b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright © 2008-2015 Intel Corporation |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice (including the next |
| 12 | * paragraph) shall be included in all copies or substantial portions of the |
| 13 | * Software. |
| 14 | * |
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| 21 | * IN THE SOFTWARE. |
| 22 | * |
| 23 | * Authors: |
| 24 | * Eric Anholt <eric@anholt.net> |
| 25 | * |
| 26 | */ |
| 27 | |
| 28 | #include <drm/drm_vma_manager.h> |
| 29 | #include <drm/i915_drm.h> |
| 30 | #include <linux/dma-fence-array.h> |
| 31 | #include <linux/kthread.h> |
| 32 | #include <linux/dma-resv.h> |
| 33 | #include <linux/shmem_fs.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/stop_machine.h> |
| 36 | #include <linux/swap.h> |
| 37 | #include <linux/pci.h> |
| 38 | #include <linux/dma-buf.h> |
| 39 | #include <linux/mman.h> |
| 40 | |
| 41 | #include "display/intel_display.h" |
| 42 | #include "display/intel_frontbuffer.h" |
| 43 | |
| 44 | #include "gem/i915_gem_clflush.h" |
| 45 | #include "gem/i915_gem_context.h" |
| 46 | #include "gem/i915_gem_ioctls.h" |
| 47 | #include "gem/i915_gem_pm.h" |
| 48 | #include "gem/i915_gemfs.h" |
| 49 | #include "gt/intel_engine_user.h" |
| 50 | #include "gt/intel_gt.h" |
| 51 | #include "gt/intel_gt_pm.h" |
| 52 | #include "gt/intel_mocs.h" |
| 53 | #include "gt/intel_reset.h" |
| 54 | #include "gt/intel_renderstate.h" |
| 55 | #include "gt/intel_workarounds.h" |
| 56 | |
| 57 | #include "i915_drv.h" |
| 58 | #include "i915_scatterlist.h" |
| 59 | #include "i915_trace.h" |
| 60 | #include "i915_vgpu.h" |
| 61 | |
| 62 | #include "intel_pm.h" |
| 63 | |
| 64 | static int |
| 65 | insert_mappable_node(struct i915_ggtt *ggtt, |
| 66 | struct drm_mm_node *node, u32 size) |
| 67 | { |
| 68 | memset(node, 0, sizeof(*node)); |
| 69 | return drm_mm_insert_node_in_range(&ggtt->vm.mm, node, |
| 70 | size, 0, I915_COLOR_UNEVICTABLE, |
| 71 | 0, ggtt->mappable_end, |
| 72 | DRM_MM_INSERT_LOW); |
| 73 | } |
| 74 | |
| 75 | static void |
| 76 | remove_mappable_node(struct drm_mm_node *node) |
| 77 | { |
| 78 | drm_mm_remove_node(node); |
| 79 | } |
| 80 | |
| 81 | int |
| 82 | i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, |
| 83 | struct drm_file *file) |
| 84 | { |
| 85 | struct i915_ggtt *ggtt = &to_i915(dev)->ggtt; |
| 86 | struct drm_i915_gem_get_aperture *args = data; |
| 87 | struct i915_vma *vma; |
| 88 | u64 pinned; |
| 89 | |
| 90 | mutex_lock(&ggtt->vm.mutex); |
| 91 | |
| 92 | pinned = ggtt->vm.reserved; |
| 93 | list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) |
| 94 | if (i915_vma_is_pinned(vma)) |
| 95 | pinned += vma->node.size; |
| 96 | |
| 97 | mutex_unlock(&ggtt->vm.mutex); |
| 98 | |
| 99 | args->aper_size = ggtt->vm.total; |
| 100 | args->aper_available_size = args->aper_size - pinned; |
| 101 | |
| 102 | return 0; |
| 103 | } |
| 104 | |
| 105 | int i915_gem_object_unbind(struct drm_i915_gem_object *obj, |
| 106 | unsigned long flags) |
| 107 | { |
| 108 | struct i915_vma *vma; |
| 109 | LIST_HEAD(still_in_list); |
| 110 | int ret = 0; |
| 111 | |
| 112 | lockdep_assert_held(&obj->base.dev->struct_mutex); |
| 113 | |
| 114 | spin_lock(&obj->vma.lock); |
| 115 | while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, |
| 116 | struct i915_vma, |
| 117 | obj_link))) { |
| 118 | list_move_tail(&vma->obj_link, &still_in_list); |
| 119 | spin_unlock(&obj->vma.lock); |
| 120 | |
| 121 | ret = -EBUSY; |
| 122 | if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || |
| 123 | !i915_vma_is_active(vma)) |
| 124 | ret = i915_vma_unbind(vma); |
| 125 | |
| 126 | spin_lock(&obj->vma.lock); |
| 127 | } |
| 128 | list_splice(&still_in_list, &obj->vma.list); |
| 129 | spin_unlock(&obj->vma.lock); |
| 130 | |
| 131 | return ret; |
| 132 | } |
| 133 | |
| 134 | static int |
| 135 | i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, |
| 136 | struct drm_i915_gem_pwrite *args, |
| 137 | struct drm_file *file) |
| 138 | { |
| 139 | void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset; |
| 140 | char __user *user_data = u64_to_user_ptr(args->data_ptr); |
| 141 | |
| 142 | /* |
| 143 | * We manually control the domain here and pretend that it |
| 144 | * remains coherent i.e. in the GTT domain, like shmem_pwrite. |
| 145 | */ |
| 146 | intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU); |
| 147 | |
| 148 | if (copy_from_user(vaddr, user_data, args->size)) |
| 149 | return -EFAULT; |
| 150 | |
| 151 | drm_clflush_virt_range(vaddr, args->size); |
| 152 | intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt); |
| 153 | |
| 154 | intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU); |
| 155 | return 0; |
| 156 | } |
| 157 | |
| 158 | static int |
| 159 | i915_gem_create(struct drm_file *file, |
| 160 | struct drm_i915_private *dev_priv, |
| 161 | u64 *size_p, |
| 162 | u32 *handle_p) |
| 163 | { |
| 164 | struct drm_i915_gem_object *obj; |
| 165 | u32 handle; |
| 166 | u64 size; |
| 167 | int ret; |
| 168 | |
| 169 | size = round_up(*size_p, PAGE_SIZE); |
| 170 | if (size == 0) |
| 171 | return -EINVAL; |
| 172 | |
| 173 | /* Allocate the new object */ |
| 174 | obj = i915_gem_object_create_shmem(dev_priv, size); |
| 175 | if (IS_ERR(obj)) |
| 176 | return PTR_ERR(obj); |
| 177 | |
| 178 | ret = drm_gem_handle_create(file, &obj->base, &handle); |
| 179 | /* drop reference from allocate - handle holds it now */ |
| 180 | i915_gem_object_put(obj); |
| 181 | if (ret) |
| 182 | return ret; |
| 183 | |
| 184 | *handle_p = handle; |
| 185 | *size_p = size; |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | int |
| 190 | i915_gem_dumb_create(struct drm_file *file, |
| 191 | struct drm_device *dev, |
| 192 | struct drm_mode_create_dumb *args) |
| 193 | { |
| 194 | int cpp = DIV_ROUND_UP(args->bpp, 8); |
| 195 | u32 format; |
| 196 | |
| 197 | switch (cpp) { |
| 198 | case 1: |
| 199 | format = DRM_FORMAT_C8; |
| 200 | break; |
| 201 | case 2: |
| 202 | format = DRM_FORMAT_RGB565; |
| 203 | break; |
| 204 | case 4: |
| 205 | format = DRM_FORMAT_XRGB8888; |
| 206 | break; |
| 207 | default: |
| 208 | return -EINVAL; |
| 209 | } |
| 210 | |
| 211 | /* have to work out size/pitch and return them */ |
| 212 | args->pitch = ALIGN(args->width * cpp, 64); |
| 213 | |
| 214 | /* align stride to page size so that we can remap */ |
| 215 | if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format, |
| 216 | DRM_FORMAT_MOD_LINEAR)) |
| 217 | args->pitch = ALIGN(args->pitch, 4096); |
| 218 | |
| 219 | args->size = args->pitch * args->height; |
| 220 | return i915_gem_create(file, to_i915(dev), |
| 221 | &args->size, &args->handle); |
| 222 | } |
| 223 | |
| 224 | /** |
| 225 | * Creates a new mm object and returns a handle to it. |
| 226 | * @dev: drm device pointer |
| 227 | * @data: ioctl data blob |
| 228 | * @file: drm file pointer |
| 229 | */ |
| 230 | int |
| 231 | i915_gem_create_ioctl(struct drm_device *dev, void *data, |
| 232 | struct drm_file *file) |
| 233 | { |
| 234 | struct drm_i915_private *dev_priv = to_i915(dev); |
| 235 | struct drm_i915_gem_create *args = data; |
| 236 | |
| 237 | i915_gem_flush_free_objects(dev_priv); |
| 238 | |
| 239 | return i915_gem_create(file, dev_priv, |
| 240 | &args->size, &args->handle); |
| 241 | } |
| 242 | |
| 243 | static int |
| 244 | shmem_pread(struct page *page, int offset, int len, char __user *user_data, |
| 245 | bool needs_clflush) |
| 246 | { |
| 247 | char *vaddr; |
| 248 | int ret; |
| 249 | |
| 250 | vaddr = kmap(page); |
| 251 | |
| 252 | if (needs_clflush) |
| 253 | drm_clflush_virt_range(vaddr + offset, len); |
| 254 | |
| 255 | ret = __copy_to_user(user_data, vaddr + offset, len); |
| 256 | |
| 257 | kunmap(page); |
| 258 | |
| 259 | return ret ? -EFAULT : 0; |
| 260 | } |
| 261 | |
| 262 | static int |
| 263 | i915_gem_shmem_pread(struct drm_i915_gem_object *obj, |
| 264 | struct drm_i915_gem_pread *args) |
| 265 | { |
| 266 | unsigned int needs_clflush; |
| 267 | unsigned int idx, offset; |
| 268 | struct dma_fence *fence; |
| 269 | char __user *user_data; |
| 270 | u64 remain; |
| 271 | int ret; |
| 272 | |
| 273 | ret = i915_gem_object_prepare_read(obj, &needs_clflush); |
| 274 | if (ret) |
| 275 | return ret; |
| 276 | |
| 277 | fence = i915_gem_object_lock_fence(obj); |
| 278 | i915_gem_object_finish_access(obj); |
| 279 | if (!fence) |
| 280 | return -ENOMEM; |
| 281 | |
| 282 | remain = args->size; |
| 283 | user_data = u64_to_user_ptr(args->data_ptr); |
| 284 | offset = offset_in_page(args->offset); |
| 285 | for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| 286 | struct page *page = i915_gem_object_get_page(obj, idx); |
| 287 | unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); |
| 288 | |
| 289 | ret = shmem_pread(page, offset, length, user_data, |
| 290 | needs_clflush); |
| 291 | if (ret) |
| 292 | break; |
| 293 | |
| 294 | remain -= length; |
| 295 | user_data += length; |
| 296 | offset = 0; |
| 297 | } |
| 298 | |
| 299 | i915_gem_object_unlock_fence(obj, fence); |
| 300 | return ret; |
| 301 | } |
| 302 | |
| 303 | static inline bool |
| 304 | gtt_user_read(struct io_mapping *mapping, |
| 305 | loff_t base, int offset, |
| 306 | char __user *user_data, int length) |
| 307 | { |
| 308 | void __iomem *vaddr; |
| 309 | unsigned long unwritten; |
| 310 | |
| 311 | /* We can use the cpu mem copy function because this is X86. */ |
| 312 | vaddr = io_mapping_map_atomic_wc(mapping, base); |
| 313 | unwritten = __copy_to_user_inatomic(user_data, |
| 314 | (void __force *)vaddr + offset, |
| 315 | length); |
| 316 | io_mapping_unmap_atomic(vaddr); |
| 317 | if (unwritten) { |
| 318 | vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| 319 | unwritten = copy_to_user(user_data, |
| 320 | (void __force *)vaddr + offset, |
| 321 | length); |
| 322 | io_mapping_unmap(vaddr); |
| 323 | } |
| 324 | return unwritten; |
| 325 | } |
| 326 | |
| 327 | static int |
| 328 | i915_gem_gtt_pread(struct drm_i915_gem_object *obj, |
| 329 | const struct drm_i915_gem_pread *args) |
| 330 | { |
| 331 | struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| 332 | struct i915_ggtt *ggtt = &i915->ggtt; |
| 333 | intel_wakeref_t wakeref; |
| 334 | struct drm_mm_node node; |
| 335 | struct dma_fence *fence; |
| 336 | void __user *user_data; |
| 337 | struct i915_vma *vma; |
| 338 | u64 remain, offset; |
| 339 | int ret; |
| 340 | |
| 341 | ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| 342 | if (ret) |
| 343 | return ret; |
| 344 | |
| 345 | wakeref = intel_runtime_pm_get(&i915->runtime_pm); |
| 346 | vma = ERR_PTR(-ENODEV); |
| 347 | if (!i915_gem_object_is_tiled(obj)) |
| 348 | vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| 349 | PIN_MAPPABLE | |
| 350 | PIN_NONBLOCK /* NOWARN */ | |
| 351 | PIN_NOEVICT); |
| 352 | if (!IS_ERR(vma)) { |
| 353 | node.start = i915_ggtt_offset(vma); |
| 354 | node.allocated = false; |
| 355 | } else { |
| 356 | ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); |
| 357 | if (ret) |
| 358 | goto out_unlock; |
| 359 | GEM_BUG_ON(!node.allocated); |
| 360 | } |
| 361 | |
| 362 | mutex_unlock(&i915->drm.struct_mutex); |
| 363 | |
| 364 | ret = i915_gem_object_lock_interruptible(obj); |
| 365 | if (ret) |
| 366 | goto out_unpin; |
| 367 | |
| 368 | ret = i915_gem_object_set_to_gtt_domain(obj, false); |
| 369 | if (ret) { |
| 370 | i915_gem_object_unlock(obj); |
| 371 | goto out_unpin; |
| 372 | } |
| 373 | |
| 374 | fence = i915_gem_object_lock_fence(obj); |
| 375 | i915_gem_object_unlock(obj); |
| 376 | if (!fence) { |
| 377 | ret = -ENOMEM; |
| 378 | goto out_unpin; |
| 379 | } |
| 380 | |
| 381 | user_data = u64_to_user_ptr(args->data_ptr); |
| 382 | remain = args->size; |
| 383 | offset = args->offset; |
| 384 | |
| 385 | while (remain > 0) { |
| 386 | /* Operation in this page |
| 387 | * |
| 388 | * page_base = page offset within aperture |
| 389 | * page_offset = offset within page |
| 390 | * page_length = bytes to copy for this page |
| 391 | */ |
| 392 | u32 page_base = node.start; |
| 393 | unsigned page_offset = offset_in_page(offset); |
| 394 | unsigned page_length = PAGE_SIZE - page_offset; |
| 395 | page_length = remain < page_length ? remain : page_length; |
| 396 | if (node.allocated) { |
| 397 | ggtt->vm.insert_page(&ggtt->vm, |
| 398 | i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), |
| 399 | node.start, I915_CACHE_NONE, 0); |
| 400 | } else { |
| 401 | page_base += offset & PAGE_MASK; |
| 402 | } |
| 403 | |
| 404 | if (gtt_user_read(&ggtt->iomap, page_base, page_offset, |
| 405 | user_data, page_length)) { |
| 406 | ret = -EFAULT; |
| 407 | break; |
| 408 | } |
| 409 | |
| 410 | remain -= page_length; |
| 411 | user_data += page_length; |
| 412 | offset += page_length; |
| 413 | } |
| 414 | |
| 415 | i915_gem_object_unlock_fence(obj, fence); |
| 416 | out_unpin: |
| 417 | mutex_lock(&i915->drm.struct_mutex); |
| 418 | if (node.allocated) { |
| 419 | ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); |
| 420 | remove_mappable_node(&node); |
| 421 | } else { |
| 422 | i915_vma_unpin(vma); |
| 423 | } |
| 424 | out_unlock: |
| 425 | intel_runtime_pm_put(&i915->runtime_pm, wakeref); |
| 426 | mutex_unlock(&i915->drm.struct_mutex); |
| 427 | |
| 428 | return ret; |
| 429 | } |
| 430 | |
| 431 | /** |
| 432 | * Reads data from the object referenced by handle. |
| 433 | * @dev: drm device pointer |
| 434 | * @data: ioctl data blob |
| 435 | * @file: drm file pointer |
| 436 | * |
| 437 | * On error, the contents of *data are undefined. |
| 438 | */ |
| 439 | int |
| 440 | i915_gem_pread_ioctl(struct drm_device *dev, void *data, |
| 441 | struct drm_file *file) |
| 442 | { |
| 443 | struct drm_i915_gem_pread *args = data; |
| 444 | struct drm_i915_gem_object *obj; |
| 445 | int ret; |
| 446 | |
| 447 | if (args->size == 0) |
| 448 | return 0; |
| 449 | |
| 450 | if (!access_ok(u64_to_user_ptr(args->data_ptr), |
| 451 | args->size)) |
| 452 | return -EFAULT; |
| 453 | |
| 454 | obj = i915_gem_object_lookup(file, args->handle); |
| 455 | if (!obj) |
| 456 | return -ENOENT; |
| 457 | |
| 458 | /* Bounds check source. */ |
| 459 | if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { |
| 460 | ret = -EINVAL; |
| 461 | goto out; |
| 462 | } |
| 463 | |
| 464 | trace_i915_gem_object_pread(obj, args->offset, args->size); |
| 465 | |
| 466 | ret = i915_gem_object_wait(obj, |
| 467 | I915_WAIT_INTERRUPTIBLE, |
| 468 | MAX_SCHEDULE_TIMEOUT); |
| 469 | if (ret) |
| 470 | goto out; |
| 471 | |
| 472 | ret = i915_gem_object_pin_pages(obj); |
| 473 | if (ret) |
| 474 | goto out; |
| 475 | |
| 476 | ret = i915_gem_shmem_pread(obj, args); |
| 477 | if (ret == -EFAULT || ret == -ENODEV) |
| 478 | ret = i915_gem_gtt_pread(obj, args); |
| 479 | |
| 480 | i915_gem_object_unpin_pages(obj); |
| 481 | out: |
| 482 | i915_gem_object_put(obj); |
| 483 | return ret; |
| 484 | } |
| 485 | |
| 486 | /* This is the fast write path which cannot handle |
| 487 | * page faults in the source data |
| 488 | */ |
| 489 | |
| 490 | static inline bool |
| 491 | ggtt_write(struct io_mapping *mapping, |
| 492 | loff_t base, int offset, |
| 493 | char __user *user_data, int length) |
| 494 | { |
| 495 | void __iomem *vaddr; |
| 496 | unsigned long unwritten; |
| 497 | |
| 498 | /* We can use the cpu mem copy function because this is X86. */ |
| 499 | vaddr = io_mapping_map_atomic_wc(mapping, base); |
| 500 | unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, |
| 501 | user_data, length); |
| 502 | io_mapping_unmap_atomic(vaddr); |
| 503 | if (unwritten) { |
| 504 | vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| 505 | unwritten = copy_from_user((void __force *)vaddr + offset, |
| 506 | user_data, length); |
| 507 | io_mapping_unmap(vaddr); |
| 508 | } |
| 509 | |
| 510 | return unwritten; |
| 511 | } |
| 512 | |
| 513 | /** |
| 514 | * This is the fast pwrite path, where we copy the data directly from the |
| 515 | * user into the GTT, uncached. |
| 516 | * @obj: i915 GEM object |
| 517 | * @args: pwrite arguments structure |
| 518 | */ |
| 519 | static int |
| 520 | i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, |
| 521 | const struct drm_i915_gem_pwrite *args) |
| 522 | { |
| 523 | struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| 524 | struct i915_ggtt *ggtt = &i915->ggtt; |
| 525 | struct intel_runtime_pm *rpm = &i915->runtime_pm; |
| 526 | intel_wakeref_t wakeref; |
| 527 | struct drm_mm_node node; |
| 528 | struct dma_fence *fence; |
| 529 | struct i915_vma *vma; |
| 530 | u64 remain, offset; |
| 531 | void __user *user_data; |
| 532 | int ret; |
| 533 | |
| 534 | ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| 535 | if (ret) |
| 536 | return ret; |
| 537 | |
| 538 | if (i915_gem_object_has_struct_page(obj)) { |
| 539 | /* |
| 540 | * Avoid waking the device up if we can fallback, as |
| 541 | * waking/resuming is very slow (worst-case 10-100 ms |
| 542 | * depending on PCI sleeps and our own resume time). |
| 543 | * This easily dwarfs any performance advantage from |
| 544 | * using the cache bypass of indirect GGTT access. |
| 545 | */ |
| 546 | wakeref = intel_runtime_pm_get_if_in_use(rpm); |
| 547 | if (!wakeref) { |
| 548 | ret = -EFAULT; |
| 549 | goto out_unlock; |
| 550 | } |
| 551 | } else { |
| 552 | /* No backing pages, no fallback, we must force GGTT access */ |
| 553 | wakeref = intel_runtime_pm_get(rpm); |
| 554 | } |
| 555 | |
| 556 | vma = ERR_PTR(-ENODEV); |
| 557 | if (!i915_gem_object_is_tiled(obj)) |
| 558 | vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| 559 | PIN_MAPPABLE | |
| 560 | PIN_NONBLOCK /* NOWARN */ | |
| 561 | PIN_NOEVICT); |
| 562 | if (!IS_ERR(vma)) { |
| 563 | node.start = i915_ggtt_offset(vma); |
| 564 | node.allocated = false; |
| 565 | } else { |
| 566 | ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); |
| 567 | if (ret) |
| 568 | goto out_rpm; |
| 569 | GEM_BUG_ON(!node.allocated); |
| 570 | } |
| 571 | |
| 572 | mutex_unlock(&i915->drm.struct_mutex); |
| 573 | |
| 574 | ret = i915_gem_object_lock_interruptible(obj); |
| 575 | if (ret) |
| 576 | goto out_unpin; |
| 577 | |
| 578 | ret = i915_gem_object_set_to_gtt_domain(obj, true); |
| 579 | if (ret) { |
| 580 | i915_gem_object_unlock(obj); |
| 581 | goto out_unpin; |
| 582 | } |
| 583 | |
| 584 | fence = i915_gem_object_lock_fence(obj); |
| 585 | i915_gem_object_unlock(obj); |
| 586 | if (!fence) { |
| 587 | ret = -ENOMEM; |
| 588 | goto out_unpin; |
| 589 | } |
| 590 | |
| 591 | intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU); |
| 592 | |
| 593 | user_data = u64_to_user_ptr(args->data_ptr); |
| 594 | offset = args->offset; |
| 595 | remain = args->size; |
| 596 | while (remain) { |
| 597 | /* Operation in this page |
| 598 | * |
| 599 | * page_base = page offset within aperture |
| 600 | * page_offset = offset within page |
| 601 | * page_length = bytes to copy for this page |
| 602 | */ |
| 603 | u32 page_base = node.start; |
| 604 | unsigned int page_offset = offset_in_page(offset); |
| 605 | unsigned int page_length = PAGE_SIZE - page_offset; |
| 606 | page_length = remain < page_length ? remain : page_length; |
| 607 | if (node.allocated) { |
| 608 | /* flush the write before we modify the GGTT */ |
| 609 | intel_gt_flush_ggtt_writes(ggtt->vm.gt); |
| 610 | ggtt->vm.insert_page(&ggtt->vm, |
| 611 | i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), |
| 612 | node.start, I915_CACHE_NONE, 0); |
| 613 | wmb(); /* flush modifications to the GGTT (insert_page) */ |
| 614 | } else { |
| 615 | page_base += offset & PAGE_MASK; |
| 616 | } |
| 617 | /* If we get a fault while copying data, then (presumably) our |
| 618 | * source page isn't available. Return the error and we'll |
| 619 | * retry in the slow path. |
| 620 | * If the object is non-shmem backed, we retry again with the |
| 621 | * path that handles page fault. |
| 622 | */ |
| 623 | if (ggtt_write(&ggtt->iomap, page_base, page_offset, |
| 624 | user_data, page_length)) { |
| 625 | ret = -EFAULT; |
| 626 | break; |
| 627 | } |
| 628 | |
| 629 | remain -= page_length; |
| 630 | user_data += page_length; |
| 631 | offset += page_length; |
| 632 | } |
| 633 | intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU); |
| 634 | |
| 635 | i915_gem_object_unlock_fence(obj, fence); |
| 636 | out_unpin: |
| 637 | mutex_lock(&i915->drm.struct_mutex); |
| 638 | intel_gt_flush_ggtt_writes(ggtt->vm.gt); |
| 639 | if (node.allocated) { |
| 640 | ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); |
| 641 | remove_mappable_node(&node); |
| 642 | } else { |
| 643 | i915_vma_unpin(vma); |
| 644 | } |
| 645 | out_rpm: |
| 646 | intel_runtime_pm_put(rpm, wakeref); |
| 647 | out_unlock: |
| 648 | mutex_unlock(&i915->drm.struct_mutex); |
| 649 | return ret; |
| 650 | } |
| 651 | |
| 652 | /* Per-page copy function for the shmem pwrite fastpath. |
| 653 | * Flushes invalid cachelines before writing to the target if |
| 654 | * needs_clflush_before is set and flushes out any written cachelines after |
| 655 | * writing if needs_clflush is set. |
| 656 | */ |
| 657 | static int |
| 658 | shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, |
| 659 | bool needs_clflush_before, |
| 660 | bool needs_clflush_after) |
| 661 | { |
| 662 | char *vaddr; |
| 663 | int ret; |
| 664 | |
| 665 | vaddr = kmap(page); |
| 666 | |
| 667 | if (needs_clflush_before) |
| 668 | drm_clflush_virt_range(vaddr + offset, len); |
| 669 | |
| 670 | ret = __copy_from_user(vaddr + offset, user_data, len); |
| 671 | if (!ret && needs_clflush_after) |
| 672 | drm_clflush_virt_range(vaddr + offset, len); |
| 673 | |
| 674 | kunmap(page); |
| 675 | |
| 676 | return ret ? -EFAULT : 0; |
| 677 | } |
| 678 | |
| 679 | static int |
| 680 | i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, |
| 681 | const struct drm_i915_gem_pwrite *args) |
| 682 | { |
| 683 | unsigned int partial_cacheline_write; |
| 684 | unsigned int needs_clflush; |
| 685 | unsigned int offset, idx; |
| 686 | struct dma_fence *fence; |
| 687 | void __user *user_data; |
| 688 | u64 remain; |
| 689 | int ret; |
| 690 | |
| 691 | ret = i915_gem_object_prepare_write(obj, &needs_clflush); |
| 692 | if (ret) |
| 693 | return ret; |
| 694 | |
| 695 | fence = i915_gem_object_lock_fence(obj); |
| 696 | i915_gem_object_finish_access(obj); |
| 697 | if (!fence) |
| 698 | return -ENOMEM; |
| 699 | |
| 700 | /* If we don't overwrite a cacheline completely we need to be |
| 701 | * careful to have up-to-date data by first clflushing. Don't |
| 702 | * overcomplicate things and flush the entire patch. |
| 703 | */ |
| 704 | partial_cacheline_write = 0; |
| 705 | if (needs_clflush & CLFLUSH_BEFORE) |
| 706 | partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; |
| 707 | |
| 708 | user_data = u64_to_user_ptr(args->data_ptr); |
| 709 | remain = args->size; |
| 710 | offset = offset_in_page(args->offset); |
| 711 | for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| 712 | struct page *page = i915_gem_object_get_page(obj, idx); |
| 713 | unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); |
| 714 | |
| 715 | ret = shmem_pwrite(page, offset, length, user_data, |
| 716 | (offset | length) & partial_cacheline_write, |
| 717 | needs_clflush & CLFLUSH_AFTER); |
| 718 | if (ret) |
| 719 | break; |
| 720 | |
| 721 | remain -= length; |
| 722 | user_data += length; |
| 723 | offset = 0; |
| 724 | } |
| 725 | |
| 726 | intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU); |
| 727 | i915_gem_object_unlock_fence(obj, fence); |
| 728 | |
| 729 | return ret; |
| 730 | } |
| 731 | |
| 732 | /** |
| 733 | * Writes data to the object referenced by handle. |
| 734 | * @dev: drm device |
| 735 | * @data: ioctl data blob |
| 736 | * @file: drm file |
| 737 | * |
| 738 | * On error, the contents of the buffer that were to be modified are undefined. |
| 739 | */ |
| 740 | int |
| 741 | i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, |
| 742 | struct drm_file *file) |
| 743 | { |
| 744 | struct drm_i915_gem_pwrite *args = data; |
| 745 | struct drm_i915_gem_object *obj; |
| 746 | int ret; |
| 747 | |
| 748 | if (args->size == 0) |
| 749 | return 0; |
| 750 | |
| 751 | if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) |
| 752 | return -EFAULT; |
| 753 | |
| 754 | obj = i915_gem_object_lookup(file, args->handle); |
| 755 | if (!obj) |
| 756 | return -ENOENT; |
| 757 | |
| 758 | /* Bounds check destination. */ |
| 759 | if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { |
| 760 | ret = -EINVAL; |
| 761 | goto err; |
| 762 | } |
| 763 | |
| 764 | /* Writes not allowed into this read-only object */ |
| 765 | if (i915_gem_object_is_readonly(obj)) { |
| 766 | ret = -EINVAL; |
| 767 | goto err; |
| 768 | } |
| 769 | |
| 770 | trace_i915_gem_object_pwrite(obj, args->offset, args->size); |
| 771 | |
| 772 | ret = -ENODEV; |
| 773 | if (obj->ops->pwrite) |
| 774 | ret = obj->ops->pwrite(obj, args); |
| 775 | if (ret != -ENODEV) |
| 776 | goto err; |
| 777 | |
| 778 | ret = i915_gem_object_wait(obj, |
| 779 | I915_WAIT_INTERRUPTIBLE | |
| 780 | I915_WAIT_ALL, |
| 781 | MAX_SCHEDULE_TIMEOUT); |
| 782 | if (ret) |
| 783 | goto err; |
| 784 | |
| 785 | ret = i915_gem_object_pin_pages(obj); |
| 786 | if (ret) |
| 787 | goto err; |
| 788 | |
| 789 | ret = -EFAULT; |
| 790 | /* We can only do the GTT pwrite on untiled buffers, as otherwise |
| 791 | * it would end up going through the fenced access, and we'll get |
| 792 | * different detiling behavior between reading and writing. |
| 793 | * pread/pwrite currently are reading and writing from the CPU |
| 794 | * perspective, requiring manual detiling by the client. |
| 795 | */ |
| 796 | if (!i915_gem_object_has_struct_page(obj) || |
| 797 | cpu_write_needs_clflush(obj)) |
| 798 | /* Note that the gtt paths might fail with non-page-backed user |
| 799 | * pointers (e.g. gtt mappings when moving data between |
| 800 | * textures). Fallback to the shmem path in that case. |
| 801 | */ |
| 802 | ret = i915_gem_gtt_pwrite_fast(obj, args); |
| 803 | |
| 804 | if (ret == -EFAULT || ret == -ENOSPC) { |
| 805 | if (i915_gem_object_has_struct_page(obj)) |
| 806 | ret = i915_gem_shmem_pwrite(obj, args); |
| 807 | else |
| 808 | ret = i915_gem_phys_pwrite(obj, args, file); |
| 809 | } |
| 810 | |
| 811 | i915_gem_object_unpin_pages(obj); |
| 812 | err: |
| 813 | i915_gem_object_put(obj); |
| 814 | return ret; |
| 815 | } |
| 816 | |
| 817 | /** |
| 818 | * Called when user space has done writes to this buffer |
| 819 | * @dev: drm device |
| 820 | * @data: ioctl data blob |
| 821 | * @file: drm file |
| 822 | */ |
| 823 | int |
| 824 | i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, |
| 825 | struct drm_file *file) |
| 826 | { |
| 827 | struct drm_i915_gem_sw_finish *args = data; |
| 828 | struct drm_i915_gem_object *obj; |
| 829 | |
| 830 | obj = i915_gem_object_lookup(file, args->handle); |
| 831 | if (!obj) |
| 832 | return -ENOENT; |
| 833 | |
| 834 | /* |
| 835 | * Proxy objects are barred from CPU access, so there is no |
| 836 | * need to ban sw_finish as it is a nop. |
| 837 | */ |
| 838 | |
| 839 | /* Pinned buffers may be scanout, so flush the cache */ |
| 840 | i915_gem_object_flush_if_display(obj); |
| 841 | i915_gem_object_put(obj); |
| 842 | |
| 843 | return 0; |
| 844 | } |
| 845 | |
| 846 | void i915_gem_runtime_suspend(struct drm_i915_private *i915) |
| 847 | { |
| 848 | struct drm_i915_gem_object *obj, *on; |
| 849 | int i; |
| 850 | |
| 851 | /* |
| 852 | * Only called during RPM suspend. All users of the userfault_list |
| 853 | * must be holding an RPM wakeref to ensure that this can not |
| 854 | * run concurrently with themselves (and use the struct_mutex for |
| 855 | * protection between themselves). |
| 856 | */ |
| 857 | |
| 858 | list_for_each_entry_safe(obj, on, |
| 859 | &i915->ggtt.userfault_list, userfault_link) |
| 860 | __i915_gem_object_release_mmap(obj); |
| 861 | |
| 862 | /* |
| 863 | * The fence will be lost when the device powers down. If any were |
| 864 | * in use by hardware (i.e. they are pinned), we should not be powering |
| 865 | * down! All other fences will be reacquired by the user upon waking. |
| 866 | */ |
| 867 | for (i = 0; i < i915->ggtt.num_fences; i++) { |
| 868 | struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i]; |
| 869 | |
| 870 | /* |
| 871 | * Ideally we want to assert that the fence register is not |
| 872 | * live at this point (i.e. that no piece of code will be |
| 873 | * trying to write through fence + GTT, as that both violates |
| 874 | * our tracking of activity and associated locking/barriers, |
| 875 | * but also is illegal given that the hw is powered down). |
| 876 | * |
| 877 | * Previously we used reg->pin_count as a "liveness" indicator. |
| 878 | * That is not sufficient, and we need a more fine-grained |
| 879 | * tool if we want to have a sanity check here. |
| 880 | */ |
| 881 | |
| 882 | if (!reg->vma) |
| 883 | continue; |
| 884 | |
| 885 | GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); |
| 886 | reg->dirty = true; |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | static long |
| 891 | wait_for_timelines(struct drm_i915_private *i915, |
| 892 | unsigned int wait, long timeout) |
| 893 | { |
| 894 | struct intel_gt_timelines *timelines = &i915->gt.timelines; |
| 895 | struct intel_timeline *tl; |
| 896 | unsigned long flags; |
| 897 | |
| 898 | spin_lock_irqsave(&timelines->lock, flags); |
| 899 | list_for_each_entry(tl, &timelines->active_list, link) { |
| 900 | struct i915_request *rq; |
| 901 | |
| 902 | rq = i915_active_request_get_unlocked(&tl->last_request); |
| 903 | if (!rq) |
| 904 | continue; |
| 905 | |
| 906 | spin_unlock_irqrestore(&timelines->lock, flags); |
| 907 | |
| 908 | /* |
| 909 | * "Race-to-idle". |
| 910 | * |
| 911 | * Switching to the kernel context is often used a synchronous |
| 912 | * step prior to idling, e.g. in suspend for flushing all |
| 913 | * current operations to memory before sleeping. These we |
| 914 | * want to complete as quickly as possible to avoid prolonged |
| 915 | * stalls, so allow the gpu to boost to maximum clocks. |
| 916 | */ |
| 917 | if (wait & I915_WAIT_FOR_IDLE_BOOST) |
| 918 | gen6_rps_boost(rq); |
| 919 | |
| 920 | timeout = i915_request_wait(rq, wait, timeout); |
| 921 | i915_request_put(rq); |
| 922 | if (timeout < 0) |
| 923 | return timeout; |
| 924 | |
| 925 | /* restart after reacquiring the lock */ |
| 926 | spin_lock_irqsave(&timelines->lock, flags); |
| 927 | tl = list_entry(&timelines->active_list, typeof(*tl), link); |
| 928 | } |
| 929 | spin_unlock_irqrestore(&timelines->lock, flags); |
| 930 | |
| 931 | return timeout; |
| 932 | } |
| 933 | |
| 934 | int i915_gem_wait_for_idle(struct drm_i915_private *i915, |
| 935 | unsigned int flags, long timeout) |
| 936 | { |
| 937 | /* If the device is asleep, we have no requests outstanding */ |
| 938 | if (!intel_gt_pm_is_awake(&i915->gt)) |
| 939 | return 0; |
| 940 | |
| 941 | GEM_TRACE("flags=%x (%s), timeout=%ld%s\n", |
| 942 | flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked", |
| 943 | timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : ""); |
| 944 | |
| 945 | timeout = wait_for_timelines(i915, flags, timeout); |
| 946 | if (timeout < 0) |
| 947 | return timeout; |
| 948 | |
| 949 | if (flags & I915_WAIT_LOCKED) { |
| 950 | lockdep_assert_held(&i915->drm.struct_mutex); |
| 951 | |
| 952 | i915_retire_requests(i915); |
| 953 | } |
| 954 | |
| 955 | return 0; |
| 956 | } |
| 957 | |
| 958 | struct i915_vma * |
| 959 | i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, |
| 960 | const struct i915_ggtt_view *view, |
| 961 | u64 size, |
| 962 | u64 alignment, |
| 963 | u64 flags) |
| 964 | { |
| 965 | struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| 966 | struct i915_address_space *vm = &dev_priv->ggtt.vm; |
| 967 | |
| 968 | return i915_gem_object_pin(obj, vm, view, size, alignment, |
| 969 | flags | PIN_GLOBAL); |
| 970 | } |
| 971 | |
| 972 | struct i915_vma * |
| 973 | i915_gem_object_pin(struct drm_i915_gem_object *obj, |
| 974 | struct i915_address_space *vm, |
| 975 | const struct i915_ggtt_view *view, |
| 976 | u64 size, |
| 977 | u64 alignment, |
| 978 | u64 flags) |
| 979 | { |
| 980 | struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| 981 | struct i915_vma *vma; |
| 982 | int ret; |
| 983 | |
| 984 | lockdep_assert_held(&obj->base.dev->struct_mutex); |
| 985 | |
| 986 | if (i915_gem_object_never_bind_ggtt(obj)) |
| 987 | return ERR_PTR(-ENODEV); |
| 988 | |
| 989 | if (flags & PIN_MAPPABLE && |
| 990 | (!view || view->type == I915_GGTT_VIEW_NORMAL)) { |
| 991 | /* If the required space is larger than the available |
| 992 | * aperture, we will not able to find a slot for the |
| 993 | * object and unbinding the object now will be in |
| 994 | * vain. Worse, doing so may cause us to ping-pong |
| 995 | * the object in and out of the Global GTT and |
| 996 | * waste a lot of cycles under the mutex. |
| 997 | */ |
| 998 | if (obj->base.size > dev_priv->ggtt.mappable_end) |
| 999 | return ERR_PTR(-E2BIG); |
| 1000 | |
| 1001 | /* If NONBLOCK is set the caller is optimistically |
| 1002 | * trying to cache the full object within the mappable |
| 1003 | * aperture, and *must* have a fallback in place for |
| 1004 | * situations where we cannot bind the object. We |
| 1005 | * can be a little more lax here and use the fallback |
| 1006 | * more often to avoid costly migrations of ourselves |
| 1007 | * and other objects within the aperture. |
| 1008 | * |
| 1009 | * Half-the-aperture is used as a simple heuristic. |
| 1010 | * More interesting would to do search for a free |
| 1011 | * block prior to making the commitment to unbind. |
| 1012 | * That caters for the self-harm case, and with a |
| 1013 | * little more heuristics (e.g. NOFAULT, NOEVICT) |
| 1014 | * we could try to minimise harm to others. |
| 1015 | */ |
| 1016 | if (flags & PIN_NONBLOCK && |
| 1017 | obj->base.size > dev_priv->ggtt.mappable_end / 2) |
| 1018 | return ERR_PTR(-ENOSPC); |
| 1019 | } |
| 1020 | |
| 1021 | vma = i915_vma_instance(obj, vm, view); |
| 1022 | if (IS_ERR(vma)) |
| 1023 | return vma; |
| 1024 | |
| 1025 | if (i915_vma_misplaced(vma, size, alignment, flags)) { |
| 1026 | if (flags & PIN_NONBLOCK) { |
| 1027 | if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) |
| 1028 | return ERR_PTR(-ENOSPC); |
| 1029 | |
| 1030 | if (flags & PIN_MAPPABLE && |
| 1031 | vma->fence_size > dev_priv->ggtt.mappable_end / 2) |
| 1032 | return ERR_PTR(-ENOSPC); |
| 1033 | } |
| 1034 | |
| 1035 | WARN(i915_vma_is_pinned(vma), |
| 1036 | "bo is already pinned in ggtt with incorrect alignment:" |
| 1037 | " offset=%08x, req.alignment=%llx," |
| 1038 | " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", |
| 1039 | i915_ggtt_offset(vma), alignment, |
| 1040 | !!(flags & PIN_MAPPABLE), |
| 1041 | i915_vma_is_map_and_fenceable(vma)); |
| 1042 | ret = i915_vma_unbind(vma); |
| 1043 | if (ret) |
| 1044 | return ERR_PTR(ret); |
| 1045 | } |
| 1046 | |
| 1047 | if (vma->fence && !i915_gem_object_is_tiled(obj)) { |
| 1048 | mutex_lock(&vma->vm->mutex); |
| 1049 | ret = i915_vma_revoke_fence(vma); |
| 1050 | mutex_unlock(&vma->vm->mutex); |
| 1051 | if (ret) |
| 1052 | return ERR_PTR(ret); |
| 1053 | } |
| 1054 | |
| 1055 | ret = i915_vma_pin(vma, size, alignment, flags); |
| 1056 | if (ret) |
| 1057 | return ERR_PTR(ret); |
| 1058 | |
| 1059 | return vma; |
| 1060 | } |
| 1061 | |
| 1062 | int |
| 1063 | i915_gem_madvise_ioctl(struct drm_device *dev, void *data, |
| 1064 | struct drm_file *file_priv) |
| 1065 | { |
| 1066 | struct drm_i915_private *i915 = to_i915(dev); |
| 1067 | struct drm_i915_gem_madvise *args = data; |
| 1068 | struct drm_i915_gem_object *obj; |
| 1069 | int err; |
| 1070 | |
| 1071 | switch (args->madv) { |
| 1072 | case I915_MADV_DONTNEED: |
| 1073 | case I915_MADV_WILLNEED: |
| 1074 | break; |
| 1075 | default: |
| 1076 | return -EINVAL; |
| 1077 | } |
| 1078 | |
| 1079 | obj = i915_gem_object_lookup(file_priv, args->handle); |
| 1080 | if (!obj) |
| 1081 | return -ENOENT; |
| 1082 | |
| 1083 | err = mutex_lock_interruptible(&obj->mm.lock); |
| 1084 | if (err) |
| 1085 | goto out; |
| 1086 | |
| 1087 | if (i915_gem_object_has_pages(obj) && |
| 1088 | i915_gem_object_is_tiled(obj) && |
| 1089 | i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { |
| 1090 | if (obj->mm.madv == I915_MADV_WILLNEED) { |
| 1091 | GEM_BUG_ON(!obj->mm.quirked); |
| 1092 | __i915_gem_object_unpin_pages(obj); |
| 1093 | obj->mm.quirked = false; |
| 1094 | } |
| 1095 | if (args->madv == I915_MADV_WILLNEED) { |
| 1096 | GEM_BUG_ON(obj->mm.quirked); |
| 1097 | __i915_gem_object_pin_pages(obj); |
| 1098 | obj->mm.quirked = true; |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | if (obj->mm.madv != __I915_MADV_PURGED) |
| 1103 | obj->mm.madv = args->madv; |
| 1104 | |
| 1105 | if (i915_gem_object_has_pages(obj)) { |
| 1106 | struct list_head *list; |
| 1107 | |
| 1108 | if (i915_gem_object_is_shrinkable(obj)) { |
| 1109 | unsigned long flags; |
| 1110 | |
| 1111 | spin_lock_irqsave(&i915->mm.obj_lock, flags); |
| 1112 | |
| 1113 | if (obj->mm.madv != I915_MADV_WILLNEED) |
| 1114 | list = &i915->mm.purge_list; |
| 1115 | else |
| 1116 | list = &i915->mm.shrink_list; |
| 1117 | list_move_tail(&obj->mm.link, list); |
| 1118 | |
| 1119 | spin_unlock_irqrestore(&i915->mm.obj_lock, flags); |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | /* if the object is no longer attached, discard its backing storage */ |
| 1124 | if (obj->mm.madv == I915_MADV_DONTNEED && |
| 1125 | !i915_gem_object_has_pages(obj)) |
| 1126 | i915_gem_object_truncate(obj); |
| 1127 | |
| 1128 | args->retained = obj->mm.madv != __I915_MADV_PURGED; |
| 1129 | mutex_unlock(&obj->mm.lock); |
| 1130 | |
| 1131 | out: |
| 1132 | i915_gem_object_put(obj); |
| 1133 | return err; |
| 1134 | } |
| 1135 | |
| 1136 | void i915_gem_sanitize(struct drm_i915_private *i915) |
| 1137 | { |
| 1138 | intel_wakeref_t wakeref; |
| 1139 | |
| 1140 | GEM_TRACE("\n"); |
| 1141 | |
| 1142 | wakeref = intel_runtime_pm_get(&i915->runtime_pm); |
| 1143 | intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL); |
| 1144 | |
| 1145 | /* |
| 1146 | * As we have just resumed the machine and woken the device up from |
| 1147 | * deep PCI sleep (presumably D3_cold), assume the HW has been reset |
| 1148 | * back to defaults, recovering from whatever wedged state we left it |
| 1149 | * in and so worth trying to use the device once more. |
| 1150 | */ |
| 1151 | if (intel_gt_is_wedged(&i915->gt)) |
| 1152 | intel_gt_unset_wedged(&i915->gt); |
| 1153 | |
| 1154 | /* |
| 1155 | * If we inherit context state from the BIOS or earlier occupants |
| 1156 | * of the GPU, the GPU may be in an inconsistent state when we |
| 1157 | * try to take over. The only way to remove the earlier state |
| 1158 | * is by resetting. However, resetting on earlier gen is tricky as |
| 1159 | * it may impact the display and we are uncertain about the stability |
| 1160 | * of the reset, so this could be applied to even earlier gen. |
| 1161 | */ |
| 1162 | intel_gt_sanitize(&i915->gt, false); |
| 1163 | |
| 1164 | intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL); |
| 1165 | intel_runtime_pm_put(&i915->runtime_pm, wakeref); |
| 1166 | } |
| 1167 | |
| 1168 | static void init_unused_ring(struct intel_gt *gt, u32 base) |
| 1169 | { |
| 1170 | struct intel_uncore *uncore = gt->uncore; |
| 1171 | |
| 1172 | intel_uncore_write(uncore, RING_CTL(base), 0); |
| 1173 | intel_uncore_write(uncore, RING_HEAD(base), 0); |
| 1174 | intel_uncore_write(uncore, RING_TAIL(base), 0); |
| 1175 | intel_uncore_write(uncore, RING_START(base), 0); |
| 1176 | } |
| 1177 | |
| 1178 | static void init_unused_rings(struct intel_gt *gt) |
| 1179 | { |
| 1180 | struct drm_i915_private *i915 = gt->i915; |
| 1181 | |
| 1182 | if (IS_I830(i915)) { |
| 1183 | init_unused_ring(gt, PRB1_BASE); |
| 1184 | init_unused_ring(gt, SRB0_BASE); |
| 1185 | init_unused_ring(gt, SRB1_BASE); |
| 1186 | init_unused_ring(gt, SRB2_BASE); |
| 1187 | init_unused_ring(gt, SRB3_BASE); |
| 1188 | } else if (IS_GEN(i915, 2)) { |
| 1189 | init_unused_ring(gt, SRB0_BASE); |
| 1190 | init_unused_ring(gt, SRB1_BASE); |
| 1191 | } else if (IS_GEN(i915, 3)) { |
| 1192 | init_unused_ring(gt, PRB1_BASE); |
| 1193 | init_unused_ring(gt, PRB2_BASE); |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | int i915_gem_init_hw(struct drm_i915_private *i915) |
| 1198 | { |
| 1199 | struct intel_uncore *uncore = &i915->uncore; |
| 1200 | struct intel_gt *gt = &i915->gt; |
| 1201 | int ret; |
| 1202 | |
| 1203 | BUG_ON(!i915->kernel_context); |
| 1204 | ret = intel_gt_terminally_wedged(gt); |
| 1205 | if (ret) |
| 1206 | return ret; |
| 1207 | |
| 1208 | gt->last_init_time = ktime_get(); |
| 1209 | |
| 1210 | /* Double layer security blanket, see i915_gem_init() */ |
| 1211 | intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); |
| 1212 | |
| 1213 | if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9) |
| 1214 | intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); |
| 1215 | |
| 1216 | if (IS_HASWELL(i915)) |
| 1217 | intel_uncore_write(uncore, |
| 1218 | MI_PREDICATE_RESULT_2, |
| 1219 | IS_HSW_GT3(i915) ? |
| 1220 | LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); |
| 1221 | |
| 1222 | /* Apply the GT workarounds... */ |
| 1223 | intel_gt_apply_workarounds(gt); |
| 1224 | /* ...and determine whether they are sticking. */ |
| 1225 | intel_gt_verify_workarounds(gt, "init"); |
| 1226 | |
| 1227 | intel_gt_init_swizzling(gt); |
| 1228 | |
| 1229 | /* |
| 1230 | * At least 830 can leave some of the unused rings |
| 1231 | * "active" (ie. head != tail) after resume which |
| 1232 | * will prevent c3 entry. Makes sure all unused rings |
| 1233 | * are totally idle. |
| 1234 | */ |
| 1235 | init_unused_rings(gt); |
| 1236 | |
| 1237 | ret = i915_ppgtt_init_hw(gt); |
| 1238 | if (ret) { |
| 1239 | DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); |
| 1240 | goto out; |
| 1241 | } |
| 1242 | |
| 1243 | /* We can't enable contexts until all firmware is loaded */ |
| 1244 | ret = intel_uc_init_hw(>->uc); |
| 1245 | if (ret) { |
| 1246 | i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); |
| 1247 | goto out; |
| 1248 | } |
| 1249 | |
| 1250 | intel_mocs_init(gt); |
| 1251 | |
| 1252 | out: |
| 1253 | intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); |
| 1254 | return ret; |
| 1255 | } |
| 1256 | |
| 1257 | static int __intel_engines_record_defaults(struct drm_i915_private *i915) |
| 1258 | { |
| 1259 | struct i915_request *requests[I915_NUM_ENGINES] = {}; |
| 1260 | struct intel_engine_cs *engine; |
| 1261 | enum intel_engine_id id; |
| 1262 | int err = 0; |
| 1263 | |
| 1264 | /* |
| 1265 | * As we reset the gpu during very early sanitisation, the current |
| 1266 | * register state on the GPU should reflect its defaults values. |
| 1267 | * We load a context onto the hw (with restore-inhibit), then switch |
| 1268 | * over to a second context to save that default register state. We |
| 1269 | * can then prime every new context with that state so they all start |
| 1270 | * from the same default HW values. |
| 1271 | */ |
| 1272 | |
| 1273 | for_each_engine(engine, i915, id) { |
| 1274 | struct intel_context *ce; |
| 1275 | struct i915_request *rq; |
| 1276 | |
| 1277 | /* We must be able to switch to something! */ |
| 1278 | GEM_BUG_ON(!engine->kernel_context); |
| 1279 | engine->serial++; /* force the kernel context switch */ |
| 1280 | |
| 1281 | ce = intel_context_create(i915->kernel_context, engine); |
| 1282 | if (IS_ERR(ce)) { |
| 1283 | err = PTR_ERR(ce); |
| 1284 | goto out; |
| 1285 | } |
| 1286 | |
| 1287 | rq = intel_context_create_request(ce); |
| 1288 | if (IS_ERR(rq)) { |
| 1289 | err = PTR_ERR(rq); |
| 1290 | intel_context_put(ce); |
| 1291 | goto out; |
| 1292 | } |
| 1293 | |
| 1294 | err = intel_engine_emit_ctx_wa(rq); |
| 1295 | if (err) |
| 1296 | goto err_rq; |
| 1297 | |
| 1298 | /* |
| 1299 | * Failing to program the MOCS is non-fatal.The system will not |
| 1300 | * run at peak performance. So warn the user and carry on. |
| 1301 | */ |
| 1302 | err = intel_mocs_emit(rq); |
| 1303 | if (err) |
| 1304 | dev_notice(i915->drm.dev, |
| 1305 | "Failed to program MOCS registers; expect performance issues.\n"); |
| 1306 | |
| 1307 | err = intel_renderstate_emit(rq); |
| 1308 | if (err) |
| 1309 | goto err_rq; |
| 1310 | |
| 1311 | err_rq: |
| 1312 | requests[id] = i915_request_get(rq); |
| 1313 | i915_request_add(rq); |
| 1314 | if (err) |
| 1315 | goto out; |
| 1316 | } |
| 1317 | |
| 1318 | /* Flush the default context image to memory, and enable powersaving. */ |
| 1319 | if (!i915_gem_load_power_context(i915)) { |
| 1320 | err = -EIO; |
| 1321 | goto out; |
| 1322 | } |
| 1323 | |
| 1324 | for (id = 0; id < ARRAY_SIZE(requests); id++) { |
| 1325 | struct i915_request *rq; |
| 1326 | struct i915_vma *state; |
| 1327 | void *vaddr; |
| 1328 | |
| 1329 | rq = requests[id]; |
| 1330 | if (!rq) |
| 1331 | continue; |
| 1332 | |
| 1333 | /* We want to be able to unbind the state from the GGTT */ |
| 1334 | GEM_BUG_ON(intel_context_is_pinned(rq->hw_context)); |
| 1335 | |
| 1336 | state = rq->hw_context->state; |
| 1337 | if (!state) |
| 1338 | continue; |
| 1339 | |
| 1340 | /* |
| 1341 | * As we will hold a reference to the logical state, it will |
| 1342 | * not be torn down with the context, and importantly the |
| 1343 | * object will hold onto its vma (making it possible for a |
| 1344 | * stray GTT write to corrupt our defaults). Unmap the vma |
| 1345 | * from the GTT to prevent such accidents and reclaim the |
| 1346 | * space. |
| 1347 | */ |
| 1348 | err = i915_vma_unbind(state); |
| 1349 | if (err) |
| 1350 | goto out; |
| 1351 | |
| 1352 | i915_gem_object_lock(state->obj); |
| 1353 | err = i915_gem_object_set_to_cpu_domain(state->obj, false); |
| 1354 | i915_gem_object_unlock(state->obj); |
| 1355 | if (err) |
| 1356 | goto out; |
| 1357 | |
| 1358 | i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC); |
| 1359 | |
| 1360 | /* Check we can acquire the image of the context state */ |
| 1361 | vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB); |
| 1362 | if (IS_ERR(vaddr)) { |
| 1363 | err = PTR_ERR(vaddr); |
| 1364 | goto out; |
| 1365 | } |
| 1366 | |
| 1367 | rq->engine->default_state = i915_gem_object_get(state->obj); |
| 1368 | i915_gem_object_unpin_map(state->obj); |
| 1369 | } |
| 1370 | |
| 1371 | out: |
| 1372 | /* |
| 1373 | * If we have to abandon now, we expect the engines to be idle |
| 1374 | * and ready to be torn-down. The quickest way we can accomplish |
| 1375 | * this is by declaring ourselves wedged. |
| 1376 | */ |
| 1377 | if (err) |
| 1378 | intel_gt_set_wedged(&i915->gt); |
| 1379 | |
| 1380 | for (id = 0; id < ARRAY_SIZE(requests); id++) { |
| 1381 | struct intel_context *ce; |
| 1382 | struct i915_request *rq; |
| 1383 | |
| 1384 | rq = requests[id]; |
| 1385 | if (!rq) |
| 1386 | continue; |
| 1387 | |
| 1388 | ce = rq->hw_context; |
| 1389 | i915_request_put(rq); |
| 1390 | intel_context_put(ce); |
| 1391 | } |
| 1392 | return err; |
| 1393 | } |
| 1394 | |
| 1395 | static int |
| 1396 | i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size) |
| 1397 | { |
| 1398 | return intel_gt_init_scratch(&i915->gt, size); |
| 1399 | } |
| 1400 | |
| 1401 | static void i915_gem_fini_scratch(struct drm_i915_private *i915) |
| 1402 | { |
| 1403 | intel_gt_fini_scratch(&i915->gt); |
| 1404 | } |
| 1405 | |
| 1406 | static int intel_engines_verify_workarounds(struct drm_i915_private *i915) |
| 1407 | { |
| 1408 | struct intel_engine_cs *engine; |
| 1409 | enum intel_engine_id id; |
| 1410 | int err = 0; |
| 1411 | |
| 1412 | if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| 1413 | return 0; |
| 1414 | |
| 1415 | for_each_engine(engine, i915, id) { |
| 1416 | if (intel_engine_verify_workarounds(engine, "load")) |
| 1417 | err = -EIO; |
| 1418 | } |
| 1419 | |
| 1420 | return err; |
| 1421 | } |
| 1422 | |
| 1423 | int i915_gem_init(struct drm_i915_private *dev_priv) |
| 1424 | { |
| 1425 | int ret; |
| 1426 | |
| 1427 | /* We need to fallback to 4K pages if host doesn't support huge gtt. */ |
| 1428 | if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) |
| 1429 | mkwrite_device_info(dev_priv)->page_sizes = |
| 1430 | I915_GTT_PAGE_SIZE_4K; |
| 1431 | |
| 1432 | intel_timelines_init(dev_priv); |
| 1433 | |
| 1434 | ret = i915_gem_init_userptr(dev_priv); |
| 1435 | if (ret) |
| 1436 | return ret; |
| 1437 | |
| 1438 | intel_uc_fetch_firmwares(&dev_priv->gt.uc); |
| 1439 | intel_wopcm_init(&dev_priv->wopcm); |
| 1440 | |
| 1441 | /* This is just a security blanket to placate dragons. |
| 1442 | * On some systems, we very sporadically observe that the first TLBs |
| 1443 | * used by the CS may be stale, despite us poking the TLB reset. If |
| 1444 | * we hold the forcewake during initialisation these problems |
| 1445 | * just magically go away. |
| 1446 | */ |
| 1447 | mutex_lock(&dev_priv->drm.struct_mutex); |
| 1448 | intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); |
| 1449 | |
| 1450 | ret = i915_init_ggtt(dev_priv); |
| 1451 | if (ret) { |
| 1452 | GEM_BUG_ON(ret == -EIO); |
| 1453 | goto err_unlock; |
| 1454 | } |
| 1455 | |
| 1456 | ret = i915_gem_init_scratch(dev_priv, |
| 1457 | IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE); |
| 1458 | if (ret) { |
| 1459 | GEM_BUG_ON(ret == -EIO); |
| 1460 | goto err_ggtt; |
| 1461 | } |
| 1462 | |
| 1463 | ret = intel_engines_setup(dev_priv); |
| 1464 | if (ret) { |
| 1465 | GEM_BUG_ON(ret == -EIO); |
| 1466 | goto err_unlock; |
| 1467 | } |
| 1468 | |
| 1469 | ret = i915_gem_contexts_init(dev_priv); |
| 1470 | if (ret) { |
| 1471 | GEM_BUG_ON(ret == -EIO); |
| 1472 | goto err_scratch; |
| 1473 | } |
| 1474 | |
| 1475 | ret = intel_engines_init(dev_priv); |
| 1476 | if (ret) { |
| 1477 | GEM_BUG_ON(ret == -EIO); |
| 1478 | goto err_context; |
| 1479 | } |
| 1480 | |
| 1481 | intel_init_gt_powersave(dev_priv); |
| 1482 | |
| 1483 | intel_uc_init(&dev_priv->gt.uc); |
| 1484 | |
| 1485 | ret = i915_gem_init_hw(dev_priv); |
| 1486 | if (ret) |
| 1487 | goto err_uc_init; |
| 1488 | |
| 1489 | /* Only when the HW is re-initialised, can we replay the requests */ |
| 1490 | ret = intel_gt_resume(&dev_priv->gt); |
| 1491 | if (ret) |
| 1492 | goto err_init_hw; |
| 1493 | |
| 1494 | /* |
| 1495 | * Despite its name intel_init_clock_gating applies both display |
| 1496 | * clock gating workarounds; GT mmio workarounds and the occasional |
| 1497 | * GT power context workaround. Worse, sometimes it includes a context |
| 1498 | * register workaround which we need to apply before we record the |
| 1499 | * default HW state for all contexts. |
| 1500 | * |
| 1501 | * FIXME: break up the workarounds and apply them at the right time! |
| 1502 | */ |
| 1503 | intel_init_clock_gating(dev_priv); |
| 1504 | |
| 1505 | ret = intel_engines_verify_workarounds(dev_priv); |
| 1506 | if (ret) |
| 1507 | goto err_gt; |
| 1508 | |
| 1509 | ret = __intel_engines_record_defaults(dev_priv); |
| 1510 | if (ret) |
| 1511 | goto err_gt; |
| 1512 | |
| 1513 | ret = i915_inject_load_error(dev_priv, -ENODEV); |
| 1514 | if (ret) |
| 1515 | goto err_gt; |
| 1516 | |
| 1517 | ret = i915_inject_load_error(dev_priv, -EIO); |
| 1518 | if (ret) |
| 1519 | goto err_gt; |
| 1520 | |
| 1521 | intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); |
| 1522 | mutex_unlock(&dev_priv->drm.struct_mutex); |
| 1523 | |
| 1524 | return 0; |
| 1525 | |
| 1526 | /* |
| 1527 | * Unwinding is complicated by that we want to handle -EIO to mean |
| 1528 | * disable GPU submission but keep KMS alive. We want to mark the |
| 1529 | * HW as irrevisibly wedged, but keep enough state around that the |
| 1530 | * driver doesn't explode during runtime. |
| 1531 | */ |
| 1532 | err_gt: |
| 1533 | mutex_unlock(&dev_priv->drm.struct_mutex); |
| 1534 | |
| 1535 | intel_gt_set_wedged(&dev_priv->gt); |
| 1536 | i915_gem_suspend(dev_priv); |
| 1537 | i915_gem_suspend_late(dev_priv); |
| 1538 | |
| 1539 | i915_gem_drain_workqueue(dev_priv); |
| 1540 | |
| 1541 | mutex_lock(&dev_priv->drm.struct_mutex); |
| 1542 | err_init_hw: |
| 1543 | intel_uc_fini_hw(&dev_priv->gt.uc); |
| 1544 | err_uc_init: |
| 1545 | if (ret != -EIO) { |
| 1546 | intel_uc_fini(&dev_priv->gt.uc); |
| 1547 | intel_cleanup_gt_powersave(dev_priv); |
| 1548 | intel_engines_cleanup(dev_priv); |
| 1549 | } |
| 1550 | err_context: |
| 1551 | if (ret != -EIO) |
| 1552 | i915_gem_contexts_fini(dev_priv); |
| 1553 | err_scratch: |
| 1554 | i915_gem_fini_scratch(dev_priv); |
| 1555 | err_ggtt: |
| 1556 | err_unlock: |
| 1557 | intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); |
| 1558 | mutex_unlock(&dev_priv->drm.struct_mutex); |
| 1559 | |
| 1560 | if (ret != -EIO) { |
| 1561 | intel_uc_cleanup_firmwares(&dev_priv->gt.uc); |
| 1562 | i915_gem_cleanup_userptr(dev_priv); |
| 1563 | intel_timelines_fini(dev_priv); |
| 1564 | } |
| 1565 | |
| 1566 | if (ret == -EIO) { |
| 1567 | mutex_lock(&dev_priv->drm.struct_mutex); |
| 1568 | |
| 1569 | /* |
| 1570 | * Allow engines or uC initialisation to fail by marking the GPU |
| 1571 | * as wedged. But we only want to do this when the GPU is angry, |
| 1572 | * for all other failure, such as an allocation failure, bail. |
| 1573 | */ |
| 1574 | if (!intel_gt_is_wedged(&dev_priv->gt)) { |
| 1575 | i915_probe_error(dev_priv, |
| 1576 | "Failed to initialize GPU, declaring it wedged!\n"); |
| 1577 | intel_gt_set_wedged(&dev_priv->gt); |
| 1578 | } |
| 1579 | |
| 1580 | /* Minimal basic recovery for KMS */ |
| 1581 | ret = i915_ggtt_enable_hw(dev_priv); |
| 1582 | i915_gem_restore_gtt_mappings(dev_priv); |
| 1583 | i915_gem_restore_fences(dev_priv); |
| 1584 | intel_init_clock_gating(dev_priv); |
| 1585 | |
| 1586 | mutex_unlock(&dev_priv->drm.struct_mutex); |
| 1587 | } |
| 1588 | |
| 1589 | i915_gem_drain_freed_objects(dev_priv); |
| 1590 | return ret; |
| 1591 | } |
| 1592 | |
| 1593 | void i915_gem_driver_register(struct drm_i915_private *i915) |
| 1594 | { |
| 1595 | i915_gem_driver_register__shrinker(i915); |
| 1596 | |
| 1597 | intel_engines_driver_register(i915); |
| 1598 | } |
| 1599 | |
| 1600 | void i915_gem_driver_unregister(struct drm_i915_private *i915) |
| 1601 | { |
| 1602 | i915_gem_driver_unregister__shrinker(i915); |
| 1603 | } |
| 1604 | |
| 1605 | void i915_gem_driver_remove(struct drm_i915_private *dev_priv) |
| 1606 | { |
| 1607 | GEM_BUG_ON(dev_priv->gt.awake); |
| 1608 | |
| 1609 | intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref); |
| 1610 | |
| 1611 | i915_gem_suspend_late(dev_priv); |
| 1612 | intel_disable_gt_powersave(dev_priv); |
| 1613 | |
| 1614 | /* Flush any outstanding unpin_work. */ |
| 1615 | i915_gem_drain_workqueue(dev_priv); |
| 1616 | |
| 1617 | mutex_lock(&dev_priv->drm.struct_mutex); |
| 1618 | intel_uc_fini_hw(&dev_priv->gt.uc); |
| 1619 | intel_uc_fini(&dev_priv->gt.uc); |
| 1620 | mutex_unlock(&dev_priv->drm.struct_mutex); |
| 1621 | |
| 1622 | i915_gem_drain_freed_objects(dev_priv); |
| 1623 | } |
| 1624 | |
| 1625 | void i915_gem_driver_release(struct drm_i915_private *dev_priv) |
| 1626 | { |
| 1627 | mutex_lock(&dev_priv->drm.struct_mutex); |
| 1628 | intel_engines_cleanup(dev_priv); |
| 1629 | i915_gem_contexts_fini(dev_priv); |
| 1630 | i915_gem_fini_scratch(dev_priv); |
| 1631 | mutex_unlock(&dev_priv->drm.struct_mutex); |
| 1632 | |
| 1633 | intel_wa_list_free(&dev_priv->gt_wa_list); |
| 1634 | |
| 1635 | intel_cleanup_gt_powersave(dev_priv); |
| 1636 | |
| 1637 | intel_uc_cleanup_firmwares(&dev_priv->gt.uc); |
| 1638 | i915_gem_cleanup_userptr(dev_priv); |
| 1639 | intel_timelines_fini(dev_priv); |
| 1640 | |
| 1641 | i915_gem_drain_freed_objects(dev_priv); |
| 1642 | |
| 1643 | WARN_ON(!list_empty(&dev_priv->contexts.list)); |
| 1644 | } |
| 1645 | |
| 1646 | void i915_gem_init_mmio(struct drm_i915_private *i915) |
| 1647 | { |
| 1648 | i915_gem_sanitize(i915); |
| 1649 | } |
| 1650 | |
| 1651 | static void i915_gem_init__mm(struct drm_i915_private *i915) |
| 1652 | { |
| 1653 | spin_lock_init(&i915->mm.obj_lock); |
| 1654 | |
| 1655 | init_llist_head(&i915->mm.free_list); |
| 1656 | |
| 1657 | INIT_LIST_HEAD(&i915->mm.purge_list); |
| 1658 | INIT_LIST_HEAD(&i915->mm.shrink_list); |
| 1659 | |
| 1660 | i915_gem_init__objects(i915); |
| 1661 | } |
| 1662 | |
| 1663 | int i915_gem_init_early(struct drm_i915_private *dev_priv) |
| 1664 | { |
| 1665 | int err; |
| 1666 | |
| 1667 | i915_gem_init__mm(dev_priv); |
| 1668 | i915_gem_init__pm(dev_priv); |
| 1669 | |
| 1670 | spin_lock_init(&dev_priv->fb_tracking.lock); |
| 1671 | |
| 1672 | err = i915_gemfs_init(dev_priv); |
| 1673 | if (err) |
| 1674 | DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err); |
| 1675 | |
| 1676 | return 0; |
| 1677 | } |
| 1678 | |
| 1679 | void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) |
| 1680 | { |
| 1681 | i915_gem_drain_freed_objects(dev_priv); |
| 1682 | GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); |
| 1683 | GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); |
| 1684 | WARN_ON(dev_priv->mm.shrink_count); |
| 1685 | |
| 1686 | i915_gemfs_fini(dev_priv); |
| 1687 | } |
| 1688 | |
| 1689 | int i915_gem_freeze(struct drm_i915_private *dev_priv) |
| 1690 | { |
| 1691 | /* Discard all purgeable objects, let userspace recover those as |
| 1692 | * required after resuming. |
| 1693 | */ |
| 1694 | i915_gem_shrink_all(dev_priv); |
| 1695 | |
| 1696 | return 0; |
| 1697 | } |
| 1698 | |
| 1699 | int i915_gem_freeze_late(struct drm_i915_private *i915) |
| 1700 | { |
| 1701 | struct drm_i915_gem_object *obj; |
| 1702 | intel_wakeref_t wakeref; |
| 1703 | |
| 1704 | /* |
| 1705 | * Called just before we write the hibernation image. |
| 1706 | * |
| 1707 | * We need to update the domain tracking to reflect that the CPU |
| 1708 | * will be accessing all the pages to create and restore from the |
| 1709 | * hibernation, and so upon restoration those pages will be in the |
| 1710 | * CPU domain. |
| 1711 | * |
| 1712 | * To make sure the hibernation image contains the latest state, |
| 1713 | * we update that state just before writing out the image. |
| 1714 | * |
| 1715 | * To try and reduce the hibernation image, we manually shrink |
| 1716 | * the objects as well, see i915_gem_freeze() |
| 1717 | */ |
| 1718 | |
| 1719 | wakeref = intel_runtime_pm_get(&i915->runtime_pm); |
| 1720 | |
| 1721 | i915_gem_shrink(i915, -1UL, NULL, ~0); |
| 1722 | i915_gem_drain_freed_objects(i915); |
| 1723 | |
| 1724 | list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { |
| 1725 | i915_gem_object_lock(obj); |
| 1726 | WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true)); |
| 1727 | i915_gem_object_unlock(obj); |
| 1728 | } |
| 1729 | |
| 1730 | intel_runtime_pm_put(&i915->runtime_pm, wakeref); |
| 1731 | |
| 1732 | return 0; |
| 1733 | } |
| 1734 | |
| 1735 | void i915_gem_release(struct drm_device *dev, struct drm_file *file) |
| 1736 | { |
| 1737 | struct drm_i915_file_private *file_priv = file->driver_priv; |
| 1738 | struct i915_request *request; |
| 1739 | |
| 1740 | /* Clean up our request list when the client is going away, so that |
| 1741 | * later retire_requests won't dereference our soon-to-be-gone |
| 1742 | * file_priv. |
| 1743 | */ |
| 1744 | spin_lock(&file_priv->mm.lock); |
| 1745 | list_for_each_entry(request, &file_priv->mm.request_list, client_link) |
| 1746 | request->file_priv = NULL; |
| 1747 | spin_unlock(&file_priv->mm.lock); |
| 1748 | } |
| 1749 | |
| 1750 | int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) |
| 1751 | { |
| 1752 | struct drm_i915_file_private *file_priv; |
| 1753 | int ret; |
| 1754 | |
| 1755 | DRM_DEBUG("\n"); |
| 1756 | |
| 1757 | file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); |
| 1758 | if (!file_priv) |
| 1759 | return -ENOMEM; |
| 1760 | |
| 1761 | file->driver_priv = file_priv; |
| 1762 | file_priv->dev_priv = i915; |
| 1763 | file_priv->file = file; |
| 1764 | |
| 1765 | spin_lock_init(&file_priv->mm.lock); |
| 1766 | INIT_LIST_HEAD(&file_priv->mm.request_list); |
| 1767 | |
| 1768 | file_priv->bsd_engine = -1; |
| 1769 | file_priv->hang_timestamp = jiffies; |
| 1770 | |
| 1771 | ret = i915_gem_context_open(i915, file); |
| 1772 | if (ret) |
| 1773 | kfree(file_priv); |
| 1774 | |
| 1775 | return ret; |
| 1776 | } |
| 1777 | |
| 1778 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| 1779 | #include "selftests/mock_gem_device.c" |
| 1780 | #include "selftests/i915_gem.c" |
| 1781 | #endif |