b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 OR MIT */ |
| 2 | /************************************************************************** |
| 3 | * |
| 4 | * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA |
| 5 | * All Rights Reserved. |
| 6 | * |
| 7 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 8 | * copy of this software and associated documentation files (the |
| 9 | * "Software"), to deal in the Software without restriction, including |
| 10 | * without limitation the rights to use, copy, modify, merge, publish, |
| 11 | * distribute, sub license, and/or sell copies of the Software, and to |
| 12 | * permit persons to whom the Software is furnished to do so, subject to |
| 13 | * the following conditions: |
| 14 | * |
| 15 | * The above copyright notice and this permission notice (including the |
| 16 | * next paragraph) shall be included in all copies or substantial portions |
| 17 | * of the Software. |
| 18 | * |
| 19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 20 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 21 | * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| 22 | * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| 23 | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| 24 | * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| 25 | * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 26 | * |
| 27 | **************************************************************************/ |
| 28 | /* |
| 29 | * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> |
| 30 | */ |
| 31 | |
| 32 | #define pr_fmt(fmt) "[TTM] " fmt |
| 33 | |
| 34 | #include <drm/ttm/ttm_module.h> |
| 35 | #include <drm/ttm/ttm_bo_driver.h> |
| 36 | #include <drm/ttm/ttm_placement.h> |
| 37 | #include <linux/jiffies.h> |
| 38 | #include <linux/slab.h> |
| 39 | #include <linux/sched.h> |
| 40 | #include <linux/mm.h> |
| 41 | #include <linux/file.h> |
| 42 | #include <linux/module.h> |
| 43 | #include <linux/atomic.h> |
| 44 | #include <linux/dma-resv.h> |
| 45 | |
| 46 | static void ttm_bo_global_kobj_release(struct kobject *kobj); |
| 47 | |
| 48 | /** |
| 49 | * ttm_global_mutex - protecting the global BO state |
| 50 | */ |
| 51 | DEFINE_MUTEX(ttm_global_mutex); |
| 52 | unsigned ttm_bo_glob_use_count; |
| 53 | struct ttm_bo_global ttm_bo_glob; |
| 54 | |
| 55 | static struct attribute ttm_bo_count = { |
| 56 | .name = "bo_count", |
| 57 | .mode = S_IRUGO |
| 58 | }; |
| 59 | |
| 60 | /* default destructor */ |
| 61 | static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) |
| 62 | { |
| 63 | kfree(bo); |
| 64 | } |
| 65 | |
| 66 | static inline int ttm_mem_type_from_place(const struct ttm_place *place, |
| 67 | uint32_t *mem_type) |
| 68 | { |
| 69 | int pos; |
| 70 | |
| 71 | pos = ffs(place->flags & TTM_PL_MASK_MEM); |
| 72 | if (unlikely(!pos)) |
| 73 | return -EINVAL; |
| 74 | |
| 75 | *mem_type = pos - 1; |
| 76 | return 0; |
| 77 | } |
| 78 | |
| 79 | static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p, |
| 80 | int mem_type) |
| 81 | { |
| 82 | struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| 83 | |
| 84 | drm_printf(p, " has_type: %d\n", man->has_type); |
| 85 | drm_printf(p, " use_type: %d\n", man->use_type); |
| 86 | drm_printf(p, " flags: 0x%08X\n", man->flags); |
| 87 | drm_printf(p, " gpu_offset: 0x%08llX\n", man->gpu_offset); |
| 88 | drm_printf(p, " size: %llu\n", man->size); |
| 89 | drm_printf(p, " available_caching: 0x%08X\n", man->available_caching); |
| 90 | drm_printf(p, " default_caching: 0x%08X\n", man->default_caching); |
| 91 | if (mem_type != TTM_PL_SYSTEM) |
| 92 | (*man->func->debug)(man, p); |
| 93 | } |
| 94 | |
| 95 | static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, |
| 96 | struct ttm_placement *placement) |
| 97 | { |
| 98 | struct drm_printer p = drm_debug_printer(TTM_PFX); |
| 99 | int i, ret, mem_type; |
| 100 | |
| 101 | drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", |
| 102 | bo, bo->mem.num_pages, bo->mem.size >> 10, |
| 103 | bo->mem.size >> 20); |
| 104 | for (i = 0; i < placement->num_placement; i++) { |
| 105 | ret = ttm_mem_type_from_place(&placement->placement[i], |
| 106 | &mem_type); |
| 107 | if (ret) |
| 108 | return; |
| 109 | drm_printf(&p, " placement[%d]=0x%08X (%d)\n", |
| 110 | i, placement->placement[i].flags, mem_type); |
| 111 | ttm_mem_type_debug(bo->bdev, &p, mem_type); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | static ssize_t ttm_bo_global_show(struct kobject *kobj, |
| 116 | struct attribute *attr, |
| 117 | char *buffer) |
| 118 | { |
| 119 | struct ttm_bo_global *glob = |
| 120 | container_of(kobj, struct ttm_bo_global, kobj); |
| 121 | |
| 122 | return snprintf(buffer, PAGE_SIZE, "%d\n", |
| 123 | atomic_read(&glob->bo_count)); |
| 124 | } |
| 125 | |
| 126 | static struct attribute *ttm_bo_global_attrs[] = { |
| 127 | &ttm_bo_count, |
| 128 | NULL |
| 129 | }; |
| 130 | |
| 131 | static const struct sysfs_ops ttm_bo_global_ops = { |
| 132 | .show = &ttm_bo_global_show |
| 133 | }; |
| 134 | |
| 135 | static struct kobj_type ttm_bo_glob_kobj_type = { |
| 136 | .release = &ttm_bo_global_kobj_release, |
| 137 | .sysfs_ops = &ttm_bo_global_ops, |
| 138 | .default_attrs = ttm_bo_global_attrs |
| 139 | }; |
| 140 | |
| 141 | |
| 142 | static inline uint32_t ttm_bo_type_flags(unsigned type) |
| 143 | { |
| 144 | return 1 << (type); |
| 145 | } |
| 146 | |
| 147 | static void ttm_bo_release_list(struct kref *list_kref) |
| 148 | { |
| 149 | struct ttm_buffer_object *bo = |
| 150 | container_of(list_kref, struct ttm_buffer_object, list_kref); |
| 151 | struct ttm_bo_device *bdev = bo->bdev; |
| 152 | size_t acc_size = bo->acc_size; |
| 153 | |
| 154 | BUG_ON(kref_read(&bo->list_kref)); |
| 155 | BUG_ON(kref_read(&bo->kref)); |
| 156 | BUG_ON(atomic_read(&bo->cpu_writers)); |
| 157 | BUG_ON(bo->mem.mm_node != NULL); |
| 158 | BUG_ON(!list_empty(&bo->lru)); |
| 159 | BUG_ON(!list_empty(&bo->ddestroy)); |
| 160 | ttm_tt_destroy(bo->ttm); |
| 161 | atomic_dec(&bo->bdev->glob->bo_count); |
| 162 | dma_fence_put(bo->moving); |
| 163 | if (!ttm_bo_uses_embedded_gem_object(bo)) |
| 164 | dma_resv_fini(&bo->base._resv); |
| 165 | mutex_destroy(&bo->wu_mutex); |
| 166 | bo->destroy(bo); |
| 167 | ttm_mem_global_free(bdev->glob->mem_glob, acc_size); |
| 168 | } |
| 169 | |
| 170 | static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo, |
| 171 | struct ttm_mem_reg *mem) |
| 172 | { |
| 173 | struct ttm_bo_device *bdev = bo->bdev; |
| 174 | struct ttm_mem_type_manager *man; |
| 175 | |
| 176 | dma_resv_assert_held(bo->base.resv); |
| 177 | |
| 178 | if (!list_empty(&bo->lru)) |
| 179 | return; |
| 180 | |
| 181 | if (mem->placement & TTM_PL_FLAG_NO_EVICT) |
| 182 | return; |
| 183 | |
| 184 | man = &bdev->man[mem->mem_type]; |
| 185 | list_add_tail(&bo->lru, &man->lru[bo->priority]); |
| 186 | kref_get(&bo->list_kref); |
| 187 | |
| 188 | if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm && |
| 189 | !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | |
| 190 | TTM_PAGE_FLAG_SWAPPED))) { |
| 191 | list_add_tail(&bo->swap, &bdev->glob->swap_lru[bo->priority]); |
| 192 | kref_get(&bo->list_kref); |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) |
| 197 | { |
| 198 | ttm_bo_add_mem_to_lru(bo, &bo->mem); |
| 199 | } |
| 200 | EXPORT_SYMBOL(ttm_bo_add_to_lru); |
| 201 | |
| 202 | static void ttm_bo_ref_bug(struct kref *list_kref) |
| 203 | { |
| 204 | BUG(); |
| 205 | } |
| 206 | |
| 207 | void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) |
| 208 | { |
| 209 | struct ttm_bo_device *bdev = bo->bdev; |
| 210 | bool notify = false; |
| 211 | |
| 212 | if (!list_empty(&bo->swap)) { |
| 213 | list_del_init(&bo->swap); |
| 214 | kref_put(&bo->list_kref, ttm_bo_ref_bug); |
| 215 | notify = true; |
| 216 | } |
| 217 | if (!list_empty(&bo->lru)) { |
| 218 | list_del_init(&bo->lru); |
| 219 | kref_put(&bo->list_kref, ttm_bo_ref_bug); |
| 220 | notify = true; |
| 221 | } |
| 222 | |
| 223 | if (notify && bdev->driver->del_from_lru_notify) |
| 224 | bdev->driver->del_from_lru_notify(bo); |
| 225 | } |
| 226 | |
| 227 | void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo) |
| 228 | { |
| 229 | struct ttm_bo_global *glob = bo->bdev->glob; |
| 230 | |
| 231 | spin_lock(&glob->lru_lock); |
| 232 | ttm_bo_del_from_lru(bo); |
| 233 | spin_unlock(&glob->lru_lock); |
| 234 | } |
| 235 | EXPORT_SYMBOL(ttm_bo_del_sub_from_lru); |
| 236 | |
| 237 | static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, |
| 238 | struct ttm_buffer_object *bo) |
| 239 | { |
| 240 | if (!pos->first) |
| 241 | pos->first = bo; |
| 242 | pos->last = bo; |
| 243 | } |
| 244 | |
| 245 | void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, |
| 246 | struct ttm_lru_bulk_move *bulk) |
| 247 | { |
| 248 | dma_resv_assert_held(bo->base.resv); |
| 249 | |
| 250 | ttm_bo_del_from_lru(bo); |
| 251 | ttm_bo_add_to_lru(bo); |
| 252 | |
| 253 | if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { |
| 254 | switch (bo->mem.mem_type) { |
| 255 | case TTM_PL_TT: |
| 256 | ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); |
| 257 | break; |
| 258 | |
| 259 | case TTM_PL_VRAM: |
| 260 | ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); |
| 261 | break; |
| 262 | } |
| 263 | if (bo->ttm && !(bo->ttm->page_flags & |
| 264 | (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) |
| 265 | ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); |
| 266 | } |
| 267 | } |
| 268 | EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); |
| 269 | |
| 270 | void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) |
| 271 | { |
| 272 | unsigned i; |
| 273 | |
| 274 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| 275 | struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; |
| 276 | struct ttm_mem_type_manager *man; |
| 277 | |
| 278 | if (!pos->first) |
| 279 | continue; |
| 280 | |
| 281 | dma_resv_assert_held(pos->first->base.resv); |
| 282 | dma_resv_assert_held(pos->last->base.resv); |
| 283 | |
| 284 | man = &pos->first->bdev->man[TTM_PL_TT]; |
| 285 | list_bulk_move_tail(&man->lru[i], &pos->first->lru, |
| 286 | &pos->last->lru); |
| 287 | } |
| 288 | |
| 289 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| 290 | struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; |
| 291 | struct ttm_mem_type_manager *man; |
| 292 | |
| 293 | if (!pos->first) |
| 294 | continue; |
| 295 | |
| 296 | dma_resv_assert_held(pos->first->base.resv); |
| 297 | dma_resv_assert_held(pos->last->base.resv); |
| 298 | |
| 299 | man = &pos->first->bdev->man[TTM_PL_VRAM]; |
| 300 | list_bulk_move_tail(&man->lru[i], &pos->first->lru, |
| 301 | &pos->last->lru); |
| 302 | } |
| 303 | |
| 304 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| 305 | struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; |
| 306 | struct list_head *lru; |
| 307 | |
| 308 | if (!pos->first) |
| 309 | continue; |
| 310 | |
| 311 | dma_resv_assert_held(pos->first->base.resv); |
| 312 | dma_resv_assert_held(pos->last->base.resv); |
| 313 | |
| 314 | lru = &pos->first->bdev->glob->swap_lru[i]; |
| 315 | list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); |
| 316 | } |
| 317 | } |
| 318 | EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); |
| 319 | |
| 320 | static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, |
| 321 | struct ttm_mem_reg *mem, bool evict, |
| 322 | struct ttm_operation_ctx *ctx) |
| 323 | { |
| 324 | struct ttm_bo_device *bdev = bo->bdev; |
| 325 | bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); |
| 326 | bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); |
| 327 | struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; |
| 328 | struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; |
| 329 | int ret = 0; |
| 330 | |
| 331 | if (old_is_pci || new_is_pci || |
| 332 | ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { |
| 333 | ret = ttm_mem_io_lock(old_man, true); |
| 334 | if (unlikely(ret != 0)) |
| 335 | goto out_err; |
| 336 | ttm_bo_unmap_virtual_locked(bo); |
| 337 | ttm_mem_io_unlock(old_man); |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * Create and bind a ttm if required. |
| 342 | */ |
| 343 | |
| 344 | if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { |
| 345 | if (bo->ttm == NULL) { |
| 346 | bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); |
| 347 | ret = ttm_tt_create(bo, zero); |
| 348 | if (ret) |
| 349 | goto out_err; |
| 350 | } |
| 351 | |
| 352 | ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); |
| 353 | if (ret) |
| 354 | goto out_err; |
| 355 | |
| 356 | if (mem->mem_type != TTM_PL_SYSTEM) { |
| 357 | ret = ttm_tt_bind(bo->ttm, mem, ctx); |
| 358 | if (ret) |
| 359 | goto out_err; |
| 360 | } |
| 361 | |
| 362 | if (bo->mem.mem_type == TTM_PL_SYSTEM) { |
| 363 | if (bdev->driver->move_notify) |
| 364 | bdev->driver->move_notify(bo, evict, mem); |
| 365 | bo->mem = *mem; |
| 366 | mem->mm_node = NULL; |
| 367 | goto moved; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | if (bdev->driver->move_notify) |
| 372 | bdev->driver->move_notify(bo, evict, mem); |
| 373 | |
| 374 | if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && |
| 375 | !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) |
| 376 | ret = ttm_bo_move_ttm(bo, ctx, mem); |
| 377 | else if (bdev->driver->move) |
| 378 | ret = bdev->driver->move(bo, evict, ctx, mem); |
| 379 | else |
| 380 | ret = ttm_bo_move_memcpy(bo, ctx, mem); |
| 381 | |
| 382 | if (ret) { |
| 383 | if (bdev->driver->move_notify) { |
| 384 | swap(*mem, bo->mem); |
| 385 | bdev->driver->move_notify(bo, false, mem); |
| 386 | swap(*mem, bo->mem); |
| 387 | } |
| 388 | |
| 389 | goto out_err; |
| 390 | } |
| 391 | |
| 392 | moved: |
| 393 | if (bo->evicted) { |
| 394 | if (bdev->driver->invalidate_caches) { |
| 395 | ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); |
| 396 | if (ret) |
| 397 | pr_err("Can not flush read caches\n"); |
| 398 | } |
| 399 | bo->evicted = false; |
| 400 | } |
| 401 | |
| 402 | if (bo->mem.mm_node) |
| 403 | bo->offset = (bo->mem.start << PAGE_SHIFT) + |
| 404 | bdev->man[bo->mem.mem_type].gpu_offset; |
| 405 | else |
| 406 | bo->offset = 0; |
| 407 | |
| 408 | ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; |
| 409 | return 0; |
| 410 | |
| 411 | out_err: |
| 412 | new_man = &bdev->man[bo->mem.mem_type]; |
| 413 | if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) { |
| 414 | ttm_tt_destroy(bo->ttm); |
| 415 | bo->ttm = NULL; |
| 416 | } |
| 417 | |
| 418 | return ret; |
| 419 | } |
| 420 | |
| 421 | /** |
| 422 | * Call bo::reserved. |
| 423 | * Will release GPU memory type usage on destruction. |
| 424 | * This is the place to put in driver specific hooks to release |
| 425 | * driver private resources. |
| 426 | * Will release the bo::reserved lock. |
| 427 | */ |
| 428 | |
| 429 | static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) |
| 430 | { |
| 431 | if (bo->bdev->driver->move_notify) |
| 432 | bo->bdev->driver->move_notify(bo, false, NULL); |
| 433 | |
| 434 | ttm_tt_destroy(bo->ttm); |
| 435 | bo->ttm = NULL; |
| 436 | ttm_bo_mem_put(bo, &bo->mem); |
| 437 | } |
| 438 | |
| 439 | static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) |
| 440 | { |
| 441 | int r; |
| 442 | |
| 443 | if (bo->base.resv == &bo->base._resv) |
| 444 | return 0; |
| 445 | |
| 446 | BUG_ON(!dma_resv_trylock(&bo->base._resv)); |
| 447 | |
| 448 | r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); |
| 449 | if (r) |
| 450 | dma_resv_unlock(&bo->base._resv); |
| 451 | |
| 452 | return r; |
| 453 | } |
| 454 | |
| 455 | static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) |
| 456 | { |
| 457 | struct dma_resv_list *fobj; |
| 458 | struct dma_fence *fence; |
| 459 | int i; |
| 460 | |
| 461 | fobj = dma_resv_get_list(&bo->base._resv); |
| 462 | fence = dma_resv_get_excl(&bo->base._resv); |
| 463 | if (fence && !fence->ops->signaled) |
| 464 | dma_fence_enable_sw_signaling(fence); |
| 465 | |
| 466 | for (i = 0; fobj && i < fobj->shared_count; ++i) { |
| 467 | fence = rcu_dereference_protected(fobj->shared[i], |
| 468 | dma_resv_held(bo->base.resv)); |
| 469 | |
| 470 | if (!fence->ops->signaled) |
| 471 | dma_fence_enable_sw_signaling(fence); |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) |
| 476 | { |
| 477 | struct ttm_bo_device *bdev = bo->bdev; |
| 478 | struct ttm_bo_global *glob = bdev->glob; |
| 479 | int ret; |
| 480 | |
| 481 | ret = ttm_bo_individualize_resv(bo); |
| 482 | if (ret) { |
| 483 | /* Last resort, if we fail to allocate memory for the |
| 484 | * fences block for the BO to become idle |
| 485 | */ |
| 486 | dma_resv_wait_timeout_rcu(bo->base.resv, true, false, |
| 487 | 30 * HZ); |
| 488 | spin_lock(&glob->lru_lock); |
| 489 | goto error; |
| 490 | } |
| 491 | |
| 492 | spin_lock(&glob->lru_lock); |
| 493 | ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY; |
| 494 | if (!ret) { |
| 495 | if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) { |
| 496 | ttm_bo_del_from_lru(bo); |
| 497 | spin_unlock(&glob->lru_lock); |
| 498 | if (bo->base.resv != &bo->base._resv) |
| 499 | dma_resv_unlock(&bo->base._resv); |
| 500 | |
| 501 | ttm_bo_cleanup_memtype_use(bo); |
| 502 | dma_resv_unlock(bo->base.resv); |
| 503 | return; |
| 504 | } |
| 505 | |
| 506 | ttm_bo_flush_all_fences(bo); |
| 507 | |
| 508 | /* |
| 509 | * Make NO_EVICT bos immediately available to |
| 510 | * shrinkers, now that they are queued for |
| 511 | * destruction. |
| 512 | */ |
| 513 | if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { |
| 514 | bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; |
| 515 | ttm_bo_add_to_lru(bo); |
| 516 | } |
| 517 | |
| 518 | dma_resv_unlock(bo->base.resv); |
| 519 | } |
| 520 | if (bo->base.resv != &bo->base._resv) { |
| 521 | ttm_bo_flush_all_fences(bo); |
| 522 | dma_resv_unlock(&bo->base._resv); |
| 523 | } |
| 524 | |
| 525 | error: |
| 526 | kref_get(&bo->list_kref); |
| 527 | list_add_tail(&bo->ddestroy, &bdev->ddestroy); |
| 528 | spin_unlock(&glob->lru_lock); |
| 529 | |
| 530 | schedule_delayed_work(&bdev->wq, |
| 531 | ((HZ / 100) < 1) ? 1 : HZ / 100); |
| 532 | } |
| 533 | |
| 534 | /** |
| 535 | * function ttm_bo_cleanup_refs |
| 536 | * If bo idle, remove from delayed- and lru lists, and unref. |
| 537 | * If not idle, do nothing. |
| 538 | * |
| 539 | * Must be called with lru_lock and reservation held, this function |
| 540 | * will drop the lru lock and optionally the reservation lock before returning. |
| 541 | * |
| 542 | * @interruptible Any sleeps should occur interruptibly. |
| 543 | * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. |
| 544 | * @unlock_resv Unlock the reservation lock as well. |
| 545 | */ |
| 546 | |
| 547 | static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, |
| 548 | bool interruptible, bool no_wait_gpu, |
| 549 | bool unlock_resv) |
| 550 | { |
| 551 | struct ttm_bo_global *glob = bo->bdev->glob; |
| 552 | struct dma_resv *resv; |
| 553 | int ret; |
| 554 | |
| 555 | if (unlikely(list_empty(&bo->ddestroy))) |
| 556 | resv = bo->base.resv; |
| 557 | else |
| 558 | resv = &bo->base._resv; |
| 559 | |
| 560 | if (dma_resv_test_signaled_rcu(resv, true)) |
| 561 | ret = 0; |
| 562 | else |
| 563 | ret = -EBUSY; |
| 564 | |
| 565 | if (ret && !no_wait_gpu) { |
| 566 | long lret; |
| 567 | |
| 568 | if (unlock_resv) |
| 569 | dma_resv_unlock(bo->base.resv); |
| 570 | spin_unlock(&glob->lru_lock); |
| 571 | |
| 572 | lret = dma_resv_wait_timeout_rcu(resv, true, |
| 573 | interruptible, |
| 574 | 30 * HZ); |
| 575 | |
| 576 | if (lret < 0) |
| 577 | return lret; |
| 578 | else if (lret == 0) |
| 579 | return -EBUSY; |
| 580 | |
| 581 | spin_lock(&glob->lru_lock); |
| 582 | if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { |
| 583 | /* |
| 584 | * We raced, and lost, someone else holds the reservation now, |
| 585 | * and is probably busy in ttm_bo_cleanup_memtype_use. |
| 586 | * |
| 587 | * Even if it's not the case, because we finished waiting any |
| 588 | * delayed destruction would succeed, so just return success |
| 589 | * here. |
| 590 | */ |
| 591 | spin_unlock(&glob->lru_lock); |
| 592 | return 0; |
| 593 | } |
| 594 | ret = 0; |
| 595 | } |
| 596 | |
| 597 | if (ret || unlikely(list_empty(&bo->ddestroy))) { |
| 598 | if (unlock_resv) |
| 599 | dma_resv_unlock(bo->base.resv); |
| 600 | spin_unlock(&glob->lru_lock); |
| 601 | return ret; |
| 602 | } |
| 603 | |
| 604 | ttm_bo_del_from_lru(bo); |
| 605 | list_del_init(&bo->ddestroy); |
| 606 | kref_put(&bo->list_kref, ttm_bo_ref_bug); |
| 607 | |
| 608 | spin_unlock(&glob->lru_lock); |
| 609 | ttm_bo_cleanup_memtype_use(bo); |
| 610 | |
| 611 | if (unlock_resv) |
| 612 | dma_resv_unlock(bo->base.resv); |
| 613 | |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | /** |
| 618 | * Traverse the delayed list, and call ttm_bo_cleanup_refs on all |
| 619 | * encountered buffers. |
| 620 | */ |
| 621 | static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) |
| 622 | { |
| 623 | struct ttm_bo_global *glob = bdev->glob; |
| 624 | struct list_head removed; |
| 625 | bool empty; |
| 626 | |
| 627 | INIT_LIST_HEAD(&removed); |
| 628 | |
| 629 | spin_lock(&glob->lru_lock); |
| 630 | while (!list_empty(&bdev->ddestroy)) { |
| 631 | struct ttm_buffer_object *bo; |
| 632 | |
| 633 | bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, |
| 634 | ddestroy); |
| 635 | kref_get(&bo->list_kref); |
| 636 | list_move_tail(&bo->ddestroy, &removed); |
| 637 | |
| 638 | if (remove_all || bo->base.resv != &bo->base._resv) { |
| 639 | spin_unlock(&glob->lru_lock); |
| 640 | dma_resv_lock(bo->base.resv, NULL); |
| 641 | |
| 642 | spin_lock(&glob->lru_lock); |
| 643 | ttm_bo_cleanup_refs(bo, false, !remove_all, true); |
| 644 | |
| 645 | } else if (dma_resv_trylock(bo->base.resv)) { |
| 646 | ttm_bo_cleanup_refs(bo, false, !remove_all, true); |
| 647 | } else { |
| 648 | spin_unlock(&glob->lru_lock); |
| 649 | } |
| 650 | |
| 651 | kref_put(&bo->list_kref, ttm_bo_release_list); |
| 652 | spin_lock(&glob->lru_lock); |
| 653 | } |
| 654 | list_splice_tail(&removed, &bdev->ddestroy); |
| 655 | empty = list_empty(&bdev->ddestroy); |
| 656 | spin_unlock(&glob->lru_lock); |
| 657 | |
| 658 | return empty; |
| 659 | } |
| 660 | |
| 661 | static void ttm_bo_delayed_workqueue(struct work_struct *work) |
| 662 | { |
| 663 | struct ttm_bo_device *bdev = |
| 664 | container_of(work, struct ttm_bo_device, wq.work); |
| 665 | |
| 666 | if (!ttm_bo_delayed_delete(bdev, false)) |
| 667 | schedule_delayed_work(&bdev->wq, |
| 668 | ((HZ / 100) < 1) ? 1 : HZ / 100); |
| 669 | } |
| 670 | |
| 671 | static void ttm_bo_release(struct kref *kref) |
| 672 | { |
| 673 | struct ttm_buffer_object *bo = |
| 674 | container_of(kref, struct ttm_buffer_object, kref); |
| 675 | struct ttm_bo_device *bdev = bo->bdev; |
| 676 | struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; |
| 677 | |
| 678 | if (bo->bdev->driver->release_notify) |
| 679 | bo->bdev->driver->release_notify(bo); |
| 680 | |
| 681 | drm_vma_offset_remove(&bdev->vma_manager, &bo->base.vma_node); |
| 682 | ttm_mem_io_lock(man, false); |
| 683 | ttm_mem_io_free_vm(bo); |
| 684 | ttm_mem_io_unlock(man); |
| 685 | ttm_bo_cleanup_refs_or_queue(bo); |
| 686 | kref_put(&bo->list_kref, ttm_bo_release_list); |
| 687 | } |
| 688 | |
| 689 | void ttm_bo_put(struct ttm_buffer_object *bo) |
| 690 | { |
| 691 | kref_put(&bo->kref, ttm_bo_release); |
| 692 | } |
| 693 | EXPORT_SYMBOL(ttm_bo_put); |
| 694 | |
| 695 | int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) |
| 696 | { |
| 697 | return cancel_delayed_work_sync(&bdev->wq); |
| 698 | } |
| 699 | EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); |
| 700 | |
| 701 | void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) |
| 702 | { |
| 703 | if (resched) |
| 704 | schedule_delayed_work(&bdev->wq, |
| 705 | ((HZ / 100) < 1) ? 1 : HZ / 100); |
| 706 | } |
| 707 | EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); |
| 708 | |
| 709 | static int ttm_bo_evict(struct ttm_buffer_object *bo, |
| 710 | struct ttm_operation_ctx *ctx) |
| 711 | { |
| 712 | struct ttm_bo_device *bdev = bo->bdev; |
| 713 | struct ttm_mem_reg evict_mem; |
| 714 | struct ttm_placement placement; |
| 715 | int ret = 0; |
| 716 | |
| 717 | dma_resv_assert_held(bo->base.resv); |
| 718 | |
| 719 | placement.num_placement = 0; |
| 720 | placement.num_busy_placement = 0; |
| 721 | bdev->driver->evict_flags(bo, &placement); |
| 722 | |
| 723 | if (!placement.num_placement && !placement.num_busy_placement) { |
| 724 | ret = ttm_bo_pipeline_gutting(bo); |
| 725 | if (ret) |
| 726 | return ret; |
| 727 | |
| 728 | return ttm_tt_create(bo, false); |
| 729 | } |
| 730 | |
| 731 | evict_mem = bo->mem; |
| 732 | evict_mem.mm_node = NULL; |
| 733 | evict_mem.bus.io_reserved_vm = false; |
| 734 | evict_mem.bus.io_reserved_count = 0; |
| 735 | |
| 736 | ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); |
| 737 | if (ret) { |
| 738 | if (ret != -ERESTARTSYS) { |
| 739 | pr_err("Failed to find memory space for buffer 0x%p eviction\n", |
| 740 | bo); |
| 741 | ttm_bo_mem_space_debug(bo, &placement); |
| 742 | } |
| 743 | goto out; |
| 744 | } |
| 745 | |
| 746 | ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); |
| 747 | if (unlikely(ret)) { |
| 748 | if (ret != -ERESTARTSYS) |
| 749 | pr_err("Buffer eviction failed\n"); |
| 750 | ttm_bo_mem_put(bo, &evict_mem); |
| 751 | goto out; |
| 752 | } |
| 753 | bo->evicted = true; |
| 754 | out: |
| 755 | return ret; |
| 756 | } |
| 757 | |
| 758 | bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, |
| 759 | const struct ttm_place *place) |
| 760 | { |
| 761 | /* Don't evict this BO if it's outside of the |
| 762 | * requested placement range |
| 763 | */ |
| 764 | if (place->fpfn >= (bo->mem.start + bo->mem.num_pages) || |
| 765 | (place->lpfn && place->lpfn <= bo->mem.start)) |
| 766 | return false; |
| 767 | |
| 768 | return true; |
| 769 | } |
| 770 | EXPORT_SYMBOL(ttm_bo_eviction_valuable); |
| 771 | |
| 772 | /** |
| 773 | * Check the target bo is allowable to be evicted or swapout, including cases: |
| 774 | * |
| 775 | * a. if share same reservation object with ctx->resv, have assumption |
| 776 | * reservation objects should already be locked, so not lock again and |
| 777 | * return true directly when either the opreation allow_reserved_eviction |
| 778 | * or the target bo already is in delayed free list; |
| 779 | * |
| 780 | * b. Otherwise, trylock it. |
| 781 | */ |
| 782 | static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, |
| 783 | struct ttm_operation_ctx *ctx, bool *locked, bool *busy) |
| 784 | { |
| 785 | bool ret = false; |
| 786 | |
| 787 | if (bo->base.resv == ctx->resv) { |
| 788 | dma_resv_assert_held(bo->base.resv); |
| 789 | if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT |
| 790 | || !list_empty(&bo->ddestroy)) |
| 791 | ret = true; |
| 792 | *locked = false; |
| 793 | if (busy) |
| 794 | *busy = false; |
| 795 | } else { |
| 796 | ret = dma_resv_trylock(bo->base.resv); |
| 797 | *locked = ret; |
| 798 | if (busy) |
| 799 | *busy = !ret; |
| 800 | } |
| 801 | |
| 802 | return ret; |
| 803 | } |
| 804 | |
| 805 | /** |
| 806 | * ttm_mem_evict_wait_busy - wait for a busy BO to become available |
| 807 | * |
| 808 | * @busy_bo: BO which couldn't be locked with trylock |
| 809 | * @ctx: operation context |
| 810 | * @ticket: acquire ticket |
| 811 | * |
| 812 | * Try to lock a busy buffer object to avoid failing eviction. |
| 813 | */ |
| 814 | static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, |
| 815 | struct ttm_operation_ctx *ctx, |
| 816 | struct ww_acquire_ctx *ticket) |
| 817 | { |
| 818 | int r; |
| 819 | |
| 820 | if (!busy_bo || !ticket) |
| 821 | return -EBUSY; |
| 822 | |
| 823 | if (ctx->interruptible) |
| 824 | r = dma_resv_lock_interruptible(busy_bo->base.resv, |
| 825 | ticket); |
| 826 | else |
| 827 | r = dma_resv_lock(busy_bo->base.resv, ticket); |
| 828 | |
| 829 | /* |
| 830 | * TODO: It would be better to keep the BO locked until allocation is at |
| 831 | * least tried one more time, but that would mean a much larger rework |
| 832 | * of TTM. |
| 833 | */ |
| 834 | if (!r) |
| 835 | dma_resv_unlock(busy_bo->base.resv); |
| 836 | |
| 837 | return r == -EDEADLK ? -EBUSY : r; |
| 838 | } |
| 839 | |
| 840 | static int ttm_mem_evict_first(struct ttm_bo_device *bdev, |
| 841 | uint32_t mem_type, |
| 842 | const struct ttm_place *place, |
| 843 | struct ttm_operation_ctx *ctx, |
| 844 | struct ww_acquire_ctx *ticket) |
| 845 | { |
| 846 | struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; |
| 847 | struct ttm_bo_global *glob = bdev->glob; |
| 848 | struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| 849 | bool locked = false; |
| 850 | unsigned i; |
| 851 | int ret; |
| 852 | |
| 853 | spin_lock(&glob->lru_lock); |
| 854 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| 855 | list_for_each_entry(bo, &man->lru[i], lru) { |
| 856 | bool busy; |
| 857 | |
| 858 | if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, |
| 859 | &busy)) { |
| 860 | if (busy && !busy_bo && ticket != |
| 861 | dma_resv_locking_ctx(bo->base.resv)) |
| 862 | busy_bo = bo; |
| 863 | continue; |
| 864 | } |
| 865 | |
| 866 | if (place && !bdev->driver->eviction_valuable(bo, |
| 867 | place)) { |
| 868 | if (locked) |
| 869 | dma_resv_unlock(bo->base.resv); |
| 870 | continue; |
| 871 | } |
| 872 | break; |
| 873 | } |
| 874 | |
| 875 | /* If the inner loop terminated early, we have our candidate */ |
| 876 | if (&bo->lru != &man->lru[i]) |
| 877 | break; |
| 878 | |
| 879 | bo = NULL; |
| 880 | } |
| 881 | |
| 882 | if (!bo) { |
| 883 | if (busy_bo) |
| 884 | kref_get(&busy_bo->list_kref); |
| 885 | spin_unlock(&glob->lru_lock); |
| 886 | ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); |
| 887 | if (busy_bo) |
| 888 | kref_put(&busy_bo->list_kref, ttm_bo_release_list); |
| 889 | return ret; |
| 890 | } |
| 891 | |
| 892 | kref_get(&bo->list_kref); |
| 893 | |
| 894 | if (!list_empty(&bo->ddestroy)) { |
| 895 | ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, |
| 896 | ctx->no_wait_gpu, locked); |
| 897 | kref_put(&bo->list_kref, ttm_bo_release_list); |
| 898 | return ret; |
| 899 | } |
| 900 | |
| 901 | ttm_bo_del_from_lru(bo); |
| 902 | spin_unlock(&glob->lru_lock); |
| 903 | |
| 904 | ret = ttm_bo_evict(bo, ctx); |
| 905 | if (locked) { |
| 906 | ttm_bo_unreserve(bo); |
| 907 | } else { |
| 908 | spin_lock(&glob->lru_lock); |
| 909 | ttm_bo_add_to_lru(bo); |
| 910 | spin_unlock(&glob->lru_lock); |
| 911 | } |
| 912 | |
| 913 | kref_put(&bo->list_kref, ttm_bo_release_list); |
| 914 | return ret; |
| 915 | } |
| 916 | |
| 917 | void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) |
| 918 | { |
| 919 | struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; |
| 920 | |
| 921 | if (mem->mm_node) |
| 922 | (*man->func->put_node)(man, mem); |
| 923 | } |
| 924 | EXPORT_SYMBOL(ttm_bo_mem_put); |
| 925 | |
| 926 | /** |
| 927 | * Add the last move fence to the BO and reserve a new shared slot. |
| 928 | */ |
| 929 | static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, |
| 930 | struct ttm_mem_type_manager *man, |
| 931 | struct ttm_mem_reg *mem, |
| 932 | bool no_wait_gpu) |
| 933 | { |
| 934 | struct dma_fence *fence; |
| 935 | int ret; |
| 936 | |
| 937 | spin_lock(&man->move_lock); |
| 938 | fence = dma_fence_get(man->move); |
| 939 | spin_unlock(&man->move_lock); |
| 940 | |
| 941 | if (!fence) |
| 942 | return 0; |
| 943 | |
| 944 | if (no_wait_gpu) { |
| 945 | dma_fence_put(fence); |
| 946 | return -EBUSY; |
| 947 | } |
| 948 | |
| 949 | dma_resv_add_shared_fence(bo->base.resv, fence); |
| 950 | |
| 951 | ret = dma_resv_reserve_shared(bo->base.resv, 1); |
| 952 | if (unlikely(ret)) { |
| 953 | dma_fence_put(fence); |
| 954 | return ret; |
| 955 | } |
| 956 | |
| 957 | dma_fence_put(bo->moving); |
| 958 | bo->moving = fence; |
| 959 | return 0; |
| 960 | } |
| 961 | |
| 962 | /** |
| 963 | * Repeatedly evict memory from the LRU for @mem_type until we create enough |
| 964 | * space, or we've evicted everything and there isn't enough space. |
| 965 | */ |
| 966 | static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, |
| 967 | const struct ttm_place *place, |
| 968 | struct ttm_mem_reg *mem, |
| 969 | struct ttm_operation_ctx *ctx) |
| 970 | { |
| 971 | struct ttm_bo_device *bdev = bo->bdev; |
| 972 | struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; |
| 973 | struct ww_acquire_ctx *ticket; |
| 974 | int ret; |
| 975 | |
| 976 | ticket = dma_resv_locking_ctx(bo->base.resv); |
| 977 | do { |
| 978 | ret = (*man->func->get_node)(man, bo, place, mem); |
| 979 | if (unlikely(ret != 0)) |
| 980 | return ret; |
| 981 | if (mem->mm_node) |
| 982 | break; |
| 983 | ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx, |
| 984 | ticket); |
| 985 | if (unlikely(ret != 0)) |
| 986 | return ret; |
| 987 | } while (1); |
| 988 | |
| 989 | return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); |
| 990 | } |
| 991 | |
| 992 | static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, |
| 993 | uint32_t cur_placement, |
| 994 | uint32_t proposed_placement) |
| 995 | { |
| 996 | uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; |
| 997 | uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; |
| 998 | |
| 999 | /** |
| 1000 | * Keep current caching if possible. |
| 1001 | */ |
| 1002 | |
| 1003 | if ((cur_placement & caching) != 0) |
| 1004 | result |= (cur_placement & caching); |
| 1005 | else if ((man->default_caching & caching) != 0) |
| 1006 | result |= man->default_caching; |
| 1007 | else if ((TTM_PL_FLAG_CACHED & caching) != 0) |
| 1008 | result |= TTM_PL_FLAG_CACHED; |
| 1009 | else if ((TTM_PL_FLAG_WC & caching) != 0) |
| 1010 | result |= TTM_PL_FLAG_WC; |
| 1011 | else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) |
| 1012 | result |= TTM_PL_FLAG_UNCACHED; |
| 1013 | |
| 1014 | return result; |
| 1015 | } |
| 1016 | |
| 1017 | static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, |
| 1018 | uint32_t mem_type, |
| 1019 | const struct ttm_place *place, |
| 1020 | uint32_t *masked_placement) |
| 1021 | { |
| 1022 | uint32_t cur_flags = ttm_bo_type_flags(mem_type); |
| 1023 | |
| 1024 | if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) |
| 1025 | return false; |
| 1026 | |
| 1027 | if ((place->flags & man->available_caching) == 0) |
| 1028 | return false; |
| 1029 | |
| 1030 | cur_flags |= (place->flags & man->available_caching); |
| 1031 | |
| 1032 | *masked_placement = cur_flags; |
| 1033 | return true; |
| 1034 | } |
| 1035 | |
| 1036 | /** |
| 1037 | * ttm_bo_mem_placement - check if placement is compatible |
| 1038 | * @bo: BO to find memory for |
| 1039 | * @place: where to search |
| 1040 | * @mem: the memory object to fill in |
| 1041 | * @ctx: operation context |
| 1042 | * |
| 1043 | * Check if placement is compatible and fill in mem structure. |
| 1044 | * Returns -EBUSY if placement won't work or negative error code. |
| 1045 | * 0 when placement can be used. |
| 1046 | */ |
| 1047 | static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, |
| 1048 | const struct ttm_place *place, |
| 1049 | struct ttm_mem_reg *mem, |
| 1050 | struct ttm_operation_ctx *ctx) |
| 1051 | { |
| 1052 | struct ttm_bo_device *bdev = bo->bdev; |
| 1053 | uint32_t mem_type = TTM_PL_SYSTEM; |
| 1054 | struct ttm_mem_type_manager *man; |
| 1055 | uint32_t cur_flags = 0; |
| 1056 | int ret; |
| 1057 | |
| 1058 | ret = ttm_mem_type_from_place(place, &mem_type); |
| 1059 | if (ret) |
| 1060 | return ret; |
| 1061 | |
| 1062 | man = &bdev->man[mem_type]; |
| 1063 | if (!man->has_type || !man->use_type) |
| 1064 | return -EBUSY; |
| 1065 | |
| 1066 | if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) |
| 1067 | return -EBUSY; |
| 1068 | |
| 1069 | cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags); |
| 1070 | /* |
| 1071 | * Use the access and other non-mapping-related flag bits from |
| 1072 | * the memory placement flags to the current flags |
| 1073 | */ |
| 1074 | ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE); |
| 1075 | |
| 1076 | mem->mem_type = mem_type; |
| 1077 | mem->placement = cur_flags; |
| 1078 | |
| 1079 | if (bo->mem.mem_type < mem_type && !list_empty(&bo->lru)) { |
| 1080 | spin_lock(&bo->bdev->glob->lru_lock); |
| 1081 | ttm_bo_del_from_lru(bo); |
| 1082 | ttm_bo_add_mem_to_lru(bo, mem); |
| 1083 | spin_unlock(&bo->bdev->glob->lru_lock); |
| 1084 | } |
| 1085 | |
| 1086 | return 0; |
| 1087 | } |
| 1088 | |
| 1089 | /** |
| 1090 | * Creates space for memory region @mem according to its type. |
| 1091 | * |
| 1092 | * This function first searches for free space in compatible memory types in |
| 1093 | * the priority order defined by the driver. If free space isn't found, then |
| 1094 | * ttm_bo_mem_force_space is attempted in priority order to evict and find |
| 1095 | * space. |
| 1096 | */ |
| 1097 | int ttm_bo_mem_space(struct ttm_buffer_object *bo, |
| 1098 | struct ttm_placement *placement, |
| 1099 | struct ttm_mem_reg *mem, |
| 1100 | struct ttm_operation_ctx *ctx) |
| 1101 | { |
| 1102 | struct ttm_bo_device *bdev = bo->bdev; |
| 1103 | bool type_found = false; |
| 1104 | int i, ret; |
| 1105 | |
| 1106 | ret = dma_resv_reserve_shared(bo->base.resv, 1); |
| 1107 | if (unlikely(ret)) |
| 1108 | return ret; |
| 1109 | |
| 1110 | mem->mm_node = NULL; |
| 1111 | for (i = 0; i < placement->num_placement; ++i) { |
| 1112 | const struct ttm_place *place = &placement->placement[i]; |
| 1113 | struct ttm_mem_type_manager *man; |
| 1114 | |
| 1115 | ret = ttm_bo_mem_placement(bo, place, mem, ctx); |
| 1116 | if (ret == -EBUSY) |
| 1117 | continue; |
| 1118 | if (ret) |
| 1119 | goto error; |
| 1120 | |
| 1121 | type_found = true; |
| 1122 | mem->mm_node = NULL; |
| 1123 | if (mem->mem_type == TTM_PL_SYSTEM) |
| 1124 | return 0; |
| 1125 | |
| 1126 | man = &bdev->man[mem->mem_type]; |
| 1127 | ret = (*man->func->get_node)(man, bo, place, mem); |
| 1128 | if (unlikely(ret)) |
| 1129 | goto error; |
| 1130 | |
| 1131 | if (!mem->mm_node) |
| 1132 | continue; |
| 1133 | |
| 1134 | ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); |
| 1135 | if (unlikely(ret)) { |
| 1136 | (*man->func->put_node)(man, mem); |
| 1137 | if (ret == -EBUSY) |
| 1138 | continue; |
| 1139 | |
| 1140 | goto error; |
| 1141 | } |
| 1142 | return 0; |
| 1143 | } |
| 1144 | |
| 1145 | for (i = 0; i < placement->num_busy_placement; ++i) { |
| 1146 | const struct ttm_place *place = &placement->busy_placement[i]; |
| 1147 | |
| 1148 | ret = ttm_bo_mem_placement(bo, place, mem, ctx); |
| 1149 | if (ret == -EBUSY) |
| 1150 | continue; |
| 1151 | if (ret) |
| 1152 | goto error; |
| 1153 | |
| 1154 | type_found = true; |
| 1155 | mem->mm_node = NULL; |
| 1156 | if (mem->mem_type == TTM_PL_SYSTEM) |
| 1157 | return 0; |
| 1158 | |
| 1159 | ret = ttm_bo_mem_force_space(bo, place, mem, ctx); |
| 1160 | if (ret == 0 && mem->mm_node) |
| 1161 | return 0; |
| 1162 | |
| 1163 | if (ret && ret != -EBUSY) |
| 1164 | goto error; |
| 1165 | } |
| 1166 | |
| 1167 | ret = -ENOMEM; |
| 1168 | if (!type_found) { |
| 1169 | pr_err(TTM_PFX "No compatible memory type found\n"); |
| 1170 | ret = -EINVAL; |
| 1171 | } |
| 1172 | |
| 1173 | error: |
| 1174 | if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) { |
| 1175 | spin_lock(&bo->bdev->glob->lru_lock); |
| 1176 | ttm_bo_move_to_lru_tail(bo, NULL); |
| 1177 | spin_unlock(&bo->bdev->glob->lru_lock); |
| 1178 | } |
| 1179 | |
| 1180 | return ret; |
| 1181 | } |
| 1182 | EXPORT_SYMBOL(ttm_bo_mem_space); |
| 1183 | |
| 1184 | static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, |
| 1185 | struct ttm_placement *placement, |
| 1186 | struct ttm_operation_ctx *ctx) |
| 1187 | { |
| 1188 | int ret = 0; |
| 1189 | struct ttm_mem_reg mem; |
| 1190 | |
| 1191 | dma_resv_assert_held(bo->base.resv); |
| 1192 | |
| 1193 | mem.num_pages = bo->num_pages; |
| 1194 | mem.size = mem.num_pages << PAGE_SHIFT; |
| 1195 | mem.page_alignment = bo->mem.page_alignment; |
| 1196 | mem.bus.io_reserved_vm = false; |
| 1197 | mem.bus.io_reserved_count = 0; |
| 1198 | /* |
| 1199 | * Determine where to move the buffer. |
| 1200 | */ |
| 1201 | ret = ttm_bo_mem_space(bo, placement, &mem, ctx); |
| 1202 | if (ret) |
| 1203 | goto out_unlock; |
| 1204 | ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); |
| 1205 | out_unlock: |
| 1206 | if (ret && mem.mm_node) |
| 1207 | ttm_bo_mem_put(bo, &mem); |
| 1208 | return ret; |
| 1209 | } |
| 1210 | |
| 1211 | static bool ttm_bo_places_compat(const struct ttm_place *places, |
| 1212 | unsigned num_placement, |
| 1213 | struct ttm_mem_reg *mem, |
| 1214 | uint32_t *new_flags) |
| 1215 | { |
| 1216 | unsigned i; |
| 1217 | |
| 1218 | for (i = 0; i < num_placement; i++) { |
| 1219 | const struct ttm_place *heap = &places[i]; |
| 1220 | |
| 1221 | if (mem->mm_node && (mem->start < heap->fpfn || |
| 1222 | (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) |
| 1223 | continue; |
| 1224 | |
| 1225 | *new_flags = heap->flags; |
| 1226 | if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && |
| 1227 | (*new_flags & mem->placement & TTM_PL_MASK_MEM) && |
| 1228 | (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || |
| 1229 | (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) |
| 1230 | return true; |
| 1231 | } |
| 1232 | return false; |
| 1233 | } |
| 1234 | |
| 1235 | bool ttm_bo_mem_compat(struct ttm_placement *placement, |
| 1236 | struct ttm_mem_reg *mem, |
| 1237 | uint32_t *new_flags) |
| 1238 | { |
| 1239 | if (ttm_bo_places_compat(placement->placement, placement->num_placement, |
| 1240 | mem, new_flags)) |
| 1241 | return true; |
| 1242 | |
| 1243 | if ((placement->busy_placement != placement->placement || |
| 1244 | placement->num_busy_placement > placement->num_placement) && |
| 1245 | ttm_bo_places_compat(placement->busy_placement, |
| 1246 | placement->num_busy_placement, |
| 1247 | mem, new_flags)) |
| 1248 | return true; |
| 1249 | |
| 1250 | return false; |
| 1251 | } |
| 1252 | EXPORT_SYMBOL(ttm_bo_mem_compat); |
| 1253 | |
| 1254 | int ttm_bo_validate(struct ttm_buffer_object *bo, |
| 1255 | struct ttm_placement *placement, |
| 1256 | struct ttm_operation_ctx *ctx) |
| 1257 | { |
| 1258 | int ret; |
| 1259 | uint32_t new_flags; |
| 1260 | |
| 1261 | dma_resv_assert_held(bo->base.resv); |
| 1262 | /* |
| 1263 | * Check whether we need to move buffer. |
| 1264 | */ |
| 1265 | if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { |
| 1266 | ret = ttm_bo_move_buffer(bo, placement, ctx); |
| 1267 | if (ret) |
| 1268 | return ret; |
| 1269 | } else { |
| 1270 | /* |
| 1271 | * Use the access and other non-mapping-related flag bits from |
| 1272 | * the compatible memory placement flags to the active flags |
| 1273 | */ |
| 1274 | ttm_flag_masked(&bo->mem.placement, new_flags, |
| 1275 | ~TTM_PL_MASK_MEMTYPE); |
| 1276 | } |
| 1277 | /* |
| 1278 | * We might need to add a TTM. |
| 1279 | */ |
| 1280 | if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { |
| 1281 | ret = ttm_tt_create(bo, true); |
| 1282 | if (ret) |
| 1283 | return ret; |
| 1284 | } |
| 1285 | return 0; |
| 1286 | } |
| 1287 | EXPORT_SYMBOL(ttm_bo_validate); |
| 1288 | |
| 1289 | int ttm_bo_init_reserved(struct ttm_bo_device *bdev, |
| 1290 | struct ttm_buffer_object *bo, |
| 1291 | unsigned long size, |
| 1292 | enum ttm_bo_type type, |
| 1293 | struct ttm_placement *placement, |
| 1294 | uint32_t page_alignment, |
| 1295 | struct ttm_operation_ctx *ctx, |
| 1296 | size_t acc_size, |
| 1297 | struct sg_table *sg, |
| 1298 | struct dma_resv *resv, |
| 1299 | void (*destroy) (struct ttm_buffer_object *)) |
| 1300 | { |
| 1301 | int ret = 0; |
| 1302 | unsigned long num_pages; |
| 1303 | struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; |
| 1304 | bool locked; |
| 1305 | |
| 1306 | ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); |
| 1307 | if (ret) { |
| 1308 | pr_err("Out of kernel memory\n"); |
| 1309 | if (destroy) |
| 1310 | (*destroy)(bo); |
| 1311 | else |
| 1312 | kfree(bo); |
| 1313 | return -ENOMEM; |
| 1314 | } |
| 1315 | |
| 1316 | num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 1317 | if (num_pages == 0) { |
| 1318 | pr_err("Illegal buffer object size\n"); |
| 1319 | if (destroy) |
| 1320 | (*destroy)(bo); |
| 1321 | else |
| 1322 | kfree(bo); |
| 1323 | ttm_mem_global_free(mem_glob, acc_size); |
| 1324 | return -EINVAL; |
| 1325 | } |
| 1326 | bo->destroy = destroy ? destroy : ttm_bo_default_destroy; |
| 1327 | |
| 1328 | kref_init(&bo->kref); |
| 1329 | kref_init(&bo->list_kref); |
| 1330 | atomic_set(&bo->cpu_writers, 0); |
| 1331 | INIT_LIST_HEAD(&bo->lru); |
| 1332 | INIT_LIST_HEAD(&bo->ddestroy); |
| 1333 | INIT_LIST_HEAD(&bo->swap); |
| 1334 | INIT_LIST_HEAD(&bo->io_reserve_lru); |
| 1335 | mutex_init(&bo->wu_mutex); |
| 1336 | bo->bdev = bdev; |
| 1337 | bo->type = type; |
| 1338 | bo->num_pages = num_pages; |
| 1339 | bo->mem.size = num_pages << PAGE_SHIFT; |
| 1340 | bo->mem.mem_type = TTM_PL_SYSTEM; |
| 1341 | bo->mem.num_pages = bo->num_pages; |
| 1342 | bo->mem.mm_node = NULL; |
| 1343 | bo->mem.page_alignment = page_alignment; |
| 1344 | bo->mem.bus.io_reserved_vm = false; |
| 1345 | bo->mem.bus.io_reserved_count = 0; |
| 1346 | bo->moving = NULL; |
| 1347 | bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); |
| 1348 | bo->acc_size = acc_size; |
| 1349 | bo->sg = sg; |
| 1350 | if (resv) { |
| 1351 | bo->base.resv = resv; |
| 1352 | dma_resv_assert_held(bo->base.resv); |
| 1353 | } else { |
| 1354 | bo->base.resv = &bo->base._resv; |
| 1355 | } |
| 1356 | if (!ttm_bo_uses_embedded_gem_object(bo)) { |
| 1357 | /* |
| 1358 | * bo.gem is not initialized, so we have to setup the |
| 1359 | * struct elements we want use regardless. |
| 1360 | */ |
| 1361 | dma_resv_init(&bo->base._resv); |
| 1362 | drm_vma_node_reset(&bo->base.vma_node); |
| 1363 | } |
| 1364 | atomic_inc(&bo->bdev->glob->bo_count); |
| 1365 | |
| 1366 | /* |
| 1367 | * For ttm_bo_type_device buffers, allocate |
| 1368 | * address space from the device. |
| 1369 | */ |
| 1370 | if (bo->type == ttm_bo_type_device || |
| 1371 | bo->type == ttm_bo_type_sg) |
| 1372 | ret = drm_vma_offset_add(&bdev->vma_manager, &bo->base.vma_node, |
| 1373 | bo->mem.num_pages); |
| 1374 | |
| 1375 | /* passed reservation objects should already be locked, |
| 1376 | * since otherwise lockdep will be angered in radeon. |
| 1377 | */ |
| 1378 | if (!resv) { |
| 1379 | locked = dma_resv_trylock(bo->base.resv); |
| 1380 | WARN_ON(!locked); |
| 1381 | } |
| 1382 | |
| 1383 | if (likely(!ret)) |
| 1384 | ret = ttm_bo_validate(bo, placement, ctx); |
| 1385 | |
| 1386 | if (unlikely(ret)) { |
| 1387 | if (!resv) |
| 1388 | ttm_bo_unreserve(bo); |
| 1389 | |
| 1390 | ttm_bo_put(bo); |
| 1391 | return ret; |
| 1392 | } |
| 1393 | |
| 1394 | if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { |
| 1395 | spin_lock(&bdev->glob->lru_lock); |
| 1396 | ttm_bo_add_to_lru(bo); |
| 1397 | spin_unlock(&bdev->glob->lru_lock); |
| 1398 | } |
| 1399 | |
| 1400 | return ret; |
| 1401 | } |
| 1402 | EXPORT_SYMBOL(ttm_bo_init_reserved); |
| 1403 | |
| 1404 | int ttm_bo_init(struct ttm_bo_device *bdev, |
| 1405 | struct ttm_buffer_object *bo, |
| 1406 | unsigned long size, |
| 1407 | enum ttm_bo_type type, |
| 1408 | struct ttm_placement *placement, |
| 1409 | uint32_t page_alignment, |
| 1410 | bool interruptible, |
| 1411 | size_t acc_size, |
| 1412 | struct sg_table *sg, |
| 1413 | struct dma_resv *resv, |
| 1414 | void (*destroy) (struct ttm_buffer_object *)) |
| 1415 | { |
| 1416 | struct ttm_operation_ctx ctx = { interruptible, false }; |
| 1417 | int ret; |
| 1418 | |
| 1419 | ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, |
| 1420 | page_alignment, &ctx, acc_size, |
| 1421 | sg, resv, destroy); |
| 1422 | if (ret) |
| 1423 | return ret; |
| 1424 | |
| 1425 | if (!resv) |
| 1426 | ttm_bo_unreserve(bo); |
| 1427 | |
| 1428 | return 0; |
| 1429 | } |
| 1430 | EXPORT_SYMBOL(ttm_bo_init); |
| 1431 | |
| 1432 | size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, |
| 1433 | unsigned long bo_size, |
| 1434 | unsigned struct_size) |
| 1435 | { |
| 1436 | unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; |
| 1437 | size_t size = 0; |
| 1438 | |
| 1439 | size += ttm_round_pot(struct_size); |
| 1440 | size += ttm_round_pot(npages * sizeof(void *)); |
| 1441 | size += ttm_round_pot(sizeof(struct ttm_tt)); |
| 1442 | return size; |
| 1443 | } |
| 1444 | EXPORT_SYMBOL(ttm_bo_acc_size); |
| 1445 | |
| 1446 | size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, |
| 1447 | unsigned long bo_size, |
| 1448 | unsigned struct_size) |
| 1449 | { |
| 1450 | unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; |
| 1451 | size_t size = 0; |
| 1452 | |
| 1453 | size += ttm_round_pot(struct_size); |
| 1454 | size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); |
| 1455 | size += ttm_round_pot(sizeof(struct ttm_dma_tt)); |
| 1456 | return size; |
| 1457 | } |
| 1458 | EXPORT_SYMBOL(ttm_bo_dma_acc_size); |
| 1459 | |
| 1460 | int ttm_bo_create(struct ttm_bo_device *bdev, |
| 1461 | unsigned long size, |
| 1462 | enum ttm_bo_type type, |
| 1463 | struct ttm_placement *placement, |
| 1464 | uint32_t page_alignment, |
| 1465 | bool interruptible, |
| 1466 | struct ttm_buffer_object **p_bo) |
| 1467 | { |
| 1468 | struct ttm_buffer_object *bo; |
| 1469 | size_t acc_size; |
| 1470 | int ret; |
| 1471 | |
| 1472 | bo = kzalloc(sizeof(*bo), GFP_KERNEL); |
| 1473 | if (unlikely(bo == NULL)) |
| 1474 | return -ENOMEM; |
| 1475 | |
| 1476 | acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); |
| 1477 | ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, |
| 1478 | interruptible, acc_size, |
| 1479 | NULL, NULL, NULL); |
| 1480 | if (likely(ret == 0)) |
| 1481 | *p_bo = bo; |
| 1482 | |
| 1483 | return ret; |
| 1484 | } |
| 1485 | EXPORT_SYMBOL(ttm_bo_create); |
| 1486 | |
| 1487 | static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, |
| 1488 | unsigned mem_type) |
| 1489 | { |
| 1490 | struct ttm_operation_ctx ctx = { |
| 1491 | .interruptible = false, |
| 1492 | .no_wait_gpu = false, |
| 1493 | .flags = TTM_OPT_FLAG_FORCE_ALLOC |
| 1494 | }; |
| 1495 | struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| 1496 | struct ttm_bo_global *glob = bdev->glob; |
| 1497 | struct dma_fence *fence; |
| 1498 | int ret; |
| 1499 | unsigned i; |
| 1500 | |
| 1501 | /* |
| 1502 | * Can't use standard list traversal since we're unlocking. |
| 1503 | */ |
| 1504 | |
| 1505 | spin_lock(&glob->lru_lock); |
| 1506 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| 1507 | while (!list_empty(&man->lru[i])) { |
| 1508 | spin_unlock(&glob->lru_lock); |
| 1509 | ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx, |
| 1510 | NULL); |
| 1511 | if (ret) |
| 1512 | return ret; |
| 1513 | spin_lock(&glob->lru_lock); |
| 1514 | } |
| 1515 | } |
| 1516 | spin_unlock(&glob->lru_lock); |
| 1517 | |
| 1518 | spin_lock(&man->move_lock); |
| 1519 | fence = dma_fence_get(man->move); |
| 1520 | spin_unlock(&man->move_lock); |
| 1521 | |
| 1522 | if (fence) { |
| 1523 | ret = dma_fence_wait(fence, false); |
| 1524 | dma_fence_put(fence); |
| 1525 | if (ret) |
| 1526 | return ret; |
| 1527 | } |
| 1528 | |
| 1529 | return 0; |
| 1530 | } |
| 1531 | |
| 1532 | int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) |
| 1533 | { |
| 1534 | struct ttm_mem_type_manager *man; |
| 1535 | int ret = -EINVAL; |
| 1536 | |
| 1537 | if (mem_type >= TTM_NUM_MEM_TYPES) { |
| 1538 | pr_err("Illegal memory type %d\n", mem_type); |
| 1539 | return ret; |
| 1540 | } |
| 1541 | man = &bdev->man[mem_type]; |
| 1542 | |
| 1543 | if (!man->has_type) { |
| 1544 | pr_err("Trying to take down uninitialized memory manager type %u\n", |
| 1545 | mem_type); |
| 1546 | return ret; |
| 1547 | } |
| 1548 | |
| 1549 | man->use_type = false; |
| 1550 | man->has_type = false; |
| 1551 | |
| 1552 | ret = 0; |
| 1553 | if (mem_type > 0) { |
| 1554 | ret = ttm_bo_force_list_clean(bdev, mem_type); |
| 1555 | if (ret) { |
| 1556 | pr_err("Cleanup eviction failed\n"); |
| 1557 | return ret; |
| 1558 | } |
| 1559 | |
| 1560 | ret = (*man->func->takedown)(man); |
| 1561 | } |
| 1562 | |
| 1563 | dma_fence_put(man->move); |
| 1564 | man->move = NULL; |
| 1565 | |
| 1566 | return ret; |
| 1567 | } |
| 1568 | EXPORT_SYMBOL(ttm_bo_clean_mm); |
| 1569 | |
| 1570 | int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) |
| 1571 | { |
| 1572 | struct ttm_mem_type_manager *man = &bdev->man[mem_type]; |
| 1573 | |
| 1574 | if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { |
| 1575 | pr_err("Illegal memory manager memory type %u\n", mem_type); |
| 1576 | return -EINVAL; |
| 1577 | } |
| 1578 | |
| 1579 | if (!man->has_type) { |
| 1580 | pr_err("Memory type %u has not been initialized\n", mem_type); |
| 1581 | return 0; |
| 1582 | } |
| 1583 | |
| 1584 | return ttm_bo_force_list_clean(bdev, mem_type); |
| 1585 | } |
| 1586 | EXPORT_SYMBOL(ttm_bo_evict_mm); |
| 1587 | |
| 1588 | int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, |
| 1589 | unsigned long p_size) |
| 1590 | { |
| 1591 | int ret; |
| 1592 | struct ttm_mem_type_manager *man; |
| 1593 | unsigned i; |
| 1594 | |
| 1595 | BUG_ON(type >= TTM_NUM_MEM_TYPES); |
| 1596 | man = &bdev->man[type]; |
| 1597 | BUG_ON(man->has_type); |
| 1598 | man->io_reserve_fastpath = true; |
| 1599 | man->use_io_reserve_lru = false; |
| 1600 | mutex_init(&man->io_reserve_mutex); |
| 1601 | spin_lock_init(&man->move_lock); |
| 1602 | INIT_LIST_HEAD(&man->io_reserve_lru); |
| 1603 | |
| 1604 | ret = bdev->driver->init_mem_type(bdev, type, man); |
| 1605 | if (ret) |
| 1606 | return ret; |
| 1607 | man->bdev = bdev; |
| 1608 | |
| 1609 | if (type != TTM_PL_SYSTEM) { |
| 1610 | ret = (*man->func->init)(man, p_size); |
| 1611 | if (ret) |
| 1612 | return ret; |
| 1613 | } |
| 1614 | man->has_type = true; |
| 1615 | man->use_type = true; |
| 1616 | man->size = p_size; |
| 1617 | |
| 1618 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) |
| 1619 | INIT_LIST_HEAD(&man->lru[i]); |
| 1620 | man->move = NULL; |
| 1621 | |
| 1622 | return 0; |
| 1623 | } |
| 1624 | EXPORT_SYMBOL(ttm_bo_init_mm); |
| 1625 | |
| 1626 | static void ttm_bo_global_kobj_release(struct kobject *kobj) |
| 1627 | { |
| 1628 | struct ttm_bo_global *glob = |
| 1629 | container_of(kobj, struct ttm_bo_global, kobj); |
| 1630 | |
| 1631 | __free_page(glob->dummy_read_page); |
| 1632 | } |
| 1633 | |
| 1634 | static void ttm_bo_global_release(void) |
| 1635 | { |
| 1636 | struct ttm_bo_global *glob = &ttm_bo_glob; |
| 1637 | |
| 1638 | mutex_lock(&ttm_global_mutex); |
| 1639 | if (--ttm_bo_glob_use_count > 0) |
| 1640 | goto out; |
| 1641 | |
| 1642 | kobject_del(&glob->kobj); |
| 1643 | kobject_put(&glob->kobj); |
| 1644 | ttm_mem_global_release(&ttm_mem_glob); |
| 1645 | memset(glob, 0, sizeof(*glob)); |
| 1646 | out: |
| 1647 | mutex_unlock(&ttm_global_mutex); |
| 1648 | } |
| 1649 | |
| 1650 | static int ttm_bo_global_init(void) |
| 1651 | { |
| 1652 | struct ttm_bo_global *glob = &ttm_bo_glob; |
| 1653 | int ret = 0; |
| 1654 | unsigned i; |
| 1655 | |
| 1656 | mutex_lock(&ttm_global_mutex); |
| 1657 | if (++ttm_bo_glob_use_count > 1) |
| 1658 | goto out; |
| 1659 | |
| 1660 | ret = ttm_mem_global_init(&ttm_mem_glob); |
| 1661 | if (ret) |
| 1662 | goto out; |
| 1663 | |
| 1664 | spin_lock_init(&glob->lru_lock); |
| 1665 | glob->mem_glob = &ttm_mem_glob; |
| 1666 | glob->mem_glob->bo_glob = glob; |
| 1667 | glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); |
| 1668 | |
| 1669 | if (unlikely(glob->dummy_read_page == NULL)) { |
| 1670 | ret = -ENOMEM; |
| 1671 | goto out; |
| 1672 | } |
| 1673 | |
| 1674 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) |
| 1675 | INIT_LIST_HEAD(&glob->swap_lru[i]); |
| 1676 | INIT_LIST_HEAD(&glob->device_list); |
| 1677 | atomic_set(&glob->bo_count, 0); |
| 1678 | |
| 1679 | ret = kobject_init_and_add( |
| 1680 | &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); |
| 1681 | if (unlikely(ret != 0)) |
| 1682 | kobject_put(&glob->kobj); |
| 1683 | out: |
| 1684 | mutex_unlock(&ttm_global_mutex); |
| 1685 | return ret; |
| 1686 | } |
| 1687 | |
| 1688 | int ttm_bo_device_release(struct ttm_bo_device *bdev) |
| 1689 | { |
| 1690 | int ret = 0; |
| 1691 | unsigned i = TTM_NUM_MEM_TYPES; |
| 1692 | struct ttm_mem_type_manager *man; |
| 1693 | struct ttm_bo_global *glob = bdev->glob; |
| 1694 | |
| 1695 | while (i--) { |
| 1696 | man = &bdev->man[i]; |
| 1697 | if (man->has_type) { |
| 1698 | man->use_type = false; |
| 1699 | if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { |
| 1700 | ret = -EBUSY; |
| 1701 | pr_err("DRM memory manager type %d is not clean\n", |
| 1702 | i); |
| 1703 | } |
| 1704 | man->has_type = false; |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | mutex_lock(&ttm_global_mutex); |
| 1709 | list_del(&bdev->device_list); |
| 1710 | mutex_unlock(&ttm_global_mutex); |
| 1711 | |
| 1712 | cancel_delayed_work_sync(&bdev->wq); |
| 1713 | |
| 1714 | if (ttm_bo_delayed_delete(bdev, true)) |
| 1715 | pr_debug("Delayed destroy list was clean\n"); |
| 1716 | |
| 1717 | spin_lock(&glob->lru_lock); |
| 1718 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) |
| 1719 | if (list_empty(&bdev->man[0].lru[0])) |
| 1720 | pr_debug("Swap list %d was clean\n", i); |
| 1721 | spin_unlock(&glob->lru_lock); |
| 1722 | |
| 1723 | drm_vma_offset_manager_destroy(&bdev->vma_manager); |
| 1724 | |
| 1725 | if (!ret) |
| 1726 | ttm_bo_global_release(); |
| 1727 | |
| 1728 | return ret; |
| 1729 | } |
| 1730 | EXPORT_SYMBOL(ttm_bo_device_release); |
| 1731 | |
| 1732 | int ttm_bo_device_init(struct ttm_bo_device *bdev, |
| 1733 | struct ttm_bo_driver *driver, |
| 1734 | struct address_space *mapping, |
| 1735 | bool need_dma32) |
| 1736 | { |
| 1737 | struct ttm_bo_global *glob = &ttm_bo_glob; |
| 1738 | int ret; |
| 1739 | |
| 1740 | ret = ttm_bo_global_init(); |
| 1741 | if (ret) |
| 1742 | return ret; |
| 1743 | |
| 1744 | bdev->driver = driver; |
| 1745 | |
| 1746 | memset(bdev->man, 0, sizeof(bdev->man)); |
| 1747 | |
| 1748 | /* |
| 1749 | * Initialize the system memory buffer type. |
| 1750 | * Other types need to be driver / IOCTL initialized. |
| 1751 | */ |
| 1752 | ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); |
| 1753 | if (unlikely(ret != 0)) |
| 1754 | goto out_no_sys; |
| 1755 | |
| 1756 | drm_vma_offset_manager_init(&bdev->vma_manager, |
| 1757 | DRM_FILE_PAGE_OFFSET_START, |
| 1758 | DRM_FILE_PAGE_OFFSET_SIZE); |
| 1759 | INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); |
| 1760 | INIT_LIST_HEAD(&bdev->ddestroy); |
| 1761 | bdev->dev_mapping = mapping; |
| 1762 | bdev->glob = glob; |
| 1763 | bdev->need_dma32 = need_dma32; |
| 1764 | mutex_lock(&ttm_global_mutex); |
| 1765 | list_add_tail(&bdev->device_list, &glob->device_list); |
| 1766 | mutex_unlock(&ttm_global_mutex); |
| 1767 | |
| 1768 | return 0; |
| 1769 | out_no_sys: |
| 1770 | ttm_bo_global_release(); |
| 1771 | return ret; |
| 1772 | } |
| 1773 | EXPORT_SYMBOL(ttm_bo_device_init); |
| 1774 | |
| 1775 | /* |
| 1776 | * buffer object vm functions. |
| 1777 | */ |
| 1778 | |
| 1779 | bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) |
| 1780 | { |
| 1781 | struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; |
| 1782 | |
| 1783 | if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { |
| 1784 | if (mem->mem_type == TTM_PL_SYSTEM) |
| 1785 | return false; |
| 1786 | |
| 1787 | if (man->flags & TTM_MEMTYPE_FLAG_CMA) |
| 1788 | return false; |
| 1789 | |
| 1790 | if (mem->placement & TTM_PL_FLAG_CACHED) |
| 1791 | return false; |
| 1792 | } |
| 1793 | return true; |
| 1794 | } |
| 1795 | |
| 1796 | void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) |
| 1797 | { |
| 1798 | struct ttm_bo_device *bdev = bo->bdev; |
| 1799 | |
| 1800 | drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); |
| 1801 | ttm_mem_io_free_vm(bo); |
| 1802 | } |
| 1803 | |
| 1804 | void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) |
| 1805 | { |
| 1806 | struct ttm_bo_device *bdev = bo->bdev; |
| 1807 | struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; |
| 1808 | |
| 1809 | ttm_mem_io_lock(man, false); |
| 1810 | ttm_bo_unmap_virtual_locked(bo); |
| 1811 | ttm_mem_io_unlock(man); |
| 1812 | } |
| 1813 | |
| 1814 | |
| 1815 | EXPORT_SYMBOL(ttm_bo_unmap_virtual); |
| 1816 | |
| 1817 | int ttm_bo_wait(struct ttm_buffer_object *bo, |
| 1818 | bool interruptible, bool no_wait) |
| 1819 | { |
| 1820 | long timeout = 15 * HZ; |
| 1821 | |
| 1822 | if (no_wait) { |
| 1823 | if (dma_resv_test_signaled_rcu(bo->base.resv, true)) |
| 1824 | return 0; |
| 1825 | else |
| 1826 | return -EBUSY; |
| 1827 | } |
| 1828 | |
| 1829 | timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, |
| 1830 | interruptible, timeout); |
| 1831 | if (timeout < 0) |
| 1832 | return timeout; |
| 1833 | |
| 1834 | if (timeout == 0) |
| 1835 | return -EBUSY; |
| 1836 | |
| 1837 | dma_resv_add_excl_fence(bo->base.resv, NULL); |
| 1838 | return 0; |
| 1839 | } |
| 1840 | EXPORT_SYMBOL(ttm_bo_wait); |
| 1841 | |
| 1842 | int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) |
| 1843 | { |
| 1844 | int ret = 0; |
| 1845 | |
| 1846 | /* |
| 1847 | * Using ttm_bo_reserve makes sure the lru lists are updated. |
| 1848 | */ |
| 1849 | |
| 1850 | ret = ttm_bo_reserve(bo, true, no_wait, NULL); |
| 1851 | if (unlikely(ret != 0)) |
| 1852 | return ret; |
| 1853 | ret = ttm_bo_wait(bo, true, no_wait); |
| 1854 | if (likely(ret == 0)) |
| 1855 | atomic_inc(&bo->cpu_writers); |
| 1856 | ttm_bo_unreserve(bo); |
| 1857 | return ret; |
| 1858 | } |
| 1859 | EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); |
| 1860 | |
| 1861 | void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) |
| 1862 | { |
| 1863 | atomic_dec(&bo->cpu_writers); |
| 1864 | } |
| 1865 | EXPORT_SYMBOL(ttm_bo_synccpu_write_release); |
| 1866 | |
| 1867 | /** |
| 1868 | * A buffer object shrink method that tries to swap out the first |
| 1869 | * buffer object on the bo_global::swap_lru list. |
| 1870 | */ |
| 1871 | int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) |
| 1872 | { |
| 1873 | struct ttm_buffer_object *bo; |
| 1874 | int ret = -EBUSY; |
| 1875 | bool locked; |
| 1876 | unsigned i; |
| 1877 | |
| 1878 | spin_lock(&glob->lru_lock); |
| 1879 | for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { |
| 1880 | list_for_each_entry(bo, &glob->swap_lru[i], swap) { |
| 1881 | if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked, |
| 1882 | NULL)) { |
| 1883 | ret = 0; |
| 1884 | break; |
| 1885 | } |
| 1886 | } |
| 1887 | if (!ret) |
| 1888 | break; |
| 1889 | } |
| 1890 | |
| 1891 | if (ret) { |
| 1892 | spin_unlock(&glob->lru_lock); |
| 1893 | return ret; |
| 1894 | } |
| 1895 | |
| 1896 | kref_get(&bo->list_kref); |
| 1897 | |
| 1898 | if (!list_empty(&bo->ddestroy)) { |
| 1899 | ret = ttm_bo_cleanup_refs(bo, false, false, locked); |
| 1900 | kref_put(&bo->list_kref, ttm_bo_release_list); |
| 1901 | return ret; |
| 1902 | } |
| 1903 | |
| 1904 | ttm_bo_del_from_lru(bo); |
| 1905 | spin_unlock(&glob->lru_lock); |
| 1906 | |
| 1907 | /** |
| 1908 | * Move to system cached |
| 1909 | */ |
| 1910 | |
| 1911 | if (bo->mem.mem_type != TTM_PL_SYSTEM || |
| 1912 | bo->ttm->caching_state != tt_cached) { |
| 1913 | struct ttm_operation_ctx ctx = { false, false }; |
| 1914 | struct ttm_mem_reg evict_mem; |
| 1915 | |
| 1916 | evict_mem = bo->mem; |
| 1917 | evict_mem.mm_node = NULL; |
| 1918 | evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; |
| 1919 | evict_mem.mem_type = TTM_PL_SYSTEM; |
| 1920 | |
| 1921 | ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); |
| 1922 | if (unlikely(ret != 0)) |
| 1923 | goto out; |
| 1924 | } |
| 1925 | |
| 1926 | /** |
| 1927 | * Make sure BO is idle. |
| 1928 | */ |
| 1929 | |
| 1930 | ret = ttm_bo_wait(bo, false, false); |
| 1931 | if (unlikely(ret != 0)) |
| 1932 | goto out; |
| 1933 | |
| 1934 | ttm_bo_unmap_virtual(bo); |
| 1935 | |
| 1936 | /** |
| 1937 | * Swap out. Buffer will be swapped in again as soon as |
| 1938 | * anyone tries to access a ttm page. |
| 1939 | */ |
| 1940 | |
| 1941 | if (bo->bdev->driver->swap_notify) |
| 1942 | bo->bdev->driver->swap_notify(bo); |
| 1943 | |
| 1944 | ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); |
| 1945 | out: |
| 1946 | |
| 1947 | /** |
| 1948 | * |
| 1949 | * Unreserve without putting on LRU to avoid swapping out an |
| 1950 | * already swapped buffer. |
| 1951 | */ |
| 1952 | if (locked) |
| 1953 | dma_resv_unlock(bo->base.resv); |
| 1954 | kref_put(&bo->list_kref, ttm_bo_release_list); |
| 1955 | return ret; |
| 1956 | } |
| 1957 | EXPORT_SYMBOL(ttm_bo_swapout); |
| 1958 | |
| 1959 | void ttm_bo_swapout_all(struct ttm_bo_device *bdev) |
| 1960 | { |
| 1961 | struct ttm_operation_ctx ctx = { |
| 1962 | .interruptible = false, |
| 1963 | .no_wait_gpu = false |
| 1964 | }; |
| 1965 | |
| 1966 | while (ttm_bo_swapout(bdev->glob, &ctx) == 0) |
| 1967 | ; |
| 1968 | } |
| 1969 | EXPORT_SYMBOL(ttm_bo_swapout_all); |
| 1970 | |
| 1971 | /** |
| 1972 | * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become |
| 1973 | * unreserved |
| 1974 | * |
| 1975 | * @bo: Pointer to buffer |
| 1976 | */ |
| 1977 | int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo) |
| 1978 | { |
| 1979 | int ret; |
| 1980 | |
| 1981 | /* |
| 1982 | * In the absense of a wait_unlocked API, |
| 1983 | * Use the bo::wu_mutex to avoid triggering livelocks due to |
| 1984 | * concurrent use of this function. Note that this use of |
| 1985 | * bo::wu_mutex can go away if we change locking order to |
| 1986 | * mmap_sem -> bo::reserve. |
| 1987 | */ |
| 1988 | ret = mutex_lock_interruptible(&bo->wu_mutex); |
| 1989 | if (unlikely(ret != 0)) |
| 1990 | return -ERESTARTSYS; |
| 1991 | if (!dma_resv_is_locked(bo->base.resv)) |
| 1992 | goto out_unlock; |
| 1993 | ret = dma_resv_lock_interruptible(bo->base.resv, NULL); |
| 1994 | if (ret == -EINTR) |
| 1995 | ret = -ERESTARTSYS; |
| 1996 | if (unlikely(ret != 0)) |
| 1997 | goto out_unlock; |
| 1998 | dma_resv_unlock(bo->base.resv); |
| 1999 | |
| 2000 | out_unlock: |
| 2001 | mutex_unlock(&bo->wu_mutex); |
| 2002 | return ret; |
| 2003 | } |