workload->shadow_bb))
592 return;
593
594 bb = list_first_entry(&workload->shadow_bb,
595 struct intel_vgpu_shadow_bb, list);
596
597 mutex_lock(&dev_priv->drm.struct_mutex);
598
599 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
600 if (bb->obj) {
601 if (bb->accessing)
602 i915_gem_object_finish_access(bb->obj);
603
604 if (bb->va && !IS_ERR(bb->va))
605 i915_gem_object_unpin_map(bb->obj);
606
607 if (bb->vma && !IS_ERR(bb->vma)) {
608 i915_vma_unpin(bb->vma);
609 i915_vma_close(bb->vma);
610 }
611 i915_gem_object_put(bb->obj);
612 }
613 list_del(&bb->list);
614 kfree(bb);
615 }
616
617 mutex_unlock(&dev_priv->drm.struct_mutex);
618}
619
620static int prepare_workload(struct intel_vgpu_workload *workload)
621{
622 struct intel_vgpu *vgpu = workload->vgpu;
623 struct intel_vgpu_submission *s = &vgpu->submission;
624 int ring = workload->ring_id;
625 int ret = 0;
626
627 ret = intel_vgpu_pin_mm(workload->shadow_mm);
628 if (ret) {
629 gvt_vgpu_err("fail to vgpu pin mm\n");
630 return ret;
631 }
632
633 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
634 !workload->shadow_mm->ppgtt_mm.shadowed) {
635 intel_vgpu_unpin_mm(workload->shadow_mm);
636 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
637 return -EINVAL;
638 }
639
640 update_shadow_pdps(workload);
641
642 set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context);
643
644 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
645 if (ret) {
646 gvt_vgpu_err("fail to vgpu sync oos pages\n");
647 goto err_unpin_mm;
648 }
649
650 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
651 if (ret) {
652 gvt_vgpu_err("fail to flush post shadow\n");
653 goto err_unpin_mm;
654 }
655
656 ret = copy_workload_to_ring_buffer(workload);
657 if (ret) {
658 gvt_vgpu_err("fail to generate request\n");
659 goto err_unpin_mm;
660 }
661
662 ret = prepare_shadow_batch_buffer(workload);
663 if (ret) {
664 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
665 goto err_unpin_mm;
666 }
667
668 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
669 if (ret) {
670 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
671 goto err_shadow_batch;
672 }
673
674 if (workload->prepare) {
675 ret = workload->prepare(workload);
676 if (ret)
677 goto err_shadow_wa_ctx;
678 }
679
680 return 0;
681err_shadow_wa_ctx:
682 release_shadow_wa_ctx(&workload->wa_ctx);
683err_shadow_batch:
684 release_shadow_batch_buffer(workload);
685err_unpin_mm:
686 intel_vgpu_unpin_mm(workload->shadow_mm);
687 return ret;
688}
689
690static int dispatch_workload(struct intel_vgpu_workload *workload)
691{
692 struct intel_vgpu *vgpu = workload->vgpu;
693 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
694 struct i915_request *rq;
695 int ring_id = workload->ring_id;
696 int ret;
697
698 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
699 ring_id, workload);
700
701 mutex_lock(&vgpu->vgpu_lock);
702 mutex_lock(&dev_priv->drm.struct_mutex);
703
704 ret = intel_gvt_workload_req_alloc(workload);
705 if (ret)
706 goto err_req;
707
708 ret = intel_gvt_scan_and_shadow_workload(workload);
709 if (ret)
710 goto out;
711
712 ret = populate_shadow_context(workload);
713 if (ret) {
714 release_shadow_wa_ctx(&workload->wa_ctx);
715 goto out;
716 }
717
718 ret = prepare_workload(workload);
719out:
720 if (ret) {
721 /* We might still need to add request with
722 * clean ctx to retire it properly..
723 */
724 rq = fetch_and_zero(&workload->req);
725 i915_request_put(rq);
726 }
727
728 if (!IS_ERR_OR_NULL(workload->req)) {
729 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
730 ring_id, workload->req);
731 i915_request_add(workload->req);
732 workload->dispatched = true;
733 }
734err_req:
735 if (ret)
736 workload->status = ret;
737 mutex_unlock(&dev_priv->drm.struct_mutex);
738 mutex_unlock(&vgpu->vgpu_lock);
739 return ret;
740}
741
742static struct intel_vgpu_workload *pick_next_workload(
743 struct intel_gvt *gvt, int ring_id)
744{
745 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
746 struct intel_vgpu_workload *workload = NULL;
747
748 mutex_lock(&gvt->sched_lock);
749
750 /*
751 * no current vgpu / will be scheduled out / no workload
752 * bail out
753 */
754 if (!scheduler->current_vgpu) {
755 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
756 goto out;
757 }
758
759 if (scheduler->need_reschedule) {
760 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
761 goto out;
762 }
763
764 if (!scheduler->current_vgpu->active ||
765 list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
766 goto out;
767
768 /*
769 * still have current workload, maybe the workload disptacher
770 * fail to submit it for some reason, resubmit it.
771 */
772 if (scheduler->current_workload[ring_id]) {
773 workload = scheduler->current_workload[ring_id];
774 gvt_dbg_sched("ring id %d still have current workload %p\n",
775 ring_id, workload);
776 goto out;
777 }
778
779 /*
780 * pick a workload as current workload
781 * once current workload is set, schedule policy routines
782 * will wait the current workload is finished when trying to
783 * schedule out a vgpu.
784 */
785 scheduler->current_workload[ring_id] = container_of(
786 workload_q_head(scheduler->current_vgpu, ring_id)->next,
787 struct intel_vgpu_workload, list);
788
789 workload = scheduler->current_workload[ring_id];
790
791 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
792
793 atomic_inc(&workload->vgpu->submission.running_workload_num);
794out:
795 mutex_unlock(&gvt->sched_lock);
796 return workload;
797}
798
799static void update_guest_context(struct intel_vgpu_workload *workload)
800{
801 struct i915_request *rq = workload->req;
802 struct intel_vgpu *vgpu = workload->vgpu;
803 struct intel_gvt *gvt = vgpu->gvt;
804 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
805 struct execlist_ring_context *shadow_ring_context;
806 struct page *page;
807 void *src;
808 unsigned long context_gpa, context_page_num;
809 int i;
810 struct drm_i915_private *dev_priv = gvt->dev_priv;
811 u32 ring_base;
812 u32 head, tail;
813 u16 wrap_count;
814
815 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
816 workload->ctx_desc.lrca);
817
818 head = workload->rb_head;
819 tail = workload->rb_tail;
820 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
821
822 if (tail < head) {
823 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
824 wrap_count = 0;
825 else
826 wrap_count += 1;
827 }
828
829 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
830
831 ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
832 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
833 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
834
835 context_page_num = rq->engine->context_size;
836 context_page_num = context_page_num >> PAGE_SHIFT;
837
838 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
839 context_page_num = 19;
840
841 i = 2;
842
843 while (i < context_page_num) {
844 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
845 (u32)((workload->ctx_desc.lrca + i) <<
846 I915_GTT_PAGE_SHIFT));
847 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
848 gvt_vgpu_err("invalid guest context descriptor\n");
849 return;
850 }
851
852 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
853 src = kmap(page);
854 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
855 I915_GTT_PAGE_SIZE);
856 kunmap(page);
857 i++;
858 }
859
860 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
861 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
862
863 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
864 shadow_ring_context = kmap(page);
865
866#define COPY_REG(name) \
867 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
868 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
869
870 COPY_REG(ctx_ctrl);
871 COPY_REG(ctx_timestamp);
872
873#undef COPY_REG
874
875 intel_gvt_hypervisor_write_gpa(vgpu,
876 workload->ring_context_gpa +
877 sizeof(*shadow_ring_context),
878 (void *)shadow_ring_context +
879 sizeof(*shadow_ring_context),
880 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
881
882 kunmap(page);
883}
884
885void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
886 intel_engine_mask_t engine_mask)
887{
888 struct intel_vgpu_submission *s = &vgpu->submission;
889 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
890 struct intel_engine_cs *engine;
891 struct intel_vgpu_workload *pos, *n;
892 intel_engine_mask_t tmp;
893
894 /* free the unsubmited workloads in the queues. */
895 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
896 list_for_each_entry_safe(pos, n,
897 &s->workload_q_head[engine->id], list) {
898 list_del_init(&pos->list);
899 intel_vgpu_destroy_workload(pos);
900 }
901 clear_bit(engine->id, s->shadow_ctx_desc_updated);
902 }
903}
904
905static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
906{
907 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
908 struct intel_vgpu_workload *workload =
909 scheduler->current_workload[ring_id];
910 struct intel_vgpu *vgpu = workload->vgpu;
911 struct intel_vgpu_submission *s = &vgpu->submission;
912 struct i915_request *rq = workload->req;
913 int event;
914
915 mutex_lock(&vgpu->vgpu_lock);
916 mutex_lock(&gvt->sched_lock);
917
918 /* For the workload w/ request, needs to wait for the context
919 * switch to make sure request is completed.
920 * For the workload w/o request, directly complete the workload.
921 */
922 if (rq) {
923 wait_event(workload->shadow_ctx_status_wq,
924 !atomic_read(&workload->shadow_ctx_active));
925
926 /* If this request caused GPU hang, req->fence.error will
927 * be set to -EIO. Use -EIO to set workload status so
928 * that when this request caused GPU hang, didn't trigger
929 * context switch interrupt to guest.
930 */
931 if (likely(workload->status == -EINPROGRESS)) {
932 if (workload->req->fence.error == -EIO)
933 workload->status = -EIO;
934 else
935 workload->status = 0;
936 }
937
938 if (!workload->status &&
939 !(vgpu->resetting_eng & BIT(ring_id))) {
940 update_guest_context(workload);
941
942 for_each_set_bit(event, workload->pending_events,
943 INTEL_GVT_EVENT_MAX)
944 intel_vgpu_trigger_virtual_event(vgpu, event);
945 }
946
947 i915_request_put(fetch_and_zero(&workload->req));
948 }
949
950 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
951 ring_id, workload, workload->status);
952
953 scheduler->current_workload[ring_id] = NULL;
954
955 list_del_init(&workload->list);
956
957 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
958 /* if workload->status is not successful means HW GPU
959 * has occurred GPU hang or something wrong with i915/GVT,
960 * and GVT won't inject context switch interrupt to guest.
961 * So this error is a vGPU hang actually to the guest.
962 * According to this we should emunlate a vGPU hang. If
963 * there are pending workloads which are already submitted
964 * from guest, we should clean them up like HW GPU does.
965 *
966 * if it is in middle of engine resetting, the pending
967 * workloads won't be submitted to HW GPU and will be
968 * cleaned up during the resetting process later, so doing
969 * the workload clean up here doesn't have any impact.
970 **/
971 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
972 }
973
974 workload->complete(workload);
975
976 atomic_dec(&s->running_workload_num);
977 wake_up(&scheduler->workload_complete_wq);
978
979 if (gvt->scheduler.need_reschedule)
980 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
981
982 mutex_unlock(&gvt->sched_lock);
983 mutex_unlock(&vgpu->vgpu_lock);
984}
985
986struct workload_thread_param {
987 struct intel_gvt *gvt;
988 int ring_id;
989};
990
991static int workload_thread(void *priv)
992{
993 struct workload_thread_param *p = (struct workload_thread_param *)priv;
994 struct intel_gvt *gvt = p->gvt;
995 int ring_id = p->ring_id;
996 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
997 struct intel_vgpu_workload *workload = NULL;
998 struct intel_vgpu *vgpu = NULL;
999 int ret;
1000 bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
1001 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1002 struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
1003
1004 kfree(p);
1005
1006 gvt_dbg_core("workload thread for ring %d started\n", ring_id);
1007
1008 while (!kthread_should_stop()) {
1009 add_wait_queue(&scheduler->waitq[ring_id], &wait);
1010 do {
1011 workload = pick_next_workload(gvt, ring_id);
1012 if (workload)
1013 break;
1014 wait_woken(&wait, TASK_INTERRUPTIBLE,
1015 MAX_SCHEDULE_TIMEOUT);
1016 } while (!kthread_should_stop());
1017 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1018
1019 if (!workload)
1020 break;
1021
1022 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1023 workload->ring_id, workload,
1024 workload->vgpu->id);
1025
1026 intel_runtime_pm_get(rpm);
1027
1028 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1029 workload->ring_id, workload);
1030
1031 if (need_force_wake)
1032 intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1033 FORCEWAKE_ALL);
1034 /*
1035 * Update the vReg of the vGPU which submitted this
1036 * workload. The vGPU may use these registers for checking
1037 * the context state. The value comes from GPU commands
1038 * in this workload.
1039 */
1040 update_vreg_in_ctx(workload);
1041
1042 ret = dispatch_workload(workload);
1043
1044 if (ret) {
1045 vgpu = workload->vgpu;
1046 gvt_vgpu_err("fail to dispatch workload, skip\n");
1047 goto complete;
1048 }
1049
1050 gvt_dbg_sched("ring id %d wait workload %p\n",
1051 workload->ring_id, workload);
1052 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1053
1054complete:
1055 gvt_dbg_sched("will complete workload %p, status: %d\n",
1056 workload, workload->status);
1057
1058 complete_current_workload(gvt, ring_id);
1059
1060 if (need_force_wake)
1061 intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1062 FORCEWAKE_ALL);
1063
1064 intel_runtime_pm_put_unchecked(rpm);
1065 if (ret && (vgpu_is_vm_unhealthy(ret)))
1066 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1067 }
1068 return 0;
1069}
1070
1071void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1072{
1073 struct intel_vgpu_submission *s = &vgpu->submission;
1074 struct intel_gvt *gvt = vgpu->gvt;
1075 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1076
1077 if (atomic_read(&s->running_workload_num)) {
1078 gvt_dbg_sched("wait vgpu idle\n");
1079
1080 wait_event(scheduler->workload_complete_wq,
1081 !atomic_read(&s->running_workload_num));
1082 }
1083}
1084
1085void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1086{
1087 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1088 struct intel_engine_cs *engine;
1089 enum intel_engine_id i;
1090
1091 gvt_dbg_core("clean workload scheduler\n");
1092
1093 for_each_engine(engine, gvt->dev_priv, i) {
1094 atomic_notifier_chain_unregister(
1095 &engine->context_status_notifier,
1096 &gvt->shadow_ctx_notifier_block[i]);
1097 kthread_stop(scheduler->thread[i]);
1098 }
1099}
1100
1101int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1102{
1103 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1104 struct workload_thread_param *param = NULL;
1105 struct intel_engine_cs *engine;
1106 enum intel_engine_id i;
1107 int ret;
1108
1109 gvt_dbg_core("init workload scheduler\n");
1110
1111 init_waitqueue_head(&scheduler->workload_complete_wq);
1112
1113 for_each_engine(engine, gvt->dev_priv, i) {
1114 init_waitqueue_head(&scheduler->waitq[i]);
1115
1116 param = kzalloc(sizeof(*param), GFP_KERNEL);
1117 if (!param) {
1118 ret = -ENOMEM;
1119 goto err;
1120 }
1121
1122 param->gvt = gvt;
1123 param->ring_id = i;
1124
1125 scheduler->thread[i] = kthread_run(workload_thread, param,
1126 "gvt workload %d", i);
1127 if (IS_ERR(scheduler->thread[i])) {
1128 gvt_err("fail to create workload thread\n");
1129 ret = PTR_ERR(scheduler->thread[i]);
1130 goto err;
1131 }
1132
1133 gvt->shadow_ctx_notifier_block[i].notifier_call =
1134 shadow_context_status_change;
1135 atomic_notifier_chain_register(&engine->context_status_notifier,
1136 &gvt->shadow_ctx_notifier_block[i]);
1137 }
1138 return 0;
1139err:
1140 intel_gvt_clean_workload_scheduler(gvt);
1141 kfree(param);
1142 param = NULL;
1143 return ret;
1144}
1145
1146static void
1147i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1148 struct i915_ppgtt *ppgtt)
1149{
1150 int i;
1151
1152 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1153 px_dma(ppgtt->pd) = s->i915_context_pml4;
1154 } else {
1155 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1156 struct i915_page_directory * const pd =
1157 i915_pd_entry(ppgtt->pd, i);
1158
1159 px_dma(pd) = s->i915_context_pdps[i];
1160 }
1161 }
1162}
1163
1164/**
1165 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1166 * @vgpu: a vGPU
1167 *
1168 * This function is called when a vGPU is being destroyed.
1169 *
1170 */
1171void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1172{
1173 struct intel_vgpu_submission *s = &vgpu->submission;
1174 struct intel_engine_cs *engine;
1175 enum intel_engine_id id;
1176
1177 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1178
1179 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1180 for_each_engine(engine, vgpu->gvt->dev_priv, id)
1181 intel_context_unpin(s->shadow[id]);
1182
1183 kmem_cache_destroy(s->workloads);
1184}
1185
1186
1187/**
1188 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1189 * @vgpu: a vGPU
1190 * @engine_mask: engines expected to be reset
1191 *
1192 * This function is called when a vGPU is being destroyed.
1193 *
1194 */
1195void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1196 intel_engine_mask_t engine_mask)
1197{
1198 struct intel_vgpu_submission *s = &vgpu->submission;
1199
1200 if (!s->active)
1201 return;
1202
1203 intel_vgpu_clean_workloads(vgpu, engine_mask);
1204 s->ops->reset(vgpu, engine_mask);
1205}
1206
1207static void
1208i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1209 struct i915_ppgtt *ppgtt)
1210{
1211 int i;
1212
1213 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1214 s->i915_context_pml4 = px_dma(ppgtt->pd);
1215 } else {
1216 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1217 struct i915_page_directory * const pd =
1218 i915_pd_entry(ppgtt->pd, i);
1219
1220 s->i915_context_pdps[i] = px_dma(pd);
1221 }
1222 }
1223}
1224
1225/**
1226 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1227 * @vgpu: a vGPU
1228 *
1229 * This function is called when a vGPU is being created.
1230 *
1231 * Returns:
1232 * Zero on success, negative error code if failed.
1233 *
1234 */
1235int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1236{
1237 struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1238 struct intel_vgpu_submission *s = &vgpu->submission;
1239 struct intel_engine_cs *engine;
1240 struct i915_gem_context *ctx;
1241 enum intel_engine_id i;
1242 int ret;
1243
1244 mutex_lock(&i915->drm.struct_mutex);
1245
1246 ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MAX);
1247 if (IS_ERR(ctx)) {
1248 ret = PTR_ERR(ctx);
1249 goto out_unlock;
1250 }
1251
1252 i915_gem_context_set_force_single_submission(ctx);
1253
1254 i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1255
1256 for_each_engine(engine, i915, i) {
1257 struct intel_context *ce;
1258
1259 INIT_LIST_HEAD(&s->workload_q_head[i]);
1260 s->shadow[i] = ERR_PTR(-EINVAL);
1261
1262 ce = intel_context_create(ctx, engine);
1263 if (IS_ERR(ce)) {
1264 ret = PTR_ERR(ce);
1265 goto out_shadow_ctx;
1266 }
1267
1268 if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1269 const unsigned int ring_size = 512 * SZ_4K;
1270
1271 ce->ring = __intel_context_ring_size(ring_size);
1272 }
1273
1274 ret = intel_context_pin(ce);
1275 intel_context_put(ce);
1276 if (ret)
1277 goto out_shadow_ctx;
1278
1279 s->shadow[i] = ce;
1280 }
1281
1282 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1283
1284 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1285 sizeof(struct intel_vgpu_workload), 0,
1286 SLAB_HWCACHE_ALIGN,
1287 offsetof(struct intel_vgpu_workload, rb_tail),
1288 sizeof_field(struct intel_vgpu_workload, rb_tail),
1289 NULL);
1290
1291 if (!s->workloads) {
1292 ret = -ENOMEM;
1293 goto out_shadow_ctx;
1294 }
1295
1296 atomic_set(&s->running_workload_num, 0);
1297 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1298
1299 i915_gem_context_put(ctx);
1300 mutex_unlock(&i915->drm.struct_mutex);
1301 return 0;
1302
1303out_shadow_ctx:
1304 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1305 for_each_engine(engine, i915, i) {
1306 if (IS_ERR(s->shadow[i]))
1307 break;
1308
1309 intel_context_unpin(s->shadow[i]);
1310 intel_context_put(s->shadow[i]);
1311 }
1312 i915_gem_context_put(ctx);
1313out_unlock:
1314 mutex_unlock(&i915->drm.struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * intel_vgpu_select_submission_ops - select virtual submission interface
1320 * @vgpu: a vGPU
1321 * @engine_mask: either ALL_ENGINES or target engine mask
1322 * @interface: expected vGPU virtual submission interface
1323 *
1324 * This function is called when guest configures submission interface.
1325 *
1326 * Returns:
1327 * Zero on success, negative error code if failed.
1328 *
1329 */
1330int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1331 intel_engine_mask_t engine_mask,
1332 unsigned int interface)
1333{
1334 struct intel_vgpu_submission *s = &vgpu->submission;
1335 const struct intel_vgpu_submission_ops *ops[] = {
1336 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1337 &intel_vgpu_execlist_submission_ops,
1338 };
1339 int ret;
1340
1341 if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1342 return -EINVAL;
1343
1344 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1345 return -EINVAL;
1346
1347 if (s->active)
1348 s->ops->clean(vgpu, engine_mask);
1349
1350 if (interface == 0) {
1351 s->ops = NULL;
1352 s->virtual_submission_interface = 0;
1353 s->active = false;
1354 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1355 return 0;
1356 }
1357
1358 ret = ops[interface]->init(vgpu, engine_mask);
1359 if (ret)
1360 return ret;
1361
1362 s->ops = ops[interface];
1363 s->virtual_submission_interface = interface;
1364 s->active = true;
1365
1366 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1367 vgpu->id, s->ops->name);
1368
1369 return 0;
1370}
1371
1372/**
1373 * intel_vgpu_destroy_workload - destroy a vGPU workload
1374 * @workload: workload to destroy
1375 *
1376 * This function is called when destroy a vGPU workload.
1377 *
1378 */
1379void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1380{
1381 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1382
1383 release_shadow_batch_buffer(workload);
1384 release_shadow_wa_ctx(&workload->wa_ctx);
1385
1386 if (workload->shadow_mm)
1387 intel_vgpu_mm_put(workload->shadow_mm);
1388
1389 kmem_cache_free(s->workloads, workload);
1390}
1391
1392static struct intel_vgpu_workload *
1393alloc_workload(struct intel_vgpu *vgpu)
1394{
1395 struct intel_vgpu_submission *s = &vgpu->submission;
1396 struct intel_vgpu_workload *workload;
1397
1398 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1399 if (!workload)
1400 return ERR_PTR(-ENOMEM);
1401
1402 INIT_LIST_HEAD(&workload->list);
1403 INIT_LIST_HEAD(&workload->shadow_bb);
1404
1405 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1406 atomic_set(&workload->shadow_ctx_active, 0);
1407
1408 workload->status = -EINPROGRESS;
1409 workload->vgpu = vgpu;
1410
1411 return workload;
1412}
1413
1414#define RING_CTX_OFF(x) \
1415 offsetof(struct execlist_ring_context, x)
1416
1417static void read_guest_pdps(struct intel_vgpu *vgpu,
1418 u64 ring_context_gpa, u32 pdp[8])
1419{
1420 u64 gpa;
1421 int i;
1422
1423 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1424
1425 for (i = 0; i < 8; i++)
1426 intel_gvt_hypervisor_read_gpa(vgpu,
1427 gpa + i * 8, &pdp[7 - i], 4);
1428}
1429
1430static int prepare_mm(struct intel_vgpu_workload *workload)
1431{
1432 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1433 struct intel_vgpu_mm *mm;
1434 struct intel_vgpu *vgpu = workload->vgpu;
1435 enum intel_gvt_gtt_type root_entry_type;
1436 u64 pdps[GVT_RING_CTX_NR_PDPS];
1437
1438 switch (desc->addressing_mode) {
1439 case 1: /* legacy 32-bit */
1440 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1441 break;
1442 case 3: /* legacy 64-bit */
1443 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1444 break;
1445 default:
1446 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1447 return -EINVAL;
1448 }
1449
1450 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1451
1452 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1453 if (IS_ERR(mm))
1454 return PTR_ERR(mm);
1455
1456 workload->shadow_mm = mm;
1457 return 0;
1458}
1459
1460#define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1461 ((a)->lrca == (b)->lrca))
1462
1463/**
1464 * intel_vgpu_create_workload - create a vGPU workload
1465 * @vgpu: a vGPU
1466 * @ring_id: ring index
1467 * @desc: a guest context descriptor
1468 *
1469 * This function is called when creating a vGPU workload.
1470 *
1471 * Returns:
1472 * struct intel_vgpu_workload * on success, negative error code in
1473 * pointer if failed.
1474 *
1475 */
1476struct intel_vgpu_workload *
1477intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1478 struct execlist_ctx_descriptor_format *desc)
1479{
1480 struct intel_vgpu_submission *s = &vgpu->submission;
1481 struct list_head *q = workload_q_head(vgpu, ring_id);
1482 struct intel_vgpu_workload *last_workload = NULL;
1483 struct intel_vgpu_workload *workload = NULL;
1484 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1485 u64 ring_context_gpa;
1486 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1487 u32 guest_head;
1488 int ret;
1489
1490 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1491 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1492 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1493 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1494 return ERR_PTR(-EINVAL);
1495 }
1496
1497 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1498 RING_CTX_OFF(ring_header.val), &head, 4);
1499
1500 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1501 RING_CTX_OFF(ring_tail.val), &tail, 4);
1502
1503 guest_head = head;
1504
1505 head &= RB_HEAD_OFF_MASK;
1506 tail &= RB_TAIL_OFF_MASK;
1507
1508 list_for_each_entry_reverse(last_workload, q, list) {
1509
1510 if (same_context(&last_workload->ctx_desc, desc)) {
1511 gvt_dbg_el("ring id %d cur workload == last\n",
1512 ring_id);
1513 gvt_dbg_el("ctx head %x real head %lx\n", head,
1514 last_workload->rb_tail);
1515 /*
1516 * cannot use guest context head pointer here,
1517 * as it might not be updated at this time
1518 */
1519 head = last_workload->rb_tail;
1520 break;
1521 }
1522 }
1523
1524 gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1525
1526 /* record some ring buffer register values for scan and shadow */
1527 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1528 RING_CTX_OFF(rb_start.val), &start, 4);
1529 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1530 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1531 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1532 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1533
1534 if (!intel_gvt_ggtt_validate_range(vgpu, start,
1535 _RING_CTL_BUF_SIZE(ctl))) {
1536 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1537 return ERR_PTR(-EINVAL);
1538 }
1539
1540 workload = alloc_workload(vgpu);
1541 if (IS_ERR(workload))
1542 return workload;
1543
1544 workload->ring_id = ring_id;
1545 workload->ctx_desc = *desc;
1546 workload->ring_context_gpa = ring_context_gpa;
1547 workload->rb_head = head;
1548 workload->guest_rb_head = guest_head;
1549 workload->rb_tail = tail;
1550 workload->rb_start = start;
1551 workload->rb_ctl = ctl;
1552
1553 if (ring_id == RCS0) {
1554 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1555 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1556 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1557 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1558
1559 workload->wa_ctx.indirect_ctx.guest_gma =
1560 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1561 workload->wa_ctx.indirect_ctx.size =
1562 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1563 CACHELINE_BYTES;
1564
1565 if (workload->wa_ctx.indirect_ctx.size != 0) {
1566 if (!intel_gvt_ggtt_validate_range(vgpu,
1567 workload->wa_ctx.indirect_ctx.guest_gma,
1568 workload->wa_ctx.indirect_ctx.size)) {
1569 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1570 workload->wa_ctx.indirect_ctx.guest_gma);
1571 kmem_cache_free(s->workloads, workload);
1572 return ERR_PTR(-EINVAL);
1573 }
1574 }
1575
1576 workload->wa_ctx.per_ctx.guest_gma =
1577 per_ctx & PER_CTX_ADDR_MASK;
1578 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1579 if (workload->wa_ctx.per_ctx.valid) {
1580 if (!intel_gvt_ggtt_validate_range(vgpu,
1581 workload->wa_ctx.per_ctx.guest_gma,
1582 CACHELINE_BYTES)) {
1583 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1584 workload->wa_ctx.per_ctx.guest_gma);
1585 kmem_cache_free(s->workloads, workload);
1586 return ERR_PTR(-EINVAL);
1587 }
1588 }
1589 }
1590
1591 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1592 workload, ring_id, head, tail, start, ctl);
1593
1594 ret = prepare_mm(workload);
1595 if (ret) {
1596 kmem_cache_free(s->workloads, workload);
1597 return ERR_PTR(ret);
1598 }
1599
1600 /* Only scan and shadow the first workload in the queue
1601 * as there is only one pre-allocated buf-obj for shadow.
1602 */
1603 if (list_empty(workload_q_head(vgpu, ring_id))) {
1604 intel_runtime_pm_get(&dev_priv->runtime_pm);
1605 mutex_lock(&dev_priv->drm.struct_mutex);
1606 ret = intel_gvt_scan_and_shadow_workload(workload);
1607 mutex_unlock(&dev_priv->drm.struct_mutex);
1608 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1609 }
1610
1611 if (ret) {
1612 if (vgpu_is_vm_unhealthy(ret))
1613 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1614 intel_vgpu_destroy_workload(workload);
1615 return ERR_PTR(ret);
1616 }
1617
1618 return workload;
1619}
1620
1621/**
1622 * intel_vgpu_queue_workload - Qeue a vGPU workload
1623 * @workload: the workload to queue in
1624 */
1625void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1626{
1627 list_add_tail(&workload->list,
1628 workload_q_head(workload->vgpu, workload->ring_id));
1629 intel_gvt_kick_schedule(workload->vgpu->gvt);
1630 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1631}