b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright © 2008-2015 Intel Corporation |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice (including the next |
| 12 | * paragraph) shall be included in all copies or substantial portions of the |
| 13 | * Software. |
| 14 | * |
| 15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 18 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 19 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| 20 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| 21 | * IN THE SOFTWARE. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include <linux/dma-fence-array.h> |
| 26 | #include <linux/irq_work.h> |
| 27 | #include <linux/prefetch.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/sched/clock.h> |
| 30 | #include <linux/sched/signal.h> |
| 31 | |
| 32 | #include "gem/i915_gem_context.h" |
| 33 | #include "gt/intel_context.h" |
| 34 | |
| 35 | #include "i915_active.h" |
| 36 | #include "i915_drv.h" |
| 37 | #include "i915_globals.h" |
| 38 | #include "i915_trace.h" |
| 39 | #include "intel_pm.h" |
| 40 | |
| 41 | struct execute_cb { |
| 42 | struct list_head link; |
| 43 | struct irq_work work; |
| 44 | struct i915_sw_fence *fence; |
| 45 | void (*hook)(struct i915_request *rq, struct dma_fence *signal); |
| 46 | struct i915_request *signal; |
| 47 | }; |
| 48 | |
| 49 | static struct i915_global_request { |
| 50 | struct i915_global base; |
| 51 | struct kmem_cache *slab_requests; |
| 52 | struct kmem_cache *slab_dependencies; |
| 53 | struct kmem_cache *slab_execute_cbs; |
| 54 | } global; |
| 55 | |
| 56 | static const char *i915_fence_get_driver_name(struct dma_fence *fence) |
| 57 | { |
| 58 | return "i915"; |
| 59 | } |
| 60 | |
| 61 | static const char *i915_fence_get_timeline_name(struct dma_fence *fence) |
| 62 | { |
| 63 | /* |
| 64 | * The timeline struct (as part of the ppgtt underneath a context) |
| 65 | * may be freed when the request is no longer in use by the GPU. |
| 66 | * We could extend the life of a context to beyond that of all |
| 67 | * fences, possibly keeping the hw resource around indefinitely, |
| 68 | * or we just give them a false name. Since |
| 69 | * dma_fence_ops.get_timeline_name is a debug feature, the occasional |
| 70 | * lie seems justifiable. |
| 71 | */ |
| 72 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 73 | return "signaled"; |
| 74 | |
| 75 | return to_request(fence)->gem_context->name ?: "[i915]"; |
| 76 | } |
| 77 | |
| 78 | static bool i915_fence_signaled(struct dma_fence *fence) |
| 79 | { |
| 80 | return i915_request_completed(to_request(fence)); |
| 81 | } |
| 82 | |
| 83 | static bool i915_fence_enable_signaling(struct dma_fence *fence) |
| 84 | { |
| 85 | return i915_request_enable_breadcrumb(to_request(fence)); |
| 86 | } |
| 87 | |
| 88 | static signed long i915_fence_wait(struct dma_fence *fence, |
| 89 | bool interruptible, |
| 90 | signed long timeout) |
| 91 | { |
| 92 | return i915_request_wait(to_request(fence), |
| 93 | interruptible | I915_WAIT_PRIORITY, |
| 94 | timeout); |
| 95 | } |
| 96 | |
| 97 | static void i915_fence_release(struct dma_fence *fence) |
| 98 | { |
| 99 | struct i915_request *rq = to_request(fence); |
| 100 | |
| 101 | /* |
| 102 | * The request is put onto a RCU freelist (i.e. the address |
| 103 | * is immediately reused), mark the fences as being freed now. |
| 104 | * Otherwise the debugobjects for the fences are only marked as |
| 105 | * freed when the slab cache itself is freed, and so we would get |
| 106 | * caught trying to reuse dead objects. |
| 107 | */ |
| 108 | i915_sw_fence_fini(&rq->submit); |
| 109 | i915_sw_fence_fini(&rq->semaphore); |
| 110 | |
| 111 | kmem_cache_free(global.slab_requests, rq); |
| 112 | } |
| 113 | |
| 114 | const struct dma_fence_ops i915_fence_ops = { |
| 115 | .get_driver_name = i915_fence_get_driver_name, |
| 116 | .get_timeline_name = i915_fence_get_timeline_name, |
| 117 | .enable_signaling = i915_fence_enable_signaling, |
| 118 | .signaled = i915_fence_signaled, |
| 119 | .wait = i915_fence_wait, |
| 120 | .release = i915_fence_release, |
| 121 | }; |
| 122 | |
| 123 | static void irq_execute_cb(struct irq_work *wrk) |
| 124 | { |
| 125 | struct execute_cb *cb = container_of(wrk, typeof(*cb), work); |
| 126 | |
| 127 | i915_sw_fence_complete(cb->fence); |
| 128 | kmem_cache_free(global.slab_execute_cbs, cb); |
| 129 | } |
| 130 | |
| 131 | static void irq_execute_cb_hook(struct irq_work *wrk) |
| 132 | { |
| 133 | struct execute_cb *cb = container_of(wrk, typeof(*cb), work); |
| 134 | |
| 135 | cb->hook(container_of(cb->fence, struct i915_request, submit), |
| 136 | &cb->signal->fence); |
| 137 | i915_request_put(cb->signal); |
| 138 | |
| 139 | irq_execute_cb(wrk); |
| 140 | } |
| 141 | |
| 142 | static void __notify_execute_cb(struct i915_request *rq) |
| 143 | { |
| 144 | struct execute_cb *cb; |
| 145 | |
| 146 | lockdep_assert_held(&rq->lock); |
| 147 | |
| 148 | if (list_empty(&rq->execute_cb)) |
| 149 | return; |
| 150 | |
| 151 | list_for_each_entry(cb, &rq->execute_cb, link) |
| 152 | irq_work_queue(&cb->work); |
| 153 | |
| 154 | /* |
| 155 | * XXX Rollback on __i915_request_unsubmit() |
| 156 | * |
| 157 | * In the future, perhaps when we have an active time-slicing scheduler, |
| 158 | * it will be interesting to unsubmit parallel execution and remove |
| 159 | * busywaits from the GPU until their master is restarted. This is |
| 160 | * quite hairy, we have to carefully rollback the fence and do a |
| 161 | * preempt-to-idle cycle on the target engine, all the while the |
| 162 | * master execute_cb may refire. |
| 163 | */ |
| 164 | INIT_LIST_HEAD(&rq->execute_cb); |
| 165 | } |
| 166 | |
| 167 | static inline void |
| 168 | remove_from_client(struct i915_request *request) |
| 169 | { |
| 170 | struct drm_i915_file_private *file_priv; |
| 171 | |
| 172 | file_priv = READ_ONCE(request->file_priv); |
| 173 | if (!file_priv) |
| 174 | return; |
| 175 | |
| 176 | spin_lock(&file_priv->mm.lock); |
| 177 | if (request->file_priv) { |
| 178 | list_del(&request->client_link); |
| 179 | request->file_priv = NULL; |
| 180 | } |
| 181 | spin_unlock(&file_priv->mm.lock); |
| 182 | } |
| 183 | |
| 184 | static void free_capture_list(struct i915_request *request) |
| 185 | { |
| 186 | struct i915_capture_list *capture; |
| 187 | |
| 188 | capture = request->capture_list; |
| 189 | while (capture) { |
| 190 | struct i915_capture_list *next = capture->next; |
| 191 | |
| 192 | kfree(capture); |
| 193 | capture = next; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | static void remove_from_engine(struct i915_request *rq) |
| 198 | { |
| 199 | struct intel_engine_cs *engine, *locked; |
| 200 | |
| 201 | /* |
| 202 | * Virtual engines complicate acquiring the engine timeline lock, |
| 203 | * as their rq->engine pointer is not stable until under that |
| 204 | * engine lock. The simple ploy we use is to take the lock then |
| 205 | * check that the rq still belongs to the newly locked engine. |
| 206 | */ |
| 207 | locked = READ_ONCE(rq->engine); |
| 208 | spin_lock(&locked->active.lock); |
| 209 | while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { |
| 210 | spin_unlock(&locked->active.lock); |
| 211 | spin_lock(&engine->active.lock); |
| 212 | locked = engine; |
| 213 | } |
| 214 | list_del(&rq->sched.link); |
| 215 | spin_unlock(&locked->active.lock); |
| 216 | } |
| 217 | |
| 218 | static bool i915_request_retire(struct i915_request *rq) |
| 219 | { |
| 220 | struct i915_active_request *active, *next; |
| 221 | |
| 222 | lockdep_assert_held(&rq->timeline->mutex); |
| 223 | if (!i915_request_completed(rq)) |
| 224 | return false; |
| 225 | |
| 226 | GEM_TRACE("%s fence %llx:%lld, current %d\n", |
| 227 | rq->engine->name, |
| 228 | rq->fence.context, rq->fence.seqno, |
| 229 | hwsp_seqno(rq)); |
| 230 | |
| 231 | GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); |
| 232 | trace_i915_request_retire(rq); |
| 233 | |
| 234 | /* |
| 235 | * We know the GPU must have read the request to have |
| 236 | * sent us the seqno + interrupt, so use the position |
| 237 | * of tail of the request to update the last known position |
| 238 | * of the GPU head. |
| 239 | * |
| 240 | * Note this requires that we are always called in request |
| 241 | * completion order. |
| 242 | */ |
| 243 | GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests)); |
| 244 | rq->ring->head = rq->postfix; |
| 245 | |
| 246 | /* |
| 247 | * Walk through the active list, calling retire on each. This allows |
| 248 | * objects to track their GPU activity and mark themselves as idle |
| 249 | * when their *last* active request is completed (updating state |
| 250 | * tracking lists for eviction, active references for GEM, etc). |
| 251 | * |
| 252 | * As the ->retire() may free the node, we decouple it first and |
| 253 | * pass along the auxiliary information (to avoid dereferencing |
| 254 | * the node after the callback). |
| 255 | */ |
| 256 | list_for_each_entry_safe(active, next, &rq->active_list, link) { |
| 257 | /* |
| 258 | * In microbenchmarks or focusing upon time inside the kernel, |
| 259 | * we may spend an inordinate amount of time simply handling |
| 260 | * the retirement of requests and processing their callbacks. |
| 261 | * Of which, this loop itself is particularly hot due to the |
| 262 | * cache misses when jumping around the list of |
| 263 | * i915_active_request. So we try to keep this loop as |
| 264 | * streamlined as possible and also prefetch the next |
| 265 | * i915_active_request to try and hide the likely cache miss. |
| 266 | */ |
| 267 | prefetchw(next); |
| 268 | |
| 269 | INIT_LIST_HEAD(&active->link); |
| 270 | RCU_INIT_POINTER(active->request, NULL); |
| 271 | |
| 272 | active->retire(active, rq); |
| 273 | } |
| 274 | |
| 275 | local_irq_disable(); |
| 276 | |
| 277 | /* |
| 278 | * We only loosely track inflight requests across preemption, |
| 279 | * and so we may find ourselves attempting to retire a _completed_ |
| 280 | * request that we have removed from the HW and put back on a run |
| 281 | * queue. |
| 282 | */ |
| 283 | remove_from_engine(rq); |
| 284 | |
| 285 | spin_lock(&rq->lock); |
| 286 | i915_request_mark_complete(rq); |
| 287 | if (!i915_request_signaled(rq)) |
| 288 | dma_fence_signal_locked(&rq->fence); |
| 289 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) |
| 290 | i915_request_cancel_breadcrumb(rq); |
| 291 | if (i915_request_has_waitboost(rq)) { |
| 292 | GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); |
| 293 | atomic_dec(&rq->i915->gt_pm.rps.num_waiters); |
| 294 | } |
| 295 | if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { |
| 296 | set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); |
| 297 | __notify_execute_cb(rq); |
| 298 | } |
| 299 | GEM_BUG_ON(!list_empty(&rq->execute_cb)); |
| 300 | spin_unlock(&rq->lock); |
| 301 | |
| 302 | local_irq_enable(); |
| 303 | |
| 304 | remove_from_client(rq); |
| 305 | list_del(&rq->link); |
| 306 | |
| 307 | intel_context_exit(rq->hw_context); |
| 308 | intel_context_unpin(rq->hw_context); |
| 309 | |
| 310 | free_capture_list(rq); |
| 311 | i915_sched_node_fini(&rq->sched); |
| 312 | i915_request_put(rq); |
| 313 | |
| 314 | return true; |
| 315 | } |
| 316 | |
| 317 | void i915_request_retire_upto(struct i915_request *rq) |
| 318 | { |
| 319 | struct intel_timeline * const tl = rq->timeline; |
| 320 | struct i915_request *tmp; |
| 321 | |
| 322 | GEM_TRACE("%s fence %llx:%lld, current %d\n", |
| 323 | rq->engine->name, |
| 324 | rq->fence.context, rq->fence.seqno, |
| 325 | hwsp_seqno(rq)); |
| 326 | |
| 327 | lockdep_assert_held(&tl->mutex); |
| 328 | GEM_BUG_ON(!i915_request_completed(rq)); |
| 329 | |
| 330 | do { |
| 331 | tmp = list_first_entry(&tl->requests, typeof(*tmp), link); |
| 332 | } while (i915_request_retire(tmp) && tmp != rq); |
| 333 | } |
| 334 | |
| 335 | static int |
| 336 | __i915_request_await_execution(struct i915_request *rq, |
| 337 | struct i915_request *signal, |
| 338 | void (*hook)(struct i915_request *rq, |
| 339 | struct dma_fence *signal), |
| 340 | gfp_t gfp) |
| 341 | { |
| 342 | struct execute_cb *cb; |
| 343 | |
| 344 | if (i915_request_is_active(signal)) { |
| 345 | if (hook) |
| 346 | hook(rq, &signal->fence); |
| 347 | return 0; |
| 348 | } |
| 349 | |
| 350 | cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); |
| 351 | if (!cb) |
| 352 | return -ENOMEM; |
| 353 | |
| 354 | cb->fence = &rq->submit; |
| 355 | i915_sw_fence_await(cb->fence); |
| 356 | init_irq_work(&cb->work, irq_execute_cb); |
| 357 | |
| 358 | if (hook) { |
| 359 | cb->hook = hook; |
| 360 | cb->signal = i915_request_get(signal); |
| 361 | cb->work.func = irq_execute_cb_hook; |
| 362 | } |
| 363 | |
| 364 | spin_lock_irq(&signal->lock); |
| 365 | if (i915_request_is_active(signal)) { |
| 366 | if (hook) { |
| 367 | hook(rq, &signal->fence); |
| 368 | i915_request_put(signal); |
| 369 | } |
| 370 | i915_sw_fence_complete(cb->fence); |
| 371 | kmem_cache_free(global.slab_execute_cbs, cb); |
| 372 | } else { |
| 373 | list_add_tail(&cb->link, &signal->execute_cb); |
| 374 | } |
| 375 | spin_unlock_irq(&signal->lock); |
| 376 | |
| 377 | return 0; |
| 378 | } |
| 379 | |
| 380 | bool __i915_request_submit(struct i915_request *request) |
| 381 | { |
| 382 | struct intel_engine_cs *engine = request->engine; |
| 383 | bool result = false; |
| 384 | |
| 385 | GEM_TRACE("%s fence %llx:%lld, current %d\n", |
| 386 | engine->name, |
| 387 | request->fence.context, request->fence.seqno, |
| 388 | hwsp_seqno(request)); |
| 389 | |
| 390 | GEM_BUG_ON(!irqs_disabled()); |
| 391 | lockdep_assert_held(&engine->active.lock); |
| 392 | |
| 393 | /* |
| 394 | * With the advent of preempt-to-busy, we frequently encounter |
| 395 | * requests that we have unsubmitted from HW, but left running |
| 396 | * until the next ack and so have completed in the meantime. On |
| 397 | * resubmission of that completed request, we can skip |
| 398 | * updating the payload, and execlists can even skip submitting |
| 399 | * the request. |
| 400 | * |
| 401 | * We must remove the request from the caller's priority queue, |
| 402 | * and the caller must only call us when the request is in their |
| 403 | * priority queue, under the active.lock. This ensures that the |
| 404 | * request has *not* yet been retired and we can safely move |
| 405 | * the request into the engine->active.list where it will be |
| 406 | * dropped upon retiring. (Otherwise if resubmit a *retired* |
| 407 | * request, this would be a horrible use-after-free.) |
| 408 | */ |
| 409 | if (i915_request_completed(request)) |
| 410 | goto xfer; |
| 411 | |
| 412 | if (i915_gem_context_is_banned(request->gem_context)) |
| 413 | i915_request_skip(request, -EIO); |
| 414 | |
| 415 | /* |
| 416 | * Are we using semaphores when the gpu is already saturated? |
| 417 | * |
| 418 | * Using semaphores incurs a cost in having the GPU poll a |
| 419 | * memory location, busywaiting for it to change. The continual |
| 420 | * memory reads can have a noticeable impact on the rest of the |
| 421 | * system with the extra bus traffic, stalling the cpu as it too |
| 422 | * tries to access memory across the bus (perf stat -e bus-cycles). |
| 423 | * |
| 424 | * If we installed a semaphore on this request and we only submit |
| 425 | * the request after the signaler completed, that indicates the |
| 426 | * system is overloaded and using semaphores at this time only |
| 427 | * increases the amount of work we are doing. If so, we disable |
| 428 | * further use of semaphores until we are idle again, whence we |
| 429 | * optimistically try again. |
| 430 | */ |
| 431 | if (request->sched.semaphores && |
| 432 | i915_sw_fence_signaled(&request->semaphore)) |
| 433 | engine->saturated |= request->sched.semaphores; |
| 434 | |
| 435 | engine->emit_fini_breadcrumb(request, |
| 436 | request->ring->vaddr + request->postfix); |
| 437 | |
| 438 | trace_i915_request_execute(request); |
| 439 | engine->serial++; |
| 440 | result = true; |
| 441 | |
| 442 | xfer: /* We may be recursing from the signal callback of another i915 fence */ |
| 443 | spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); |
| 444 | |
| 445 | if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) |
| 446 | list_move_tail(&request->sched.link, &engine->active.requests); |
| 447 | |
| 448 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && |
| 449 | !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && |
| 450 | !i915_request_enable_breadcrumb(request)) |
| 451 | intel_engine_queue_breadcrumbs(engine); |
| 452 | |
| 453 | __notify_execute_cb(request); |
| 454 | |
| 455 | spin_unlock(&request->lock); |
| 456 | |
| 457 | return result; |
| 458 | } |
| 459 | |
| 460 | void i915_request_submit(struct i915_request *request) |
| 461 | { |
| 462 | struct intel_engine_cs *engine = request->engine; |
| 463 | unsigned long flags; |
| 464 | |
| 465 | /* Will be called from irq-context when using foreign fences. */ |
| 466 | spin_lock_irqsave(&engine->active.lock, flags); |
| 467 | |
| 468 | __i915_request_submit(request); |
| 469 | |
| 470 | spin_unlock_irqrestore(&engine->active.lock, flags); |
| 471 | } |
| 472 | |
| 473 | void __i915_request_unsubmit(struct i915_request *request) |
| 474 | { |
| 475 | struct intel_engine_cs *engine = request->engine; |
| 476 | |
| 477 | GEM_TRACE("%s fence %llx:%lld, current %d\n", |
| 478 | engine->name, |
| 479 | request->fence.context, request->fence.seqno, |
| 480 | hwsp_seqno(request)); |
| 481 | |
| 482 | GEM_BUG_ON(!irqs_disabled()); |
| 483 | lockdep_assert_held(&engine->active.lock); |
| 484 | |
| 485 | /* |
| 486 | * Only unwind in reverse order, required so that the per-context list |
| 487 | * is kept in seqno/ring order. |
| 488 | */ |
| 489 | |
| 490 | /* We may be recursing from the signal callback of another i915 fence */ |
| 491 | spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); |
| 492 | |
| 493 | if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) |
| 494 | i915_request_cancel_breadcrumb(request); |
| 495 | |
| 496 | GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); |
| 497 | clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); |
| 498 | |
| 499 | spin_unlock(&request->lock); |
| 500 | |
| 501 | /* We've already spun, don't charge on resubmitting. */ |
| 502 | if (request->sched.semaphores && i915_request_started(request)) { |
| 503 | request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; |
| 504 | request->sched.semaphores = 0; |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * We don't need to wake_up any waiters on request->execute, they |
| 509 | * will get woken by any other event or us re-adding this request |
| 510 | * to the engine timeline (__i915_request_submit()). The waiters |
| 511 | * should be quite adapt at finding that the request now has a new |
| 512 | * global_seqno to the one they went to sleep on. |
| 513 | */ |
| 514 | } |
| 515 | |
| 516 | void i915_request_unsubmit(struct i915_request *request) |
| 517 | { |
| 518 | struct intel_engine_cs *engine = request->engine; |
| 519 | unsigned long flags; |
| 520 | |
| 521 | /* Will be called from irq-context when using foreign fences. */ |
| 522 | spin_lock_irqsave(&engine->active.lock, flags); |
| 523 | |
| 524 | __i915_request_unsubmit(request); |
| 525 | |
| 526 | spin_unlock_irqrestore(&engine->active.lock, flags); |
| 527 | } |
| 528 | |
| 529 | static int __i915_sw_fence_call |
| 530 | submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) |
| 531 | { |
| 532 | struct i915_request *request = |
| 533 | container_of(fence, typeof(*request), submit); |
| 534 | |
| 535 | switch (state) { |
| 536 | case FENCE_COMPLETE: |
| 537 | trace_i915_request_submit(request); |
| 538 | |
| 539 | if (unlikely(fence->error)) |
| 540 | i915_request_skip(request, fence->error); |
| 541 | |
| 542 | /* |
| 543 | * We need to serialize use of the submit_request() callback |
| 544 | * with its hotplugging performed during an emergency |
| 545 | * i915_gem_set_wedged(). We use the RCU mechanism to mark the |
| 546 | * critical section in order to force i915_gem_set_wedged() to |
| 547 | * wait until the submit_request() is completed before |
| 548 | * proceeding. |
| 549 | */ |
| 550 | rcu_read_lock(); |
| 551 | request->engine->submit_request(request); |
| 552 | rcu_read_unlock(); |
| 553 | break; |
| 554 | |
| 555 | case FENCE_FREE: |
| 556 | i915_request_put(request); |
| 557 | break; |
| 558 | } |
| 559 | |
| 560 | return NOTIFY_DONE; |
| 561 | } |
| 562 | |
| 563 | static void irq_semaphore_cb(struct irq_work *wrk) |
| 564 | { |
| 565 | struct i915_request *rq = |
| 566 | container_of(wrk, typeof(*rq), semaphore_work); |
| 567 | |
| 568 | i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE); |
| 569 | i915_request_put(rq); |
| 570 | } |
| 571 | |
| 572 | static int __i915_sw_fence_call |
| 573 | semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) |
| 574 | { |
| 575 | struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); |
| 576 | |
| 577 | switch (state) { |
| 578 | case FENCE_COMPLETE: |
| 579 | if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) { |
| 580 | i915_request_get(rq); |
| 581 | init_irq_work(&rq->semaphore_work, irq_semaphore_cb); |
| 582 | irq_work_queue(&rq->semaphore_work); |
| 583 | } |
| 584 | break; |
| 585 | |
| 586 | case FENCE_FREE: |
| 587 | i915_request_put(rq); |
| 588 | break; |
| 589 | } |
| 590 | |
| 591 | return NOTIFY_DONE; |
| 592 | } |
| 593 | |
| 594 | static void retire_requests(struct intel_timeline *tl) |
| 595 | { |
| 596 | struct i915_request *rq, *rn; |
| 597 | |
| 598 | list_for_each_entry_safe(rq, rn, &tl->requests, link) |
| 599 | if (!i915_request_retire(rq)) |
| 600 | break; |
| 601 | } |
| 602 | |
| 603 | static noinline struct i915_request * |
| 604 | request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) |
| 605 | { |
| 606 | struct i915_request *rq; |
| 607 | |
| 608 | if (list_empty(&tl->requests)) |
| 609 | goto out; |
| 610 | |
| 611 | if (!gfpflags_allow_blocking(gfp)) |
| 612 | goto out; |
| 613 | |
| 614 | /* Move our oldest request to the slab-cache (if not in use!) */ |
| 615 | rq = list_first_entry(&tl->requests, typeof(*rq), link); |
| 616 | i915_request_retire(rq); |
| 617 | |
| 618 | rq = kmem_cache_alloc(global.slab_requests, |
| 619 | gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); |
| 620 | if (rq) |
| 621 | return rq; |
| 622 | |
| 623 | /* Ratelimit ourselves to prevent oom from malicious clients */ |
| 624 | rq = list_last_entry(&tl->requests, typeof(*rq), link); |
| 625 | cond_synchronize_rcu(rq->rcustate); |
| 626 | |
| 627 | /* Retire our old requests in the hope that we free some */ |
| 628 | retire_requests(tl); |
| 629 | |
| 630 | out: |
| 631 | return kmem_cache_alloc(global.slab_requests, gfp); |
| 632 | } |
| 633 | |
| 634 | struct i915_request * |
| 635 | __i915_request_create(struct intel_context *ce, gfp_t gfp) |
| 636 | { |
| 637 | struct intel_timeline *tl = ce->timeline; |
| 638 | struct i915_request *rq; |
| 639 | u32 seqno; |
| 640 | int ret; |
| 641 | |
| 642 | might_sleep_if(gfpflags_allow_blocking(gfp)); |
| 643 | |
| 644 | /* Check that the caller provided an already pinned context */ |
| 645 | __intel_context_pin(ce); |
| 646 | |
| 647 | /* |
| 648 | * Beware: Dragons be flying overhead. |
| 649 | * |
| 650 | * We use RCU to look up requests in flight. The lookups may |
| 651 | * race with the request being allocated from the slab freelist. |
| 652 | * That is the request we are writing to here, may be in the process |
| 653 | * of being read by __i915_active_request_get_rcu(). As such, |
| 654 | * we have to be very careful when overwriting the contents. During |
| 655 | * the RCU lookup, we change chase the request->engine pointer, |
| 656 | * read the request->global_seqno and increment the reference count. |
| 657 | * |
| 658 | * The reference count is incremented atomically. If it is zero, |
| 659 | * the lookup knows the request is unallocated and complete. Otherwise, |
| 660 | * it is either still in use, or has been reallocated and reset |
| 661 | * with dma_fence_init(). This increment is safe for release as we |
| 662 | * check that the request we have a reference to and matches the active |
| 663 | * request. |
| 664 | * |
| 665 | * Before we increment the refcount, we chase the request->engine |
| 666 | * pointer. We must not call kmem_cache_zalloc() or else we set |
| 667 | * that pointer to NULL and cause a crash during the lookup. If |
| 668 | * we see the request is completed (based on the value of the |
| 669 | * old engine and seqno), the lookup is complete and reports NULL. |
| 670 | * If we decide the request is not completed (new engine or seqno), |
| 671 | * then we grab a reference and double check that it is still the |
| 672 | * active request - which it won't be and restart the lookup. |
| 673 | * |
| 674 | * Do not use kmem_cache_zalloc() here! |
| 675 | */ |
| 676 | rq = kmem_cache_alloc(global.slab_requests, |
| 677 | gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); |
| 678 | if (unlikely(!rq)) { |
| 679 | rq = request_alloc_slow(tl, gfp); |
| 680 | if (!rq) { |
| 681 | ret = -ENOMEM; |
| 682 | goto err_unreserve; |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | ret = intel_timeline_get_seqno(tl, rq, &seqno); |
| 687 | if (ret) |
| 688 | goto err_free; |
| 689 | |
| 690 | rq->i915 = ce->engine->i915; |
| 691 | rq->hw_context = ce; |
| 692 | rq->gem_context = ce->gem_context; |
| 693 | rq->engine = ce->engine; |
| 694 | rq->ring = ce->ring; |
| 695 | rq->timeline = tl; |
| 696 | rq->hwsp_seqno = tl->hwsp_seqno; |
| 697 | rq->hwsp_cacheline = tl->hwsp_cacheline; |
| 698 | rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ |
| 699 | |
| 700 | spin_lock_init(&rq->lock); |
| 701 | dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, |
| 702 | tl->fence_context, seqno); |
| 703 | |
| 704 | /* We bump the ref for the fence chain */ |
| 705 | i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); |
| 706 | i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify); |
| 707 | |
| 708 | i915_sched_node_init(&rq->sched); |
| 709 | |
| 710 | /* No zalloc, must clear what we need by hand */ |
| 711 | rq->file_priv = NULL; |
| 712 | rq->batch = NULL; |
| 713 | rq->capture_list = NULL; |
| 714 | rq->flags = 0; |
| 715 | rq->execution_mask = ALL_ENGINES; |
| 716 | |
| 717 | INIT_LIST_HEAD(&rq->active_list); |
| 718 | INIT_LIST_HEAD(&rq->execute_cb); |
| 719 | |
| 720 | /* |
| 721 | * Reserve space in the ring buffer for all the commands required to |
| 722 | * eventually emit this request. This is to guarantee that the |
| 723 | * i915_request_add() call can't fail. Note that the reserve may need |
| 724 | * to be redone if the request is not actually submitted straight |
| 725 | * away, e.g. because a GPU scheduler has deferred it. |
| 726 | * |
| 727 | * Note that due to how we add reserved_space to intel_ring_begin() |
| 728 | * we need to double our request to ensure that if we need to wrap |
| 729 | * around inside i915_request_add() there is sufficient space at |
| 730 | * the beginning of the ring as well. |
| 731 | */ |
| 732 | rq->reserved_space = |
| 733 | 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); |
| 734 | |
| 735 | /* |
| 736 | * Record the position of the start of the request so that |
| 737 | * should we detect the updated seqno part-way through the |
| 738 | * GPU processing the request, we never over-estimate the |
| 739 | * position of the head. |
| 740 | */ |
| 741 | rq->head = rq->ring->emit; |
| 742 | |
| 743 | ret = rq->engine->request_alloc(rq); |
| 744 | if (ret) |
| 745 | goto err_unwind; |
| 746 | |
| 747 | rq->infix = rq->ring->emit; /* end of header; start of user payload */ |
| 748 | |
| 749 | intel_context_mark_active(ce); |
| 750 | return rq; |
| 751 | |
| 752 | err_unwind: |
| 753 | ce->ring->emit = rq->head; |
| 754 | |
| 755 | /* Make sure we didn't add ourselves to external state before freeing */ |
| 756 | GEM_BUG_ON(!list_empty(&rq->active_list)); |
| 757 | GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); |
| 758 | GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); |
| 759 | |
| 760 | err_free: |
| 761 | kmem_cache_free(global.slab_requests, rq); |
| 762 | err_unreserve: |
| 763 | intel_context_unpin(ce); |
| 764 | return ERR_PTR(ret); |
| 765 | } |
| 766 | |
| 767 | struct i915_request * |
| 768 | i915_request_create(struct intel_context *ce) |
| 769 | { |
| 770 | struct i915_request *rq; |
| 771 | struct intel_timeline *tl; |
| 772 | |
| 773 | tl = intel_context_timeline_lock(ce); |
| 774 | if (IS_ERR(tl)) |
| 775 | return ERR_CAST(tl); |
| 776 | |
| 777 | /* Move our oldest request to the slab-cache (if not in use!) */ |
| 778 | rq = list_first_entry(&tl->requests, typeof(*rq), link); |
| 779 | if (!list_is_last(&rq->link, &tl->requests)) |
| 780 | i915_request_retire(rq); |
| 781 | |
| 782 | intel_context_enter(ce); |
| 783 | rq = __i915_request_create(ce, GFP_KERNEL); |
| 784 | intel_context_exit(ce); /* active reference transferred to request */ |
| 785 | if (IS_ERR(rq)) |
| 786 | goto err_unlock; |
| 787 | |
| 788 | /* Check that we do not interrupt ourselves with a new request */ |
| 789 | rq->cookie = lockdep_pin_lock(&tl->mutex); |
| 790 | |
| 791 | return rq; |
| 792 | |
| 793 | err_unlock: |
| 794 | intel_context_timeline_unlock(tl); |
| 795 | return rq; |
| 796 | } |
| 797 | |
| 798 | static int |
| 799 | i915_request_await_start(struct i915_request *rq, struct i915_request *signal) |
| 800 | { |
| 801 | if (list_is_first(&signal->link, &signal->timeline->requests)) |
| 802 | return 0; |
| 803 | |
| 804 | signal = list_prev_entry(signal, link); |
| 805 | if (intel_timeline_sync_is_later(rq->timeline, &signal->fence)) |
| 806 | return 0; |
| 807 | |
| 808 | return i915_sw_fence_await_dma_fence(&rq->submit, |
| 809 | &signal->fence, 0, |
| 810 | I915_FENCE_GFP); |
| 811 | } |
| 812 | |
| 813 | static intel_engine_mask_t |
| 814 | already_busywaiting(struct i915_request *rq) |
| 815 | { |
| 816 | /* |
| 817 | * Polling a semaphore causes bus traffic, delaying other users of |
| 818 | * both the GPU and CPU. We want to limit the impact on others, |
| 819 | * while taking advantage of early submission to reduce GPU |
| 820 | * latency. Therefore we restrict ourselves to not using more |
| 821 | * than one semaphore from each source, and not using a semaphore |
| 822 | * if we have detected the engine is saturated (i.e. would not be |
| 823 | * submitted early and cause bus traffic reading an already passed |
| 824 | * semaphore). |
| 825 | * |
| 826 | * See the are-we-too-late? check in __i915_request_submit(). |
| 827 | */ |
| 828 | return rq->sched.semaphores | rq->engine->saturated; |
| 829 | } |
| 830 | |
| 831 | static int |
| 832 | emit_semaphore_wait(struct i915_request *to, |
| 833 | struct i915_request *from, |
| 834 | gfp_t gfp) |
| 835 | { |
| 836 | u32 hwsp_offset; |
| 837 | u32 *cs; |
| 838 | int err; |
| 839 | |
| 840 | GEM_BUG_ON(!from->timeline->has_initial_breadcrumb); |
| 841 | GEM_BUG_ON(INTEL_GEN(to->i915) < 8); |
| 842 | |
| 843 | /* Just emit the first semaphore we see as request space is limited. */ |
| 844 | if (already_busywaiting(to) & from->engine->mask) |
| 845 | return i915_sw_fence_await_dma_fence(&to->submit, |
| 846 | &from->fence, 0, |
| 847 | I915_FENCE_GFP); |
| 848 | |
| 849 | err = i915_request_await_start(to, from); |
| 850 | if (err < 0) |
| 851 | return err; |
| 852 | |
| 853 | /* Only submit our spinner after the signaler is running! */ |
| 854 | err = __i915_request_await_execution(to, from, NULL, gfp); |
| 855 | if (err) |
| 856 | return err; |
| 857 | |
| 858 | /* We need to pin the signaler's HWSP until we are finished reading. */ |
| 859 | err = intel_timeline_read_hwsp(from, to, &hwsp_offset); |
| 860 | if (err) |
| 861 | return err; |
| 862 | |
| 863 | cs = intel_ring_begin(to, 4); |
| 864 | if (IS_ERR(cs)) |
| 865 | return PTR_ERR(cs); |
| 866 | |
| 867 | /* |
| 868 | * Using greater-than-or-equal here means we have to worry |
| 869 | * about seqno wraparound. To side step that issue, we swap |
| 870 | * the timeline HWSP upon wrapping, so that everyone listening |
| 871 | * for the old (pre-wrap) values do not see the much smaller |
| 872 | * (post-wrap) values than they were expecting (and so wait |
| 873 | * forever). |
| 874 | */ |
| 875 | *cs++ = MI_SEMAPHORE_WAIT | |
| 876 | MI_SEMAPHORE_GLOBAL_GTT | |
| 877 | MI_SEMAPHORE_POLL | |
| 878 | MI_SEMAPHORE_SAD_GTE_SDD; |
| 879 | *cs++ = from->fence.seqno; |
| 880 | *cs++ = hwsp_offset; |
| 881 | *cs++ = 0; |
| 882 | |
| 883 | intel_ring_advance(to, cs); |
| 884 | to->sched.semaphores |= from->engine->mask; |
| 885 | to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; |
| 886 | return 0; |
| 887 | } |
| 888 | |
| 889 | static int |
| 890 | i915_request_await_request(struct i915_request *to, struct i915_request *from) |
| 891 | { |
| 892 | int ret; |
| 893 | |
| 894 | GEM_BUG_ON(to == from); |
| 895 | GEM_BUG_ON(to->timeline == from->timeline); |
| 896 | |
| 897 | if (i915_request_completed(from)) { |
| 898 | i915_sw_fence_set_error_once(&to->submit, from->fence.error); |
| 899 | return 0; |
| 900 | } |
| 901 | |
| 902 | if (to->engine->schedule) { |
| 903 | ret = i915_sched_node_add_dependency(&to->sched, &from->sched); |
| 904 | if (ret < 0) |
| 905 | return ret; |
| 906 | } |
| 907 | |
| 908 | if (to->engine == from->engine) { |
| 909 | ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, |
| 910 | &from->submit, |
| 911 | I915_FENCE_GFP); |
| 912 | } else if (intel_engine_has_semaphores(to->engine) && |
| 913 | to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) { |
| 914 | ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); |
| 915 | } else { |
| 916 | ret = i915_sw_fence_await_dma_fence(&to->submit, |
| 917 | &from->fence, 0, |
| 918 | I915_FENCE_GFP); |
| 919 | } |
| 920 | if (ret < 0) |
| 921 | return ret; |
| 922 | |
| 923 | if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { |
| 924 | ret = i915_sw_fence_await_dma_fence(&to->semaphore, |
| 925 | &from->fence, 0, |
| 926 | I915_FENCE_GFP); |
| 927 | if (ret < 0) |
| 928 | return ret; |
| 929 | } |
| 930 | |
| 931 | return 0; |
| 932 | } |
| 933 | |
| 934 | int |
| 935 | i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) |
| 936 | { |
| 937 | struct dma_fence **child = &fence; |
| 938 | unsigned int nchild = 1; |
| 939 | int ret; |
| 940 | |
| 941 | /* |
| 942 | * Note that if the fence-array was created in signal-on-any mode, |
| 943 | * we should *not* decompose it into its individual fences. However, |
| 944 | * we don't currently store which mode the fence-array is operating |
| 945 | * in. Fortunately, the only user of signal-on-any is private to |
| 946 | * amdgpu and we should not see any incoming fence-array from |
| 947 | * sync-file being in signal-on-any mode. |
| 948 | */ |
| 949 | if (dma_fence_is_array(fence)) { |
| 950 | struct dma_fence_array *array = to_dma_fence_array(fence); |
| 951 | |
| 952 | child = array->fences; |
| 953 | nchild = array->num_fences; |
| 954 | GEM_BUG_ON(!nchild); |
| 955 | } |
| 956 | |
| 957 | do { |
| 958 | fence = *child++; |
| 959 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 960 | continue; |
| 961 | |
| 962 | /* |
| 963 | * Requests on the same timeline are explicitly ordered, along |
| 964 | * with their dependencies, by i915_request_add() which ensures |
| 965 | * that requests are submitted in-order through each ring. |
| 966 | */ |
| 967 | if (fence->context == rq->fence.context) |
| 968 | continue; |
| 969 | |
| 970 | /* Squash repeated waits to the same timelines */ |
| 971 | if (fence->context && |
| 972 | intel_timeline_sync_is_later(rq->timeline, fence)) |
| 973 | continue; |
| 974 | |
| 975 | if (dma_fence_is_i915(fence)) |
| 976 | ret = i915_request_await_request(rq, to_request(fence)); |
| 977 | else |
| 978 | ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, |
| 979 | I915_FENCE_TIMEOUT, |
| 980 | I915_FENCE_GFP); |
| 981 | if (ret < 0) |
| 982 | return ret; |
| 983 | |
| 984 | /* Record the latest fence used against each timeline */ |
| 985 | if (fence->context) |
| 986 | intel_timeline_sync_set(rq->timeline, fence); |
| 987 | } while (--nchild); |
| 988 | |
| 989 | return 0; |
| 990 | } |
| 991 | |
| 992 | int |
| 993 | i915_request_await_execution(struct i915_request *rq, |
| 994 | struct dma_fence *fence, |
| 995 | void (*hook)(struct i915_request *rq, |
| 996 | struct dma_fence *signal)) |
| 997 | { |
| 998 | struct dma_fence **child = &fence; |
| 999 | unsigned int nchild = 1; |
| 1000 | int ret; |
| 1001 | |
| 1002 | if (dma_fence_is_array(fence)) { |
| 1003 | struct dma_fence_array *array = to_dma_fence_array(fence); |
| 1004 | |
| 1005 | /* XXX Error for signal-on-any fence arrays */ |
| 1006 | |
| 1007 | child = array->fences; |
| 1008 | nchild = array->num_fences; |
| 1009 | GEM_BUG_ON(!nchild); |
| 1010 | } |
| 1011 | |
| 1012 | do { |
| 1013 | fence = *child++; |
| 1014 | if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| 1015 | continue; |
| 1016 | |
| 1017 | /* |
| 1018 | * We don't squash repeated fence dependencies here as we |
| 1019 | * want to run our callback in all cases. |
| 1020 | */ |
| 1021 | |
| 1022 | if (dma_fence_is_i915(fence)) |
| 1023 | ret = __i915_request_await_execution(rq, |
| 1024 | to_request(fence), |
| 1025 | hook, |
| 1026 | I915_FENCE_GFP); |
| 1027 | else |
| 1028 | ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, |
| 1029 | I915_FENCE_TIMEOUT, |
| 1030 | GFP_KERNEL); |
| 1031 | if (ret < 0) |
| 1032 | return ret; |
| 1033 | } while (--nchild); |
| 1034 | |
| 1035 | return 0; |
| 1036 | } |
| 1037 | |
| 1038 | /** |
| 1039 | * i915_request_await_object - set this request to (async) wait upon a bo |
| 1040 | * @to: request we are wishing to use |
| 1041 | * @obj: object which may be in use on another ring. |
| 1042 | * @write: whether the wait is on behalf of a writer |
| 1043 | * |
| 1044 | * This code is meant to abstract object synchronization with the GPU. |
| 1045 | * Conceptually we serialise writes between engines inside the GPU. |
| 1046 | * We only allow one engine to write into a buffer at any time, but |
| 1047 | * multiple readers. To ensure each has a coherent view of memory, we must: |
| 1048 | * |
| 1049 | * - If there is an outstanding write request to the object, the new |
| 1050 | * request must wait for it to complete (either CPU or in hw, requests |
| 1051 | * on the same ring will be naturally ordered). |
| 1052 | * |
| 1053 | * - If we are a write request (pending_write_domain is set), the new |
| 1054 | * request must wait for outstanding read requests to complete. |
| 1055 | * |
| 1056 | * Returns 0 if successful, else propagates up the lower layer error. |
| 1057 | */ |
| 1058 | int |
| 1059 | i915_request_await_object(struct i915_request *to, |
| 1060 | struct drm_i915_gem_object *obj, |
| 1061 | bool write) |
| 1062 | { |
| 1063 | struct dma_fence *excl; |
| 1064 | int ret = 0; |
| 1065 | |
| 1066 | if (write) { |
| 1067 | struct dma_fence **shared; |
| 1068 | unsigned int count, i; |
| 1069 | |
| 1070 | ret = dma_resv_get_fences_rcu(obj->base.resv, |
| 1071 | &excl, &count, &shared); |
| 1072 | if (ret) |
| 1073 | return ret; |
| 1074 | |
| 1075 | for (i = 0; i < count; i++) { |
| 1076 | ret = i915_request_await_dma_fence(to, shared[i]); |
| 1077 | if (ret) |
| 1078 | break; |
| 1079 | |
| 1080 | dma_fence_put(shared[i]); |
| 1081 | } |
| 1082 | |
| 1083 | for (; i < count; i++) |
| 1084 | dma_fence_put(shared[i]); |
| 1085 | kfree(shared); |
| 1086 | } else { |
| 1087 | excl = dma_resv_get_excl_rcu(obj->base.resv); |
| 1088 | } |
| 1089 | |
| 1090 | if (excl) { |
| 1091 | if (ret == 0) |
| 1092 | ret = i915_request_await_dma_fence(to, excl); |
| 1093 | |
| 1094 | dma_fence_put(excl); |
| 1095 | } |
| 1096 | |
| 1097 | return ret; |
| 1098 | } |
| 1099 | |
| 1100 | void i915_request_skip(struct i915_request *rq, int error) |
| 1101 | { |
| 1102 | void *vaddr = rq->ring->vaddr; |
| 1103 | u32 head; |
| 1104 | |
| 1105 | GEM_BUG_ON(!IS_ERR_VALUE((long)error)); |
| 1106 | dma_fence_set_error(&rq->fence, error); |
| 1107 | |
| 1108 | if (rq->infix == rq->postfix) |
| 1109 | return; |
| 1110 | |
| 1111 | /* |
| 1112 | * As this request likely depends on state from the lost |
| 1113 | * context, clear out all the user operations leaving the |
| 1114 | * breadcrumb at the end (so we get the fence notifications). |
| 1115 | */ |
| 1116 | head = rq->infix; |
| 1117 | if (rq->postfix < head) { |
| 1118 | memset(vaddr + head, 0, rq->ring->size - head); |
| 1119 | head = 0; |
| 1120 | } |
| 1121 | memset(vaddr + head, 0, rq->postfix - head); |
| 1122 | rq->infix = rq->postfix; |
| 1123 | } |
| 1124 | |
| 1125 | static struct i915_request * |
| 1126 | __i915_request_add_to_timeline(struct i915_request *rq) |
| 1127 | { |
| 1128 | struct intel_timeline *timeline = rq->timeline; |
| 1129 | struct i915_request *prev; |
| 1130 | |
| 1131 | /* |
| 1132 | * Dependency tracking and request ordering along the timeline |
| 1133 | * is special cased so that we can eliminate redundant ordering |
| 1134 | * operations while building the request (we know that the timeline |
| 1135 | * itself is ordered, and here we guarantee it). |
| 1136 | * |
| 1137 | * As we know we will need to emit tracking along the timeline, |
| 1138 | * we embed the hooks into our request struct -- at the cost of |
| 1139 | * having to have specialised no-allocation interfaces (which will |
| 1140 | * be beneficial elsewhere). |
| 1141 | * |
| 1142 | * A second benefit to open-coding i915_request_await_request is |
| 1143 | * that we can apply a slight variant of the rules specialised |
| 1144 | * for timelines that jump between engines (such as virtual engines). |
| 1145 | * If we consider the case of virtual engine, we must emit a dma-fence |
| 1146 | * to prevent scheduling of the second request until the first is |
| 1147 | * complete (to maximise our greedy late load balancing) and this |
| 1148 | * precludes optimising to use semaphores serialisation of a single |
| 1149 | * timeline across engines. |
| 1150 | */ |
| 1151 | prev = rcu_dereference_protected(timeline->last_request.request, |
| 1152 | lockdep_is_held(&timeline->mutex)); |
| 1153 | if (prev && !i915_request_completed(prev)) { |
| 1154 | if (is_power_of_2(prev->engine->mask | rq->engine->mask)) |
| 1155 | i915_sw_fence_await_sw_fence(&rq->submit, |
| 1156 | &prev->submit, |
| 1157 | &rq->submitq); |
| 1158 | else |
| 1159 | __i915_sw_fence_await_dma_fence(&rq->submit, |
| 1160 | &prev->fence, |
| 1161 | &rq->dmaq); |
| 1162 | if (rq->engine->schedule) |
| 1163 | __i915_sched_node_add_dependency(&rq->sched, |
| 1164 | &prev->sched, |
| 1165 | &rq->dep, |
| 1166 | 0); |
| 1167 | } |
| 1168 | |
| 1169 | list_add_tail(&rq->link, &timeline->requests); |
| 1170 | |
| 1171 | /* |
| 1172 | * Make sure that no request gazumped us - if it was allocated after |
| 1173 | * our i915_request_alloc() and called __i915_request_add() before |
| 1174 | * us, the timeline will hold its seqno which is later than ours. |
| 1175 | */ |
| 1176 | GEM_BUG_ON(timeline->seqno != rq->fence.seqno); |
| 1177 | __i915_active_request_set(&timeline->last_request, rq); |
| 1178 | |
| 1179 | return prev; |
| 1180 | } |
| 1181 | |
| 1182 | /* |
| 1183 | * NB: This function is not allowed to fail. Doing so would mean the the |
| 1184 | * request is not being tracked for completion but the work itself is |
| 1185 | * going to happen on the hardware. This would be a Bad Thing(tm). |
| 1186 | */ |
| 1187 | struct i915_request *__i915_request_commit(struct i915_request *rq) |
| 1188 | { |
| 1189 | struct intel_engine_cs *engine = rq->engine; |
| 1190 | struct intel_ring *ring = rq->ring; |
| 1191 | u32 *cs; |
| 1192 | |
| 1193 | GEM_TRACE("%s fence %llx:%lld\n", |
| 1194 | engine->name, rq->fence.context, rq->fence.seqno); |
| 1195 | |
| 1196 | /* |
| 1197 | * To ensure that this call will not fail, space for its emissions |
| 1198 | * should already have been reserved in the ring buffer. Let the ring |
| 1199 | * know that it is time to use that space up. |
| 1200 | */ |
| 1201 | GEM_BUG_ON(rq->reserved_space > ring->space); |
| 1202 | rq->reserved_space = 0; |
| 1203 | rq->emitted_jiffies = jiffies; |
| 1204 | |
| 1205 | /* |
| 1206 | * Record the position of the start of the breadcrumb so that |
| 1207 | * should we detect the updated seqno part-way through the |
| 1208 | * GPU processing the request, we never over-estimate the |
| 1209 | * position of the ring's HEAD. |
| 1210 | */ |
| 1211 | cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); |
| 1212 | GEM_BUG_ON(IS_ERR(cs)); |
| 1213 | rq->postfix = intel_ring_offset(rq, cs); |
| 1214 | |
| 1215 | return __i915_request_add_to_timeline(rq); |
| 1216 | } |
| 1217 | |
| 1218 | void __i915_request_queue(struct i915_request *rq, |
| 1219 | const struct i915_sched_attr *attr) |
| 1220 | { |
| 1221 | /* |
| 1222 | * Let the backend know a new request has arrived that may need |
| 1223 | * to adjust the existing execution schedule due to a high priority |
| 1224 | * request - i.e. we may want to preempt the current request in order |
| 1225 | * to run a high priority dependency chain *before* we can execute this |
| 1226 | * request. |
| 1227 | * |
| 1228 | * This is called before the request is ready to run so that we can |
| 1229 | * decide whether to preempt the entire chain so that it is ready to |
| 1230 | * run at the earliest possible convenience. |
| 1231 | */ |
| 1232 | if (attr && rq->engine->schedule) |
| 1233 | rq->engine->schedule(rq, attr); |
| 1234 | i915_sw_fence_commit(&rq->semaphore); |
| 1235 | i915_sw_fence_commit(&rq->submit); |
| 1236 | } |
| 1237 | |
| 1238 | void i915_request_add(struct i915_request *rq) |
| 1239 | { |
| 1240 | struct i915_sched_attr attr = rq->gem_context->sched; |
| 1241 | struct intel_timeline * const tl = rq->timeline; |
| 1242 | struct i915_request *prev; |
| 1243 | |
| 1244 | lockdep_assert_held(&tl->mutex); |
| 1245 | lockdep_unpin_lock(&tl->mutex, rq->cookie); |
| 1246 | |
| 1247 | trace_i915_request_add(rq); |
| 1248 | |
| 1249 | prev = __i915_request_commit(rq); |
| 1250 | |
| 1251 | /* |
| 1252 | * Boost actual workloads past semaphores! |
| 1253 | * |
| 1254 | * With semaphores we spin on one engine waiting for another, |
| 1255 | * simply to reduce the latency of starting our work when |
| 1256 | * the signaler completes. However, if there is any other |
| 1257 | * work that we could be doing on this engine instead, that |
| 1258 | * is better utilisation and will reduce the overall duration |
| 1259 | * of the current work. To avoid PI boosting a semaphore |
| 1260 | * far in the distance past over useful work, we keep a history |
| 1261 | * of any semaphore use along our dependency chain. |
| 1262 | */ |
| 1263 | if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) |
| 1264 | attr.priority |= I915_PRIORITY_NOSEMAPHORE; |
| 1265 | |
| 1266 | /* |
| 1267 | * Boost priorities to new clients (new request flows). |
| 1268 | * |
| 1269 | * Allow interactive/synchronous clients to jump ahead of |
| 1270 | * the bulk clients. (FQ_CODEL) |
| 1271 | */ |
| 1272 | if (list_empty(&rq->sched.signalers_list)) |
| 1273 | attr.priority |= I915_PRIORITY_WAIT; |
| 1274 | |
| 1275 | local_bh_disable(); |
| 1276 | __i915_request_queue(rq, &attr); |
| 1277 | local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ |
| 1278 | |
| 1279 | /* |
| 1280 | * In typical scenarios, we do not expect the previous request on |
| 1281 | * the timeline to be still tracked by timeline->last_request if it |
| 1282 | * has been completed. If the completed request is still here, that |
| 1283 | * implies that request retirement is a long way behind submission, |
| 1284 | * suggesting that we haven't been retiring frequently enough from |
| 1285 | * the combination of retire-before-alloc, waiters and the background |
| 1286 | * retirement worker. So if the last request on this timeline was |
| 1287 | * already completed, do a catch up pass, flushing the retirement queue |
| 1288 | * up to this client. Since we have now moved the heaviest operations |
| 1289 | * during retirement onto secondary workers, such as freeing objects |
| 1290 | * or contexts, retiring a bunch of requests is mostly list management |
| 1291 | * (and cache misses), and so we should not be overly penalizing this |
| 1292 | * client by performing excess work, though we may still performing |
| 1293 | * work on behalf of others -- but instead we should benefit from |
| 1294 | * improved resource management. (Well, that's the theory at least.) |
| 1295 | */ |
| 1296 | if (prev && i915_request_completed(prev) && prev->timeline == tl) |
| 1297 | i915_request_retire_upto(prev); |
| 1298 | |
| 1299 | mutex_unlock(&tl->mutex); |
| 1300 | } |
| 1301 | |
| 1302 | static unsigned long local_clock_us(unsigned int *cpu) |
| 1303 | { |
| 1304 | unsigned long t; |
| 1305 | |
| 1306 | /* |
| 1307 | * Cheaply and approximately convert from nanoseconds to microseconds. |
| 1308 | * The result and subsequent calculations are also defined in the same |
| 1309 | * approximate microseconds units. The principal source of timing |
| 1310 | * error here is from the simple truncation. |
| 1311 | * |
| 1312 | * Note that local_clock() is only defined wrt to the current CPU; |
| 1313 | * the comparisons are no longer valid if we switch CPUs. Instead of |
| 1314 | * blocking preemption for the entire busywait, we can detect the CPU |
| 1315 | * switch and use that as indicator of system load and a reason to |
| 1316 | * stop busywaiting, see busywait_stop(). |
| 1317 | */ |
| 1318 | *cpu = get_cpu(); |
| 1319 | t = local_clock() >> 10; |
| 1320 | put_cpu(); |
| 1321 | |
| 1322 | return t; |
| 1323 | } |
| 1324 | |
| 1325 | static bool busywait_stop(unsigned long timeout, unsigned int cpu) |
| 1326 | { |
| 1327 | unsigned int this_cpu; |
| 1328 | |
| 1329 | if (time_after(local_clock_us(&this_cpu), timeout)) |
| 1330 | return true; |
| 1331 | |
| 1332 | return this_cpu != cpu; |
| 1333 | } |
| 1334 | |
| 1335 | static bool __i915_spin_request(const struct i915_request * const rq, |
| 1336 | int state, unsigned long timeout_us) |
| 1337 | { |
| 1338 | unsigned int cpu; |
| 1339 | |
| 1340 | /* |
| 1341 | * Only wait for the request if we know it is likely to complete. |
| 1342 | * |
| 1343 | * We don't track the timestamps around requests, nor the average |
| 1344 | * request length, so we do not have a good indicator that this |
| 1345 | * request will complete within the timeout. What we do know is the |
| 1346 | * order in which requests are executed by the context and so we can |
| 1347 | * tell if the request has been started. If the request is not even |
| 1348 | * running yet, it is a fair assumption that it will not complete |
| 1349 | * within our relatively short timeout. |
| 1350 | */ |
| 1351 | if (!i915_request_is_running(rq)) |
| 1352 | return false; |
| 1353 | |
| 1354 | /* |
| 1355 | * When waiting for high frequency requests, e.g. during synchronous |
| 1356 | * rendering split between the CPU and GPU, the finite amount of time |
| 1357 | * required to set up the irq and wait upon it limits the response |
| 1358 | * rate. By busywaiting on the request completion for a short while we |
| 1359 | * can service the high frequency waits as quick as possible. However, |
| 1360 | * if it is a slow request, we want to sleep as quickly as possible. |
| 1361 | * The tradeoff between waiting and sleeping is roughly the time it |
| 1362 | * takes to sleep on a request, on the order of a microsecond. |
| 1363 | */ |
| 1364 | |
| 1365 | timeout_us += local_clock_us(&cpu); |
| 1366 | do { |
| 1367 | if (i915_request_completed(rq)) |
| 1368 | return true; |
| 1369 | |
| 1370 | if (signal_pending_state(state, current)) |
| 1371 | break; |
| 1372 | |
| 1373 | if (busywait_stop(timeout_us, cpu)) |
| 1374 | break; |
| 1375 | |
| 1376 | cpu_relax(); |
| 1377 | } while (!need_resched()); |
| 1378 | |
| 1379 | return false; |
| 1380 | } |
| 1381 | |
| 1382 | struct request_wait { |
| 1383 | struct dma_fence_cb cb; |
| 1384 | struct task_struct *tsk; |
| 1385 | }; |
| 1386 | |
| 1387 | static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) |
| 1388 | { |
| 1389 | struct request_wait *wait = container_of(cb, typeof(*wait), cb); |
| 1390 | |
| 1391 | wake_up_process(wait->tsk); |
| 1392 | } |
| 1393 | |
| 1394 | /** |
| 1395 | * i915_request_wait - wait until execution of request has finished |
| 1396 | * @rq: the request to wait upon |
| 1397 | * @flags: how to wait |
| 1398 | * @timeout: how long to wait in jiffies |
| 1399 | * |
| 1400 | * i915_request_wait() waits for the request to be completed, for a |
| 1401 | * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an |
| 1402 | * unbounded wait). |
| 1403 | * |
| 1404 | * Returns the remaining time (in jiffies) if the request completed, which may |
| 1405 | * be zero or -ETIME if the request is unfinished after the timeout expires. |
| 1406 | * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is |
| 1407 | * pending before the request completes. |
| 1408 | */ |
| 1409 | long i915_request_wait(struct i915_request *rq, |
| 1410 | unsigned int flags, |
| 1411 | long timeout) |
| 1412 | { |
| 1413 | const int state = flags & I915_WAIT_INTERRUPTIBLE ? |
| 1414 | TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; |
| 1415 | struct request_wait wait; |
| 1416 | |
| 1417 | might_sleep(); |
| 1418 | GEM_BUG_ON(timeout < 0); |
| 1419 | |
| 1420 | if (dma_fence_is_signaled(&rq->fence)) |
| 1421 | return timeout; |
| 1422 | |
| 1423 | if (!timeout) |
| 1424 | return -ETIME; |
| 1425 | |
| 1426 | trace_i915_request_wait_begin(rq, flags); |
| 1427 | |
| 1428 | /* |
| 1429 | * We must never wait on the GPU while holding a lock as we |
| 1430 | * may need to perform a GPU reset. So while we don't need to |
| 1431 | * serialise wait/reset with an explicit lock, we do want |
| 1432 | * lockdep to detect potential dependency cycles. |
| 1433 | */ |
| 1434 | mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); |
| 1435 | |
| 1436 | /* |
| 1437 | * Optimistic spin before touching IRQs. |
| 1438 | * |
| 1439 | * We may use a rather large value here to offset the penalty of |
| 1440 | * switching away from the active task. Frequently, the client will |
| 1441 | * wait upon an old swapbuffer to throttle itself to remain within a |
| 1442 | * frame of the gpu. If the client is running in lockstep with the gpu, |
| 1443 | * then it should not be waiting long at all, and a sleep now will incur |
| 1444 | * extra scheduler latency in producing the next frame. To try to |
| 1445 | * avoid adding the cost of enabling/disabling the interrupt to the |
| 1446 | * short wait, we first spin to see if the request would have completed |
| 1447 | * in the time taken to setup the interrupt. |
| 1448 | * |
| 1449 | * We need upto 5us to enable the irq, and upto 20us to hide the |
| 1450 | * scheduler latency of a context switch, ignoring the secondary |
| 1451 | * impacts from a context switch such as cache eviction. |
| 1452 | * |
| 1453 | * The scheme used for low-latency IO is called "hybrid interrupt |
| 1454 | * polling". The suggestion there is to sleep until just before you |
| 1455 | * expect to be woken by the device interrupt and then poll for its |
| 1456 | * completion. That requires having a good predictor for the request |
| 1457 | * duration, which we currently lack. |
| 1458 | */ |
| 1459 | if (CONFIG_DRM_I915_SPIN_REQUEST && |
| 1460 | __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { |
| 1461 | dma_fence_signal(&rq->fence); |
| 1462 | goto out; |
| 1463 | } |
| 1464 | |
| 1465 | /* |
| 1466 | * This client is about to stall waiting for the GPU. In many cases |
| 1467 | * this is undesirable and limits the throughput of the system, as |
| 1468 | * many clients cannot continue processing user input/output whilst |
| 1469 | * blocked. RPS autotuning may take tens of milliseconds to respond |
| 1470 | * to the GPU load and thus incurs additional latency for the client. |
| 1471 | * We can circumvent that by promoting the GPU frequency to maximum |
| 1472 | * before we sleep. This makes the GPU throttle up much more quickly |
| 1473 | * (good for benchmarks and user experience, e.g. window animations), |
| 1474 | * but at a cost of spending more power processing the workload |
| 1475 | * (bad for battery). |
| 1476 | */ |
| 1477 | if (flags & I915_WAIT_PRIORITY) { |
| 1478 | if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) |
| 1479 | gen6_rps_boost(rq); |
| 1480 | i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); |
| 1481 | } |
| 1482 | |
| 1483 | wait.tsk = current; |
| 1484 | if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) |
| 1485 | goto out; |
| 1486 | |
| 1487 | for (;;) { |
| 1488 | set_current_state(state); |
| 1489 | |
| 1490 | if (i915_request_completed(rq)) { |
| 1491 | dma_fence_signal(&rq->fence); |
| 1492 | break; |
| 1493 | } |
| 1494 | |
| 1495 | if (signal_pending_state(state, current)) { |
| 1496 | timeout = -ERESTARTSYS; |
| 1497 | break; |
| 1498 | } |
| 1499 | |
| 1500 | if (!timeout) { |
| 1501 | timeout = -ETIME; |
| 1502 | break; |
| 1503 | } |
| 1504 | |
| 1505 | timeout = io_schedule_timeout(timeout); |
| 1506 | } |
| 1507 | __set_current_state(TASK_RUNNING); |
| 1508 | |
| 1509 | dma_fence_remove_callback(&rq->fence, &wait.cb); |
| 1510 | |
| 1511 | out: |
| 1512 | mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_); |
| 1513 | trace_i915_request_wait_end(rq); |
| 1514 | return timeout; |
| 1515 | } |
| 1516 | |
| 1517 | bool i915_retire_requests(struct drm_i915_private *i915) |
| 1518 | { |
| 1519 | struct intel_gt_timelines *timelines = &i915->gt.timelines; |
| 1520 | struct intel_timeline *tl, *tn; |
| 1521 | unsigned long flags; |
| 1522 | LIST_HEAD(free); |
| 1523 | |
| 1524 | spin_lock_irqsave(&timelines->lock, flags); |
| 1525 | list_for_each_entry_safe(tl, tn, &timelines->active_list, link) { |
| 1526 | if (!mutex_trylock(&tl->mutex)) |
| 1527 | continue; |
| 1528 | |
| 1529 | intel_timeline_get(tl); |
| 1530 | GEM_BUG_ON(!tl->active_count); |
| 1531 | tl->active_count++; /* pin the list element */ |
| 1532 | spin_unlock_irqrestore(&timelines->lock, flags); |
| 1533 | |
| 1534 | retire_requests(tl); |
| 1535 | |
| 1536 | spin_lock_irqsave(&timelines->lock, flags); |
| 1537 | |
| 1538 | /* Resume iteration after dropping lock */ |
| 1539 | list_safe_reset_next(tl, tn, link); |
| 1540 | if (!--tl->active_count) |
| 1541 | list_del(&tl->link); |
| 1542 | |
| 1543 | mutex_unlock(&tl->mutex); |
| 1544 | |
| 1545 | /* Defer the final release to after the spinlock */ |
| 1546 | if (refcount_dec_and_test(&tl->kref.refcount)) { |
| 1547 | GEM_BUG_ON(tl->active_count); |
| 1548 | list_add(&tl->link, &free); |
| 1549 | } |
| 1550 | } |
| 1551 | spin_unlock_irqrestore(&timelines->lock, flags); |
| 1552 | |
| 1553 | list_for_each_entry_safe(tl, tn, &free, link) |
| 1554 | __intel_timeline_free(&tl->kref); |
| 1555 | |
| 1556 | return !list_empty(&timelines->active_list); |
| 1557 | } |
| 1558 | |
| 1559 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| 1560 | #include "selftests/mock_request.c" |
| 1561 | #include "selftests/i915_request.c" |
| 1562 | #endif |
| 1563 | |
| 1564 | static void i915_global_request_shrink(void) |
| 1565 | { |
| 1566 | kmem_cache_shrink(global.slab_dependencies); |
| 1567 | kmem_cache_shrink(global.slab_execute_cbs); |
| 1568 | kmem_cache_shrink(global.slab_requests); |
| 1569 | } |
| 1570 | |
| 1571 | static void i915_global_request_exit(void) |
| 1572 | { |
| 1573 | kmem_cache_destroy(global.slab_dependencies); |
| 1574 | kmem_cache_destroy(global.slab_execute_cbs); |
| 1575 | kmem_cache_destroy(global.slab_requests); |
| 1576 | } |
| 1577 | |
| 1578 | static struct i915_global_request global = { { |
| 1579 | .shrink = i915_global_request_shrink, |
| 1580 | .exit = i915_global_request_exit, |
| 1581 | } }; |
| 1582 | |
| 1583 | int __init i915_global_request_init(void) |
| 1584 | { |
| 1585 | global.slab_requests = KMEM_CACHE(i915_request, |
| 1586 | SLAB_HWCACHE_ALIGN | |
| 1587 | SLAB_RECLAIM_ACCOUNT | |
| 1588 | SLAB_TYPESAFE_BY_RCU); |
| 1589 | if (!global.slab_requests) |
| 1590 | return -ENOMEM; |
| 1591 | |
| 1592 | global.slab_execute_cbs = KMEM_CACHE(execute_cb, |
| 1593 | SLAB_HWCACHE_ALIGN | |
| 1594 | SLAB_RECLAIM_ACCOUNT | |
| 1595 | SLAB_TYPESAFE_BY_RCU); |
| 1596 | if (!global.slab_execute_cbs) |
| 1597 | goto err_requests; |
| 1598 | |
| 1599 | global.slab_dependencies = KMEM_CACHE(i915_dependency, |
| 1600 | SLAB_HWCACHE_ALIGN | |
| 1601 | SLAB_RECLAIM_ACCOUNT); |
| 1602 | if (!global.slab_dependencies) |
| 1603 | goto err_execute_cbs; |
| 1604 | |
| 1605 | i915_global_register(&global.base); |
| 1606 | return 0; |
| 1607 | |
| 1608 | err_execute_cbs: |
| 1609 | kmem_cache_destroy(global.slab_execute_cbs); |
| 1610 | err_requests: |
| 1611 | kmem_cache_destroy(global.slab_requests); |
| 1612 | return -ENOMEM; |
| 1613 | } |