blob: 67bfbffdb65c43c1ddcc60d7521f46de794585ba [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2016 Broadcom
4 */
5
6/**
7 * DOC: VC4 DSI0/DSI1 module
8 *
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11 * controller.
12 *
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
15 *
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
18 * hopefully present.
19 */
20
21#include <linux/clk-provider.h>
22#include <linux/clk.h>
23#include <linux/completion.h>
24#include <linux/component.h>
25#include <linux/dma-mapping.h>
26#include <linux/dmaengine.h>
27#include <linux/i2c.h>
28#include <linux/io.h>
29#include <linux/of_address.h>
30#include <linux/of_platform.h>
31#include <linux/pm_runtime.h>
32
33#include <drm/drm_atomic_helper.h>
34#include <drm/drm_edid.h>
35#include <drm/drm_mipi_dsi.h>
36#include <drm/drm_of.h>
37#include <drm/drm_panel.h>
38#include <drm/drm_probe_helper.h>
39
40#include "vc4_drv.h"
41#include "vc4_regs.h"
42
43#define DSI_CMD_FIFO_DEPTH 16
44#define DSI_PIX_FIFO_DEPTH 256
45#define DSI_PIX_FIFO_WIDTH 4
46
47#define DSI0_CTRL 0x00
48
49/* Command packet control. */
50#define DSI0_TXPKT1C 0x04 /* AKA PKTC */
51#define DSI1_TXPKT1C 0x04
52# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
53# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
54# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
55# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
56
57# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
58# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
59/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
60# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
61/* Primary display where cmdfifo provides part of the payload and
62 * pixelvalve the rest.
63 */
64# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
65/* Secondary display where cmdfifo provides part of the payload and
66 * pixfifo the rest.
67 */
68# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
69
70# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
71# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
72
73# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
74# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
75/* Command only. Uses TXPKT1H and DISPLAY_NO */
76# define DSI_TXPKT1C_CMD_CTRL_TX 0
77/* Command with BTA for either ack or read data. */
78# define DSI_TXPKT1C_CMD_CTRL_RX 1
79/* Trigger according to TRIG_CMD */
80# define DSI_TXPKT1C_CMD_CTRL_TRIG 2
81/* BTA alone for getting error status after a command, or a TE trigger
82 * without a previous command.
83 */
84# define DSI_TXPKT1C_CMD_CTRL_BTA 3
85
86# define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
87# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
88# define DSI_TXPKT1C_CMD_TE_EN BIT(1)
89# define DSI_TXPKT1C_CMD_EN BIT(0)
90
91/* Command packet header. */
92#define DSI0_TXPKT1H 0x08 /* AKA PKTH */
93#define DSI1_TXPKT1H 0x08
94# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
95# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
96# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
97# define DSI_TXPKT1H_BC_PARAM_SHIFT 8
98# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
99# define DSI_TXPKT1H_BC_DT_SHIFT 0
100
101#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
102#define DSI1_RXPKT1H 0x14
103# define DSI_RXPKT1H_CRC_ERR BIT(31)
104# define DSI_RXPKT1H_DET_ERR BIT(30)
105# define DSI_RXPKT1H_ECC_ERR BIT(29)
106# define DSI_RXPKT1H_COR_ERR BIT(28)
107# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
108# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
109/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
110# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
111# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
112/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
113# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
114# define DSI_RXPKT1H_SHORT_1_SHIFT 16
115# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
116# define DSI_RXPKT1H_SHORT_0_SHIFT 8
117# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
118# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
119
120#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
121#define DSI1_RXPKT2H 0x18
122# define DSI_RXPKT1H_DET_ERR BIT(30)
123# define DSI_RXPKT1H_ECC_ERR BIT(29)
124# define DSI_RXPKT1H_COR_ERR BIT(28)
125# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
126# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
127# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
128# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
129# define DSI_RXPKT1H_DT_SHIFT 0
130
131#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
132#define DSI1_TXPKT_CMD_FIFO 0x1c
133
134#define DSI0_DISP0_CTRL 0x18
135# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
136# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
137# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
138# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
139# define DSI_DISP0_LP_STOP_DISABLE 0
140# define DSI_DISP0_LP_STOP_PERLINE 1
141# define DSI_DISP0_LP_STOP_PERFRAME 2
142
143/* Transmit RGB pixels and null packets only during HACTIVE, instead
144 * of going to LP-STOP.
145 */
146# define DSI_DISP_HACTIVE_NULL BIT(10)
147/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
148# define DSI_DISP_VBLP_CTRL BIT(9)
149/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
150# define DSI_DISP_HFP_CTRL BIT(8)
151/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
152# define DSI_DISP_HBP_CTRL BIT(7)
153# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
154# define DSI_DISP0_CHANNEL_SHIFT 5
155/* Enables end events for HSYNC/VSYNC, not just start events. */
156# define DSI_DISP0_ST_END BIT(4)
157# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
158# define DSI_DISP0_PFORMAT_SHIFT 2
159# define DSI_PFORMAT_RGB565 0
160# define DSI_PFORMAT_RGB666_PACKED 1
161# define DSI_PFORMAT_RGB666 2
162# define DSI_PFORMAT_RGB888 3
163/* Default is VIDEO mode. */
164# define DSI_DISP0_COMMAND_MODE BIT(1)
165# define DSI_DISP0_ENABLE BIT(0)
166
167#define DSI0_DISP1_CTRL 0x1c
168#define DSI1_DISP1_CTRL 0x2c
169/* Format of the data written to TXPKT_PIX_FIFO. */
170# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
171# define DSI_DISP1_PFORMAT_SHIFT 1
172# define DSI_DISP1_PFORMAT_16BIT 0
173# define DSI_DISP1_PFORMAT_24BIT 1
174# define DSI_DISP1_PFORMAT_32BIT_LE 2
175# define DSI_DISP1_PFORMAT_32BIT_BE 3
176
177/* DISP1 is always command mode. */
178# define DSI_DISP1_ENABLE BIT(0)
179
180#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
181
182#define DSI0_INT_STAT 0x24
183#define DSI0_INT_EN 0x28
184# define DSI1_INT_PHY_D3_ULPS BIT(30)
185# define DSI1_INT_PHY_D3_STOP BIT(29)
186# define DSI1_INT_PHY_D2_ULPS BIT(28)
187# define DSI1_INT_PHY_D2_STOP BIT(27)
188# define DSI1_INT_PHY_D1_ULPS BIT(26)
189# define DSI1_INT_PHY_D1_STOP BIT(25)
190# define DSI1_INT_PHY_D0_ULPS BIT(24)
191# define DSI1_INT_PHY_D0_STOP BIT(23)
192# define DSI1_INT_FIFO_ERR BIT(22)
193# define DSI1_INT_PHY_DIR_RTF BIT(21)
194# define DSI1_INT_PHY_RXLPDT BIT(20)
195# define DSI1_INT_PHY_RXTRIG BIT(19)
196# define DSI1_INT_PHY_D0_LPDT BIT(18)
197# define DSI1_INT_PHY_DIR_FTR BIT(17)
198
199/* Signaled when the clock lane enters the given state. */
200# define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
201# define DSI1_INT_PHY_CLOCK_HS BIT(15)
202# define DSI1_INT_PHY_CLOCK_STOP BIT(14)
203
204/* Signaled on timeouts */
205# define DSI1_INT_PR_TO BIT(13)
206# define DSI1_INT_TA_TO BIT(12)
207# define DSI1_INT_LPRX_TO BIT(11)
208# define DSI1_INT_HSTX_TO BIT(10)
209
210/* Contention on a line when trying to drive the line low */
211# define DSI1_INT_ERR_CONT_LP1 BIT(9)
212# define DSI1_INT_ERR_CONT_LP0 BIT(8)
213
214/* Control error: incorrect line state sequence on data lane 0. */
215# define DSI1_INT_ERR_CONTROL BIT(7)
216/* LPDT synchronization error (bits received not a multiple of 8. */
217
218# define DSI1_INT_ERR_SYNC_ESC BIT(6)
219/* Signaled after receiving an error packet from the display in
220 * response to a read.
221 */
222# define DSI1_INT_RXPKT2 BIT(5)
223/* Signaled after receiving a packet. The header and optional short
224 * response will be in RXPKT1H, and a long response will be in the
225 * RXPKT_FIFO.
226 */
227# define DSI1_INT_RXPKT1 BIT(4)
228# define DSI1_INT_TXPKT2_DONE BIT(3)
229# define DSI1_INT_TXPKT2_END BIT(2)
230/* Signaled after all repeats of TXPKT1 are transferred. */
231# define DSI1_INT_TXPKT1_DONE BIT(1)
232/* Signaled after each TXPKT1 repeat is scheduled. */
233# define DSI1_INT_TXPKT1_END BIT(0)
234
235#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
236 DSI1_INT_ERR_CONTROL | \
237 DSI1_INT_ERR_CONT_LP0 | \
238 DSI1_INT_ERR_CONT_LP1 | \
239 DSI1_INT_HSTX_TO | \
240 DSI1_INT_LPRX_TO | \
241 DSI1_INT_TA_TO | \
242 DSI1_INT_PR_TO)
243
244#define DSI0_STAT 0x2c
245#define DSI0_HSTX_TO_CNT 0x30
246#define DSI0_LPRX_TO_CNT 0x34
247#define DSI0_TA_TO_CNT 0x38
248#define DSI0_PR_TO_CNT 0x3c
249#define DSI0_PHYC 0x40
250# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
251# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
252# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
253# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
254# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
255# define DSI1_PHYC_CLANE_ULPS BIT(17)
256# define DSI1_PHYC_CLANE_ENABLE BIT(16)
257# define DSI_PHYC_DLANE3_ULPS BIT(13)
258# define DSI_PHYC_DLANE3_ENABLE BIT(12)
259# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
260# define DSI0_PHYC_CLANE_ULPS BIT(9)
261# define DSI_PHYC_DLANE2_ULPS BIT(9)
262# define DSI0_PHYC_CLANE_ENABLE BIT(8)
263# define DSI_PHYC_DLANE2_ENABLE BIT(8)
264# define DSI_PHYC_DLANE1_ULPS BIT(5)
265# define DSI_PHYC_DLANE1_ENABLE BIT(4)
266# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
267# define DSI_PHYC_DLANE0_ULPS BIT(1)
268# define DSI_PHYC_DLANE0_ENABLE BIT(0)
269
270#define DSI0_HS_CLT0 0x44
271#define DSI0_HS_CLT1 0x48
272#define DSI0_HS_CLT2 0x4c
273#define DSI0_HS_DLT3 0x50
274#define DSI0_HS_DLT4 0x54
275#define DSI0_HS_DLT5 0x58
276#define DSI0_HS_DLT6 0x5c
277#define DSI0_HS_DLT7 0x60
278
279#define DSI0_PHY_AFEC0 0x64
280# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
281# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
282# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
283# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
284# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
285# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
286# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
287# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
288# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
289# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
290# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
291# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
292# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
293# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
294# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
295# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
296# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
297# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
298# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
299# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
300# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
301# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
302# define DSI1_PHY_AFEC0_RESET BIT(13)
303# define DSI1_PHY_AFEC0_PD BIT(12)
304# define DSI0_PHY_AFEC0_RESET BIT(11)
305# define DSI1_PHY_AFEC0_PD_BG BIT(11)
306# define DSI0_PHY_AFEC0_PD BIT(10)
307# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
308# define DSI0_PHY_AFEC0_PD_BG BIT(9)
309# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
310# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
311# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
312# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
313# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
314# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
315# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
316
317#define DSI0_PHY_AFEC1 0x68
318# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
319# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
320# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
321# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
322# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
323# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
324
325#define DSI0_TST_SEL 0x6c
326#define DSI0_TST_MON 0x70
327#define DSI0_ID 0x74
328# define DSI_ID_VALUE 0x00647369
329
330#define DSI1_CTRL 0x00
331# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
332# define DSI_CTRL_HS_CLKC_SHIFT 14
333# define DSI_CTRL_HS_CLKC_BYTE 0
334# define DSI_CTRL_HS_CLKC_DDR2 1
335# define DSI_CTRL_HS_CLKC_DDR 2
336
337# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
338# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
339# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
340# define DSI_CTRL_SOFT_RESET_CFG BIT(10)
341# define DSI_CTRL_CAL_BYTE BIT(9)
342# define DSI_CTRL_INV_BYTE BIT(8)
343# define DSI_CTRL_CLR_LDF BIT(7)
344# define DSI0_CTRL_CLR_PBCF BIT(6)
345# define DSI1_CTRL_CLR_RXF BIT(6)
346# define DSI0_CTRL_CLR_CPBCF BIT(5)
347# define DSI1_CTRL_CLR_PDF BIT(5)
348# define DSI0_CTRL_CLR_PDF BIT(4)
349# define DSI1_CTRL_CLR_CDF BIT(4)
350# define DSI0_CTRL_CLR_CDF BIT(3)
351# define DSI0_CTRL_CTRL2 BIT(2)
352# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
353# define DSI0_CTRL_CTRL1 BIT(1)
354# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
355# define DSI0_CTRL_CTRL0 BIT(0)
356# define DSI1_CTRL_EN BIT(0)
357# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
358 DSI0_CTRL_CLR_PBCF | \
359 DSI0_CTRL_CLR_CPBCF | \
360 DSI0_CTRL_CLR_PDF | \
361 DSI0_CTRL_CLR_CDF)
362# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
363 DSI1_CTRL_CLR_RXF | \
364 DSI1_CTRL_CLR_PDF | \
365 DSI1_CTRL_CLR_CDF)
366
367#define DSI1_TXPKT2C 0x0c
368#define DSI1_TXPKT2H 0x10
369#define DSI1_TXPKT_PIX_FIFO 0x20
370#define DSI1_RXPKT_FIFO 0x24
371#define DSI1_DISP0_CTRL 0x28
372#define DSI1_INT_STAT 0x30
373#define DSI1_INT_EN 0x34
374/* State reporting bits. These mostly behave like INT_STAT, where
375 * writing a 1 clears the bit.
376 */
377#define DSI1_STAT 0x38
378# define DSI1_STAT_PHY_D3_ULPS BIT(31)
379# define DSI1_STAT_PHY_D3_STOP BIT(30)
380# define DSI1_STAT_PHY_D2_ULPS BIT(29)
381# define DSI1_STAT_PHY_D2_STOP BIT(28)
382# define DSI1_STAT_PHY_D1_ULPS BIT(27)
383# define DSI1_STAT_PHY_D1_STOP BIT(26)
384# define DSI1_STAT_PHY_D0_ULPS BIT(25)
385# define DSI1_STAT_PHY_D0_STOP BIT(24)
386# define DSI1_STAT_FIFO_ERR BIT(23)
387# define DSI1_STAT_PHY_RXLPDT BIT(22)
388# define DSI1_STAT_PHY_RXTRIG BIT(21)
389# define DSI1_STAT_PHY_D0_LPDT BIT(20)
390/* Set when in forward direction */
391# define DSI1_STAT_PHY_DIR BIT(19)
392# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
393# define DSI1_STAT_PHY_CLOCK_HS BIT(17)
394# define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
395# define DSI1_STAT_PR_TO BIT(15)
396# define DSI1_STAT_TA_TO BIT(14)
397# define DSI1_STAT_LPRX_TO BIT(13)
398# define DSI1_STAT_HSTX_TO BIT(12)
399# define DSI1_STAT_ERR_CONT_LP1 BIT(11)
400# define DSI1_STAT_ERR_CONT_LP0 BIT(10)
401# define DSI1_STAT_ERR_CONTROL BIT(9)
402# define DSI1_STAT_ERR_SYNC_ESC BIT(8)
403# define DSI1_STAT_RXPKT2 BIT(7)
404# define DSI1_STAT_RXPKT1 BIT(6)
405# define DSI1_STAT_TXPKT2_BUSY BIT(5)
406# define DSI1_STAT_TXPKT2_DONE BIT(4)
407# define DSI1_STAT_TXPKT2_END BIT(3)
408# define DSI1_STAT_TXPKT1_BUSY BIT(2)
409# define DSI1_STAT_TXPKT1_DONE BIT(1)
410# define DSI1_STAT_TXPKT1_END BIT(0)
411
412#define DSI1_HSTX_TO_CNT 0x3c
413#define DSI1_LPRX_TO_CNT 0x40
414#define DSI1_TA_TO_CNT 0x44
415#define DSI1_PR_TO_CNT 0x48
416#define DSI1_PHYC 0x4c
417
418#define DSI1_HS_CLT0 0x50
419# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
420# define DSI_HS_CLT0_CZERO_SHIFT 18
421# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
422# define DSI_HS_CLT0_CPRE_SHIFT 9
423# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
424# define DSI_HS_CLT0_CPREP_SHIFT 0
425
426#define DSI1_HS_CLT1 0x54
427# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
428# define DSI_HS_CLT1_CTRAIL_SHIFT 9
429# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
430# define DSI_HS_CLT1_CPOST_SHIFT 0
431
432#define DSI1_HS_CLT2 0x58
433# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
434# define DSI_HS_CLT2_WUP_SHIFT 0
435
436#define DSI1_HS_DLT3 0x5c
437# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
438# define DSI_HS_DLT3_EXIT_SHIFT 18
439# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
440# define DSI_HS_DLT3_ZERO_SHIFT 9
441# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
442# define DSI_HS_DLT3_PRE_SHIFT 0
443
444#define DSI1_HS_DLT4 0x60
445# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
446# define DSI_HS_DLT4_ANLAT_SHIFT 18
447# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
448# define DSI_HS_DLT4_TRAIL_SHIFT 9
449# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
450# define DSI_HS_DLT4_LPX_SHIFT 0
451
452#define DSI1_HS_DLT5 0x64
453# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
454# define DSI_HS_DLT5_INIT_SHIFT 0
455
456#define DSI1_HS_DLT6 0x68
457# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
458# define DSI_HS_DLT6_TA_GET_SHIFT 24
459# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
460# define DSI_HS_DLT6_TA_SURE_SHIFT 16
461# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
462# define DSI_HS_DLT6_TA_GO_SHIFT 8
463# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
464# define DSI_HS_DLT6_LP_LPX_SHIFT 0
465
466#define DSI1_HS_DLT7 0x6c
467# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
468# define DSI_HS_DLT7_LP_WUP_SHIFT 0
469
470#define DSI1_PHY_AFEC0 0x70
471
472#define DSI1_PHY_AFEC1 0x74
473# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
474# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
475# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
476# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
477# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
478# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
479# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
480# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
481# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
482# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
483
484#define DSI1_TST_SEL 0x78
485#define DSI1_TST_MON 0x7c
486#define DSI1_PHY_TST1 0x80
487#define DSI1_PHY_TST2 0x84
488#define DSI1_PHY_FIFO_STAT 0x88
489/* Actually, all registers in the range that aren't otherwise claimed
490 * will return the ID.
491 */
492#define DSI1_ID 0x8c
493
494/* General DSI hardware state. */
495struct vc4_dsi {
496 struct platform_device *pdev;
497
498 struct mipi_dsi_host dsi_host;
499 struct drm_encoder *encoder;
500 struct drm_bridge *bridge;
501
502 void __iomem *regs;
503
504 struct dma_chan *reg_dma_chan;
505 dma_addr_t reg_dma_paddr;
506 u32 *reg_dma_mem;
507 dma_addr_t reg_paddr;
508
509 /* Whether we're on bcm2835's DSI0 or DSI1. */
510 int port;
511
512 /* DSI channel for the panel we're connected to. */
513 u32 channel;
514 u32 lanes;
515 u32 format;
516 u32 divider;
517 u32 mode_flags;
518
519 /* Input clock from CPRMAN to the digital PHY, for the DSI
520 * escape clock.
521 */
522 struct clk *escape_clock;
523
524 /* Input clock to the analog PHY, used to generate the DSI bit
525 * clock.
526 */
527 struct clk *pll_phy_clock;
528
529 /* HS Clocks generated within the DSI analog PHY. */
530 struct clk_fixed_factor phy_clocks[3];
531
532 struct clk_hw_onecell_data *clk_onecell;
533
534 /* Pixel clock output to the pixelvalve, generated from the HS
535 * clock.
536 */
537 struct clk *pixel_clock;
538
539 struct completion xfer_completion;
540 int xfer_result;
541
542 struct debugfs_regset32 regset;
543};
544
545#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
546
547static inline void
548dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
549{
550 struct dma_chan *chan = dsi->reg_dma_chan;
551 struct dma_async_tx_descriptor *tx;
552 dma_cookie_t cookie;
553 int ret;
554
555 /* DSI0 should be able to write normally. */
556 if (!chan) {
557 writel(val, dsi->regs + offset);
558 return;
559 }
560
561 *dsi->reg_dma_mem = val;
562
563 tx = chan->device->device_prep_dma_memcpy(chan,
564 dsi->reg_paddr + offset,
565 dsi->reg_dma_paddr,
566 4, 0);
567 if (!tx) {
568 DRM_ERROR("Failed to set up DMA register write\n");
569 return;
570 }
571
572 cookie = tx->tx_submit(tx);
573 ret = dma_submit_error(cookie);
574 if (ret) {
575 DRM_ERROR("Failed to submit DMA: %d\n", ret);
576 return;
577 }
578 ret = dma_sync_wait(chan, cookie);
579 if (ret)
580 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
581}
582
583#define DSI_READ(offset) readl(dsi->regs + (offset))
584#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
585#define DSI_PORT_READ(offset) \
586 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
587#define DSI_PORT_WRITE(offset, val) \
588 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
589#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
590
591/* VC4 DSI encoder KMS struct */
592struct vc4_dsi_encoder {
593 struct vc4_encoder base;
594 struct vc4_dsi *dsi;
595};
596
597static inline struct vc4_dsi_encoder *
598to_vc4_dsi_encoder(struct drm_encoder *encoder)
599{
600 return container_of(encoder, struct vc4_dsi_encoder, base.base);
601}
602
603static const struct debugfs_reg32 dsi0_regs[] = {
604 VC4_REG32(DSI0_CTRL),
605 VC4_REG32(DSI0_STAT),
606 VC4_REG32(DSI0_HSTX_TO_CNT),
607 VC4_REG32(DSI0_LPRX_TO_CNT),
608 VC4_REG32(DSI0_TA_TO_CNT),
609 VC4_REG32(DSI0_PR_TO_CNT),
610 VC4_REG32(DSI0_DISP0_CTRL),
611 VC4_REG32(DSI0_DISP1_CTRL),
612 VC4_REG32(DSI0_INT_STAT),
613 VC4_REG32(DSI0_INT_EN),
614 VC4_REG32(DSI0_PHYC),
615 VC4_REG32(DSI0_HS_CLT0),
616 VC4_REG32(DSI0_HS_CLT1),
617 VC4_REG32(DSI0_HS_CLT2),
618 VC4_REG32(DSI0_HS_DLT3),
619 VC4_REG32(DSI0_HS_DLT4),
620 VC4_REG32(DSI0_HS_DLT5),
621 VC4_REG32(DSI0_HS_DLT6),
622 VC4_REG32(DSI0_HS_DLT7),
623 VC4_REG32(DSI0_PHY_AFEC0),
624 VC4_REG32(DSI0_PHY_AFEC1),
625 VC4_REG32(DSI0_ID),
626};
627
628static const struct debugfs_reg32 dsi1_regs[] = {
629 VC4_REG32(DSI1_CTRL),
630 VC4_REG32(DSI1_STAT),
631 VC4_REG32(DSI1_HSTX_TO_CNT),
632 VC4_REG32(DSI1_LPRX_TO_CNT),
633 VC4_REG32(DSI1_TA_TO_CNT),
634 VC4_REG32(DSI1_PR_TO_CNT),
635 VC4_REG32(DSI1_DISP0_CTRL),
636 VC4_REG32(DSI1_DISP1_CTRL),
637 VC4_REG32(DSI1_INT_STAT),
638 VC4_REG32(DSI1_INT_EN),
639 VC4_REG32(DSI1_PHYC),
640 VC4_REG32(DSI1_HS_CLT0),
641 VC4_REG32(DSI1_HS_CLT1),
642 VC4_REG32(DSI1_HS_CLT2),
643 VC4_REG32(DSI1_HS_DLT3),
644 VC4_REG32(DSI1_HS_DLT4),
645 VC4_REG32(DSI1_HS_DLT5),
646 VC4_REG32(DSI1_HS_DLT6),
647 VC4_REG32(DSI1_HS_DLT7),
648 VC4_REG32(DSI1_PHY_AFEC0),
649 VC4_REG32(DSI1_PHY_AFEC1),
650 VC4_REG32(DSI1_ID),
651};
652
653static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
654{
655 drm_encoder_cleanup(encoder);
656}
657
658static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
659 .destroy = vc4_dsi_encoder_destroy,
660};
661
662static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
663{
664 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
665
666 if (latch)
667 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
668 else
669 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
670
671 DSI_PORT_WRITE(PHY_AFEC0, afec0);
672}
673
674/* Enters or exits Ultra Low Power State. */
675static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
676{
677 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
678 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
679 DSI_PHYC_DLANE0_ULPS |
680 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
681 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
682 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
683 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
684 DSI1_STAT_PHY_D0_ULPS |
685 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
686 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
687 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
688 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
689 DSI1_STAT_PHY_D0_STOP |
690 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
691 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
692 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
693 int ret;
694 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
695 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
696
697 if (ulps == ulps_currently_enabled)
698 return;
699
700 DSI_PORT_WRITE(STAT, stat_ulps);
701 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
702 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
703 if (ret) {
704 dev_warn(&dsi->pdev->dev,
705 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
706 DSI_PORT_READ(STAT));
707 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
708 vc4_dsi_latch_ulps(dsi, false);
709 return;
710 }
711
712 /* The DSI module can't be disabled while the module is
713 * generating ULPS state. So, to be able to disable the
714 * module, we have the AFE latch the ULPS state and continue
715 * on to having the module enter STOP.
716 */
717 vc4_dsi_latch_ulps(dsi, ulps);
718
719 DSI_PORT_WRITE(STAT, stat_stop);
720 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
721 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
722 if (ret) {
723 dev_warn(&dsi->pdev->dev,
724 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
725 DSI_PORT_READ(STAT));
726 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
727 return;
728 }
729}
730
731static u32
732dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
733{
734 /* The HS timings have to be rounded up to a multiple of 8
735 * because we're using the byte clock.
736 */
737 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
738}
739
740/* ESC always runs at 100Mhz. */
741#define ESC_TIME_NS 10
742
743static u32
744dsi_esc_timing(u32 ns)
745{
746 return DIV_ROUND_UP(ns, ESC_TIME_NS);
747}
748
749static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
750{
751 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
752 struct vc4_dsi *dsi = vc4_encoder->dsi;
753 struct device *dev = &dsi->pdev->dev;
754
755 drm_bridge_chain_disable(dsi->bridge);
756 vc4_dsi_ulps(dsi, true);
757 drm_bridge_chain_post_disable(dsi->bridge);
758
759 clk_disable_unprepare(dsi->pll_phy_clock);
760 clk_disable_unprepare(dsi->escape_clock);
761 clk_disable_unprepare(dsi->pixel_clock);
762
763 pm_runtime_put(dev);
764}
765
766/* Extends the mode's blank intervals to handle BCM2835's integer-only
767 * DSI PLL divider.
768 *
769 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
770 * driver since most peripherals are hanging off of the PLLD_PER
771 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
772 * the pixel clock), only has an integer divider off of DSI.
773 *
774 * To get our panel mode to refresh at the expected 60Hz, we need to
775 * extend the horizontal blank time. This means we drive a
776 * higher-than-expected clock rate to the panel, but that's what the
777 * firmware does too.
778 */
779static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
780 const struct drm_display_mode *mode,
781 struct drm_display_mode *adjusted_mode)
782{
783 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
784 struct vc4_dsi *dsi = vc4_encoder->dsi;
785 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
786 unsigned long parent_rate = clk_get_rate(phy_parent);
787 unsigned long pixel_clock_hz = mode->clock * 1000;
788 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
789 int divider;
790
791 /* Find what divider gets us a faster clock than the requested
792 * pixel clock.
793 */
794 for (divider = 1; divider < 255; divider++) {
795 if (parent_rate / (divider + 1) < pll_clock)
796 break;
797 }
798
799 /* Now that we've picked a PLL divider, calculate back to its
800 * pixel clock.
801 */
802 pll_clock = parent_rate / divider;
803 pixel_clock_hz = pll_clock / dsi->divider;
804
805 adjusted_mode->clock = pixel_clock_hz / 1000;
806
807 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
808 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
809 mode->clock;
810 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
811 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
812
813 return true;
814}
815
816static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
817{
818 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
819 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
820 struct vc4_dsi *dsi = vc4_encoder->dsi;
821 struct device *dev = &dsi->pdev->dev;
822 bool debug_dump_regs = false;
823 unsigned long hs_clock;
824 u32 ui_ns;
825 /* Minimum LP state duration in escape clock cycles. */
826 u32 lpx = dsi_esc_timing(60);
827 unsigned long pixel_clock_hz = mode->clock * 1000;
828 unsigned long dsip_clock;
829 unsigned long phy_clock;
830 int ret;
831
832 ret = pm_runtime_resume_and_get(dev);
833 if (ret) {
834 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
835 return;
836 }
837
838 if (debug_dump_regs) {
839 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
840 dev_info(&dsi->pdev->dev, "DSI regs before:\n");
841 drm_print_regset32(&p, &dsi->regset);
842 }
843
844 /* Round up the clk_set_rate() request slightly, since
845 * PLLD_DSI1 is an integer divider and its rate selection will
846 * never round up.
847 */
848 phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
849 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
850 if (ret) {
851 dev_err(&dsi->pdev->dev,
852 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
853 }
854
855 /* Reset the DSI and all its fifos. */
856 DSI_PORT_WRITE(CTRL,
857 DSI_CTRL_SOFT_RESET_CFG |
858 DSI_PORT_BIT(CTRL_RESET_FIFOS));
859
860 DSI_PORT_WRITE(CTRL,
861 DSI_CTRL_HSDT_EOT_DISABLE |
862 DSI_CTRL_RX_LPDT_EOT_DISABLE);
863
864 /* Clear all stat bits so we see what has happened during enable. */
865 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
866
867 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
868 if (dsi->port == 0) {
869 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
870 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
871
872 if (dsi->lanes < 2)
873 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
874
875 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
876 afec0 |= DSI0_PHY_AFEC0_RESET;
877
878 DSI_PORT_WRITE(PHY_AFEC0, afec0);
879
880 DSI_PORT_WRITE(PHY_AFEC1,
881 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
882 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
883 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
884 } else {
885 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
886 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
887 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
888 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
889 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
890 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
891 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
892
893 if (dsi->lanes < 4)
894 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
895 if (dsi->lanes < 3)
896 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
897 if (dsi->lanes < 2)
898 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
899
900 afec0 |= DSI1_PHY_AFEC0_RESET;
901
902 DSI_PORT_WRITE(PHY_AFEC0, afec0);
903
904 DSI_PORT_WRITE(PHY_AFEC1, 0);
905
906 /* AFEC reset hold time */
907 mdelay(1);
908 }
909
910 ret = clk_prepare_enable(dsi->escape_clock);
911 if (ret) {
912 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
913 return;
914 }
915
916 ret = clk_prepare_enable(dsi->pll_phy_clock);
917 if (ret) {
918 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
919 return;
920 }
921
922 hs_clock = clk_get_rate(dsi->pll_phy_clock);
923
924 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
925 * not the pixel clock rate. DSIxP take from the APHY's byte,
926 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
927 * that rate. Separately, a value derived from PIX_CLK_DIV
928 * and HS_CLKC is fed into the PV to divide down to the actual
929 * pixel clock for pushing pixels into DSI.
930 */
931 dsip_clock = phy_clock / 8;
932 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
933 if (ret) {
934 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
935 dsip_clock, ret);
936 }
937
938 ret = clk_prepare_enable(dsi->pixel_clock);
939 if (ret) {
940 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
941 return;
942 }
943
944 /* How many ns one DSI unit interval is. Note that the clock
945 * is DDR, so there's an extra divide by 2.
946 */
947 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
948
949 DSI_PORT_WRITE(HS_CLT0,
950 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
951 DSI_HS_CLT0_CZERO) |
952 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
953 DSI_HS_CLT0_CPRE) |
954 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
955 DSI_HS_CLT0_CPREP));
956
957 DSI_PORT_WRITE(HS_CLT1,
958 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
959 DSI_HS_CLT1_CTRAIL) |
960 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
961 DSI_HS_CLT1_CPOST));
962
963 DSI_PORT_WRITE(HS_CLT2,
964 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
965 DSI_HS_CLT2_WUP));
966
967 DSI_PORT_WRITE(HS_DLT3,
968 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
969 DSI_HS_DLT3_EXIT) |
970 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
971 DSI_HS_DLT3_ZERO) |
972 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
973 DSI_HS_DLT3_PRE));
974
975 DSI_PORT_WRITE(HS_DLT4,
976 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
977 DSI_HS_DLT4_LPX) |
978 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
979 dsi_hs_timing(ui_ns, 60, 4)),
980 DSI_HS_DLT4_TRAIL) |
981 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
982
983 /* T_INIT is how long STOP is driven after power-up to
984 * indicate to the slave (also coming out of power-up) that
985 * master init is complete, and should be greater than the
986 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
987 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
988 * T_INIT,SLAVE, while allowing protocols on top of it to give
989 * greater minimums. The vc4 firmware uses an extremely
990 * conservative 5ms, and we maintain that here.
991 */
992 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
993 5 * 1000 * 1000, 0),
994 DSI_HS_DLT5_INIT));
995
996 DSI_PORT_WRITE(HS_DLT6,
997 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
998 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
999 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1000 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1001
1002 DSI_PORT_WRITE(HS_DLT7,
1003 VC4_SET_FIELD(dsi_esc_timing(1000000),
1004 DSI_HS_DLT7_LP_WUP));
1005
1006 DSI_PORT_WRITE(PHYC,
1007 DSI_PHYC_DLANE0_ENABLE |
1008 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1009 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1010 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1011 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1012 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1013 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1014 (dsi->port == 0 ?
1015 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1016 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1017
1018 DSI_PORT_WRITE(CTRL,
1019 DSI_PORT_READ(CTRL) |
1020 DSI_CTRL_CAL_BYTE);
1021
1022 /* HS timeout in HS clock cycles: disabled. */
1023 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1024 /* LP receive timeout in HS clocks. */
1025 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1026 /* Bus turnaround timeout */
1027 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1028 /* Display reset sequence timeout */
1029 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1030
1031 /* Set up DISP1 for transferring long command payloads through
1032 * the pixfifo.
1033 */
1034 DSI_PORT_WRITE(DISP1_CTRL,
1035 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1036 DSI_DISP1_PFORMAT) |
1037 DSI_DISP1_ENABLE);
1038
1039 /* Ungate the block. */
1040 if (dsi->port == 0)
1041 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1042 else
1043 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1044
1045 /* Bring AFE out of reset. */
1046 if (dsi->port == 0) {
1047 } else {
1048 DSI_PORT_WRITE(PHY_AFEC0,
1049 DSI_PORT_READ(PHY_AFEC0) &
1050 ~DSI1_PHY_AFEC0_RESET);
1051 }
1052
1053 vc4_dsi_ulps(dsi, false);
1054
1055 drm_bridge_chain_pre_enable(dsi->bridge);
1056
1057 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1058 DSI_PORT_WRITE(DISP0_CTRL,
1059 VC4_SET_FIELD(dsi->divider,
1060 DSI_DISP0_PIX_CLK_DIV) |
1061 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1062 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1063 DSI_DISP0_LP_STOP_CTRL) |
1064 DSI_DISP0_ST_END |
1065 DSI_DISP0_ENABLE);
1066 } else {
1067 DSI_PORT_WRITE(DISP0_CTRL,
1068 DSI_DISP0_COMMAND_MODE |
1069 DSI_DISP0_ENABLE);
1070 }
1071
1072 drm_bridge_chain_enable(dsi->bridge);
1073
1074 if (debug_dump_regs) {
1075 struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1076 dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1077 drm_print_regset32(&p, &dsi->regset);
1078 }
1079}
1080
1081static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1082 const struct mipi_dsi_msg *msg)
1083{
1084 struct vc4_dsi *dsi = host_to_dsi(host);
1085 struct mipi_dsi_packet packet;
1086 u32 pkth = 0, pktc = 0;
1087 int i, ret;
1088 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1089 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1090
1091 mipi_dsi_create_packet(&packet, msg);
1092
1093 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1094 pkth |= VC4_SET_FIELD(packet.header[1] |
1095 (packet.header[2] << 8),
1096 DSI_TXPKT1H_BC_PARAM);
1097 if (is_long) {
1098 /* Divide data across the various FIFOs we have available.
1099 * The command FIFO takes byte-oriented data, but is of
1100 * limited size. The pixel FIFO (never actually used for
1101 * pixel data in reality) is word oriented, and substantially
1102 * larger. So, we use the pixel FIFO for most of the data,
1103 * sending the residual bytes in the command FIFO at the start.
1104 *
1105 * With this arrangement, the command FIFO will never get full.
1106 */
1107 if (packet.payload_length <= 16) {
1108 cmd_fifo_len = packet.payload_length;
1109 pix_fifo_len = 0;
1110 } else {
1111 cmd_fifo_len = (packet.payload_length %
1112 DSI_PIX_FIFO_WIDTH);
1113 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1114 DSI_PIX_FIFO_WIDTH);
1115 }
1116
1117 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1118
1119 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1120 }
1121
1122 if (msg->rx_len) {
1123 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1124 DSI_TXPKT1C_CMD_CTRL);
1125 } else {
1126 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1127 DSI_TXPKT1C_CMD_CTRL);
1128 }
1129
1130 for (i = 0; i < cmd_fifo_len; i++)
1131 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1132 for (i = 0; i < pix_fifo_len; i++) {
1133 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1134
1135 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1136 pix[0] |
1137 pix[1] << 8 |
1138 pix[2] << 16 |
1139 pix[3] << 24);
1140 }
1141
1142 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1143 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1144 if (is_long)
1145 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1146
1147 /* Send one copy of the packet. Larger repeats are used for pixel
1148 * data in command mode.
1149 */
1150 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1151
1152 pktc |= DSI_TXPKT1C_CMD_EN;
1153 if (pix_fifo_len) {
1154 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1155 DSI_TXPKT1C_DISPLAY_NO);
1156 } else {
1157 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1158 DSI_TXPKT1C_DISPLAY_NO);
1159 }
1160
1161 /* Enable the appropriate interrupt for the transfer completion. */
1162 dsi->xfer_result = 0;
1163 reinit_completion(&dsi->xfer_completion);
1164 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1165 if (msg->rx_len) {
1166 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1167 DSI1_INT_PHY_DIR_RTF));
1168 } else {
1169 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1170 DSI1_INT_TXPKT1_DONE));
1171 }
1172
1173 /* Send the packet. */
1174 DSI_PORT_WRITE(TXPKT1H, pkth);
1175 DSI_PORT_WRITE(TXPKT1C, pktc);
1176
1177 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1178 msecs_to_jiffies(1000))) {
1179 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1180 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1181 DSI_PORT_READ(INT_STAT));
1182 ret = -ETIMEDOUT;
1183 } else {
1184 ret = dsi->xfer_result;
1185 }
1186
1187 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1188
1189 if (ret)
1190 goto reset_fifo_and_return;
1191
1192 if (ret == 0 && msg->rx_len) {
1193 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1194 u8 *msg_rx = msg->rx_buf;
1195
1196 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1197 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1198 DSI_RXPKT1H_BC_PARAM);
1199
1200 if (rxlen != msg->rx_len) {
1201 DRM_ERROR("DSI returned %db, expecting %db\n",
1202 rxlen, (int)msg->rx_len);
1203 ret = -ENXIO;
1204 goto reset_fifo_and_return;
1205 }
1206
1207 for (i = 0; i < msg->rx_len; i++)
1208 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1209 } else {
1210 /* FINISHME: Handle AWER */
1211
1212 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1213 DSI_RXPKT1H_SHORT_0);
1214 if (msg->rx_len > 1) {
1215 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1216 DSI_RXPKT1H_SHORT_1);
1217 }
1218 }
1219 }
1220
1221 return ret;
1222
1223reset_fifo_and_return:
1224 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1225
1226 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1227 udelay(1);
1228 DSI_PORT_WRITE(CTRL,
1229 DSI_PORT_READ(CTRL) |
1230 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1231
1232 DSI_PORT_WRITE(TXPKT1C, 0);
1233 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1234 return ret;
1235}
1236
1237static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1238 struct mipi_dsi_device *device)
1239{
1240 struct vc4_dsi *dsi = host_to_dsi(host);
1241
1242 dsi->lanes = device->lanes;
1243 dsi->channel = device->channel;
1244 dsi->mode_flags = device->mode_flags;
1245
1246 switch (device->format) {
1247 case MIPI_DSI_FMT_RGB888:
1248 dsi->format = DSI_PFORMAT_RGB888;
1249 dsi->divider = 24 / dsi->lanes;
1250 break;
1251 case MIPI_DSI_FMT_RGB666:
1252 dsi->format = DSI_PFORMAT_RGB666;
1253 dsi->divider = 24 / dsi->lanes;
1254 break;
1255 case MIPI_DSI_FMT_RGB666_PACKED:
1256 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1257 dsi->divider = 18 / dsi->lanes;
1258 break;
1259 case MIPI_DSI_FMT_RGB565:
1260 dsi->format = DSI_PFORMAT_RGB565;
1261 dsi->divider = 16 / dsi->lanes;
1262 break;
1263 default:
1264 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1265 dsi->format);
1266 return 0;
1267 }
1268
1269 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1270 dev_err(&dsi->pdev->dev,
1271 "Only VIDEO mode panels supported currently.\n");
1272 return 0;
1273 }
1274
1275 return 0;
1276}
1277
1278static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1279 struct mipi_dsi_device *device)
1280{
1281 return 0;
1282}
1283
1284static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1285 .attach = vc4_dsi_host_attach,
1286 .detach = vc4_dsi_host_detach,
1287 .transfer = vc4_dsi_host_transfer,
1288};
1289
1290static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1291 .disable = vc4_dsi_encoder_disable,
1292 .enable = vc4_dsi_encoder_enable,
1293 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1294};
1295
1296static const struct of_device_id vc4_dsi_dt_match[] = {
1297 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1298 {}
1299};
1300
1301static void dsi_handle_error(struct vc4_dsi *dsi,
1302 irqreturn_t *ret, u32 stat, u32 bit,
1303 const char *type)
1304{
1305 if (!(stat & bit))
1306 return;
1307
1308 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1309 *ret = IRQ_HANDLED;
1310}
1311
1312/*
1313 * Initial handler for port 1 where we need the reg_dma workaround.
1314 * The register DMA writes sleep, so we can't do it in the top half.
1315 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1316 * parent interrupt contrller until our interrupt thread is done.
1317 */
1318static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1319{
1320 struct vc4_dsi *dsi = data;
1321 u32 stat = DSI_PORT_READ(INT_STAT);
1322
1323 if (!stat)
1324 return IRQ_NONE;
1325
1326 return IRQ_WAKE_THREAD;
1327}
1328
1329/*
1330 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1331 * 1 where we need the reg_dma workaround.
1332 */
1333static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1334{
1335 struct vc4_dsi *dsi = data;
1336 u32 stat = DSI_PORT_READ(INT_STAT);
1337 irqreturn_t ret = IRQ_NONE;
1338
1339 DSI_PORT_WRITE(INT_STAT, stat);
1340
1341 dsi_handle_error(dsi, &ret, stat,
1342 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1343 dsi_handle_error(dsi, &ret, stat,
1344 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1345 dsi_handle_error(dsi, &ret, stat,
1346 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1347 dsi_handle_error(dsi, &ret, stat,
1348 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1349 dsi_handle_error(dsi, &ret, stat,
1350 DSI1_INT_HSTX_TO, "HSTX timeout");
1351 dsi_handle_error(dsi, &ret, stat,
1352 DSI1_INT_LPRX_TO, "LPRX timeout");
1353 dsi_handle_error(dsi, &ret, stat,
1354 DSI1_INT_TA_TO, "turnaround timeout");
1355 dsi_handle_error(dsi, &ret, stat,
1356 DSI1_INT_PR_TO, "peripheral reset timeout");
1357
1358 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1359 complete(&dsi->xfer_completion);
1360 ret = IRQ_HANDLED;
1361 } else if (stat & DSI1_INT_HSTX_TO) {
1362 complete(&dsi->xfer_completion);
1363 dsi->xfer_result = -ETIMEDOUT;
1364 ret = IRQ_HANDLED;
1365 }
1366
1367 return ret;
1368}
1369
1370/**
1371 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1372 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1373 * @dsi: DSI encoder
1374 */
1375static int
1376vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1377{
1378 struct device *dev = &dsi->pdev->dev;
1379 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1380 static const struct {
1381 const char *dsi0_name, *dsi1_name;
1382 int div;
1383 } phy_clocks[] = {
1384 { "dsi0_byte", "dsi1_byte", 8 },
1385 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1386 { "dsi0_ddr", "dsi1_ddr", 2 },
1387 };
1388 int i;
1389
1390 dsi->clk_onecell = devm_kzalloc(dev,
1391 sizeof(*dsi->clk_onecell) +
1392 ARRAY_SIZE(phy_clocks) *
1393 sizeof(struct clk_hw *),
1394 GFP_KERNEL);
1395 if (!dsi->clk_onecell)
1396 return -ENOMEM;
1397 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1398
1399 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1400 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1401 struct clk_init_data init;
1402 int ret;
1403
1404 /* We just use core fixed factor clock ops for the PHY
1405 * clocks. The clocks are actually gated by the
1406 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1407 * setting if we use the DDR/DDR2 clocks. However,
1408 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1409 * setting both our parent DSI PLL's rate and this
1410 * clock's rate, so it knows if DDR/DDR2 are going to
1411 * be used and could enable the gates itself.
1412 */
1413 fix->mult = 1;
1414 fix->div = phy_clocks[i].div;
1415 fix->hw.init = &init;
1416
1417 memset(&init, 0, sizeof(init));
1418 init.parent_names = &parent_name;
1419 init.num_parents = 1;
1420 if (dsi->port == 1)
1421 init.name = phy_clocks[i].dsi1_name;
1422 else
1423 init.name = phy_clocks[i].dsi0_name;
1424 init.ops = &clk_fixed_factor_ops;
1425
1426 ret = devm_clk_hw_register(dev, &fix->hw);
1427 if (ret)
1428 return ret;
1429
1430 dsi->clk_onecell->hws[i] = &fix->hw;
1431 }
1432
1433 return of_clk_add_hw_provider(dev->of_node,
1434 of_clk_hw_onecell_get,
1435 dsi->clk_onecell);
1436}
1437
1438static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1439{
1440 struct platform_device *pdev = to_platform_device(dev);
1441 struct drm_device *drm = dev_get_drvdata(master);
1442 struct vc4_dev *vc4 = to_vc4_dev(drm);
1443 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1444 struct vc4_dsi_encoder *vc4_dsi_encoder;
1445 struct drm_panel *panel;
1446 const struct of_device_id *match;
1447 dma_cap_mask_t dma_mask;
1448 int ret;
1449
1450 match = of_match_device(vc4_dsi_dt_match, dev);
1451 if (!match)
1452 return -ENODEV;
1453
1454 dsi->port = (uintptr_t)match->data;
1455
1456 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1457 GFP_KERNEL);
1458 if (!vc4_dsi_encoder)
1459 return -ENOMEM;
1460 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1461 vc4_dsi_encoder->dsi = dsi;
1462 dsi->encoder = &vc4_dsi_encoder->base.base;
1463
1464 dsi->regs = vc4_ioremap_regs(pdev, 0);
1465 if (IS_ERR(dsi->regs))
1466 return PTR_ERR(dsi->regs);
1467
1468 dsi->regset.base = dsi->regs;
1469 if (dsi->port == 0) {
1470 dsi->regset.regs = dsi0_regs;
1471 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1472 } else {
1473 dsi->regset.regs = dsi1_regs;
1474 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1475 }
1476
1477 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1478 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1479 DSI_PORT_READ(ID), DSI_ID_VALUE);
1480 return -ENODEV;
1481 }
1482
1483 /* DSI1 has a broken AXI slave that doesn't respond to writes
1484 * from the ARM. It does handle writes from the DMA engine,
1485 * so set up a channel for talking to it.
1486 */
1487 if (dsi->port == 1) {
1488 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1489 &dsi->reg_dma_paddr,
1490 GFP_KERNEL);
1491 if (!dsi->reg_dma_mem) {
1492 DRM_ERROR("Failed to get DMA memory\n");
1493 return -ENOMEM;
1494 }
1495
1496 dma_cap_zero(dma_mask);
1497 dma_cap_set(DMA_MEMCPY, dma_mask);
1498 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1499 if (IS_ERR(dsi->reg_dma_chan)) {
1500 ret = PTR_ERR(dsi->reg_dma_chan);
1501 if (ret != -EPROBE_DEFER)
1502 DRM_ERROR("Failed to get DMA channel: %d\n",
1503 ret);
1504 return ret;
1505 }
1506
1507 /* Get the physical address of the device's registers. The
1508 * struct resource for the regs gives us the bus address
1509 * instead.
1510 */
1511 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1512 0, NULL, NULL));
1513 }
1514
1515 init_completion(&dsi->xfer_completion);
1516 /* At startup enable error-reporting interrupts and nothing else. */
1517 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1518 /* Clear any existing interrupt state. */
1519 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1520
1521 if (dsi->reg_dma_mem)
1522 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1523 vc4_dsi_irq_defer_to_thread_handler,
1524 vc4_dsi_irq_handler,
1525 IRQF_ONESHOT,
1526 "vc4 dsi", dsi);
1527 else
1528 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1529 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1530 if (ret) {
1531 if (ret != -EPROBE_DEFER)
1532 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1533 return ret;
1534 }
1535
1536 dsi->escape_clock = devm_clk_get(dev, "escape");
1537 if (IS_ERR(dsi->escape_clock)) {
1538 ret = PTR_ERR(dsi->escape_clock);
1539 if (ret != -EPROBE_DEFER)
1540 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1541 return ret;
1542 }
1543
1544 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1545 if (IS_ERR(dsi->pll_phy_clock)) {
1546 ret = PTR_ERR(dsi->pll_phy_clock);
1547 if (ret != -EPROBE_DEFER)
1548 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1549 return ret;
1550 }
1551
1552 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1553 if (IS_ERR(dsi->pixel_clock)) {
1554 ret = PTR_ERR(dsi->pixel_clock);
1555 if (ret != -EPROBE_DEFER)
1556 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1557 return ret;
1558 }
1559
1560 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1561 &panel, &dsi->bridge);
1562 if (ret) {
1563 /* If the bridge or panel pointed by dev->of_node is not
1564 * enabled, just return 0 here so that we don't prevent the DRM
1565 * dev from being registered. Of course that means the DSI
1566 * encoder won't be exposed, but that's not a problem since
1567 * nothing is connected to it.
1568 */
1569 if (ret == -ENODEV)
1570 return 0;
1571
1572 return ret;
1573 }
1574
1575 if (panel) {
1576 dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1577 DRM_MODE_CONNECTOR_DSI);
1578 if (IS_ERR(dsi->bridge))
1579 return PTR_ERR(dsi->bridge);
1580 }
1581
1582 /* The esc clock rate is supposed to always be 100Mhz. */
1583 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1584 if (ret) {
1585 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1586 return ret;
1587 }
1588
1589 ret = vc4_dsi_init_phy_clocks(dsi);
1590 if (ret)
1591 return ret;
1592
1593 if (dsi->port == 1)
1594 vc4->dsi1 = dsi;
1595
1596 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1597 DRM_MODE_ENCODER_DSI, NULL);
1598 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1599
1600 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1601 if (ret) {
1602 dev_err(dev, "bridge attach failed: %d\n", ret);
1603 return ret;
1604 }
1605 /* Disable the atomic helper calls into the bridge. We
1606 * manually call the bridge pre_enable / enable / etc. calls
1607 * from our driver, since we need to sequence them within the
1608 * encoder's enable/disable paths.
1609 */
1610 dsi->encoder->bridge = NULL;
1611
1612 if (dsi->port == 0)
1613 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1614 else
1615 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1616
1617 pm_runtime_enable(dev);
1618
1619 return 0;
1620}
1621
1622static void vc4_dsi_unbind(struct device *dev, struct device *master,
1623 void *data)
1624{
1625 struct drm_device *drm = dev_get_drvdata(master);
1626 struct vc4_dev *vc4 = to_vc4_dev(drm);
1627 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1628
1629 if (dsi->bridge)
1630 pm_runtime_disable(dev);
1631
1632 vc4_dsi_encoder_destroy(dsi->encoder);
1633
1634 if (dsi->port == 1)
1635 vc4->dsi1 = NULL;
1636}
1637
1638static const struct component_ops vc4_dsi_ops = {
1639 .bind = vc4_dsi_bind,
1640 .unbind = vc4_dsi_unbind,
1641};
1642
1643static int vc4_dsi_dev_probe(struct platform_device *pdev)
1644{
1645 struct device *dev = &pdev->dev;
1646 struct vc4_dsi *dsi;
1647 int ret;
1648
1649 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1650 if (!dsi)
1651 return -ENOMEM;
1652 dev_set_drvdata(dev, dsi);
1653
1654 dsi->pdev = pdev;
1655
1656 /* Note, the initialization sequence for DSI and panels is
1657 * tricky. The component bind above won't get past its
1658 * -EPROBE_DEFER until the panel/bridge probes. The
1659 * panel/bridge will return -EPROBE_DEFER until it has a
1660 * mipi_dsi_host to register its device to. So, we register
1661 * the host during pdev probe time, so vc4 as a whole can then
1662 * -EPROBE_DEFER its component bind process until the panel
1663 * successfully attaches.
1664 */
1665 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1666 dsi->dsi_host.dev = dev;
1667 mipi_dsi_host_register(&dsi->dsi_host);
1668
1669 ret = component_add(&pdev->dev, &vc4_dsi_ops);
1670 if (ret) {
1671 mipi_dsi_host_unregister(&dsi->dsi_host);
1672 return ret;
1673 }
1674
1675 return 0;
1676}
1677
1678static int vc4_dsi_dev_remove(struct platform_device *pdev)
1679{
1680 struct device *dev = &pdev->dev;
1681 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1682
1683 component_del(&pdev->dev, &vc4_dsi_ops);
1684 mipi_dsi_host_unregister(&dsi->dsi_host);
1685
1686 return 0;
1687}
1688
1689struct platform_driver vc4_dsi_driver = {
1690 .probe = vc4_dsi_dev_probe,
1691 .remove = vc4_dsi_dev_remove,
1692 .driver = {
1693 .name = "vc4_dsi",
1694 .of_match_table = vc4_dsi_dt_match,
1695 },
1696};