blob: 49d498882cf628ca620bb01b3d2d40c26f790181 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/dma-fence-array.h>
26#include <linux/irq_work.h>
27#include <linux/prefetch.h>
28#include <linux/sched.h>
29#include <linux/sched/clock.h>
30#include <linux/sched/signal.h>
31
32#include "gem/i915_gem_context.h"
33#include "gt/intel_context.h"
34
35#include "i915_active.h"
36#include "i915_drv.h"
37#include "i915_globals.h"
38#include "i915_trace.h"
39#include "intel_pm.h"
40
41struct execute_cb {
42 struct list_head link;
43 struct irq_work work;
44 struct i915_sw_fence *fence;
45 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
46 struct i915_request *signal;
47};
48
49static struct i915_global_request {
50 struct i915_global base;
51 struct kmem_cache *slab_requests;
52 struct kmem_cache *slab_dependencies;
53 struct kmem_cache *slab_execute_cbs;
54} global;
55
56static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57{
58 return "i915";
59}
60
61static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62{
63 /*
64 * The timeline struct (as part of the ppgtt underneath a context)
65 * may be freed when the request is no longer in use by the GPU.
66 * We could extend the life of a context to beyond that of all
67 * fences, possibly keeping the hw resource around indefinitely,
68 * or we just give them a false name. Since
69 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
70 * lie seems justifiable.
71 */
72 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
73 return "signaled";
74
75 return to_request(fence)->gem_context->name ?: "[i915]";
76}
77
78static bool i915_fence_signaled(struct dma_fence *fence)
79{
80 return i915_request_completed(to_request(fence));
81}
82
83static bool i915_fence_enable_signaling(struct dma_fence *fence)
84{
85 return i915_request_enable_breadcrumb(to_request(fence));
86}
87
88static signed long i915_fence_wait(struct dma_fence *fence,
89 bool interruptible,
90 signed long timeout)
91{
92 return i915_request_wait(to_request(fence),
93 interruptible | I915_WAIT_PRIORITY,
94 timeout);
95}
96
97static void i915_fence_release(struct dma_fence *fence)
98{
99 struct i915_request *rq = to_request(fence);
100
101 /*
102 * The request is put onto a RCU freelist (i.e. the address
103 * is immediately reused), mark the fences as being freed now.
104 * Otherwise the debugobjects for the fences are only marked as
105 * freed when the slab cache itself is freed, and so we would get
106 * caught trying to reuse dead objects.
107 */
108 i915_sw_fence_fini(&rq->submit);
109 i915_sw_fence_fini(&rq->semaphore);
110
111 kmem_cache_free(global.slab_requests, rq);
112}
113
114const struct dma_fence_ops i915_fence_ops = {
115 .get_driver_name = i915_fence_get_driver_name,
116 .get_timeline_name = i915_fence_get_timeline_name,
117 .enable_signaling = i915_fence_enable_signaling,
118 .signaled = i915_fence_signaled,
119 .wait = i915_fence_wait,
120 .release = i915_fence_release,
121};
122
123static void irq_execute_cb(struct irq_work *wrk)
124{
125 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
126
127 i915_sw_fence_complete(cb->fence);
128 kmem_cache_free(global.slab_execute_cbs, cb);
129}
130
131static void irq_execute_cb_hook(struct irq_work *wrk)
132{
133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135 cb->hook(container_of(cb->fence, struct i915_request, submit),
136 &cb->signal->fence);
137 i915_request_put(cb->signal);
138
139 irq_execute_cb(wrk);
140}
141
142static void __notify_execute_cb(struct i915_request *rq)
143{
144 struct execute_cb *cb;
145
146 lockdep_assert_held(&rq->lock);
147
148 if (list_empty(&rq->execute_cb))
149 return;
150
151 list_for_each_entry(cb, &rq->execute_cb, link)
152 irq_work_queue(&cb->work);
153
154 /*
155 * XXX Rollback on __i915_request_unsubmit()
156 *
157 * In the future, perhaps when we have an active time-slicing scheduler,
158 * it will be interesting to unsubmit parallel execution and remove
159 * busywaits from the GPU until their master is restarted. This is
160 * quite hairy, we have to carefully rollback the fence and do a
161 * preempt-to-idle cycle on the target engine, all the while the
162 * master execute_cb may refire.
163 */
164 INIT_LIST_HEAD(&rq->execute_cb);
165}
166
167static inline void
168remove_from_client(struct i915_request *request)
169{
170 struct drm_i915_file_private *file_priv;
171
172 file_priv = READ_ONCE(request->file_priv);
173 if (!file_priv)
174 return;
175
176 spin_lock(&file_priv->mm.lock);
177 if (request->file_priv) {
178 list_del(&request->client_link);
179 request->file_priv = NULL;
180 }
181 spin_unlock(&file_priv->mm.lock);
182}
183
184static void free_capture_list(struct i915_request *request)
185{
186 struct i915_capture_list *capture;
187
188 capture = request->capture_list;
189 while (capture) {
190 struct i915_capture_list *next = capture->next;
191
192 kfree(capture);
193 capture = next;
194 }
195}
196
197static void remove_from_engine(struct i915_request *rq)
198{
199 struct intel_engine_cs *engine, *locked;
200
201 /*
202 * Virtual engines complicate acquiring the engine timeline lock,
203 * as their rq->engine pointer is not stable until under that
204 * engine lock. The simple ploy we use is to take the lock then
205 * check that the rq still belongs to the newly locked engine.
206 */
207 locked = READ_ONCE(rq->engine);
208 spin_lock(&locked->active.lock);
209 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
210 spin_unlock(&locked->active.lock);
211 spin_lock(&engine->active.lock);
212 locked = engine;
213 }
214 list_del(&rq->sched.link);
215 spin_unlock(&locked->active.lock);
216}
217
218static bool i915_request_retire(struct i915_request *rq)
219{
220 struct i915_active_request *active, *next;
221
222 lockdep_assert_held(&rq->timeline->mutex);
223 if (!i915_request_completed(rq))
224 return false;
225
226 GEM_TRACE("%s fence %llx:%lld, current %d\n",
227 rq->engine->name,
228 rq->fence.context, rq->fence.seqno,
229 hwsp_seqno(rq));
230
231 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232 trace_i915_request_retire(rq);
233
234 /*
235 * We know the GPU must have read the request to have
236 * sent us the seqno + interrupt, so use the position
237 * of tail of the request to update the last known position
238 * of the GPU head.
239 *
240 * Note this requires that we are always called in request
241 * completion order.
242 */
243 GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
244 rq->ring->head = rq->postfix;
245
246 /*
247 * Walk through the active list, calling retire on each. This allows
248 * objects to track their GPU activity and mark themselves as idle
249 * when their *last* active request is completed (updating state
250 * tracking lists for eviction, active references for GEM, etc).
251 *
252 * As the ->retire() may free the node, we decouple it first and
253 * pass along the auxiliary information (to avoid dereferencing
254 * the node after the callback).
255 */
256 list_for_each_entry_safe(active, next, &rq->active_list, link) {
257 /*
258 * In microbenchmarks or focusing upon time inside the kernel,
259 * we may spend an inordinate amount of time simply handling
260 * the retirement of requests and processing their callbacks.
261 * Of which, this loop itself is particularly hot due to the
262 * cache misses when jumping around the list of
263 * i915_active_request. So we try to keep this loop as
264 * streamlined as possible and also prefetch the next
265 * i915_active_request to try and hide the likely cache miss.
266 */
267 prefetchw(next);
268
269 INIT_LIST_HEAD(&active->link);
270 RCU_INIT_POINTER(active->request, NULL);
271
272 active->retire(active, rq);
273 }
274
275 local_irq_disable();
276
277 /*
278 * We only loosely track inflight requests across preemption,
279 * and so we may find ourselves attempting to retire a _completed_
280 * request that we have removed from the HW and put back on a run
281 * queue.
282 */
283 remove_from_engine(rq);
284
285 spin_lock(&rq->lock);
286 i915_request_mark_complete(rq);
287 if (!i915_request_signaled(rq))
288 dma_fence_signal_locked(&rq->fence);
289 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
290 i915_request_cancel_breadcrumb(rq);
291 if (i915_request_has_waitboost(rq)) {
292 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
293 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
294 }
295 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
296 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297 __notify_execute_cb(rq);
298 }
299 GEM_BUG_ON(!list_empty(&rq->execute_cb));
300 spin_unlock(&rq->lock);
301
302 local_irq_enable();
303
304 remove_from_client(rq);
305 list_del(&rq->link);
306
307 intel_context_exit(rq->hw_context);
308 intel_context_unpin(rq->hw_context);
309
310 free_capture_list(rq);
311 i915_sched_node_fini(&rq->sched);
312 i915_request_put(rq);
313
314 return true;
315}
316
317void i915_request_retire_upto(struct i915_request *rq)
318{
319 struct intel_timeline * const tl = rq->timeline;
320 struct i915_request *tmp;
321
322 GEM_TRACE("%s fence %llx:%lld, current %d\n",
323 rq->engine->name,
324 rq->fence.context, rq->fence.seqno,
325 hwsp_seqno(rq));
326
327 lockdep_assert_held(&tl->mutex);
328 GEM_BUG_ON(!i915_request_completed(rq));
329
330 do {
331 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
332 } while (i915_request_retire(tmp) && tmp != rq);
333}
334
335static int
336__i915_request_await_execution(struct i915_request *rq,
337 struct i915_request *signal,
338 void (*hook)(struct i915_request *rq,
339 struct dma_fence *signal),
340 gfp_t gfp)
341{
342 struct execute_cb *cb;
343
344 if (i915_request_is_active(signal)) {
345 if (hook)
346 hook(rq, &signal->fence);
347 return 0;
348 }
349
350 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
351 if (!cb)
352 return -ENOMEM;
353
354 cb->fence = &rq->submit;
355 i915_sw_fence_await(cb->fence);
356 init_irq_work(&cb->work, irq_execute_cb);
357
358 if (hook) {
359 cb->hook = hook;
360 cb->signal = i915_request_get(signal);
361 cb->work.func = irq_execute_cb_hook;
362 }
363
364 spin_lock_irq(&signal->lock);
365 if (i915_request_is_active(signal)) {
366 if (hook) {
367 hook(rq, &signal->fence);
368 i915_request_put(signal);
369 }
370 i915_sw_fence_complete(cb->fence);
371 kmem_cache_free(global.slab_execute_cbs, cb);
372 } else {
373 list_add_tail(&cb->link, &signal->execute_cb);
374 }
375 spin_unlock_irq(&signal->lock);
376
377 return 0;
378}
379
380bool __i915_request_submit(struct i915_request *request)
381{
382 struct intel_engine_cs *engine = request->engine;
383 bool result = false;
384
385 GEM_TRACE("%s fence %llx:%lld, current %d\n",
386 engine->name,
387 request->fence.context, request->fence.seqno,
388 hwsp_seqno(request));
389
390 GEM_BUG_ON(!irqs_disabled());
391 lockdep_assert_held(&engine->active.lock);
392
393 /*
394 * With the advent of preempt-to-busy, we frequently encounter
395 * requests that we have unsubmitted from HW, but left running
396 * until the next ack and so have completed in the meantime. On
397 * resubmission of that completed request, we can skip
398 * updating the payload, and execlists can even skip submitting
399 * the request.
400 *
401 * We must remove the request from the caller's priority queue,
402 * and the caller must only call us when the request is in their
403 * priority queue, under the active.lock. This ensures that the
404 * request has *not* yet been retired and we can safely move
405 * the request into the engine->active.list where it will be
406 * dropped upon retiring. (Otherwise if resubmit a *retired*
407 * request, this would be a horrible use-after-free.)
408 */
409 if (i915_request_completed(request))
410 goto xfer;
411
412 if (i915_gem_context_is_banned(request->gem_context))
413 i915_request_skip(request, -EIO);
414
415 /*
416 * Are we using semaphores when the gpu is already saturated?
417 *
418 * Using semaphores incurs a cost in having the GPU poll a
419 * memory location, busywaiting for it to change. The continual
420 * memory reads can have a noticeable impact on the rest of the
421 * system with the extra bus traffic, stalling the cpu as it too
422 * tries to access memory across the bus (perf stat -e bus-cycles).
423 *
424 * If we installed a semaphore on this request and we only submit
425 * the request after the signaler completed, that indicates the
426 * system is overloaded and using semaphores at this time only
427 * increases the amount of work we are doing. If so, we disable
428 * further use of semaphores until we are idle again, whence we
429 * optimistically try again.
430 */
431 if (request->sched.semaphores &&
432 i915_sw_fence_signaled(&request->semaphore))
433 engine->saturated |= request->sched.semaphores;
434
435 engine->emit_fini_breadcrumb(request,
436 request->ring->vaddr + request->postfix);
437
438 trace_i915_request_execute(request);
439 engine->serial++;
440 result = true;
441
442xfer: /* We may be recursing from the signal callback of another i915 fence */
443 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
444
445 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
446 list_move_tail(&request->sched.link, &engine->active.requests);
447
448 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
449 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
450 !i915_request_enable_breadcrumb(request))
451 intel_engine_queue_breadcrumbs(engine);
452
453 __notify_execute_cb(request);
454
455 spin_unlock(&request->lock);
456
457 return result;
458}
459
460void i915_request_submit(struct i915_request *request)
461{
462 struct intel_engine_cs *engine = request->engine;
463 unsigned long flags;
464
465 /* Will be called from irq-context when using foreign fences. */
466 spin_lock_irqsave(&engine->active.lock, flags);
467
468 __i915_request_submit(request);
469
470 spin_unlock_irqrestore(&engine->active.lock, flags);
471}
472
473void __i915_request_unsubmit(struct i915_request *request)
474{
475 struct intel_engine_cs *engine = request->engine;
476
477 GEM_TRACE("%s fence %llx:%lld, current %d\n",
478 engine->name,
479 request->fence.context, request->fence.seqno,
480 hwsp_seqno(request));
481
482 GEM_BUG_ON(!irqs_disabled());
483 lockdep_assert_held(&engine->active.lock);
484
485 /*
486 * Only unwind in reverse order, required so that the per-context list
487 * is kept in seqno/ring order.
488 */
489
490 /* We may be recursing from the signal callback of another i915 fence */
491 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
492
493 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
494 i915_request_cancel_breadcrumb(request);
495
496 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
497 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
498
499 spin_unlock(&request->lock);
500
501 /* We've already spun, don't charge on resubmitting. */
502 if (request->sched.semaphores && i915_request_started(request)) {
503 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
504 request->sched.semaphores = 0;
505 }
506
507 /*
508 * We don't need to wake_up any waiters on request->execute, they
509 * will get woken by any other event or us re-adding this request
510 * to the engine timeline (__i915_request_submit()). The waiters
511 * should be quite adapt at finding that the request now has a new
512 * global_seqno to the one they went to sleep on.
513 */
514}
515
516void i915_request_unsubmit(struct i915_request *request)
517{
518 struct intel_engine_cs *engine = request->engine;
519 unsigned long flags;
520
521 /* Will be called from irq-context when using foreign fences. */
522 spin_lock_irqsave(&engine->active.lock, flags);
523
524 __i915_request_unsubmit(request);
525
526 spin_unlock_irqrestore(&engine->active.lock, flags);
527}
528
529static int __i915_sw_fence_call
530submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
531{
532 struct i915_request *request =
533 container_of(fence, typeof(*request), submit);
534
535 switch (state) {
536 case FENCE_COMPLETE:
537 trace_i915_request_submit(request);
538
539 if (unlikely(fence->error))
540 i915_request_skip(request, fence->error);
541
542 /*
543 * We need to serialize use of the submit_request() callback
544 * with its hotplugging performed during an emergency
545 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
546 * critical section in order to force i915_gem_set_wedged() to
547 * wait until the submit_request() is completed before
548 * proceeding.
549 */
550 rcu_read_lock();
551 request->engine->submit_request(request);
552 rcu_read_unlock();
553 break;
554
555 case FENCE_FREE:
556 i915_request_put(request);
557 break;
558 }
559
560 return NOTIFY_DONE;
561}
562
563static void irq_semaphore_cb(struct irq_work *wrk)
564{
565 struct i915_request *rq =
566 container_of(wrk, typeof(*rq), semaphore_work);
567
568 i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
569 i915_request_put(rq);
570}
571
572static int __i915_sw_fence_call
573semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
574{
575 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
576
577 switch (state) {
578 case FENCE_COMPLETE:
579 if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
580 i915_request_get(rq);
581 init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
582 irq_work_queue(&rq->semaphore_work);
583 }
584 break;
585
586 case FENCE_FREE:
587 i915_request_put(rq);
588 break;
589 }
590
591 return NOTIFY_DONE;
592}
593
594static void retire_requests(struct intel_timeline *tl)
595{
596 struct i915_request *rq, *rn;
597
598 list_for_each_entry_safe(rq, rn, &tl->requests, link)
599 if (!i915_request_retire(rq))
600 break;
601}
602
603static noinline struct i915_request *
604request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
605{
606 struct i915_request *rq;
607
608 if (list_empty(&tl->requests))
609 goto out;
610
611 if (!gfpflags_allow_blocking(gfp))
612 goto out;
613
614 /* Move our oldest request to the slab-cache (if not in use!) */
615 rq = list_first_entry(&tl->requests, typeof(*rq), link);
616 i915_request_retire(rq);
617
618 rq = kmem_cache_alloc(global.slab_requests,
619 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
620 if (rq)
621 return rq;
622
623 /* Ratelimit ourselves to prevent oom from malicious clients */
624 rq = list_last_entry(&tl->requests, typeof(*rq), link);
625 cond_synchronize_rcu(rq->rcustate);
626
627 /* Retire our old requests in the hope that we free some */
628 retire_requests(tl);
629
630out:
631 return kmem_cache_alloc(global.slab_requests, gfp);
632}
633
634struct i915_request *
635__i915_request_create(struct intel_context *ce, gfp_t gfp)
636{
637 struct intel_timeline *tl = ce->timeline;
638 struct i915_request *rq;
639 u32 seqno;
640 int ret;
641
642 might_sleep_if(gfpflags_allow_blocking(gfp));
643
644 /* Check that the caller provided an already pinned context */
645 __intel_context_pin(ce);
646
647 /*
648 * Beware: Dragons be flying overhead.
649 *
650 * We use RCU to look up requests in flight. The lookups may
651 * race with the request being allocated from the slab freelist.
652 * That is the request we are writing to here, may be in the process
653 * of being read by __i915_active_request_get_rcu(). As such,
654 * we have to be very careful when overwriting the contents. During
655 * the RCU lookup, we change chase the request->engine pointer,
656 * read the request->global_seqno and increment the reference count.
657 *
658 * The reference count is incremented atomically. If it is zero,
659 * the lookup knows the request is unallocated and complete. Otherwise,
660 * it is either still in use, or has been reallocated and reset
661 * with dma_fence_init(). This increment is safe for release as we
662 * check that the request we have a reference to and matches the active
663 * request.
664 *
665 * Before we increment the refcount, we chase the request->engine
666 * pointer. We must not call kmem_cache_zalloc() or else we set
667 * that pointer to NULL and cause a crash during the lookup. If
668 * we see the request is completed (based on the value of the
669 * old engine and seqno), the lookup is complete and reports NULL.
670 * If we decide the request is not completed (new engine or seqno),
671 * then we grab a reference and double check that it is still the
672 * active request - which it won't be and restart the lookup.
673 *
674 * Do not use kmem_cache_zalloc() here!
675 */
676 rq = kmem_cache_alloc(global.slab_requests,
677 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
678 if (unlikely(!rq)) {
679 rq = request_alloc_slow(tl, gfp);
680 if (!rq) {
681 ret = -ENOMEM;
682 goto err_unreserve;
683 }
684 }
685
686 ret = intel_timeline_get_seqno(tl, rq, &seqno);
687 if (ret)
688 goto err_free;
689
690 rq->i915 = ce->engine->i915;
691 rq->hw_context = ce;
692 rq->gem_context = ce->gem_context;
693 rq->engine = ce->engine;
694 rq->ring = ce->ring;
695 rq->timeline = tl;
696 rq->hwsp_seqno = tl->hwsp_seqno;
697 rq->hwsp_cacheline = tl->hwsp_cacheline;
698 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
699
700 spin_lock_init(&rq->lock);
701 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
702 tl->fence_context, seqno);
703
704 /* We bump the ref for the fence chain */
705 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
706 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
707
708 i915_sched_node_init(&rq->sched);
709
710 /* No zalloc, must clear what we need by hand */
711 rq->file_priv = NULL;
712 rq->batch = NULL;
713 rq->capture_list = NULL;
714 rq->flags = 0;
715 rq->execution_mask = ALL_ENGINES;
716
717 INIT_LIST_HEAD(&rq->active_list);
718 INIT_LIST_HEAD(&rq->execute_cb);
719
720 /*
721 * Reserve space in the ring buffer for all the commands required to
722 * eventually emit this request. This is to guarantee that the
723 * i915_request_add() call can't fail. Note that the reserve may need
724 * to be redone if the request is not actually submitted straight
725 * away, e.g. because a GPU scheduler has deferred it.
726 *
727 * Note that due to how we add reserved_space to intel_ring_begin()
728 * we need to double our request to ensure that if we need to wrap
729 * around inside i915_request_add() there is sufficient space at
730 * the beginning of the ring as well.
731 */
732 rq->reserved_space =
733 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
734
735 /*
736 * Record the position of the start of the request so that
737 * should we detect the updated seqno part-way through the
738 * GPU processing the request, we never over-estimate the
739 * position of the head.
740 */
741 rq->head = rq->ring->emit;
742
743 ret = rq->engine->request_alloc(rq);
744 if (ret)
745 goto err_unwind;
746
747 rq->infix = rq->ring->emit; /* end of header; start of user payload */
748
749 intel_context_mark_active(ce);
750 return rq;
751
752err_unwind:
753 ce->ring->emit = rq->head;
754
755 /* Make sure we didn't add ourselves to external state before freeing */
756 GEM_BUG_ON(!list_empty(&rq->active_list));
757 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
758 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
759
760err_free:
761 kmem_cache_free(global.slab_requests, rq);
762err_unreserve:
763 intel_context_unpin(ce);
764 return ERR_PTR(ret);
765}
766
767struct i915_request *
768i915_request_create(struct intel_context *ce)
769{
770 struct i915_request *rq;
771 struct intel_timeline *tl;
772
773 tl = intel_context_timeline_lock(ce);
774 if (IS_ERR(tl))
775 return ERR_CAST(tl);
776
777 /* Move our oldest request to the slab-cache (if not in use!) */
778 rq = list_first_entry(&tl->requests, typeof(*rq), link);
779 if (!list_is_last(&rq->link, &tl->requests))
780 i915_request_retire(rq);
781
782 intel_context_enter(ce);
783 rq = __i915_request_create(ce, GFP_KERNEL);
784 intel_context_exit(ce); /* active reference transferred to request */
785 if (IS_ERR(rq))
786 goto err_unlock;
787
788 /* Check that we do not interrupt ourselves with a new request */
789 rq->cookie = lockdep_pin_lock(&tl->mutex);
790
791 return rq;
792
793err_unlock:
794 intel_context_timeline_unlock(tl);
795 return rq;
796}
797
798static int
799i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
800{
801 if (list_is_first(&signal->link, &signal->timeline->requests))
802 return 0;
803
804 signal = list_prev_entry(signal, link);
805 if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
806 return 0;
807
808 return i915_sw_fence_await_dma_fence(&rq->submit,
809 &signal->fence, 0,
810 I915_FENCE_GFP);
811}
812
813static intel_engine_mask_t
814already_busywaiting(struct i915_request *rq)
815{
816 /*
817 * Polling a semaphore causes bus traffic, delaying other users of
818 * both the GPU and CPU. We want to limit the impact on others,
819 * while taking advantage of early submission to reduce GPU
820 * latency. Therefore we restrict ourselves to not using more
821 * than one semaphore from each source, and not using a semaphore
822 * if we have detected the engine is saturated (i.e. would not be
823 * submitted early and cause bus traffic reading an already passed
824 * semaphore).
825 *
826 * See the are-we-too-late? check in __i915_request_submit().
827 */
828 return rq->sched.semaphores | rq->engine->saturated;
829}
830
831static int
832emit_semaphore_wait(struct i915_request *to,
833 struct i915_request *from,
834 gfp_t gfp)
835{
836 u32 hwsp_offset;
837 u32 *cs;
838 int err;
839
840 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
841 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
842
843 /* Just emit the first semaphore we see as request space is limited. */
844 if (already_busywaiting(to) & from->engine->mask)
845 return i915_sw_fence_await_dma_fence(&to->submit,
846 &from->fence, 0,
847 I915_FENCE_GFP);
848
849 err = i915_request_await_start(to, from);
850 if (err < 0)
851 return err;
852
853 /* Only submit our spinner after the signaler is running! */
854 err = __i915_request_await_execution(to, from, NULL, gfp);
855 if (err)
856 return err;
857
858 /* We need to pin the signaler's HWSP until we are finished reading. */
859 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
860 if (err)
861 return err;
862
863 cs = intel_ring_begin(to, 4);
864 if (IS_ERR(cs))
865 return PTR_ERR(cs);
866
867 /*
868 * Using greater-than-or-equal here means we have to worry
869 * about seqno wraparound. To side step that issue, we swap
870 * the timeline HWSP upon wrapping, so that everyone listening
871 * for the old (pre-wrap) values do not see the much smaller
872 * (post-wrap) values than they were expecting (and so wait
873 * forever).
874 */
875 *cs++ = MI_SEMAPHORE_WAIT |
876 MI_SEMAPHORE_GLOBAL_GTT |
877 MI_SEMAPHORE_POLL |
878 MI_SEMAPHORE_SAD_GTE_SDD;
879 *cs++ = from->fence.seqno;
880 *cs++ = hwsp_offset;
881 *cs++ = 0;
882
883 intel_ring_advance(to, cs);
884 to->sched.semaphores |= from->engine->mask;
885 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
886 return 0;
887}
888
889static int
890i915_request_await_request(struct i915_request *to, struct i915_request *from)
891{
892 int ret;
893
894 GEM_BUG_ON(to == from);
895 GEM_BUG_ON(to->timeline == from->timeline);
896
897 if (i915_request_completed(from)) {
898 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
899 return 0;
900 }
901
902 if (to->engine->schedule) {
903 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
904 if (ret < 0)
905 return ret;
906 }
907
908 if (to->engine == from->engine) {
909 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
910 &from->submit,
911 I915_FENCE_GFP);
912 } else if (intel_engine_has_semaphores(to->engine) &&
913 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
914 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
915 } else {
916 ret = i915_sw_fence_await_dma_fence(&to->submit,
917 &from->fence, 0,
918 I915_FENCE_GFP);
919 }
920 if (ret < 0)
921 return ret;
922
923 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
924 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
925 &from->fence, 0,
926 I915_FENCE_GFP);
927 if (ret < 0)
928 return ret;
929 }
930
931 return 0;
932}
933
934int
935i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
936{
937 struct dma_fence **child = &fence;
938 unsigned int nchild = 1;
939 int ret;
940
941 /*
942 * Note that if the fence-array was created in signal-on-any mode,
943 * we should *not* decompose it into its individual fences. However,
944 * we don't currently store which mode the fence-array is operating
945 * in. Fortunately, the only user of signal-on-any is private to
946 * amdgpu and we should not see any incoming fence-array from
947 * sync-file being in signal-on-any mode.
948 */
949 if (dma_fence_is_array(fence)) {
950 struct dma_fence_array *array = to_dma_fence_array(fence);
951
952 child = array->fences;
953 nchild = array->num_fences;
954 GEM_BUG_ON(!nchild);
955 }
956
957 do {
958 fence = *child++;
959 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
960 continue;
961
962 /*
963 * Requests on the same timeline are explicitly ordered, along
964 * with their dependencies, by i915_request_add() which ensures
965 * that requests are submitted in-order through each ring.
966 */
967 if (fence->context == rq->fence.context)
968 continue;
969
970 /* Squash repeated waits to the same timelines */
971 if (fence->context &&
972 intel_timeline_sync_is_later(rq->timeline, fence))
973 continue;
974
975 if (dma_fence_is_i915(fence))
976 ret = i915_request_await_request(rq, to_request(fence));
977 else
978 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
979 I915_FENCE_TIMEOUT,
980 I915_FENCE_GFP);
981 if (ret < 0)
982 return ret;
983
984 /* Record the latest fence used against each timeline */
985 if (fence->context)
986 intel_timeline_sync_set(rq->timeline, fence);
987 } while (--nchild);
988
989 return 0;
990}
991
992int
993i915_request_await_execution(struct i915_request *rq,
994 struct dma_fence *fence,
995 void (*hook)(struct i915_request *rq,
996 struct dma_fence *signal))
997{
998 struct dma_fence **child = &fence;
999 unsigned int nchild = 1;
1000 int ret;
1001
1002 if (dma_fence_is_array(fence)) {
1003 struct dma_fence_array *array = to_dma_fence_array(fence);
1004
1005 /* XXX Error for signal-on-any fence arrays */
1006
1007 child = array->fences;
1008 nchild = array->num_fences;
1009 GEM_BUG_ON(!nchild);
1010 }
1011
1012 do {
1013 fence = *child++;
1014 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1015 continue;
1016
1017 /*
1018 * We don't squash repeated fence dependencies here as we
1019 * want to run our callback in all cases.
1020 */
1021
1022 if (dma_fence_is_i915(fence))
1023 ret = __i915_request_await_execution(rq,
1024 to_request(fence),
1025 hook,
1026 I915_FENCE_GFP);
1027 else
1028 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1029 I915_FENCE_TIMEOUT,
1030 GFP_KERNEL);
1031 if (ret < 0)
1032 return ret;
1033 } while (--nchild);
1034
1035 return 0;
1036}
1037
1038/**
1039 * i915_request_await_object - set this request to (async) wait upon a bo
1040 * @to: request we are wishing to use
1041 * @obj: object which may be in use on another ring.
1042 * @write: whether the wait is on behalf of a writer
1043 *
1044 * This code is meant to abstract object synchronization with the GPU.
1045 * Conceptually we serialise writes between engines inside the GPU.
1046 * We only allow one engine to write into a buffer at any time, but
1047 * multiple readers. To ensure each has a coherent view of memory, we must:
1048 *
1049 * - If there is an outstanding write request to the object, the new
1050 * request must wait for it to complete (either CPU or in hw, requests
1051 * on the same ring will be naturally ordered).
1052 *
1053 * - If we are a write request (pending_write_domain is set), the new
1054 * request must wait for outstanding read requests to complete.
1055 *
1056 * Returns 0 if successful, else propagates up the lower layer error.
1057 */
1058int
1059i915_request_await_object(struct i915_request *to,
1060 struct drm_i915_gem_object *obj,
1061 bool write)
1062{
1063 struct dma_fence *excl;
1064 int ret = 0;
1065
1066 if (write) {
1067 struct dma_fence **shared;
1068 unsigned int count, i;
1069
1070 ret = dma_resv_get_fences_rcu(obj->base.resv,
1071 &excl, &count, &shared);
1072 if (ret)
1073 return ret;
1074
1075 for (i = 0; i < count; i++) {
1076 ret = i915_request_await_dma_fence(to, shared[i]);
1077 if (ret)
1078 break;
1079
1080 dma_fence_put(shared[i]);
1081 }
1082
1083 for (; i < count; i++)
1084 dma_fence_put(shared[i]);
1085 kfree(shared);
1086 } else {
1087 excl = dma_resv_get_excl_rcu(obj->base.resv);
1088 }
1089
1090 if (excl) {
1091 if (ret == 0)
1092 ret = i915_request_await_dma_fence(to, excl);
1093
1094 dma_fence_put(excl);
1095 }
1096
1097 return ret;
1098}
1099
1100void i915_request_skip(struct i915_request *rq, int error)
1101{
1102 void *vaddr = rq->ring->vaddr;
1103 u32 head;
1104
1105 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1106 dma_fence_set_error(&rq->fence, error);
1107
1108 if (rq->infix == rq->postfix)
1109 return;
1110
1111 /*
1112 * As this request likely depends on state from the lost
1113 * context, clear out all the user operations leaving the
1114 * breadcrumb at the end (so we get the fence notifications).
1115 */
1116 head = rq->infix;
1117 if (rq->postfix < head) {
1118 memset(vaddr + head, 0, rq->ring->size - head);
1119 head = 0;
1120 }
1121 memset(vaddr + head, 0, rq->postfix - head);
1122 rq->infix = rq->postfix;
1123}
1124
1125static struct i915_request *
1126__i915_request_add_to_timeline(struct i915_request *rq)
1127{
1128 struct intel_timeline *timeline = rq->timeline;
1129 struct i915_request *prev;
1130
1131 /*
1132 * Dependency tracking and request ordering along the timeline
1133 * is special cased so that we can eliminate redundant ordering
1134 * operations while building the request (we know that the timeline
1135 * itself is ordered, and here we guarantee it).
1136 *
1137 * As we know we will need to emit tracking along the timeline,
1138 * we embed the hooks into our request struct -- at the cost of
1139 * having to have specialised no-allocation interfaces (which will
1140 * be beneficial elsewhere).
1141 *
1142 * A second benefit to open-coding i915_request_await_request is
1143 * that we can apply a slight variant of the rules specialised
1144 * for timelines that jump between engines (such as virtual engines).
1145 * If we consider the case of virtual engine, we must emit a dma-fence
1146 * to prevent scheduling of the second request until the first is
1147 * complete (to maximise our greedy late load balancing) and this
1148 * precludes optimising to use semaphores serialisation of a single
1149 * timeline across engines.
1150 */
1151 prev = rcu_dereference_protected(timeline->last_request.request,
1152 lockdep_is_held(&timeline->mutex));
1153 if (prev && !i915_request_completed(prev)) {
1154 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1155 i915_sw_fence_await_sw_fence(&rq->submit,
1156 &prev->submit,
1157 &rq->submitq);
1158 else
1159 __i915_sw_fence_await_dma_fence(&rq->submit,
1160 &prev->fence,
1161 &rq->dmaq);
1162 if (rq->engine->schedule)
1163 __i915_sched_node_add_dependency(&rq->sched,
1164 &prev->sched,
1165 &rq->dep,
1166 0);
1167 }
1168
1169 list_add_tail(&rq->link, &timeline->requests);
1170
1171 /*
1172 * Make sure that no request gazumped us - if it was allocated after
1173 * our i915_request_alloc() and called __i915_request_add() before
1174 * us, the timeline will hold its seqno which is later than ours.
1175 */
1176 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1177 __i915_active_request_set(&timeline->last_request, rq);
1178
1179 return prev;
1180}
1181
1182/*
1183 * NB: This function is not allowed to fail. Doing so would mean the the
1184 * request is not being tracked for completion but the work itself is
1185 * going to happen on the hardware. This would be a Bad Thing(tm).
1186 */
1187struct i915_request *__i915_request_commit(struct i915_request *rq)
1188{
1189 struct intel_engine_cs *engine = rq->engine;
1190 struct intel_ring *ring = rq->ring;
1191 u32 *cs;
1192
1193 GEM_TRACE("%s fence %llx:%lld\n",
1194 engine->name, rq->fence.context, rq->fence.seqno);
1195
1196 /*
1197 * To ensure that this call will not fail, space for its emissions
1198 * should already have been reserved in the ring buffer. Let the ring
1199 * know that it is time to use that space up.
1200 */
1201 GEM_BUG_ON(rq->reserved_space > ring->space);
1202 rq->reserved_space = 0;
1203 rq->emitted_jiffies = jiffies;
1204
1205 /*
1206 * Record the position of the start of the breadcrumb so that
1207 * should we detect the updated seqno part-way through the
1208 * GPU processing the request, we never over-estimate the
1209 * position of the ring's HEAD.
1210 */
1211 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1212 GEM_BUG_ON(IS_ERR(cs));
1213 rq->postfix = intel_ring_offset(rq, cs);
1214
1215 return __i915_request_add_to_timeline(rq);
1216}
1217
1218void __i915_request_queue(struct i915_request *rq,
1219 const struct i915_sched_attr *attr)
1220{
1221 /*
1222 * Let the backend know a new request has arrived that may need
1223 * to adjust the existing execution schedule due to a high priority
1224 * request - i.e. we may want to preempt the current request in order
1225 * to run a high priority dependency chain *before* we can execute this
1226 * request.
1227 *
1228 * This is called before the request is ready to run so that we can
1229 * decide whether to preempt the entire chain so that it is ready to
1230 * run at the earliest possible convenience.
1231 */
1232 if (attr && rq->engine->schedule)
1233 rq->engine->schedule(rq, attr);
1234 i915_sw_fence_commit(&rq->semaphore);
1235 i915_sw_fence_commit(&rq->submit);
1236}
1237
1238void i915_request_add(struct i915_request *rq)
1239{
1240 struct i915_sched_attr attr = rq->gem_context->sched;
1241 struct intel_timeline * const tl = rq->timeline;
1242 struct i915_request *prev;
1243
1244 lockdep_assert_held(&tl->mutex);
1245 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1246
1247 trace_i915_request_add(rq);
1248
1249 prev = __i915_request_commit(rq);
1250
1251 /*
1252 * Boost actual workloads past semaphores!
1253 *
1254 * With semaphores we spin on one engine waiting for another,
1255 * simply to reduce the latency of starting our work when
1256 * the signaler completes. However, if there is any other
1257 * work that we could be doing on this engine instead, that
1258 * is better utilisation and will reduce the overall duration
1259 * of the current work. To avoid PI boosting a semaphore
1260 * far in the distance past over useful work, we keep a history
1261 * of any semaphore use along our dependency chain.
1262 */
1263 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1264 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1265
1266 /*
1267 * Boost priorities to new clients (new request flows).
1268 *
1269 * Allow interactive/synchronous clients to jump ahead of
1270 * the bulk clients. (FQ_CODEL)
1271 */
1272 if (list_empty(&rq->sched.signalers_list))
1273 attr.priority |= I915_PRIORITY_WAIT;
1274
1275 local_bh_disable();
1276 __i915_request_queue(rq, &attr);
1277 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1278
1279 /*
1280 * In typical scenarios, we do not expect the previous request on
1281 * the timeline to be still tracked by timeline->last_request if it
1282 * has been completed. If the completed request is still here, that
1283 * implies that request retirement is a long way behind submission,
1284 * suggesting that we haven't been retiring frequently enough from
1285 * the combination of retire-before-alloc, waiters and the background
1286 * retirement worker. So if the last request on this timeline was
1287 * already completed, do a catch up pass, flushing the retirement queue
1288 * up to this client. Since we have now moved the heaviest operations
1289 * during retirement onto secondary workers, such as freeing objects
1290 * or contexts, retiring a bunch of requests is mostly list management
1291 * (and cache misses), and so we should not be overly penalizing this
1292 * client by performing excess work, though we may still performing
1293 * work on behalf of others -- but instead we should benefit from
1294 * improved resource management. (Well, that's the theory at least.)
1295 */
1296 if (prev && i915_request_completed(prev) && prev->timeline == tl)
1297 i915_request_retire_upto(prev);
1298
1299 mutex_unlock(&tl->mutex);
1300}
1301
1302static unsigned long local_clock_us(unsigned int *cpu)
1303{
1304 unsigned long t;
1305
1306 /*
1307 * Cheaply and approximately convert from nanoseconds to microseconds.
1308 * The result and subsequent calculations are also defined in the same
1309 * approximate microseconds units. The principal source of timing
1310 * error here is from the simple truncation.
1311 *
1312 * Note that local_clock() is only defined wrt to the current CPU;
1313 * the comparisons are no longer valid if we switch CPUs. Instead of
1314 * blocking preemption for the entire busywait, we can detect the CPU
1315 * switch and use that as indicator of system load and a reason to
1316 * stop busywaiting, see busywait_stop().
1317 */
1318 *cpu = get_cpu();
1319 t = local_clock() >> 10;
1320 put_cpu();
1321
1322 return t;
1323}
1324
1325static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1326{
1327 unsigned int this_cpu;
1328
1329 if (time_after(local_clock_us(&this_cpu), timeout))
1330 return true;
1331
1332 return this_cpu != cpu;
1333}
1334
1335static bool __i915_spin_request(const struct i915_request * const rq,
1336 int state, unsigned long timeout_us)
1337{
1338 unsigned int cpu;
1339
1340 /*
1341 * Only wait for the request if we know it is likely to complete.
1342 *
1343 * We don't track the timestamps around requests, nor the average
1344 * request length, so we do not have a good indicator that this
1345 * request will complete within the timeout. What we do know is the
1346 * order in which requests are executed by the context and so we can
1347 * tell if the request has been started. If the request is not even
1348 * running yet, it is a fair assumption that it will not complete
1349 * within our relatively short timeout.
1350 */
1351 if (!i915_request_is_running(rq))
1352 return false;
1353
1354 /*
1355 * When waiting for high frequency requests, e.g. during synchronous
1356 * rendering split between the CPU and GPU, the finite amount of time
1357 * required to set up the irq and wait upon it limits the response
1358 * rate. By busywaiting on the request completion for a short while we
1359 * can service the high frequency waits as quick as possible. However,
1360 * if it is a slow request, we want to sleep as quickly as possible.
1361 * The tradeoff between waiting and sleeping is roughly the time it
1362 * takes to sleep on a request, on the order of a microsecond.
1363 */
1364
1365 timeout_us += local_clock_us(&cpu);
1366 do {
1367 if (i915_request_completed(rq))
1368 return true;
1369
1370 if (signal_pending_state(state, current))
1371 break;
1372
1373 if (busywait_stop(timeout_us, cpu))
1374 break;
1375
1376 cpu_relax();
1377 } while (!need_resched());
1378
1379 return false;
1380}
1381
1382struct request_wait {
1383 struct dma_fence_cb cb;
1384 struct task_struct *tsk;
1385};
1386
1387static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1388{
1389 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1390
1391 wake_up_process(wait->tsk);
1392}
1393
1394/**
1395 * i915_request_wait - wait until execution of request has finished
1396 * @rq: the request to wait upon
1397 * @flags: how to wait
1398 * @timeout: how long to wait in jiffies
1399 *
1400 * i915_request_wait() waits for the request to be completed, for a
1401 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1402 * unbounded wait).
1403 *
1404 * Returns the remaining time (in jiffies) if the request completed, which may
1405 * be zero or -ETIME if the request is unfinished after the timeout expires.
1406 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1407 * pending before the request completes.
1408 */
1409long i915_request_wait(struct i915_request *rq,
1410 unsigned int flags,
1411 long timeout)
1412{
1413 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1414 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1415 struct request_wait wait;
1416
1417 might_sleep();
1418 GEM_BUG_ON(timeout < 0);
1419
1420 if (dma_fence_is_signaled(&rq->fence))
1421 return timeout;
1422
1423 if (!timeout)
1424 return -ETIME;
1425
1426 trace_i915_request_wait_begin(rq, flags);
1427
1428 /*
1429 * We must never wait on the GPU while holding a lock as we
1430 * may need to perform a GPU reset. So while we don't need to
1431 * serialise wait/reset with an explicit lock, we do want
1432 * lockdep to detect potential dependency cycles.
1433 */
1434 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1435
1436 /*
1437 * Optimistic spin before touching IRQs.
1438 *
1439 * We may use a rather large value here to offset the penalty of
1440 * switching away from the active task. Frequently, the client will
1441 * wait upon an old swapbuffer to throttle itself to remain within a
1442 * frame of the gpu. If the client is running in lockstep with the gpu,
1443 * then it should not be waiting long at all, and a sleep now will incur
1444 * extra scheduler latency in producing the next frame. To try to
1445 * avoid adding the cost of enabling/disabling the interrupt to the
1446 * short wait, we first spin to see if the request would have completed
1447 * in the time taken to setup the interrupt.
1448 *
1449 * We need upto 5us to enable the irq, and upto 20us to hide the
1450 * scheduler latency of a context switch, ignoring the secondary
1451 * impacts from a context switch such as cache eviction.
1452 *
1453 * The scheme used for low-latency IO is called "hybrid interrupt
1454 * polling". The suggestion there is to sleep until just before you
1455 * expect to be woken by the device interrupt and then poll for its
1456 * completion. That requires having a good predictor for the request
1457 * duration, which we currently lack.
1458 */
1459 if (CONFIG_DRM_I915_SPIN_REQUEST &&
1460 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1461 dma_fence_signal(&rq->fence);
1462 goto out;
1463 }
1464
1465 /*
1466 * This client is about to stall waiting for the GPU. In many cases
1467 * this is undesirable and limits the throughput of the system, as
1468 * many clients cannot continue processing user input/output whilst
1469 * blocked. RPS autotuning may take tens of milliseconds to respond
1470 * to the GPU load and thus incurs additional latency for the client.
1471 * We can circumvent that by promoting the GPU frequency to maximum
1472 * before we sleep. This makes the GPU throttle up much more quickly
1473 * (good for benchmarks and user experience, e.g. window animations),
1474 * but at a cost of spending more power processing the workload
1475 * (bad for battery).
1476 */
1477 if (flags & I915_WAIT_PRIORITY) {
1478 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1479 gen6_rps_boost(rq);
1480 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1481 }
1482
1483 wait.tsk = current;
1484 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1485 goto out;
1486
1487 for (;;) {
1488 set_current_state(state);
1489
1490 if (i915_request_completed(rq)) {
1491 dma_fence_signal(&rq->fence);
1492 break;
1493 }
1494
1495 if (signal_pending_state(state, current)) {
1496 timeout = -ERESTARTSYS;
1497 break;
1498 }
1499
1500 if (!timeout) {
1501 timeout = -ETIME;
1502 break;
1503 }
1504
1505 timeout = io_schedule_timeout(timeout);
1506 }
1507 __set_current_state(TASK_RUNNING);
1508
1509 dma_fence_remove_callback(&rq->fence, &wait.cb);
1510
1511out:
1512 mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1513 trace_i915_request_wait_end(rq);
1514 return timeout;
1515}
1516
1517bool i915_retire_requests(struct drm_i915_private *i915)
1518{
1519 struct intel_gt_timelines *timelines = &i915->gt.timelines;
1520 struct intel_timeline *tl, *tn;
1521 unsigned long flags;
1522 LIST_HEAD(free);
1523
1524 spin_lock_irqsave(&timelines->lock, flags);
1525 list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1526 if (!mutex_trylock(&tl->mutex))
1527 continue;
1528
1529 intel_timeline_get(tl);
1530 GEM_BUG_ON(!tl->active_count);
1531 tl->active_count++; /* pin the list element */
1532 spin_unlock_irqrestore(&timelines->lock, flags);
1533
1534 retire_requests(tl);
1535
1536 spin_lock_irqsave(&timelines->lock, flags);
1537
1538 /* Resume iteration after dropping lock */
1539 list_safe_reset_next(tl, tn, link);
1540 if (!--tl->active_count)
1541 list_del(&tl->link);
1542
1543 mutex_unlock(&tl->mutex);
1544
1545 /* Defer the final release to after the spinlock */
1546 if (refcount_dec_and_test(&tl->kref.refcount)) {
1547 GEM_BUG_ON(tl->active_count);
1548 list_add(&tl->link, &free);
1549 }
1550 }
1551 spin_unlock_irqrestore(&timelines->lock, flags);
1552
1553 list_for_each_entry_safe(tl, tn, &free, link)
1554 __intel_timeline_free(&tl->kref);
1555
1556 return !list_empty(&timelines->active_list);
1557}
1558
1559#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1560#include "selftests/mock_request.c"
1561#include "selftests/i915_request.c"
1562#endif
1563
1564static void i915_global_request_shrink(void)
1565{
1566 kmem_cache_shrink(global.slab_dependencies);
1567 kmem_cache_shrink(global.slab_execute_cbs);
1568 kmem_cache_shrink(global.slab_requests);
1569}
1570
1571static void i915_global_request_exit(void)
1572{
1573 kmem_cache_destroy(global.slab_dependencies);
1574 kmem_cache_destroy(global.slab_execute_cbs);
1575 kmem_cache_destroy(global.slab_requests);
1576}
1577
1578static struct i915_global_request global = { {
1579 .shrink = i915_global_request_shrink,
1580 .exit = i915_global_request_exit,
1581} };
1582
1583int __init i915_global_request_init(void)
1584{
1585 global.slab_requests = KMEM_CACHE(i915_request,
1586 SLAB_HWCACHE_ALIGN |
1587 SLAB_RECLAIM_ACCOUNT |
1588 SLAB_TYPESAFE_BY_RCU);
1589 if (!global.slab_requests)
1590 return -ENOMEM;
1591
1592 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1593 SLAB_HWCACHE_ALIGN |
1594 SLAB_RECLAIM_ACCOUNT |
1595 SLAB_TYPESAFE_BY_RCU);
1596 if (!global.slab_execute_cbs)
1597 goto err_requests;
1598
1599 global.slab_dependencies = KMEM_CACHE(i915_dependency,
1600 SLAB_HWCACHE_ALIGN |
1601 SLAB_RECLAIM_ACCOUNT);
1602 if (!global.slab_dependencies)
1603 goto err_execute_cbs;
1604
1605 i915_global_register(&global.base);
1606 return 0;
1607
1608err_execute_cbs:
1609 kmem_cache_destroy(global.slab_execute_cbs);
1610err_requests:
1611 kmem_cache_destroy(global.slab_requests);
1612 return -ENOMEM;
1613}