blob: d1bbd2b197fc67adc06cfde943ab4590cf9858d0 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is part of STM32 ADC driver
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
13#include <linux/iio/iio.h>
14#include <linux/iio/buffer.h>
15#include <linux/iio/timer/stm32-lptim-trigger.h>
16#include <linux/iio/timer/stm32-timer-trigger.h>
17#include <linux/iio/trigger.h>
18#include <linux/iio/trigger_consumer.h>
19#include <linux/iio/triggered_buffer.h>
20#include <linux/interrupt.h>
21#include <linux/io.h>
22#include <linux/iopoll.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include "stm32-adc-core.h"
30
31/* Number of linear calibration shadow registers / LINCALRDYW control bits */
32#define STM32H7_LINCALFACT_NUM 6
33
34/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35#define STM32H7_BOOST_CLKRATE 20000000UL
36
37#define STM32_ADC_CH_MAX 20 /* max number of channels */
38#define STM32_ADC_CH_SZ 10 /* max channel name size */
39#define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
40#define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
41#define STM32_ADC_TIMEOUT_US 100000
42#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43#define STM32_ADC_HW_STOP_DELAY_MS 100
44
45#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
46
47/* External trigger enable */
48enum stm32_adc_exten {
49 STM32_EXTEN_SWTRIG,
50 STM32_EXTEN_HWTRIG_RISING_EDGE,
51 STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 STM32_EXTEN_HWTRIG_BOTH_EDGES,
53};
54
55/* extsel - trigger mux selection value */
56enum stm32_adc_extsel {
57 STM32_EXT0,
58 STM32_EXT1,
59 STM32_EXT2,
60 STM32_EXT3,
61 STM32_EXT4,
62 STM32_EXT5,
63 STM32_EXT6,
64 STM32_EXT7,
65 STM32_EXT8,
66 STM32_EXT9,
67 STM32_EXT10,
68 STM32_EXT11,
69 STM32_EXT12,
70 STM32_EXT13,
71 STM32_EXT14,
72 STM32_EXT15,
73 STM32_EXT16,
74 STM32_EXT17,
75 STM32_EXT18,
76 STM32_EXT19,
77 STM32_EXT20,
78};
79
80/**
81 * struct stm32_adc_trig_info - ADC trigger info
82 * @name: name of the trigger, corresponding to its source
83 * @extsel: trigger selection
84 */
85struct stm32_adc_trig_info {
86 const char *name;
87 enum stm32_adc_extsel extsel;
88};
89
90/**
91 * struct stm32_adc_calib - optional adc calibration data
92 * @calfact_s: Calibration offset for single ended channels
93 * @calfact_d: Calibration offset in differential
94 * @lincalfact: Linearity calibration factor
95 * @calibrated: Indicates calibration status
96 */
97struct stm32_adc_calib {
98 u32 calfact_s;
99 u32 calfact_d;
100 u32 lincalfact[STM32H7_LINCALFACT_NUM];
101 bool calibrated;
102};
103
104/**
105 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106 * @reg: register offset
107 * @mask: bitfield mask
108 * @shift: left shift
109 */
110struct stm32_adc_regs {
111 int reg;
112 int mask;
113 int shift;
114};
115
116/**
117 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
118 * @dr: data register offset
119 * @ier_eoc: interrupt enable register & eocie bitfield
120 * @isr_eoc: interrupt status register & eoc bitfield
121 * @sqr: reference to sequence registers array
122 * @exten: trigger control register & bitfield
123 * @extsel: trigger selection register & bitfield
124 * @res: resolution selection register & bitfield
125 * @smpr: smpr1 & smpr2 registers offset array
126 * @smp_bits: smpr1 & smpr2 index and bitfields
127 */
128struct stm32_adc_regspec {
129 const u32 dr;
130 const struct stm32_adc_regs ier_eoc;
131 const struct stm32_adc_regs isr_eoc;
132 const struct stm32_adc_regs *sqr;
133 const struct stm32_adc_regs exten;
134 const struct stm32_adc_regs extsel;
135 const struct stm32_adc_regs res;
136 const u32 smpr[2];
137 const struct stm32_adc_regs *smp_bits;
138};
139
140struct stm32_adc;
141
142/**
143 * stm32_adc_cfg - stm32 compatible configuration data
144 * @regs: registers descriptions
145 * @adc_info: per instance input channels definitions
146 * @trigs: external trigger sources
147 * @clk_required: clock is required
148 * @has_vregready: vregready status flag presence
149 * @prepare: optional prepare routine (power-up, enable)
150 * @start_conv: routine to start conversions
151 * @stop_conv: routine to stop conversions
152 * @unprepare: optional unprepare routine (disable, power-down)
153 * @smp_cycles: programmable sampling time (ADC clock cycles)
154 */
155struct stm32_adc_cfg {
156 const struct stm32_adc_regspec *regs;
157 const struct stm32_adc_info *adc_info;
158 struct stm32_adc_trig_info *trigs;
159 bool clk_required;
160 bool has_vregready;
161 int (*prepare)(struct stm32_adc *);
162 void (*start_conv)(struct stm32_adc *, bool dma);
163 void (*stop_conv)(struct stm32_adc *);
164 void (*unprepare)(struct stm32_adc *);
165 const unsigned int *smp_cycles;
166};
167
168/**
169 * struct stm32_adc - private data of each ADC IIO instance
170 * @common: reference to ADC block common data
171 * @offset: ADC instance register offset in ADC block
172 * @cfg: compatible configuration data
173 * @completion: end of single conversion completion
174 * @buffer: data buffer
175 * @clk: clock for this adc instance
176 * @irq: interrupt for this adc instance
177 * @lock: spinlock
178 * @bufi: data buffer index
179 * @num_conv: expected number of scan conversions
180 * @res: data resolution (e.g. RES bitfield value)
181 * @trigger_polarity: external trigger polarity (e.g. exten)
182 * @dma_chan: dma channel
183 * @rx_buf: dma rx buffer cpu address
184 * @rx_dma_buf: dma rx buffer bus address
185 * @rx_buf_sz: dma rx buffer size
186 * @difsel bitmask to set single-ended/differential channel
187 * @pcsel bitmask to preselect channels on some devices
188 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
189 * @cal: optional calibration data on some devices
190 * @chan_name: channel name array
191 */
192struct stm32_adc {
193 struct stm32_adc_common *common;
194 u32 offset;
195 const struct stm32_adc_cfg *cfg;
196 struct completion completion;
197 u16 buffer[STM32_ADC_MAX_SQ];
198 struct clk *clk;
199 int irq;
200 spinlock_t lock; /* interrupt lock */
201 unsigned int bufi;
202 unsigned int num_conv;
203 u32 res;
204 u32 trigger_polarity;
205 struct dma_chan *dma_chan;
206 u8 *rx_buf;
207 dma_addr_t rx_dma_buf;
208 unsigned int rx_buf_sz;
209 u32 difsel;
210 u32 pcsel;
211 u32 smpr_val[2];
212 struct stm32_adc_calib cal;
213 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
214};
215
216struct stm32_adc_diff_channel {
217 u32 vinp;
218 u32 vinn;
219};
220
221/**
222 * struct stm32_adc_info - stm32 ADC, per instance config data
223 * @max_channels: Number of channels
224 * @resolutions: available resolutions
225 * @num_res: number of available resolutions
226 */
227struct stm32_adc_info {
228 int max_channels;
229 const unsigned int *resolutions;
230 const unsigned int num_res;
231};
232
233static const unsigned int stm32f4_adc_resolutions[] = {
234 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
235 12, 10, 8, 6,
236};
237
238/* stm32f4 can have up to 16 channels */
239static const struct stm32_adc_info stm32f4_adc_info = {
240 .max_channels = 16,
241 .resolutions = stm32f4_adc_resolutions,
242 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
243};
244
245static const unsigned int stm32h7_adc_resolutions[] = {
246 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
247 16, 14, 12, 10, 8,
248};
249
250/* stm32h7 can have up to 20 channels */
251static const struct stm32_adc_info stm32h7_adc_info = {
252 .max_channels = STM32_ADC_CH_MAX,
253 .resolutions = stm32h7_adc_resolutions,
254 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
255};
256
257/**
258 * stm32f4_sq - describe regular sequence registers
259 * - L: sequence len (register & bit field)
260 * - SQ1..SQ16: sequence entries (register & bit field)
261 */
262static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
263 /* L: len bit field description to be kept as first element */
264 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
265 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
266 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
267 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
268 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
269 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
270 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
271 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
272 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
273 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
274 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
275 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
276 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
277 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
278 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
279 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
280 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
281 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
282};
283
284/* STM32F4 external trigger sources for all instances */
285static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
286 { TIM1_CH1, STM32_EXT0 },
287 { TIM1_CH2, STM32_EXT1 },
288 { TIM1_CH3, STM32_EXT2 },
289 { TIM2_CH2, STM32_EXT3 },
290 { TIM2_CH3, STM32_EXT4 },
291 { TIM2_CH4, STM32_EXT5 },
292 { TIM2_TRGO, STM32_EXT6 },
293 { TIM3_CH1, STM32_EXT7 },
294 { TIM3_TRGO, STM32_EXT8 },
295 { TIM4_CH4, STM32_EXT9 },
296 { TIM5_CH1, STM32_EXT10 },
297 { TIM5_CH2, STM32_EXT11 },
298 { TIM5_CH3, STM32_EXT12 },
299 { TIM8_CH1, STM32_EXT13 },
300 { TIM8_TRGO, STM32_EXT14 },
301 {}, /* sentinel */
302};
303
304/**
305 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
306 * Sorted so it can be indexed by channel number.
307 */
308static const struct stm32_adc_regs stm32f4_smp_bits[] = {
309 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
310 { 1, GENMASK(2, 0), 0 },
311 { 1, GENMASK(5, 3), 3 },
312 { 1, GENMASK(8, 6), 6 },
313 { 1, GENMASK(11, 9), 9 },
314 { 1, GENMASK(14, 12), 12 },
315 { 1, GENMASK(17, 15), 15 },
316 { 1, GENMASK(20, 18), 18 },
317 { 1, GENMASK(23, 21), 21 },
318 { 1, GENMASK(26, 24), 24 },
319 { 1, GENMASK(29, 27), 27 },
320 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
321 { 0, GENMASK(2, 0), 0 },
322 { 0, GENMASK(5, 3), 3 },
323 { 0, GENMASK(8, 6), 6 },
324 { 0, GENMASK(11, 9), 9 },
325 { 0, GENMASK(14, 12), 12 },
326 { 0, GENMASK(17, 15), 15 },
327 { 0, GENMASK(20, 18), 18 },
328 { 0, GENMASK(23, 21), 21 },
329 { 0, GENMASK(26, 24), 24 },
330};
331
332/* STM32F4 programmable sampling time (ADC clock cycles) */
333static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
334 3, 15, 28, 56, 84, 112, 144, 480,
335};
336
337static const struct stm32_adc_regspec stm32f4_adc_regspec = {
338 .dr = STM32F4_ADC_DR,
339 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
340 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
341 .sqr = stm32f4_sq,
342 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
343 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
344 STM32F4_EXTSEL_SHIFT },
345 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
346 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
347 .smp_bits = stm32f4_smp_bits,
348};
349
350static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
351 /* L: len bit field description to be kept as first element */
352 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
353 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
354 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
355 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
356 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
357 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
358 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
359 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
360 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
361 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
362 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
363 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
364 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
365 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
366 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
367 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
368 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
369 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
370};
371
372/* STM32H7 external trigger sources for all instances */
373static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
374 { TIM1_CH1, STM32_EXT0 },
375 { TIM1_CH2, STM32_EXT1 },
376 { TIM1_CH3, STM32_EXT2 },
377 { TIM2_CH2, STM32_EXT3 },
378 { TIM3_TRGO, STM32_EXT4 },
379 { TIM4_CH4, STM32_EXT5 },
380 { TIM8_TRGO, STM32_EXT7 },
381 { TIM8_TRGO2, STM32_EXT8 },
382 { TIM1_TRGO, STM32_EXT9 },
383 { TIM1_TRGO2, STM32_EXT10 },
384 { TIM2_TRGO, STM32_EXT11 },
385 { TIM4_TRGO, STM32_EXT12 },
386 { TIM6_TRGO, STM32_EXT13 },
387 { TIM15_TRGO, STM32_EXT14 },
388 { TIM3_CH4, STM32_EXT15 },
389 { LPTIM1_OUT, STM32_EXT18 },
390 { LPTIM2_OUT, STM32_EXT19 },
391 { LPTIM3_OUT, STM32_EXT20 },
392 {},
393};
394
395/**
396 * stm32h7_smp_bits - describe sampling time register index & bit fields
397 * Sorted so it can be indexed by channel number.
398 */
399static const struct stm32_adc_regs stm32h7_smp_bits[] = {
400 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
401 { 0, GENMASK(2, 0), 0 },
402 { 0, GENMASK(5, 3), 3 },
403 { 0, GENMASK(8, 6), 6 },
404 { 0, GENMASK(11, 9), 9 },
405 { 0, GENMASK(14, 12), 12 },
406 { 0, GENMASK(17, 15), 15 },
407 { 0, GENMASK(20, 18), 18 },
408 { 0, GENMASK(23, 21), 21 },
409 { 0, GENMASK(26, 24), 24 },
410 { 0, GENMASK(29, 27), 27 },
411 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
412 { 1, GENMASK(2, 0), 0 },
413 { 1, GENMASK(5, 3), 3 },
414 { 1, GENMASK(8, 6), 6 },
415 { 1, GENMASK(11, 9), 9 },
416 { 1, GENMASK(14, 12), 12 },
417 { 1, GENMASK(17, 15), 15 },
418 { 1, GENMASK(20, 18), 18 },
419 { 1, GENMASK(23, 21), 21 },
420 { 1, GENMASK(26, 24), 24 },
421 { 1, GENMASK(29, 27), 27 },
422};
423
424/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
425static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
426 1, 2, 8, 16, 32, 64, 387, 810,
427};
428
429static const struct stm32_adc_regspec stm32h7_adc_regspec = {
430 .dr = STM32H7_ADC_DR,
431 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
432 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
433 .sqr = stm32h7_sq,
434 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
435 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
436 STM32H7_EXTSEL_SHIFT },
437 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
438 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
439 .smp_bits = stm32h7_smp_bits,
440};
441
442/**
443 * STM32 ADC registers access routines
444 * @adc: stm32 adc instance
445 * @reg: reg offset in adc instance
446 *
447 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
448 * for adc1, adc2 and adc3.
449 */
450static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
451{
452 return readl_relaxed(adc->common->base + adc->offset + reg);
453}
454
455#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
456
457#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
458 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
459 cond, sleep_us, timeout_us)
460
461static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
462{
463 return readw_relaxed(adc->common->base + adc->offset + reg);
464}
465
466static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
467{
468 writel_relaxed(val, adc->common->base + adc->offset + reg);
469}
470
471static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
472{
473 unsigned long flags;
474
475 spin_lock_irqsave(&adc->lock, flags);
476 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
477 spin_unlock_irqrestore(&adc->lock, flags);
478}
479
480static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
481{
482 unsigned long flags;
483
484 spin_lock_irqsave(&adc->lock, flags);
485 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
486 spin_unlock_irqrestore(&adc->lock, flags);
487}
488
489/**
490 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
491 * @adc: stm32 adc instance
492 */
493static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
494{
495 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
496 adc->cfg->regs->ier_eoc.mask);
497};
498
499/**
500 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
501 * @adc: stm32 adc instance
502 */
503static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
504{
505 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
506 adc->cfg->regs->ier_eoc.mask);
507}
508
509static void stm32_adc_set_res(struct stm32_adc *adc)
510{
511 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
512 u32 val;
513
514 val = stm32_adc_readl(adc, res->reg);
515 val = (val & ~res->mask) | (adc->res << res->shift);
516 stm32_adc_writel(adc, res->reg, val);
517}
518
519static int stm32_adc_hw_stop(struct device *dev)
520{
521 struct stm32_adc *adc = dev_get_drvdata(dev);
522
523 if (adc->cfg->unprepare)
524 adc->cfg->unprepare(adc);
525
526 if (adc->clk)
527 clk_disable_unprepare(adc->clk);
528
529 return 0;
530}
531
532static int stm32_adc_hw_start(struct device *dev)
533{
534 struct stm32_adc *adc = dev_get_drvdata(dev);
535 int ret;
536
537 if (adc->clk) {
538 ret = clk_prepare_enable(adc->clk);
539 if (ret)
540 return ret;
541 }
542
543 stm32_adc_set_res(adc);
544
545 if (adc->cfg->prepare) {
546 ret = adc->cfg->prepare(adc);
547 if (ret)
548 goto err_clk_dis;
549 }
550
551 return 0;
552
553err_clk_dis:
554 if (adc->clk)
555 clk_disable_unprepare(adc->clk);
556
557 return ret;
558}
559
560/**
561 * stm32f4_adc_start_conv() - Start conversions for regular channels.
562 * @adc: stm32 adc instance
563 * @dma: use dma to transfer conversion result
564 *
565 * Start conversions for regular channels.
566 * Also take care of normal or DMA mode. Circular DMA may be used for regular
567 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
568 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
569 */
570static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
571{
572 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
573
574 if (dma)
575 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
576 STM32F4_DMA | STM32F4_DDS);
577
578 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
579
580 /* Wait for Power-up time (tSTAB from datasheet) */
581 usleep_range(2, 3);
582
583 /* Software start ? (e.g. trigger detection disabled ?) */
584 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
585 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
586}
587
588static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
589{
590 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
591 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
592
593 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
594 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
595 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
596}
597
598static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
599{
600 enum stm32h7_adc_dmngt dmngt;
601 unsigned long flags;
602 u32 val;
603
604 if (dma)
605 dmngt = STM32H7_DMNGT_DMA_CIRC;
606 else
607 dmngt = STM32H7_DMNGT_DR_ONLY;
608
609 spin_lock_irqsave(&adc->lock, flags);
610 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
611 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
612 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
613 spin_unlock_irqrestore(&adc->lock, flags);
614
615 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
616}
617
618static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
619{
620 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
621 int ret;
622 u32 val;
623
624 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
625
626 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
627 !(val & (STM32H7_ADSTART)),
628 100, STM32_ADC_TIMEOUT_US);
629 if (ret)
630 dev_warn(&indio_dev->dev, "stop failed\n");
631
632 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
633}
634
635static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
636{
637 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
638 int ret;
639 u32 val;
640
641 /* Exit deep power down, then enable ADC voltage regulator */
642 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
643 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
644
645 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
646 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
647
648 /* Wait for startup time */
649 if (!adc->cfg->has_vregready) {
650 usleep_range(10, 20);
651 return 0;
652 }
653
654 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
655 val & STM32MP1_VREGREADY, 100,
656 STM32_ADC_TIMEOUT_US);
657 if (ret) {
658 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
659 dev_err(&indio_dev->dev, "Failed to exit power down\n");
660 }
661
662 return ret;
663}
664
665static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
666{
667 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
668
669 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
670 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
671}
672
673static int stm32h7_adc_enable(struct stm32_adc *adc)
674{
675 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
676 int ret;
677 u32 val;
678
679 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
680
681 /* Poll for ADRDY to be set (after adc startup time) */
682 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
683 val & STM32H7_ADRDY,
684 100, STM32_ADC_TIMEOUT_US);
685 if (ret) {
686 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
687 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
688 } else {
689 /* Clear ADRDY by writing one */
690 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
691 }
692
693 return ret;
694}
695
696static void stm32h7_adc_disable(struct stm32_adc *adc)
697{
698 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
699 int ret;
700 u32 val;
701
702 /* Disable ADC and wait until it's effectively disabled */
703 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
704 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
705 !(val & STM32H7_ADEN), 100,
706 STM32_ADC_TIMEOUT_US);
707 if (ret)
708 dev_warn(&indio_dev->dev, "Failed to disable\n");
709}
710
711/**
712 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
713 * @adc: stm32 adc instance
714 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
715 */
716static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
717{
718 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
719 int i, ret;
720 u32 lincalrdyw_mask, val;
721
722 /* Read linearity calibration */
723 lincalrdyw_mask = STM32H7_LINCALRDYW6;
724 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
725 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
726 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
727
728 /* Poll: wait calib data to be ready in CALFACT2 register */
729 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
730 !(val & lincalrdyw_mask),
731 100, STM32_ADC_TIMEOUT_US);
732 if (ret) {
733 dev_err(&indio_dev->dev, "Failed to read calfact\n");
734 return ret;
735 }
736
737 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
738 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
739 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
740
741 lincalrdyw_mask >>= 1;
742 }
743
744 /* Read offset calibration */
745 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
746 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
747 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
748 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
749 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
750 adc->cal.calibrated = true;
751
752 return 0;
753}
754
755/**
756 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
757 * @adc: stm32 adc instance
758 * Note: ADC must be enabled, with no on-going conversions.
759 */
760static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
761{
762 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
763 int i, ret;
764 u32 lincalrdyw_mask, val;
765
766 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
767 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
768 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
769
770 lincalrdyw_mask = STM32H7_LINCALRDYW6;
771 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
772 /*
773 * Write saved calibration data to shadow registers:
774 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
775 * data write. Then poll to wait for complete transfer.
776 */
777 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
778 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
779 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
780 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
781 val & lincalrdyw_mask,
782 100, STM32_ADC_TIMEOUT_US);
783 if (ret) {
784 dev_err(&indio_dev->dev, "Failed to write calfact\n");
785 return ret;
786 }
787
788 /*
789 * Read back calibration data, has two effects:
790 * - It ensures bits LINCALRDYW[6..1] are kept cleared
791 * for next time calibration needs to be restored.
792 * - BTW, bit clear triggers a read, then check data has been
793 * correctly written.
794 */
795 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
796 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 !(val & lincalrdyw_mask),
798 100, STM32_ADC_TIMEOUT_US);
799 if (ret) {
800 dev_err(&indio_dev->dev, "Failed to read calfact\n");
801 return ret;
802 }
803 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
804 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
805 dev_err(&indio_dev->dev, "calfact not consistent\n");
806 return -EIO;
807 }
808
809 lincalrdyw_mask >>= 1;
810 }
811
812 return 0;
813}
814
815/**
816 * Fixed timeout value for ADC calibration.
817 * worst cases:
818 * - low clock frequency
819 * - maximum prescalers
820 * Calibration requires:
821 * - 131,072 ADC clock cycle for the linear calibration
822 * - 20 ADC clock cycle for the offset calibration
823 *
824 * Set to 100ms for now
825 */
826#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
827
828/**
829 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
830 * @adc: stm32 adc instance
831 * Note: Must be called once ADC is out of power down.
832 */
833static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
834{
835 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
836 int ret;
837 u32 val;
838
839 if (adc->cal.calibrated)
840 return true;
841
842 /*
843 * Select calibration mode:
844 * - Offset calibration for single ended inputs
845 * - No linearity calibration (do it later, before reading it)
846 */
847 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
848 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
849
850 /* Start calibration, then wait for completion */
851 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
852 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
853 !(val & STM32H7_ADCAL), 100,
854 STM32H7_ADC_CALIB_TIMEOUT_US);
855 if (ret) {
856 dev_err(&indio_dev->dev, "calibration failed\n");
857 goto out;
858 }
859
860 /*
861 * Select calibration mode, then start calibration:
862 * - Offset calibration for differential input
863 * - Linearity calibration (needs to be done only once for single/diff)
864 * will run simultaneously with offset calibration.
865 */
866 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
867 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
868 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
869 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
870 !(val & STM32H7_ADCAL), 100,
871 STM32H7_ADC_CALIB_TIMEOUT_US);
872 if (ret) {
873 dev_err(&indio_dev->dev, "calibration failed\n");
874 goto out;
875 }
876
877out:
878 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
879 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
880
881 return ret;
882}
883
884/**
885 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
886 * @adc: stm32 adc instance
887 * Leave power down mode.
888 * Configure channels as single ended or differential before enabling ADC.
889 * Enable ADC.
890 * Restore calibration data.
891 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
892 * - Only one input is selected for single ended (e.g. 'vinp')
893 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
894 */
895static int stm32h7_adc_prepare(struct stm32_adc *adc)
896{
897 int calib, ret;
898
899 ret = stm32h7_adc_exit_pwr_down(adc);
900 if (ret)
901 return ret;
902
903 ret = stm32h7_adc_selfcalib(adc);
904 if (ret < 0)
905 goto pwr_dwn;
906 calib = ret;
907
908 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
909
910 ret = stm32h7_adc_enable(adc);
911 if (ret)
912 goto pwr_dwn;
913
914 /* Either restore or read calibration result for future reference */
915 if (calib)
916 ret = stm32h7_adc_restore_selfcalib(adc);
917 else
918 ret = stm32h7_adc_read_selfcalib(adc);
919 if (ret)
920 goto disable;
921
922 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
923
924 return 0;
925
926disable:
927 stm32h7_adc_disable(adc);
928pwr_dwn:
929 stm32h7_adc_enter_pwr_down(adc);
930
931 return ret;
932}
933
934static void stm32h7_adc_unprepare(struct stm32_adc *adc)
935{
936 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
937 stm32h7_adc_disable(adc);
938 stm32h7_adc_enter_pwr_down(adc);
939}
940
941/**
942 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
943 * @indio_dev: IIO device
944 * @scan_mask: channels to be converted
945 *
946 * Conversion sequence :
947 * Apply sampling time settings for all channels.
948 * Configure ADC scan sequence based on selected channels in scan_mask.
949 * Add channels to SQR registers, from scan_mask LSB to MSB, then
950 * program sequence len.
951 */
952static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
953 const unsigned long *scan_mask)
954{
955 struct stm32_adc *adc = iio_priv(indio_dev);
956 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
957 const struct iio_chan_spec *chan;
958 u32 val, bit;
959 int i = 0;
960
961 /* Apply sampling time settings */
962 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
963 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
964
965 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
966 chan = indio_dev->channels + bit;
967 /*
968 * Assign one channel per SQ entry in regular
969 * sequence, starting with SQ1.
970 */
971 i++;
972 if (i > STM32_ADC_MAX_SQ)
973 return -EINVAL;
974
975 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
976 __func__, chan->channel, i);
977
978 val = stm32_adc_readl(adc, sqr[i].reg);
979 val &= ~sqr[i].mask;
980 val |= chan->channel << sqr[i].shift;
981 stm32_adc_writel(adc, sqr[i].reg, val);
982 }
983
984 if (!i)
985 return -EINVAL;
986
987 /* Sequence len */
988 val = stm32_adc_readl(adc, sqr[0].reg);
989 val &= ~sqr[0].mask;
990 val |= ((i - 1) << sqr[0].shift);
991 stm32_adc_writel(adc, sqr[0].reg, val);
992
993 return 0;
994}
995
996/**
997 * stm32_adc_get_trig_extsel() - Get external trigger selection
998 * @trig: trigger
999 *
1000 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1001 */
1002static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1003 struct iio_trigger *trig)
1004{
1005 struct stm32_adc *adc = iio_priv(indio_dev);
1006 int i;
1007
1008 /* lookup triggers registered by stm32 timer trigger driver */
1009 for (i = 0; adc->cfg->trigs[i].name; i++) {
1010 /**
1011 * Checking both stm32 timer trigger type and trig name
1012 * should be safe against arbitrary trigger names.
1013 */
1014 if ((is_stm32_timer_trigger(trig) ||
1015 is_stm32_lptim_trigger(trig)) &&
1016 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1017 return adc->cfg->trigs[i].extsel;
1018 }
1019 }
1020
1021 return -EINVAL;
1022}
1023
1024/**
1025 * stm32_adc_set_trig() - Set a regular trigger
1026 * @indio_dev: IIO device
1027 * @trig: IIO trigger
1028 *
1029 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1030 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1031 * - if HW trigger enabled, set source & polarity
1032 */
1033static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1034 struct iio_trigger *trig)
1035{
1036 struct stm32_adc *adc = iio_priv(indio_dev);
1037 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1038 unsigned long flags;
1039 int ret;
1040
1041 if (trig) {
1042 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1043 if (ret < 0)
1044 return ret;
1045
1046 /* set trigger source and polarity (default to rising edge) */
1047 extsel = ret;
1048 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1049 }
1050
1051 spin_lock_irqsave(&adc->lock, flags);
1052 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1053 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1054 val |= exten << adc->cfg->regs->exten.shift;
1055 val |= extsel << adc->cfg->regs->extsel.shift;
1056 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1057 spin_unlock_irqrestore(&adc->lock, flags);
1058
1059 return 0;
1060}
1061
1062static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1063 const struct iio_chan_spec *chan,
1064 unsigned int type)
1065{
1066 struct stm32_adc *adc = iio_priv(indio_dev);
1067
1068 adc->trigger_polarity = type;
1069
1070 return 0;
1071}
1072
1073static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1074 const struct iio_chan_spec *chan)
1075{
1076 struct stm32_adc *adc = iio_priv(indio_dev);
1077
1078 return adc->trigger_polarity;
1079}
1080
1081static const char * const stm32_trig_pol_items[] = {
1082 "rising-edge", "falling-edge", "both-edges",
1083};
1084
1085static const struct iio_enum stm32_adc_trig_pol = {
1086 .items = stm32_trig_pol_items,
1087 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1088 .get = stm32_adc_get_trig_pol,
1089 .set = stm32_adc_set_trig_pol,
1090};
1091
1092/**
1093 * stm32_adc_single_conv() - Performs a single conversion
1094 * @indio_dev: IIO device
1095 * @chan: IIO channel
1096 * @res: conversion result
1097 *
1098 * The function performs a single conversion on a given channel:
1099 * - Apply sampling time settings
1100 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1101 * - Use SW trigger
1102 * - Start conversion, then wait for interrupt completion.
1103 */
1104static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1105 const struct iio_chan_spec *chan,
1106 int *res)
1107{
1108 struct stm32_adc *adc = iio_priv(indio_dev);
1109 struct device *dev = indio_dev->dev.parent;
1110 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1111 long timeout;
1112 u32 val;
1113 int ret;
1114
1115 reinit_completion(&adc->completion);
1116
1117 adc->bufi = 0;
1118
1119 ret = pm_runtime_get_sync(dev);
1120 if (ret < 0) {
1121 pm_runtime_put_noidle(dev);
1122 return ret;
1123 }
1124
1125 /* Apply sampling time settings */
1126 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1127 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1128
1129 /* Program chan number in regular sequence (SQ1) */
1130 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1131 val &= ~regs->sqr[1].mask;
1132 val |= chan->channel << regs->sqr[1].shift;
1133 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1134
1135 /* Set regular sequence len (0 for 1 conversion) */
1136 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1137
1138 /* Trigger detection disabled (conversion can be launched in SW) */
1139 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1140
1141 stm32_adc_conv_irq_enable(adc);
1142
1143 adc->cfg->start_conv(adc, false);
1144
1145 timeout = wait_for_completion_interruptible_timeout(
1146 &adc->completion, STM32_ADC_TIMEOUT);
1147 if (timeout == 0) {
1148 ret = -ETIMEDOUT;
1149 } else if (timeout < 0) {
1150 ret = timeout;
1151 } else {
1152 *res = adc->buffer[0];
1153 ret = IIO_VAL_INT;
1154 }
1155
1156 adc->cfg->stop_conv(adc);
1157
1158 stm32_adc_conv_irq_disable(adc);
1159
1160 pm_runtime_mark_last_busy(dev);
1161 pm_runtime_put_autosuspend(dev);
1162
1163 return ret;
1164}
1165
1166static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1167 struct iio_chan_spec const *chan,
1168 int *val, int *val2, long mask)
1169{
1170 struct stm32_adc *adc = iio_priv(indio_dev);
1171 int ret;
1172
1173 switch (mask) {
1174 case IIO_CHAN_INFO_RAW:
1175 ret = iio_device_claim_direct_mode(indio_dev);
1176 if (ret)
1177 return ret;
1178 if (chan->type == IIO_VOLTAGE)
1179 ret = stm32_adc_single_conv(indio_dev, chan, val);
1180 else
1181 ret = -EINVAL;
1182 iio_device_release_direct_mode(indio_dev);
1183 return ret;
1184
1185 case IIO_CHAN_INFO_SCALE:
1186 if (chan->differential) {
1187 *val = adc->common->vref_mv * 2;
1188 *val2 = chan->scan_type.realbits;
1189 } else {
1190 *val = adc->common->vref_mv;
1191 *val2 = chan->scan_type.realbits;
1192 }
1193 return IIO_VAL_FRACTIONAL_LOG2;
1194
1195 case IIO_CHAN_INFO_OFFSET:
1196 if (chan->differential)
1197 /* ADC_full_scale / 2 */
1198 *val = -((1 << chan->scan_type.realbits) / 2);
1199 else
1200 *val = 0;
1201 return IIO_VAL_INT;
1202
1203 default:
1204 return -EINVAL;
1205 }
1206}
1207
1208static irqreturn_t stm32_adc_isr(int irq, void *data)
1209{
1210 struct stm32_adc *adc = data;
1211 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1212 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1213 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1214
1215 if (status & regs->isr_eoc.mask) {
1216 /* Reading DR also clears EOC status flag */
1217 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1218 if (iio_buffer_enabled(indio_dev)) {
1219 adc->bufi++;
1220 if (adc->bufi >= adc->num_conv) {
1221 stm32_adc_conv_irq_disable(adc);
1222 iio_trigger_poll(indio_dev->trig);
1223 }
1224 } else {
1225 complete(&adc->completion);
1226 }
1227 return IRQ_HANDLED;
1228 }
1229
1230 return IRQ_NONE;
1231}
1232
1233/**
1234 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1235 * @indio_dev: IIO device
1236 * @trig: new trigger
1237 *
1238 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1239 * driver, -EINVAL otherwise.
1240 */
1241static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1242 struct iio_trigger *trig)
1243{
1244 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1245}
1246
1247static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1248{
1249 struct stm32_adc *adc = iio_priv(indio_dev);
1250 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1251 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1252
1253 /*
1254 * dma cyclic transfers are used, buffer is split into two periods.
1255 * There should be :
1256 * - always one buffer (period) dma is working on
1257 * - one buffer (period) driver can push with iio_trigger_poll().
1258 */
1259 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1260 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1261
1262 return 0;
1263}
1264
1265static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1266 const unsigned long *scan_mask)
1267{
1268 struct stm32_adc *adc = iio_priv(indio_dev);
1269 struct device *dev = indio_dev->dev.parent;
1270 int ret;
1271
1272 ret = pm_runtime_get_sync(dev);
1273 if (ret < 0) {
1274 pm_runtime_put_noidle(dev);
1275 return ret;
1276 }
1277
1278 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1279
1280 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1281 pm_runtime_mark_last_busy(dev);
1282 pm_runtime_put_autosuspend(dev);
1283
1284 return ret;
1285}
1286
1287static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1288 const struct of_phandle_args *iiospec)
1289{
1290 int i;
1291
1292 for (i = 0; i < indio_dev->num_channels; i++)
1293 if (indio_dev->channels[i].channel == iiospec->args[0])
1294 return i;
1295
1296 return -EINVAL;
1297}
1298
1299/**
1300 * stm32_adc_debugfs_reg_access - read or write register value
1301 *
1302 * To read a value from an ADC register:
1303 * echo [ADC reg offset] > direct_reg_access
1304 * cat direct_reg_access
1305 *
1306 * To write a value in a ADC register:
1307 * echo [ADC_reg_offset] [value] > direct_reg_access
1308 */
1309static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1310 unsigned reg, unsigned writeval,
1311 unsigned *readval)
1312{
1313 struct stm32_adc *adc = iio_priv(indio_dev);
1314 struct device *dev = indio_dev->dev.parent;
1315 int ret;
1316
1317 ret = pm_runtime_get_sync(dev);
1318 if (ret < 0) {
1319 pm_runtime_put_noidle(dev);
1320 return ret;
1321 }
1322
1323 if (!readval)
1324 stm32_adc_writel(adc, reg, writeval);
1325 else
1326 *readval = stm32_adc_readl(adc, reg);
1327
1328 pm_runtime_mark_last_busy(dev);
1329 pm_runtime_put_autosuspend(dev);
1330
1331 return 0;
1332}
1333
1334static const struct iio_info stm32_adc_iio_info = {
1335 .read_raw = stm32_adc_read_raw,
1336 .validate_trigger = stm32_adc_validate_trigger,
1337 .hwfifo_set_watermark = stm32_adc_set_watermark,
1338 .update_scan_mode = stm32_adc_update_scan_mode,
1339 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1340 .of_xlate = stm32_adc_of_xlate,
1341};
1342
1343static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1344{
1345 struct dma_tx_state state;
1346 enum dma_status status;
1347
1348 status = dmaengine_tx_status(adc->dma_chan,
1349 adc->dma_chan->cookie,
1350 &state);
1351 if (status == DMA_IN_PROGRESS) {
1352 /* Residue is size in bytes from end of buffer */
1353 unsigned int i = adc->rx_buf_sz - state.residue;
1354 unsigned int size;
1355
1356 /* Return available bytes */
1357 if (i >= adc->bufi)
1358 size = i - adc->bufi;
1359 else
1360 size = adc->rx_buf_sz + i - adc->bufi;
1361
1362 return size;
1363 }
1364
1365 return 0;
1366}
1367
1368static void stm32_adc_dma_buffer_done(void *data)
1369{
1370 struct iio_dev *indio_dev = data;
1371 struct stm32_adc *adc = iio_priv(indio_dev);
1372 int residue = stm32_adc_dma_residue(adc);
1373
1374 /*
1375 * In DMA mode the trigger services of IIO are not used
1376 * (e.g. no call to iio_trigger_poll).
1377 * Calling irq handler associated to the hardware trigger is not
1378 * relevant as the conversions have already been done. Data
1379 * transfers are performed directly in DMA callback instead.
1380 * This implementation avoids to call trigger irq handler that
1381 * may sleep, in an atomic context (DMA irq handler context).
1382 */
1383 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1384
1385 while (residue >= indio_dev->scan_bytes) {
1386 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1387
1388 iio_push_to_buffers(indio_dev, buffer);
1389
1390 residue -= indio_dev->scan_bytes;
1391 adc->bufi += indio_dev->scan_bytes;
1392 if (adc->bufi >= adc->rx_buf_sz)
1393 adc->bufi = 0;
1394 }
1395}
1396
1397static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1398{
1399 struct stm32_adc *adc = iio_priv(indio_dev);
1400 struct dma_async_tx_descriptor *desc;
1401 dma_cookie_t cookie;
1402 int ret;
1403
1404 if (!adc->dma_chan)
1405 return 0;
1406
1407 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1408 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1409
1410 /* Prepare a DMA cyclic transaction */
1411 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1412 adc->rx_dma_buf,
1413 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1414 DMA_DEV_TO_MEM,
1415 DMA_PREP_INTERRUPT);
1416 if (!desc)
1417 return -EBUSY;
1418
1419 desc->callback = stm32_adc_dma_buffer_done;
1420 desc->callback_param = indio_dev;
1421
1422 cookie = dmaengine_submit(desc);
1423 ret = dma_submit_error(cookie);
1424 if (ret) {
1425 dmaengine_terminate_sync(adc->dma_chan);
1426 return ret;
1427 }
1428
1429 /* Issue pending DMA requests */
1430 dma_async_issue_pending(adc->dma_chan);
1431
1432 return 0;
1433}
1434
1435static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1436{
1437 struct stm32_adc *adc = iio_priv(indio_dev);
1438 struct device *dev = indio_dev->dev.parent;
1439 int ret;
1440
1441 ret = pm_runtime_get_sync(dev);
1442 if (ret < 0) {
1443 pm_runtime_put_noidle(dev);
1444 return ret;
1445 }
1446
1447 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1448 if (ret) {
1449 dev_err(&indio_dev->dev, "Can't set trigger\n");
1450 goto err_pm_put;
1451 }
1452
1453 ret = stm32_adc_dma_start(indio_dev);
1454 if (ret) {
1455 dev_err(&indio_dev->dev, "Can't start dma\n");
1456 goto err_clr_trig;
1457 }
1458
1459 /* Reset adc buffer index */
1460 adc->bufi = 0;
1461
1462 if (!adc->dma_chan)
1463 stm32_adc_conv_irq_enable(adc);
1464
1465 adc->cfg->start_conv(adc, !!adc->dma_chan);
1466
1467 return 0;
1468
1469err_clr_trig:
1470 stm32_adc_set_trig(indio_dev, NULL);
1471err_pm_put:
1472 pm_runtime_mark_last_busy(dev);
1473 pm_runtime_put_autosuspend(dev);
1474
1475 return ret;
1476}
1477
1478static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1479{
1480 int ret;
1481
1482 ret = iio_triggered_buffer_postenable(indio_dev);
1483 if (ret < 0)
1484 return ret;
1485
1486 ret = __stm32_adc_buffer_postenable(indio_dev);
1487 if (ret < 0)
1488 iio_triggered_buffer_predisable(indio_dev);
1489
1490 return ret;
1491}
1492
1493static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1494{
1495 struct stm32_adc *adc = iio_priv(indio_dev);
1496 struct device *dev = indio_dev->dev.parent;
1497
1498 adc->cfg->stop_conv(adc);
1499 if (!adc->dma_chan)
1500 stm32_adc_conv_irq_disable(adc);
1501
1502 if (adc->dma_chan)
1503 dmaengine_terminate_sync(adc->dma_chan);
1504
1505 if (stm32_adc_set_trig(indio_dev, NULL))
1506 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1507
1508 pm_runtime_mark_last_busy(dev);
1509 pm_runtime_put_autosuspend(dev);
1510}
1511
1512static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1513{
1514 int ret;
1515
1516 __stm32_adc_buffer_predisable(indio_dev);
1517
1518 ret = iio_triggered_buffer_predisable(indio_dev);
1519 if (ret < 0)
1520 dev_err(&indio_dev->dev, "predisable failed\n");
1521
1522 return ret;
1523}
1524
1525static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1526 .postenable = &stm32_adc_buffer_postenable,
1527 .predisable = &stm32_adc_buffer_predisable,
1528};
1529
1530static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1531{
1532 struct iio_poll_func *pf = p;
1533 struct iio_dev *indio_dev = pf->indio_dev;
1534 struct stm32_adc *adc = iio_priv(indio_dev);
1535
1536 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1537
1538 if (!adc->dma_chan) {
1539 /* reset buffer index */
1540 adc->bufi = 0;
1541 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1542 pf->timestamp);
1543 } else {
1544 int residue = stm32_adc_dma_residue(adc);
1545
1546 while (residue >= indio_dev->scan_bytes) {
1547 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1548
1549 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1550 pf->timestamp);
1551 residue -= indio_dev->scan_bytes;
1552 adc->bufi += indio_dev->scan_bytes;
1553 if (adc->bufi >= adc->rx_buf_sz)
1554 adc->bufi = 0;
1555 }
1556 }
1557
1558 iio_trigger_notify_done(indio_dev->trig);
1559
1560 /* re-enable eoc irq */
1561 if (!adc->dma_chan)
1562 stm32_adc_conv_irq_enable(adc);
1563
1564 return IRQ_HANDLED;
1565}
1566
1567static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1568 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1569 {
1570 .name = "trigger_polarity_available",
1571 .shared = IIO_SHARED_BY_ALL,
1572 .read = iio_enum_available_read,
1573 .private = (uintptr_t)&stm32_adc_trig_pol,
1574 },
1575 {},
1576};
1577
1578static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1579{
1580 struct device_node *node = indio_dev->dev.of_node;
1581 struct stm32_adc *adc = iio_priv(indio_dev);
1582 unsigned int i;
1583 u32 res;
1584
1585 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1586 res = adc->cfg->adc_info->resolutions[0];
1587
1588 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1589 if (res == adc->cfg->adc_info->resolutions[i])
1590 break;
1591 if (i >= adc->cfg->adc_info->num_res) {
1592 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1593 return -EINVAL;
1594 }
1595
1596 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1597 adc->res = i;
1598
1599 return 0;
1600}
1601
1602static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1603{
1604 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1605 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1606 unsigned int smp, r = smpr->reg;
1607
1608 /* Determine sampling time (ADC clock cycles) */
1609 period_ns = NSEC_PER_SEC / adc->common->rate;
1610 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1611 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1612 break;
1613 if (smp > STM32_ADC_MAX_SMP)
1614 smp = STM32_ADC_MAX_SMP;
1615
1616 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1617 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1618}
1619
1620static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1621 struct iio_chan_spec *chan, u32 vinp,
1622 u32 vinn, int scan_index, bool differential)
1623{
1624 struct stm32_adc *adc = iio_priv(indio_dev);
1625 char *name = adc->chan_name[vinp];
1626
1627 chan->type = IIO_VOLTAGE;
1628 chan->channel = vinp;
1629 if (differential) {
1630 chan->differential = 1;
1631 chan->channel2 = vinn;
1632 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1633 } else {
1634 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1635 }
1636 chan->datasheet_name = name;
1637 chan->scan_index = scan_index;
1638 chan->indexed = 1;
1639 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1640 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1641 BIT(IIO_CHAN_INFO_OFFSET);
1642 chan->scan_type.sign = 'u';
1643 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1644 chan->scan_type.storagebits = 16;
1645 chan->ext_info = stm32_adc_ext_info;
1646
1647 /* pre-build selected channels mask */
1648 adc->pcsel |= BIT(chan->channel);
1649 if (differential) {
1650 /* pre-build diff channels mask */
1651 adc->difsel |= BIT(chan->channel);
1652 /* Also add negative input to pre-selected channels */
1653 adc->pcsel |= BIT(chan->channel2);
1654 }
1655}
1656
1657static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1658{
1659 struct device_node *node = indio_dev->dev.of_node;
1660 struct stm32_adc *adc = iio_priv(indio_dev);
1661 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1662 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1663 struct property *prop;
1664 const __be32 *cur;
1665 struct iio_chan_spec *channels;
1666 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1667 u32 val, smp = 0;
1668
1669 ret = of_property_count_u32_elems(node, "st,adc-channels");
1670 if (ret > adc_info->max_channels) {
1671 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1672 return -EINVAL;
1673 } else if (ret > 0) {
1674 num_channels += ret;
1675 }
1676
1677 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1678 sizeof(*diff));
1679 if (ret > adc_info->max_channels) {
1680 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1681 return -EINVAL;
1682 } else if (ret > 0) {
1683 int size = ret * sizeof(*diff) / sizeof(u32);
1684
1685 num_diff = ret;
1686 num_channels += ret;
1687 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1688 (u32 *)diff, size);
1689 if (ret)
1690 return ret;
1691 }
1692
1693 if (!num_channels) {
1694 dev_err(&indio_dev->dev, "No channels configured\n");
1695 return -ENODATA;
1696 }
1697
1698 /* Optional sample time is provided either for each, or all channels */
1699 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1700 if (ret > 1 && ret != num_channels) {
1701 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1702 return -EINVAL;
1703 }
1704
1705 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1706 sizeof(struct iio_chan_spec), GFP_KERNEL);
1707 if (!channels)
1708 return -ENOMEM;
1709
1710 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1711 if (val >= adc_info->max_channels) {
1712 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1713 return -EINVAL;
1714 }
1715
1716 /* Channel can't be configured both as single-ended & diff */
1717 for (i = 0; i < num_diff; i++) {
1718 if (val == diff[i].vinp) {
1719 dev_err(&indio_dev->dev,
1720 "channel %d miss-configured\n", val);
1721 return -EINVAL;
1722 }
1723 }
1724 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1725 0, scan_index, false);
1726 scan_index++;
1727 }
1728
1729 for (i = 0; i < num_diff; i++) {
1730 if (diff[i].vinp >= adc_info->max_channels ||
1731 diff[i].vinn >= adc_info->max_channels) {
1732 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1733 diff[i].vinp, diff[i].vinn);
1734 return -EINVAL;
1735 }
1736 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1737 diff[i].vinp, diff[i].vinn, scan_index,
1738 true);
1739 scan_index++;
1740 }
1741
1742 for (i = 0; i < scan_index; i++) {
1743 /*
1744 * Using of_property_read_u32_index(), smp value will only be
1745 * modified if valid u32 value can be decoded. This allows to
1746 * get either no value, 1 shared value for all indexes, or one
1747 * value per channel.
1748 */
1749 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1750 i, &smp);
1751 /* Prepare sampling time settings */
1752 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1753 }
1754
1755 indio_dev->num_channels = scan_index;
1756 indio_dev->channels = channels;
1757
1758 return 0;
1759}
1760
1761static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
1762{
1763 struct stm32_adc *adc = iio_priv(indio_dev);
1764 struct dma_slave_config config;
1765 int ret;
1766
1767 adc->dma_chan = dma_request_chan(dev, "rx");
1768 if (IS_ERR(adc->dma_chan)) {
1769 ret = PTR_ERR(adc->dma_chan);
1770 if (ret != -ENODEV) {
1771 if (ret != -EPROBE_DEFER)
1772 dev_err(dev,
1773 "DMA channel request failed with %d\n",
1774 ret);
1775 return ret;
1776 }
1777
1778 /* DMA is optional: fall back to IRQ mode */
1779 adc->dma_chan = NULL;
1780 return 0;
1781 }
1782
1783 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1784 STM32_DMA_BUFFER_SIZE,
1785 &adc->rx_dma_buf, GFP_KERNEL);
1786 if (!adc->rx_buf) {
1787 ret = -ENOMEM;
1788 goto err_release;
1789 }
1790
1791 /* Configure DMA channel to read data register */
1792 memset(&config, 0, sizeof(config));
1793 config.src_addr = (dma_addr_t)adc->common->phys_base;
1794 config.src_addr += adc->offset + adc->cfg->regs->dr;
1795 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1796
1797 ret = dmaengine_slave_config(adc->dma_chan, &config);
1798 if (ret)
1799 goto err_free;
1800
1801 return 0;
1802
1803err_free:
1804 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1805 adc->rx_buf, adc->rx_dma_buf);
1806err_release:
1807 dma_release_channel(adc->dma_chan);
1808
1809 return ret;
1810}
1811
1812static int stm32_adc_probe(struct platform_device *pdev)
1813{
1814 struct iio_dev *indio_dev;
1815 struct device *dev = &pdev->dev;
1816 irqreturn_t (*handler)(int irq, void *p) = NULL;
1817 struct stm32_adc *adc;
1818 int ret;
1819
1820 if (!pdev->dev.of_node)
1821 return -ENODEV;
1822
1823 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1824 if (!indio_dev)
1825 return -ENOMEM;
1826
1827 adc = iio_priv(indio_dev);
1828 adc->common = dev_get_drvdata(pdev->dev.parent);
1829 spin_lock_init(&adc->lock);
1830 init_completion(&adc->completion);
1831 adc->cfg = (const struct stm32_adc_cfg *)
1832 of_match_device(dev->driver->of_match_table, dev)->data;
1833
1834 indio_dev->name = dev_name(&pdev->dev);
1835 indio_dev->dev.parent = &pdev->dev;
1836 indio_dev->dev.of_node = pdev->dev.of_node;
1837 indio_dev->info = &stm32_adc_iio_info;
1838 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1839
1840 platform_set_drvdata(pdev, adc);
1841
1842 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1843 if (ret != 0) {
1844 dev_err(&pdev->dev, "missing reg property\n");
1845 return -EINVAL;
1846 }
1847
1848 adc->irq = platform_get_irq(pdev, 0);
1849 if (adc->irq < 0)
1850 return adc->irq;
1851
1852 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1853 0, pdev->name, adc);
1854 if (ret) {
1855 dev_err(&pdev->dev, "failed to request IRQ\n");
1856 return ret;
1857 }
1858
1859 adc->clk = devm_clk_get(&pdev->dev, NULL);
1860 if (IS_ERR(adc->clk)) {
1861 ret = PTR_ERR(adc->clk);
1862 if (ret == -ENOENT && !adc->cfg->clk_required) {
1863 adc->clk = NULL;
1864 } else {
1865 dev_err(&pdev->dev, "Can't get clock\n");
1866 return ret;
1867 }
1868 }
1869
1870 ret = stm32_adc_of_get_resolution(indio_dev);
1871 if (ret < 0)
1872 return ret;
1873
1874 ret = stm32_adc_chan_of_init(indio_dev);
1875 if (ret < 0)
1876 return ret;
1877
1878 ret = stm32_adc_dma_request(dev, indio_dev);
1879 if (ret < 0)
1880 return ret;
1881
1882 if (!adc->dma_chan)
1883 handler = &stm32_adc_trigger_handler;
1884
1885 ret = iio_triggered_buffer_setup(indio_dev,
1886 &iio_pollfunc_store_time, handler,
1887 &stm32_adc_buffer_setup_ops);
1888 if (ret) {
1889 dev_err(&pdev->dev, "buffer setup failed\n");
1890 goto err_dma_disable;
1891 }
1892
1893 /* Get stm32-adc-core PM online */
1894 pm_runtime_get_noresume(dev);
1895 pm_runtime_set_active(dev);
1896 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1897 pm_runtime_use_autosuspend(dev);
1898 pm_runtime_enable(dev);
1899
1900 ret = stm32_adc_hw_start(dev);
1901 if (ret)
1902 goto err_buffer_cleanup;
1903
1904 ret = iio_device_register(indio_dev);
1905 if (ret) {
1906 dev_err(&pdev->dev, "iio dev register failed\n");
1907 goto err_hw_stop;
1908 }
1909
1910 pm_runtime_mark_last_busy(dev);
1911 pm_runtime_put_autosuspend(dev);
1912
1913 return 0;
1914
1915err_hw_stop:
1916 stm32_adc_hw_stop(dev);
1917
1918err_buffer_cleanup:
1919 pm_runtime_disable(dev);
1920 pm_runtime_set_suspended(dev);
1921 pm_runtime_put_noidle(dev);
1922 iio_triggered_buffer_cleanup(indio_dev);
1923
1924err_dma_disable:
1925 if (adc->dma_chan) {
1926 dma_free_coherent(adc->dma_chan->device->dev,
1927 STM32_DMA_BUFFER_SIZE,
1928 adc->rx_buf, adc->rx_dma_buf);
1929 dma_release_channel(adc->dma_chan);
1930 }
1931
1932 return ret;
1933}
1934
1935static int stm32_adc_remove(struct platform_device *pdev)
1936{
1937 struct stm32_adc *adc = platform_get_drvdata(pdev);
1938 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1939
1940 pm_runtime_get_sync(&pdev->dev);
1941 iio_device_unregister(indio_dev);
1942 stm32_adc_hw_stop(&pdev->dev);
1943 pm_runtime_disable(&pdev->dev);
1944 pm_runtime_set_suspended(&pdev->dev);
1945 pm_runtime_put_noidle(&pdev->dev);
1946 iio_triggered_buffer_cleanup(indio_dev);
1947 if (adc->dma_chan) {
1948 dma_free_coherent(adc->dma_chan->device->dev,
1949 STM32_DMA_BUFFER_SIZE,
1950 adc->rx_buf, adc->rx_dma_buf);
1951 dma_release_channel(adc->dma_chan);
1952 }
1953
1954 return 0;
1955}
1956
1957#if defined(CONFIG_PM_SLEEP)
1958static int stm32_adc_suspend(struct device *dev)
1959{
1960 struct stm32_adc *adc = dev_get_drvdata(dev);
1961 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1962
1963 if (iio_buffer_enabled(indio_dev))
1964 __stm32_adc_buffer_predisable(indio_dev);
1965
1966 return pm_runtime_force_suspend(dev);
1967}
1968
1969static int stm32_adc_resume(struct device *dev)
1970{
1971 struct stm32_adc *adc = dev_get_drvdata(dev);
1972 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1973 int ret;
1974
1975 ret = pm_runtime_force_resume(dev);
1976 if (ret < 0)
1977 return ret;
1978
1979 if (!iio_buffer_enabled(indio_dev))
1980 return 0;
1981
1982 ret = stm32_adc_update_scan_mode(indio_dev,
1983 indio_dev->active_scan_mask);
1984 if (ret < 0)
1985 return ret;
1986
1987 return __stm32_adc_buffer_postenable(indio_dev);
1988}
1989#endif
1990
1991#if defined(CONFIG_PM)
1992static int stm32_adc_runtime_suspend(struct device *dev)
1993{
1994 return stm32_adc_hw_stop(dev);
1995}
1996
1997static int stm32_adc_runtime_resume(struct device *dev)
1998{
1999 return stm32_adc_hw_start(dev);
2000}
2001#endif
2002
2003static const struct dev_pm_ops stm32_adc_pm_ops = {
2004 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2005 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2006 NULL)
2007};
2008
2009static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2010 .regs = &stm32f4_adc_regspec,
2011 .adc_info = &stm32f4_adc_info,
2012 .trigs = stm32f4_adc_trigs,
2013 .clk_required = true,
2014 .start_conv = stm32f4_adc_start_conv,
2015 .stop_conv = stm32f4_adc_stop_conv,
2016 .smp_cycles = stm32f4_adc_smp_cycles,
2017};
2018
2019static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2020 .regs = &stm32h7_adc_regspec,
2021 .adc_info = &stm32h7_adc_info,
2022 .trigs = stm32h7_adc_trigs,
2023 .start_conv = stm32h7_adc_start_conv,
2024 .stop_conv = stm32h7_adc_stop_conv,
2025 .prepare = stm32h7_adc_prepare,
2026 .unprepare = stm32h7_adc_unprepare,
2027 .smp_cycles = stm32h7_adc_smp_cycles,
2028};
2029
2030static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2031 .regs = &stm32h7_adc_regspec,
2032 .adc_info = &stm32h7_adc_info,
2033 .trigs = stm32h7_adc_trigs,
2034 .has_vregready = true,
2035 .start_conv = stm32h7_adc_start_conv,
2036 .stop_conv = stm32h7_adc_stop_conv,
2037 .prepare = stm32h7_adc_prepare,
2038 .unprepare = stm32h7_adc_unprepare,
2039 .smp_cycles = stm32h7_adc_smp_cycles,
2040};
2041
2042static const struct of_device_id stm32_adc_of_match[] = {
2043 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2044 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2045 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2046 {},
2047};
2048MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2049
2050static struct platform_driver stm32_adc_driver = {
2051 .probe = stm32_adc_probe,
2052 .remove = stm32_adc_remove,
2053 .driver = {
2054 .name = "stm32-adc",
2055 .of_match_table = stm32_adc_of_match,
2056 .pm = &stm32_adc_pm_ops,
2057 },
2058};
2059module_platform_driver(stm32_adc_driver);
2060
2061MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2062MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2063MODULE_LICENSE("GPL v2");
2064MODULE_ALIAS("platform:stm32-adc");