blob: 45fdb9bdf08d42c9a6efda70e9422a16a2d1c1a3 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/types.h>
13#include <linux/idr.h>
14#include <linux/input/mt.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/poll.h>
23#include <linux/device.h>
24#include <linux/mutex.h>
25#include <linux/rcupdate.h>
26#include "input-compat.h"
27#include "input-poller.h"
28
29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30MODULE_DESCRIPTION("Input core");
31MODULE_LICENSE("GPL");
32
33#define INPUT_MAX_CHAR_DEVICES 1024
34#define INPUT_FIRST_DYNAMIC_DEV 256
35static DEFINE_IDA(input_ida);
36
37static LIST_HEAD(input_dev_list);
38static LIST_HEAD(input_handler_list);
39
40/*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46static DEFINE_MUTEX(input_mutex);
47
48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50static const unsigned int input_max_code[EV_CNT] = {
51 [EV_KEY] = KEY_MAX,
52 [EV_REL] = REL_MAX,
53 [EV_ABS] = ABS_MAX,
54 [EV_MSC] = MSC_MAX,
55 [EV_SW] = SW_MAX,
56 [EV_LED] = LED_MAX,
57 [EV_SND] = SND_MAX,
58 [EV_FF] = FF_MAX,
59};
60
61static inline int is_event_supported(unsigned int code,
62 unsigned long *bm, unsigned int max)
63{
64 return code <= max && test_bit(code, bm);
65}
66
67static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68{
69 if (fuzz) {
70 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
71 return old_val;
72
73 if (value > old_val - fuzz && value < old_val + fuzz)
74 return (old_val * 3 + value) / 4;
75
76 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
77 return (old_val + value) / 2;
78 }
79
80 return value;
81}
82
83static void input_start_autorepeat(struct input_dev *dev, int code)
84{
85 if (test_bit(EV_REP, dev->evbit) &&
86 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 dev->timer.function) {
88 dev->repeat_key = code;
89 mod_timer(&dev->timer,
90 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
91 }
92}
93
94static void input_stop_autorepeat(struct input_dev *dev)
95{
96 del_timer(&dev->timer);
97}
98
99/*
100 * Pass event first through all filters and then, if event has not been
101 * filtered out, through all open handles. This function is called with
102 * dev->event_lock held and interrupts disabled.
103 */
104static unsigned int input_to_handler(struct input_handle *handle,
105 struct input_value *vals, unsigned int count)
106{
107 struct input_handler *handler = handle->handler;
108 struct input_value *end = vals;
109 struct input_value *v;
110
111 if (handler->filter) {
112 for (v = vals; v != vals + count; v++) {
113 if (handler->filter(handle, v->type, v->code, v->value))
114 continue;
115 if (end != v)
116 *end = *v;
117 end++;
118 }
119 count = end - vals;
120 }
121
122 if (!count)
123 return 0;
124
125 if (handler->events)
126 handler->events(handle, vals, count);
127 else if (handler->event)
128 for (v = vals; v != vals + count; v++)
129 handler->event(handle, v->type, v->code, v->value);
130
131 return count;
132}
133
134/*
135 * Pass values first through all filters and then, if event has not been
136 * filtered out, through all open handles. This function is called with
137 * dev->event_lock held and interrupts disabled.
138 */
139static void input_pass_values(struct input_dev *dev,
140 struct input_value *vals, unsigned int count)
141{
142 struct input_handle *handle;
143 struct input_value *v;
144
145 if (!count)
146 return;
147
148 rcu_read_lock();
149
150 handle = rcu_dereference(dev->grab);
151 if (handle) {
152 count = input_to_handler(handle, vals, count);
153 } else {
154 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
155 if (handle->open) {
156 count = input_to_handler(handle, vals, count);
157 if (!count)
158 break;
159 }
160 }
161
162 rcu_read_unlock();
163
164 /* trigger auto repeat for key events */
165 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
166 for (v = vals; v != vals + count; v++) {
167 if (v->type == EV_KEY && v->value != 2) {
168 if (v->value)
169 input_start_autorepeat(dev, v->code);
170 else
171 input_stop_autorepeat(dev);
172 }
173 }
174 }
175}
176
177static void input_pass_event(struct input_dev *dev,
178 unsigned int type, unsigned int code, int value)
179{
180 struct input_value vals[] = { { type, code, value } };
181
182 input_pass_values(dev, vals, ARRAY_SIZE(vals));
183}
184
185/*
186 * Generate software autorepeat event. Note that we take
187 * dev->event_lock here to avoid racing with input_event
188 * which may cause keys get "stuck".
189 */
190static void input_repeat_key(struct timer_list *t)
191{
192 struct input_dev *dev = from_timer(dev, t, timer);
193 unsigned long flags;
194
195 spin_lock_irqsave(&dev->event_lock, flags);
196
197 if (test_bit(dev->repeat_key, dev->key) &&
198 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
199 struct input_value vals[] = {
200 { EV_KEY, dev->repeat_key, 2 },
201 input_value_sync
202 };
203
204 input_set_timestamp(dev, ktime_get());
205 input_pass_values(dev, vals, ARRAY_SIZE(vals));
206
207 if (dev->rep[REP_PERIOD])
208 mod_timer(&dev->timer, jiffies +
209 msecs_to_jiffies(dev->rep[REP_PERIOD]));
210 }
211
212 spin_unlock_irqrestore(&dev->event_lock, flags);
213}
214
215#define INPUT_IGNORE_EVENT 0
216#define INPUT_PASS_TO_HANDLERS 1
217#define INPUT_PASS_TO_DEVICE 2
218#define INPUT_SLOT 4
219#define INPUT_FLUSH 8
220#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
221
222static int input_handle_abs_event(struct input_dev *dev,
223 unsigned int code, int *pval)
224{
225 struct input_mt *mt = dev->mt;
226 bool is_mt_event;
227 int *pold;
228
229 if (code == ABS_MT_SLOT) {
230 /*
231 * "Stage" the event; we'll flush it later, when we
232 * get actual touch data.
233 */
234 if (mt && *pval >= 0 && *pval < mt->num_slots)
235 mt->slot = *pval;
236
237 return INPUT_IGNORE_EVENT;
238 }
239
240 is_mt_event = input_is_mt_value(code);
241
242 if (!is_mt_event) {
243 pold = &dev->absinfo[code].value;
244 } else if (mt) {
245 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
246 } else {
247 /*
248 * Bypass filtering for multi-touch events when
249 * not employing slots.
250 */
251 pold = NULL;
252 }
253
254 if (pold) {
255 *pval = input_defuzz_abs_event(*pval, *pold,
256 dev->absinfo[code].fuzz);
257 if (*pold == *pval)
258 return INPUT_IGNORE_EVENT;
259
260 *pold = *pval;
261 }
262
263 /* Flush pending "slot" event */
264 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
266 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
267 }
268
269 return INPUT_PASS_TO_HANDLERS;
270}
271
272static int input_get_disposition(struct input_dev *dev,
273 unsigned int type, unsigned int code, int *pval)
274{
275 int disposition = INPUT_IGNORE_EVENT;
276 int value = *pval;
277
278 switch (type) {
279
280 case EV_SYN:
281 switch (code) {
282 case SYN_CONFIG:
283 disposition = INPUT_PASS_TO_ALL;
284 break;
285
286 case SYN_REPORT:
287 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
288 break;
289 case SYN_MT_REPORT:
290 disposition = INPUT_PASS_TO_HANDLERS;
291 break;
292 }
293 break;
294
295 case EV_KEY:
296 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
297
298 /* auto-repeat bypasses state updates */
299 if (value == 2) {
300 disposition = INPUT_PASS_TO_HANDLERS;
301 break;
302 }
303
304 if (!!test_bit(code, dev->key) != !!value) {
305
306 __change_bit(code, dev->key);
307 disposition = INPUT_PASS_TO_HANDLERS;
308 }
309 }
310 break;
311
312 case EV_SW:
313 if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 !!test_bit(code, dev->sw) != !!value) {
315
316 __change_bit(code, dev->sw);
317 disposition = INPUT_PASS_TO_HANDLERS;
318 }
319 break;
320
321 case EV_ABS:
322 if (is_event_supported(code, dev->absbit, ABS_MAX))
323 disposition = input_handle_abs_event(dev, code, &value);
324
325 break;
326
327 case EV_REL:
328 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
329 disposition = INPUT_PASS_TO_HANDLERS;
330
331 break;
332
333 case EV_MSC:
334 if (is_event_supported(code, dev->mscbit, MSC_MAX))
335 disposition = INPUT_PASS_TO_ALL;
336
337 break;
338
339 case EV_LED:
340 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 !!test_bit(code, dev->led) != !!value) {
342
343 __change_bit(code, dev->led);
344 disposition = INPUT_PASS_TO_ALL;
345 }
346 break;
347
348 case EV_SND:
349 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
350
351 if (!!test_bit(code, dev->snd) != !!value)
352 __change_bit(code, dev->snd);
353 disposition = INPUT_PASS_TO_ALL;
354 }
355 break;
356
357 case EV_REP:
358 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 dev->rep[code] = value;
360 disposition = INPUT_PASS_TO_ALL;
361 }
362 break;
363
364 case EV_FF:
365 if (value >= 0)
366 disposition = INPUT_PASS_TO_ALL;
367 break;
368
369 case EV_PWR:
370 disposition = INPUT_PASS_TO_ALL;
371 break;
372 }
373
374 *pval = value;
375 return disposition;
376}
377
378static void input_handle_event(struct input_dev *dev,
379 unsigned int type, unsigned int code, int value)
380{
381 int disposition = input_get_disposition(dev, type, code, &value);
382
383 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
384 add_input_randomness(type, code, value);
385
386 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
387 dev->event(dev, type, code, value);
388
389 if (!dev->vals)
390 return;
391
392 if (disposition & INPUT_PASS_TO_HANDLERS) {
393 struct input_value *v;
394
395 if (disposition & INPUT_SLOT) {
396 v = &dev->vals[dev->num_vals++];
397 v->type = EV_ABS;
398 v->code = ABS_MT_SLOT;
399 v->value = dev->mt->slot;
400 }
401
402 v = &dev->vals[dev->num_vals++];
403 v->type = type;
404 v->code = code;
405 v->value = value;
406 }
407
408 if (disposition & INPUT_FLUSH) {
409 if (dev->num_vals >= 2)
410 input_pass_values(dev, dev->vals, dev->num_vals);
411 dev->num_vals = 0;
412 /*
413 * Reset the timestamp on flush so we won't end up
414 * with a stale one. Note we only need to reset the
415 * monolithic one as we use its presence when deciding
416 * whether to generate a synthetic timestamp.
417 */
418 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
419 } else if (dev->num_vals >= dev->max_vals - 2) {
420 dev->vals[dev->num_vals++] = input_value_sync;
421 input_pass_values(dev, dev->vals, dev->num_vals);
422 dev->num_vals = 0;
423 }
424
425}
426
427/**
428 * input_event() - report new input event
429 * @dev: device that generated the event
430 * @type: type of the event
431 * @code: event code
432 * @value: value of the event
433 *
434 * This function should be used by drivers implementing various input
435 * devices to report input events. See also input_inject_event().
436 *
437 * NOTE: input_event() may be safely used right after input device was
438 * allocated with input_allocate_device(), even before it is registered
439 * with input_register_device(), but the event will not reach any of the
440 * input handlers. Such early invocation of input_event() may be used
441 * to 'seed' initial state of a switch or initial position of absolute
442 * axis, etc.
443 */
444void input_event(struct input_dev *dev,
445 unsigned int type, unsigned int code, int value)
446{
447 unsigned long flags;
448
449 if (is_event_supported(type, dev->evbit, EV_MAX)) {
450
451 spin_lock_irqsave(&dev->event_lock, flags);
452 input_handle_event(dev, type, code, value);
453 spin_unlock_irqrestore(&dev->event_lock, flags);
454 }
455}
456EXPORT_SYMBOL(input_event);
457
458/**
459 * input_inject_event() - send input event from input handler
460 * @handle: input handle to send event through
461 * @type: type of the event
462 * @code: event code
463 * @value: value of the event
464 *
465 * Similar to input_event() but will ignore event if device is
466 * "grabbed" and handle injecting event is not the one that owns
467 * the device.
468 */
469void input_inject_event(struct input_handle *handle,
470 unsigned int type, unsigned int code, int value)
471{
472 struct input_dev *dev = handle->dev;
473 struct input_handle *grab;
474 unsigned long flags;
475
476 if (is_event_supported(type, dev->evbit, EV_MAX)) {
477 spin_lock_irqsave(&dev->event_lock, flags);
478
479 rcu_read_lock();
480 grab = rcu_dereference(dev->grab);
481 if (!grab || grab == handle)
482 input_handle_event(dev, type, code, value);
483 rcu_read_unlock();
484
485 spin_unlock_irqrestore(&dev->event_lock, flags);
486 }
487}
488EXPORT_SYMBOL(input_inject_event);
489
490/**
491 * input_alloc_absinfo - allocates array of input_absinfo structs
492 * @dev: the input device emitting absolute events
493 *
494 * If the absinfo struct the caller asked for is already allocated, this
495 * functions will not do anything.
496 */
497void input_alloc_absinfo(struct input_dev *dev)
498{
499 if (dev->absinfo)
500 return;
501
502 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
503 if (!dev->absinfo) {
504 dev_err(dev->dev.parent ?: &dev->dev,
505 "%s: unable to allocate memory\n", __func__);
506 /*
507 * We will handle this allocation failure in
508 * input_register_device() when we refuse to register input
509 * device with ABS bits but without absinfo.
510 */
511 }
512}
513EXPORT_SYMBOL(input_alloc_absinfo);
514
515void input_set_abs_params(struct input_dev *dev, unsigned int axis,
516 int min, int max, int fuzz, int flat)
517{
518 struct input_absinfo *absinfo;
519
520 input_alloc_absinfo(dev);
521 if (!dev->absinfo)
522 return;
523
524 absinfo = &dev->absinfo[axis];
525 absinfo->minimum = min;
526 absinfo->maximum = max;
527 absinfo->fuzz = fuzz;
528 absinfo->flat = flat;
529
530 __set_bit(EV_ABS, dev->evbit);
531 __set_bit(axis, dev->absbit);
532}
533EXPORT_SYMBOL(input_set_abs_params);
534
535
536/**
537 * input_grab_device - grabs device for exclusive use
538 * @handle: input handle that wants to own the device
539 *
540 * When a device is grabbed by an input handle all events generated by
541 * the device are delivered only to this handle. Also events injected
542 * by other input handles are ignored while device is grabbed.
543 */
544int input_grab_device(struct input_handle *handle)
545{
546 struct input_dev *dev = handle->dev;
547 int retval;
548
549 retval = mutex_lock_interruptible(&dev->mutex);
550 if (retval)
551 return retval;
552
553 if (dev->grab) {
554 retval = -EBUSY;
555 goto out;
556 }
557
558 rcu_assign_pointer(dev->grab, handle);
559
560 out:
561 mutex_unlock(&dev->mutex);
562 return retval;
563}
564EXPORT_SYMBOL(input_grab_device);
565
566static void __input_release_device(struct input_handle *handle)
567{
568 struct input_dev *dev = handle->dev;
569 struct input_handle *grabber;
570
571 grabber = rcu_dereference_protected(dev->grab,
572 lockdep_is_held(&dev->mutex));
573 if (grabber == handle) {
574 rcu_assign_pointer(dev->grab, NULL);
575 /* Make sure input_pass_event() notices that grab is gone */
576 synchronize_rcu();
577
578 list_for_each_entry(handle, &dev->h_list, d_node)
579 if (handle->open && handle->handler->start)
580 handle->handler->start(handle);
581 }
582}
583
584/**
585 * input_release_device - release previously grabbed device
586 * @handle: input handle that owns the device
587 *
588 * Releases previously grabbed device so that other input handles can
589 * start receiving input events. Upon release all handlers attached
590 * to the device have their start() method called so they have a change
591 * to synchronize device state with the rest of the system.
592 */
593void input_release_device(struct input_handle *handle)
594{
595 struct input_dev *dev = handle->dev;
596
597 mutex_lock(&dev->mutex);
598 __input_release_device(handle);
599 mutex_unlock(&dev->mutex);
600}
601EXPORT_SYMBOL(input_release_device);
602
603/**
604 * input_open_device - open input device
605 * @handle: handle through which device is being accessed
606 *
607 * This function should be called by input handlers when they
608 * want to start receive events from given input device.
609 */
610int input_open_device(struct input_handle *handle)
611{
612 struct input_dev *dev = handle->dev;
613 int retval;
614
615 retval = mutex_lock_interruptible(&dev->mutex);
616 if (retval)
617 return retval;
618
619 if (dev->going_away) {
620 retval = -ENODEV;
621 goto out;
622 }
623
624 handle->open++;
625
626 if (dev->users++) {
627 /*
628 * Device is already opened, so we can exit immediately and
629 * report success.
630 */
631 goto out;
632 }
633
634 if (dev->open) {
635 retval = dev->open(dev);
636 if (retval) {
637 dev->users--;
638 handle->open--;
639 /*
640 * Make sure we are not delivering any more events
641 * through this handle
642 */
643 synchronize_rcu();
644 goto out;
645 }
646 }
647
648 if (dev->poller)
649 input_dev_poller_start(dev->poller);
650
651 out:
652 mutex_unlock(&dev->mutex);
653 return retval;
654}
655EXPORT_SYMBOL(input_open_device);
656
657int input_flush_device(struct input_handle *handle, struct file *file)
658{
659 struct input_dev *dev = handle->dev;
660 int retval;
661
662 retval = mutex_lock_interruptible(&dev->mutex);
663 if (retval)
664 return retval;
665
666 if (dev->flush)
667 retval = dev->flush(dev, file);
668
669 mutex_unlock(&dev->mutex);
670 return retval;
671}
672EXPORT_SYMBOL(input_flush_device);
673
674/**
675 * input_close_device - close input device
676 * @handle: handle through which device is being accessed
677 *
678 * This function should be called by input handlers when they
679 * want to stop receive events from given input device.
680 */
681void input_close_device(struct input_handle *handle)
682{
683 struct input_dev *dev = handle->dev;
684
685 mutex_lock(&dev->mutex);
686
687 __input_release_device(handle);
688
689 if (!--dev->users) {
690 if (dev->poller)
691 input_dev_poller_stop(dev->poller);
692
693 if (dev->close)
694 dev->close(dev);
695 }
696
697 if (!--handle->open) {
698 /*
699 * synchronize_rcu() makes sure that input_pass_event()
700 * completed and that no more input events are delivered
701 * through this handle
702 */
703 synchronize_rcu();
704 }
705
706 mutex_unlock(&dev->mutex);
707}
708EXPORT_SYMBOL(input_close_device);
709
710/*
711 * Simulate keyup events for all keys that are marked as pressed.
712 * The function must be called with dev->event_lock held.
713 */
714static void input_dev_release_keys(struct input_dev *dev)
715{
716 bool need_sync = false;
717 int code;
718
719 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
720 for_each_set_bit(code, dev->key, KEY_CNT) {
721 input_pass_event(dev, EV_KEY, code, 0);
722 need_sync = true;
723 }
724
725 if (need_sync)
726 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
727
728 memset(dev->key, 0, sizeof(dev->key));
729 }
730}
731
732/*
733 * Prepare device for unregistering
734 */
735static void input_disconnect_device(struct input_dev *dev)
736{
737 struct input_handle *handle;
738
739 /*
740 * Mark device as going away. Note that we take dev->mutex here
741 * not to protect access to dev->going_away but rather to ensure
742 * that there are no threads in the middle of input_open_device()
743 */
744 mutex_lock(&dev->mutex);
745 dev->going_away = true;
746 mutex_unlock(&dev->mutex);
747
748 spin_lock_irq(&dev->event_lock);
749
750 /*
751 * Simulate keyup events for all pressed keys so that handlers
752 * are not left with "stuck" keys. The driver may continue
753 * generate events even after we done here but they will not
754 * reach any handlers.
755 */
756 input_dev_release_keys(dev);
757
758 list_for_each_entry(handle, &dev->h_list, d_node)
759 handle->open = 0;
760
761 spin_unlock_irq(&dev->event_lock);
762}
763
764/**
765 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
766 * @ke: keymap entry containing scancode to be converted.
767 * @scancode: pointer to the location where converted scancode should
768 * be stored.
769 *
770 * This function is used to convert scancode stored in &struct keymap_entry
771 * into scalar form understood by legacy keymap handling methods. These
772 * methods expect scancodes to be represented as 'unsigned int'.
773 */
774int input_scancode_to_scalar(const struct input_keymap_entry *ke,
775 unsigned int *scancode)
776{
777 switch (ke->len) {
778 case 1:
779 *scancode = *((u8 *)ke->scancode);
780 break;
781
782 case 2:
783 *scancode = *((u16 *)ke->scancode);
784 break;
785
786 case 4:
787 *scancode = *((u32 *)ke->scancode);
788 break;
789
790 default:
791 return -EINVAL;
792 }
793
794 return 0;
795}
796EXPORT_SYMBOL(input_scancode_to_scalar);
797
798/*
799 * Those routines handle the default case where no [gs]etkeycode() is
800 * defined. In this case, an array indexed by the scancode is used.
801 */
802
803static unsigned int input_fetch_keycode(struct input_dev *dev,
804 unsigned int index)
805{
806 switch (dev->keycodesize) {
807 case 1:
808 return ((u8 *)dev->keycode)[index];
809
810 case 2:
811 return ((u16 *)dev->keycode)[index];
812
813 default:
814 return ((u32 *)dev->keycode)[index];
815 }
816}
817
818static int input_default_getkeycode(struct input_dev *dev,
819 struct input_keymap_entry *ke)
820{
821 unsigned int index;
822 int error;
823
824 if (!dev->keycodesize)
825 return -EINVAL;
826
827 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
828 index = ke->index;
829 else {
830 error = input_scancode_to_scalar(ke, &index);
831 if (error)
832 return error;
833 }
834
835 if (index >= dev->keycodemax)
836 return -EINVAL;
837
838 ke->keycode = input_fetch_keycode(dev, index);
839 ke->index = index;
840 ke->len = sizeof(index);
841 memcpy(ke->scancode, &index, sizeof(index));
842
843 return 0;
844}
845
846static int input_default_setkeycode(struct input_dev *dev,
847 const struct input_keymap_entry *ke,
848 unsigned int *old_keycode)
849{
850 unsigned int index;
851 int error;
852 int i;
853
854 if (!dev->keycodesize)
855 return -EINVAL;
856
857 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
858 index = ke->index;
859 } else {
860 error = input_scancode_to_scalar(ke, &index);
861 if (error)
862 return error;
863 }
864
865 if (index >= dev->keycodemax)
866 return -EINVAL;
867
868 if (dev->keycodesize < sizeof(ke->keycode) &&
869 (ke->keycode >> (dev->keycodesize * 8)))
870 return -EINVAL;
871
872 switch (dev->keycodesize) {
873 case 1: {
874 u8 *k = (u8 *)dev->keycode;
875 *old_keycode = k[index];
876 k[index] = ke->keycode;
877 break;
878 }
879 case 2: {
880 u16 *k = (u16 *)dev->keycode;
881 *old_keycode = k[index];
882 k[index] = ke->keycode;
883 break;
884 }
885 default: {
886 u32 *k = (u32 *)dev->keycode;
887 *old_keycode = k[index];
888 k[index] = ke->keycode;
889 break;
890 }
891 }
892
893 if (*old_keycode <= KEY_MAX) {
894 __clear_bit(*old_keycode, dev->keybit);
895 for (i = 0; i < dev->keycodemax; i++) {
896 if (input_fetch_keycode(dev, i) == *old_keycode) {
897 __set_bit(*old_keycode, dev->keybit);
898 /* Setting the bit twice is useless, so break */
899 break;
900 }
901 }
902 }
903
904 __set_bit(ke->keycode, dev->keybit);
905 return 0;
906}
907
908/**
909 * input_get_keycode - retrieve keycode currently mapped to a given scancode
910 * @dev: input device which keymap is being queried
911 * @ke: keymap entry
912 *
913 * This function should be called by anyone interested in retrieving current
914 * keymap. Presently evdev handlers use it.
915 */
916int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
917{
918 unsigned long flags;
919 int retval;
920
921 spin_lock_irqsave(&dev->event_lock, flags);
922 retval = dev->getkeycode(dev, ke);
923 spin_unlock_irqrestore(&dev->event_lock, flags);
924
925 return retval;
926}
927EXPORT_SYMBOL(input_get_keycode);
928
929/**
930 * input_set_keycode - attribute a keycode to a given scancode
931 * @dev: input device which keymap is being updated
932 * @ke: new keymap entry
933 *
934 * This function should be called by anyone needing to update current
935 * keymap. Presently keyboard and evdev handlers use it.
936 */
937int input_set_keycode(struct input_dev *dev,
938 const struct input_keymap_entry *ke)
939{
940 unsigned long flags;
941 unsigned int old_keycode;
942 int retval;
943
944 if (ke->keycode > KEY_MAX)
945 return -EINVAL;
946
947 spin_lock_irqsave(&dev->event_lock, flags);
948
949 retval = dev->setkeycode(dev, ke, &old_keycode);
950 if (retval)
951 goto out;
952
953 /* Make sure KEY_RESERVED did not get enabled. */
954 __clear_bit(KEY_RESERVED, dev->keybit);
955
956 /*
957 * Simulate keyup event if keycode is not present
958 * in the keymap anymore
959 */
960 if (old_keycode > KEY_MAX) {
961 dev_warn(dev->dev.parent ?: &dev->dev,
962 "%s: got too big old keycode %#x\n",
963 __func__, old_keycode);
964 } else if (test_bit(EV_KEY, dev->evbit) &&
965 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
966 __test_and_clear_bit(old_keycode, dev->key)) {
967 struct input_value vals[] = {
968 { EV_KEY, old_keycode, 0 },
969 input_value_sync
970 };
971
972 input_pass_values(dev, vals, ARRAY_SIZE(vals));
973 }
974
975 out:
976 spin_unlock_irqrestore(&dev->event_lock, flags);
977
978 return retval;
979}
980EXPORT_SYMBOL(input_set_keycode);
981
982bool input_match_device_id(const struct input_dev *dev,
983 const struct input_device_id *id)
984{
985 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
986 if (id->bustype != dev->id.bustype)
987 return false;
988
989 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
990 if (id->vendor != dev->id.vendor)
991 return false;
992
993 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
994 if (id->product != dev->id.product)
995 return false;
996
997 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
998 if (id->version != dev->id.version)
999 return false;
1000
1001 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1002 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1003 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1004 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1005 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1006 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1007 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1008 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1009 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1010 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1011 return false;
1012 }
1013
1014 return true;
1015}
1016EXPORT_SYMBOL(input_match_device_id);
1017
1018static const struct input_device_id *input_match_device(struct input_handler *handler,
1019 struct input_dev *dev)
1020{
1021 const struct input_device_id *id;
1022
1023 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1024 if (input_match_device_id(dev, id) &&
1025 (!handler->match || handler->match(handler, dev))) {
1026 return id;
1027 }
1028 }
1029
1030 return NULL;
1031}
1032
1033static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1034{
1035 const struct input_device_id *id;
1036 int error;
1037
1038 id = input_match_device(handler, dev);
1039 if (!id)
1040 return -ENODEV;
1041
1042 error = handler->connect(handler, dev, id);
1043 if (error && error != -ENODEV)
1044 pr_err("failed to attach handler %s to device %s, error: %d\n",
1045 handler->name, kobject_name(&dev->dev.kobj), error);
1046
1047 return error;
1048}
1049
1050#ifdef CONFIG_COMPAT
1051
1052static int input_bits_to_string(char *buf, int buf_size,
1053 unsigned long bits, bool skip_empty)
1054{
1055 int len = 0;
1056
1057 if (in_compat_syscall()) {
1058 u32 dword = bits >> 32;
1059 if (dword || !skip_empty)
1060 len += snprintf(buf, buf_size, "%x ", dword);
1061
1062 dword = bits & 0xffffffffUL;
1063 if (dword || !skip_empty || len)
1064 len += snprintf(buf + len, max(buf_size - len, 0),
1065 "%x", dword);
1066 } else {
1067 if (bits || !skip_empty)
1068 len += snprintf(buf, buf_size, "%lx", bits);
1069 }
1070
1071 return len;
1072}
1073
1074#else /* !CONFIG_COMPAT */
1075
1076static int input_bits_to_string(char *buf, int buf_size,
1077 unsigned long bits, bool skip_empty)
1078{
1079 return bits || !skip_empty ?
1080 snprintf(buf, buf_size, "%lx", bits) : 0;
1081}
1082
1083#endif
1084
1085#ifdef CONFIG_PROC_FS
1086
1087static struct proc_dir_entry *proc_bus_input_dir;
1088static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1089static int input_devices_state;
1090
1091static inline void input_wakeup_procfs_readers(void)
1092{
1093 input_devices_state++;
1094 wake_up(&input_devices_poll_wait);
1095}
1096
1097static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1098{
1099 poll_wait(file, &input_devices_poll_wait, wait);
1100 if (file->f_version != input_devices_state) {
1101 file->f_version = input_devices_state;
1102 return EPOLLIN | EPOLLRDNORM;
1103 }
1104
1105 return 0;
1106}
1107
1108union input_seq_state {
1109 struct {
1110 unsigned short pos;
1111 bool mutex_acquired;
1112 };
1113 void *p;
1114};
1115
1116static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1117{
1118 union input_seq_state *state = (union input_seq_state *)&seq->private;
1119 int error;
1120
1121 /* We need to fit into seq->private pointer */
1122 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1123
1124 error = mutex_lock_interruptible(&input_mutex);
1125 if (error) {
1126 state->mutex_acquired = false;
1127 return ERR_PTR(error);
1128 }
1129
1130 state->mutex_acquired = true;
1131
1132 return seq_list_start(&input_dev_list, *pos);
1133}
1134
1135static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1136{
1137 return seq_list_next(v, &input_dev_list, pos);
1138}
1139
1140static void input_seq_stop(struct seq_file *seq, void *v)
1141{
1142 union input_seq_state *state = (union input_seq_state *)&seq->private;
1143
1144 if (state->mutex_acquired)
1145 mutex_unlock(&input_mutex);
1146}
1147
1148static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1149 unsigned long *bitmap, int max)
1150{
1151 int i;
1152 bool skip_empty = true;
1153 char buf[18];
1154
1155 seq_printf(seq, "B: %s=", name);
1156
1157 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1158 if (input_bits_to_string(buf, sizeof(buf),
1159 bitmap[i], skip_empty)) {
1160 skip_empty = false;
1161 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1162 }
1163 }
1164
1165 /*
1166 * If no output was produced print a single 0.
1167 */
1168 if (skip_empty)
1169 seq_putc(seq, '0');
1170
1171 seq_putc(seq, '\n');
1172}
1173
1174static int input_devices_seq_show(struct seq_file *seq, void *v)
1175{
1176 struct input_dev *dev = container_of(v, struct input_dev, node);
1177 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1178 struct input_handle *handle;
1179
1180 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1181 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1182
1183 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1184 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1185 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1186 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1187 seq_puts(seq, "H: Handlers=");
1188
1189 list_for_each_entry(handle, &dev->h_list, d_node)
1190 seq_printf(seq, "%s ", handle->name);
1191 seq_putc(seq, '\n');
1192
1193 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1194
1195 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1196 if (test_bit(EV_KEY, dev->evbit))
1197 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1198 if (test_bit(EV_REL, dev->evbit))
1199 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1200 if (test_bit(EV_ABS, dev->evbit))
1201 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1202 if (test_bit(EV_MSC, dev->evbit))
1203 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1204 if (test_bit(EV_LED, dev->evbit))
1205 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1206 if (test_bit(EV_SND, dev->evbit))
1207 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1208 if (test_bit(EV_FF, dev->evbit))
1209 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1210 if (test_bit(EV_SW, dev->evbit))
1211 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1212
1213 seq_putc(seq, '\n');
1214
1215 kfree(path);
1216 return 0;
1217}
1218
1219static const struct seq_operations input_devices_seq_ops = {
1220 .start = input_devices_seq_start,
1221 .next = input_devices_seq_next,
1222 .stop = input_seq_stop,
1223 .show = input_devices_seq_show,
1224};
1225
1226static int input_proc_devices_open(struct inode *inode, struct file *file)
1227{
1228 return seq_open(file, &input_devices_seq_ops);
1229}
1230
1231static const struct file_operations input_devices_fileops = {
1232 .owner = THIS_MODULE,
1233 .open = input_proc_devices_open,
1234 .poll = input_proc_devices_poll,
1235 .read = seq_read,
1236 .llseek = seq_lseek,
1237 .release = seq_release,
1238};
1239
1240static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1241{
1242 union input_seq_state *state = (union input_seq_state *)&seq->private;
1243 int error;
1244
1245 /* We need to fit into seq->private pointer */
1246 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1247
1248 error = mutex_lock_interruptible(&input_mutex);
1249 if (error) {
1250 state->mutex_acquired = false;
1251 return ERR_PTR(error);
1252 }
1253
1254 state->mutex_acquired = true;
1255 state->pos = *pos;
1256
1257 return seq_list_start(&input_handler_list, *pos);
1258}
1259
1260static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1261{
1262 union input_seq_state *state = (union input_seq_state *)&seq->private;
1263
1264 state->pos = *pos + 1;
1265 return seq_list_next(v, &input_handler_list, pos);
1266}
1267
1268static int input_handlers_seq_show(struct seq_file *seq, void *v)
1269{
1270 struct input_handler *handler = container_of(v, struct input_handler, node);
1271 union input_seq_state *state = (union input_seq_state *)&seq->private;
1272
1273 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1274 if (handler->filter)
1275 seq_puts(seq, " (filter)");
1276 if (handler->legacy_minors)
1277 seq_printf(seq, " Minor=%d", handler->minor);
1278 seq_putc(seq, '\n');
1279
1280 return 0;
1281}
1282
1283static const struct seq_operations input_handlers_seq_ops = {
1284 .start = input_handlers_seq_start,
1285 .next = input_handlers_seq_next,
1286 .stop = input_seq_stop,
1287 .show = input_handlers_seq_show,
1288};
1289
1290static int input_proc_handlers_open(struct inode *inode, struct file *file)
1291{
1292 return seq_open(file, &input_handlers_seq_ops);
1293}
1294
1295static const struct file_operations input_handlers_fileops = {
1296 .owner = THIS_MODULE,
1297 .open = input_proc_handlers_open,
1298 .read = seq_read,
1299 .llseek = seq_lseek,
1300 .release = seq_release,
1301};
1302
1303static int __init input_proc_init(void)
1304{
1305 struct proc_dir_entry *entry;
1306
1307 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1308 if (!proc_bus_input_dir)
1309 return -ENOMEM;
1310
1311 entry = proc_create("devices", 0, proc_bus_input_dir,
1312 &input_devices_fileops);
1313 if (!entry)
1314 goto fail1;
1315
1316 entry = proc_create("handlers", 0, proc_bus_input_dir,
1317 &input_handlers_fileops);
1318 if (!entry)
1319 goto fail2;
1320
1321 return 0;
1322
1323 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1324 fail1: remove_proc_entry("bus/input", NULL);
1325 return -ENOMEM;
1326}
1327
1328static void input_proc_exit(void)
1329{
1330 remove_proc_entry("devices", proc_bus_input_dir);
1331 remove_proc_entry("handlers", proc_bus_input_dir);
1332 remove_proc_entry("bus/input", NULL);
1333}
1334
1335#else /* !CONFIG_PROC_FS */
1336static inline void input_wakeup_procfs_readers(void) { }
1337static inline int input_proc_init(void) { return 0; }
1338static inline void input_proc_exit(void) { }
1339#endif
1340
1341#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1342static ssize_t input_dev_show_##name(struct device *dev, \
1343 struct device_attribute *attr, \
1344 char *buf) \
1345{ \
1346 struct input_dev *input_dev = to_input_dev(dev); \
1347 \
1348 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1349 input_dev->name ? input_dev->name : ""); \
1350} \
1351static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1352
1353INPUT_DEV_STRING_ATTR_SHOW(name);
1354INPUT_DEV_STRING_ATTR_SHOW(phys);
1355INPUT_DEV_STRING_ATTR_SHOW(uniq);
1356
1357static int input_print_modalias_bits(char *buf, int size,
1358 char name, unsigned long *bm,
1359 unsigned int min_bit, unsigned int max_bit)
1360{
1361 int bit = min_bit;
1362 int len = 0;
1363
1364 len += snprintf(buf, max(size, 0), "%c", name);
1365 for_each_set_bit_from(bit, bm, max_bit)
1366 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1367 return len;
1368}
1369
1370static int input_print_modalias_parts(char *buf, int size, int full_len,
1371 struct input_dev *id)
1372{
1373 int len, klen, remainder, space;
1374
1375 len = snprintf(buf, max(size, 0),
1376 "input:b%04Xv%04Xp%04Xe%04X-",
1377 id->id.bustype, id->id.vendor,
1378 id->id.product, id->id.version);
1379
1380 len += input_print_modalias_bits(buf + len, size - len,
1381 'e', id->evbit, 0, EV_MAX);
1382
1383 /*
1384 * Calculate the remaining space in the buffer making sure we
1385 * have place for the terminating 0.
1386 */
1387 space = max(size - (len + 1), 0);
1388
1389 klen = input_print_modalias_bits(buf + len, size - len,
1390 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1391 len += klen;
1392
1393 /*
1394 * If we have more data than we can fit in the buffer, check
1395 * if we can trim key data to fit in the rest. We will indicate
1396 * that key data is incomplete by adding "+" sign at the end, like
1397 * this: * "k1,2,3,45,+,".
1398 *
1399 * Note that we shortest key info (if present) is "k+," so we
1400 * can only try to trim if key data is longer than that.
1401 */
1402 if (full_len && size < full_len + 1 && klen > 3) {
1403 remainder = full_len - len;
1404 /*
1405 * We can only trim if we have space for the remainder
1406 * and also for at least "k+," which is 3 more characters.
1407 */
1408 if (remainder <= space - 3) {
1409 int i;
1410 /*
1411 * We are guaranteed to have 'k' in the buffer, so
1412 * we need at least 3 additional bytes for storing
1413 * "+," in addition to the remainder.
1414 */
1415 for (i = size - 1 - remainder - 3; i >= 0; i--) {
1416 if (buf[i] == 'k' || buf[i] == ',') {
1417 strcpy(buf + i + 1, "+,");
1418 len = i + 3; /* Not counting '\0' */
1419 break;
1420 }
1421 }
1422 }
1423 }
1424
1425 len += input_print_modalias_bits(buf + len, size - len,
1426 'r', id->relbit, 0, REL_MAX);
1427 len += input_print_modalias_bits(buf + len, size - len,
1428 'a', id->absbit, 0, ABS_MAX);
1429 len += input_print_modalias_bits(buf + len, size - len,
1430 'm', id->mscbit, 0, MSC_MAX);
1431 len += input_print_modalias_bits(buf + len, size - len,
1432 'l', id->ledbit, 0, LED_MAX);
1433 len += input_print_modalias_bits(buf + len, size - len,
1434 's', id->sndbit, 0, SND_MAX);
1435 len += input_print_modalias_bits(buf + len, size - len,
1436 'f', id->ffbit, 0, FF_MAX);
1437 len += input_print_modalias_bits(buf + len, size - len,
1438 'w', id->swbit, 0, SW_MAX);
1439
1440 return len;
1441}
1442
1443static int input_print_modalias(char *buf, int size, struct input_dev *id)
1444{
1445 int full_len;
1446
1447 /*
1448 * Printing is done in 2 passes: first one figures out total length
1449 * needed for the modalias string, second one will try to trim key
1450 * data in case when buffer is too small for the entire modalias.
1451 * If the buffer is too small regardless, it will fill as much as it
1452 * can (without trimming key data) into the buffer and leave it to
1453 * the caller to figure out what to do with the result.
1454 */
1455 full_len = input_print_modalias_parts(NULL, 0, 0, id);
1456 return input_print_modalias_parts(buf, size, full_len, id);
1457}
1458
1459static ssize_t input_dev_show_modalias(struct device *dev,
1460 struct device_attribute *attr,
1461 char *buf)
1462{
1463 struct input_dev *id = to_input_dev(dev);
1464 ssize_t len;
1465
1466 len = input_print_modalias(buf, PAGE_SIZE, id);
1467 if (len < PAGE_SIZE - 2)
1468 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1469
1470 return min_t(int, len, PAGE_SIZE);
1471}
1472static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1473
1474static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1475 int max, int add_cr);
1476
1477static ssize_t input_dev_show_properties(struct device *dev,
1478 struct device_attribute *attr,
1479 char *buf)
1480{
1481 struct input_dev *input_dev = to_input_dev(dev);
1482 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1483 INPUT_PROP_MAX, true);
1484 return min_t(int, len, PAGE_SIZE);
1485}
1486static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1487
1488static struct attribute *input_dev_attrs[] = {
1489 &dev_attr_name.attr,
1490 &dev_attr_phys.attr,
1491 &dev_attr_uniq.attr,
1492 &dev_attr_modalias.attr,
1493 &dev_attr_properties.attr,
1494 NULL
1495};
1496
1497static const struct attribute_group input_dev_attr_group = {
1498 .attrs = input_dev_attrs,
1499};
1500
1501#define INPUT_DEV_ID_ATTR(name) \
1502static ssize_t input_dev_show_id_##name(struct device *dev, \
1503 struct device_attribute *attr, \
1504 char *buf) \
1505{ \
1506 struct input_dev *input_dev = to_input_dev(dev); \
1507 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1508} \
1509static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1510
1511INPUT_DEV_ID_ATTR(bustype);
1512INPUT_DEV_ID_ATTR(vendor);
1513INPUT_DEV_ID_ATTR(product);
1514INPUT_DEV_ID_ATTR(version);
1515
1516static struct attribute *input_dev_id_attrs[] = {
1517 &dev_attr_bustype.attr,
1518 &dev_attr_vendor.attr,
1519 &dev_attr_product.attr,
1520 &dev_attr_version.attr,
1521 NULL
1522};
1523
1524static const struct attribute_group input_dev_id_attr_group = {
1525 .name = "id",
1526 .attrs = input_dev_id_attrs,
1527};
1528
1529static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1530 int max, int add_cr)
1531{
1532 int i;
1533 int len = 0;
1534 bool skip_empty = true;
1535
1536 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1537 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1538 bitmap[i], skip_empty);
1539 if (len) {
1540 skip_empty = false;
1541 if (i > 0)
1542 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1543 }
1544 }
1545
1546 /*
1547 * If no output was produced print a single 0.
1548 */
1549 if (len == 0)
1550 len = snprintf(buf, buf_size, "%d", 0);
1551
1552 if (add_cr)
1553 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1554
1555 return len;
1556}
1557
1558#define INPUT_DEV_CAP_ATTR(ev, bm) \
1559static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1560 struct device_attribute *attr, \
1561 char *buf) \
1562{ \
1563 struct input_dev *input_dev = to_input_dev(dev); \
1564 int len = input_print_bitmap(buf, PAGE_SIZE, \
1565 input_dev->bm##bit, ev##_MAX, \
1566 true); \
1567 return min_t(int, len, PAGE_SIZE); \
1568} \
1569static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1570
1571INPUT_DEV_CAP_ATTR(EV, ev);
1572INPUT_DEV_CAP_ATTR(KEY, key);
1573INPUT_DEV_CAP_ATTR(REL, rel);
1574INPUT_DEV_CAP_ATTR(ABS, abs);
1575INPUT_DEV_CAP_ATTR(MSC, msc);
1576INPUT_DEV_CAP_ATTR(LED, led);
1577INPUT_DEV_CAP_ATTR(SND, snd);
1578INPUT_DEV_CAP_ATTR(FF, ff);
1579INPUT_DEV_CAP_ATTR(SW, sw);
1580
1581static struct attribute *input_dev_caps_attrs[] = {
1582 &dev_attr_ev.attr,
1583 &dev_attr_key.attr,
1584 &dev_attr_rel.attr,
1585 &dev_attr_abs.attr,
1586 &dev_attr_msc.attr,
1587 &dev_attr_led.attr,
1588 &dev_attr_snd.attr,
1589 &dev_attr_ff.attr,
1590 &dev_attr_sw.attr,
1591 NULL
1592};
1593
1594static const struct attribute_group input_dev_caps_attr_group = {
1595 .name = "capabilities",
1596 .attrs = input_dev_caps_attrs,
1597};
1598
1599static const struct attribute_group *input_dev_attr_groups[] = {
1600 &input_dev_attr_group,
1601 &input_dev_id_attr_group,
1602 &input_dev_caps_attr_group,
1603 &input_poller_attribute_group,
1604 NULL
1605};
1606
1607static void input_dev_release(struct device *device)
1608{
1609 struct input_dev *dev = to_input_dev(device);
1610
1611 input_ff_destroy(dev);
1612 input_mt_destroy_slots(dev);
1613 kfree(dev->poller);
1614 kfree(dev->absinfo);
1615 kfree(dev->vals);
1616 kfree(dev);
1617
1618 module_put(THIS_MODULE);
1619}
1620
1621/*
1622 * Input uevent interface - loading event handlers based on
1623 * device bitfields.
1624 */
1625static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1626 const char *name, unsigned long *bitmap, int max)
1627{
1628 int len;
1629
1630 if (add_uevent_var(env, "%s", name))
1631 return -ENOMEM;
1632
1633 len = input_print_bitmap(&env->buf[env->buflen - 1],
1634 sizeof(env->buf) - env->buflen,
1635 bitmap, max, false);
1636 if (len >= (sizeof(env->buf) - env->buflen))
1637 return -ENOMEM;
1638
1639 env->buflen += len;
1640 return 0;
1641}
1642
1643/*
1644 * This is a pretty gross hack. When building uevent data the driver core
1645 * may try adding more environment variables to kobj_uevent_env without
1646 * telling us, so we have no idea how much of the buffer we can use to
1647 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1648 * reduce amount of memory we will use for the modalias environment variable.
1649 *
1650 * The potential additions are:
1651 *
1652 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1653 * HOME=/ (6 bytes)
1654 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1655 *
1656 * 68 bytes total. Allow extra buffer - 96 bytes
1657 */
1658#define UEVENT_ENV_EXTRA_LEN 96
1659
1660static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1661 struct input_dev *dev)
1662{
1663 int len;
1664
1665 if (add_uevent_var(env, "MODALIAS="))
1666 return -ENOMEM;
1667
1668 len = input_print_modalias(&env->buf[env->buflen - 1],
1669 (int)sizeof(env->buf) - env->buflen -
1670 UEVENT_ENV_EXTRA_LEN,
1671 dev);
1672 if (len >= ((int)sizeof(env->buf) - env->buflen -
1673 UEVENT_ENV_EXTRA_LEN))
1674 return -ENOMEM;
1675
1676 env->buflen += len;
1677 return 0;
1678}
1679
1680#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1681 do { \
1682 int err = add_uevent_var(env, fmt, val); \
1683 if (err) \
1684 return err; \
1685 } while (0)
1686
1687#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1688 do { \
1689 int err = input_add_uevent_bm_var(env, name, bm, max); \
1690 if (err) \
1691 return err; \
1692 } while (0)
1693
1694#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1695 do { \
1696 int err = input_add_uevent_modalias_var(env, dev); \
1697 if (err) \
1698 return err; \
1699 } while (0)
1700
1701static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1702{
1703 struct input_dev *dev = to_input_dev(device);
1704
1705 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1706 dev->id.bustype, dev->id.vendor,
1707 dev->id.product, dev->id.version);
1708 if (dev->name)
1709 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1710 if (dev->phys)
1711 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1712 if (dev->uniq)
1713 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1714
1715 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1716
1717 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1718 if (test_bit(EV_KEY, dev->evbit))
1719 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1720 if (test_bit(EV_REL, dev->evbit))
1721 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1722 if (test_bit(EV_ABS, dev->evbit))
1723 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1724 if (test_bit(EV_MSC, dev->evbit))
1725 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1726 if (test_bit(EV_LED, dev->evbit))
1727 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1728 if (test_bit(EV_SND, dev->evbit))
1729 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1730 if (test_bit(EV_FF, dev->evbit))
1731 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1732 if (test_bit(EV_SW, dev->evbit))
1733 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1734
1735 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1736
1737 return 0;
1738}
1739
1740#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1741 do { \
1742 int i; \
1743 bool active; \
1744 \
1745 if (!test_bit(EV_##type, dev->evbit)) \
1746 break; \
1747 \
1748 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1749 active = test_bit(i, dev->bits); \
1750 if (!active && !on) \
1751 continue; \
1752 \
1753 dev->event(dev, EV_##type, i, on ? active : 0); \
1754 } \
1755 } while (0)
1756
1757static void input_dev_toggle(struct input_dev *dev, bool activate)
1758{
1759 if (!dev->event)
1760 return;
1761
1762 INPUT_DO_TOGGLE(dev, LED, led, activate);
1763 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1764
1765 if (activate && test_bit(EV_REP, dev->evbit)) {
1766 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1767 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1768 }
1769}
1770
1771/**
1772 * input_reset_device() - reset/restore the state of input device
1773 * @dev: input device whose state needs to be reset
1774 *
1775 * This function tries to reset the state of an opened input device and
1776 * bring internal state and state if the hardware in sync with each other.
1777 * We mark all keys as released, restore LED state, repeat rate, etc.
1778 */
1779void input_reset_device(struct input_dev *dev)
1780{
1781 unsigned long flags;
1782
1783 mutex_lock(&dev->mutex);
1784 spin_lock_irqsave(&dev->event_lock, flags);
1785
1786 input_dev_toggle(dev, true);
1787 input_dev_release_keys(dev);
1788
1789 spin_unlock_irqrestore(&dev->event_lock, flags);
1790 mutex_unlock(&dev->mutex);
1791}
1792EXPORT_SYMBOL(input_reset_device);
1793
1794#ifdef CONFIG_PM_SLEEP
1795static int input_dev_suspend(struct device *dev)
1796{
1797 struct input_dev *input_dev = to_input_dev(dev);
1798
1799 spin_lock_irq(&input_dev->event_lock);
1800
1801 /*
1802 * Keys that are pressed now are unlikely to be
1803 * still pressed when we resume.
1804 */
1805 input_dev_release_keys(input_dev);
1806
1807 /* Turn off LEDs and sounds, if any are active. */
1808 input_dev_toggle(input_dev, false);
1809
1810 spin_unlock_irq(&input_dev->event_lock);
1811
1812 return 0;
1813}
1814
1815static int input_dev_resume(struct device *dev)
1816{
1817 struct input_dev *input_dev = to_input_dev(dev);
1818
1819 spin_lock_irq(&input_dev->event_lock);
1820
1821 /* Restore state of LEDs and sounds, if any were active. */
1822 input_dev_toggle(input_dev, true);
1823
1824 spin_unlock_irq(&input_dev->event_lock);
1825
1826 return 0;
1827}
1828
1829static int input_dev_freeze(struct device *dev)
1830{
1831 struct input_dev *input_dev = to_input_dev(dev);
1832
1833 spin_lock_irq(&input_dev->event_lock);
1834
1835 /*
1836 * Keys that are pressed now are unlikely to be
1837 * still pressed when we resume.
1838 */
1839 input_dev_release_keys(input_dev);
1840
1841 spin_unlock_irq(&input_dev->event_lock);
1842
1843 return 0;
1844}
1845
1846static int input_dev_poweroff(struct device *dev)
1847{
1848 struct input_dev *input_dev = to_input_dev(dev);
1849
1850 spin_lock_irq(&input_dev->event_lock);
1851
1852 /* Turn off LEDs and sounds, if any are active. */
1853 input_dev_toggle(input_dev, false);
1854
1855 spin_unlock_irq(&input_dev->event_lock);
1856
1857 return 0;
1858}
1859
1860static const struct dev_pm_ops input_dev_pm_ops = {
1861 .suspend = input_dev_suspend,
1862 .resume = input_dev_resume,
1863 .freeze = input_dev_freeze,
1864 .poweroff = input_dev_poweroff,
1865 .restore = input_dev_resume,
1866};
1867#endif /* CONFIG_PM */
1868
1869static const struct device_type input_dev_type = {
1870 .groups = input_dev_attr_groups,
1871 .release = input_dev_release,
1872 .uevent = input_dev_uevent,
1873#ifdef CONFIG_PM_SLEEP
1874 .pm = &input_dev_pm_ops,
1875#endif
1876};
1877
1878static char *input_devnode(struct device *dev, umode_t *mode)
1879{
1880 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1881}
1882
1883struct class input_class = {
1884 .name = "input",
1885 .devnode = input_devnode,
1886};
1887EXPORT_SYMBOL_GPL(input_class);
1888
1889/**
1890 * input_allocate_device - allocate memory for new input device
1891 *
1892 * Returns prepared struct input_dev or %NULL.
1893 *
1894 * NOTE: Use input_free_device() to free devices that have not been
1895 * registered; input_unregister_device() should be used for already
1896 * registered devices.
1897 */
1898struct input_dev *input_allocate_device(void)
1899{
1900 static atomic_t input_no = ATOMIC_INIT(-1);
1901 struct input_dev *dev;
1902
1903 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1904 if (dev) {
1905 dev->dev.type = &input_dev_type;
1906 dev->dev.class = &input_class;
1907 device_initialize(&dev->dev);
1908 mutex_init(&dev->mutex);
1909 spin_lock_init(&dev->event_lock);
1910 timer_setup(&dev->timer, NULL, 0);
1911 INIT_LIST_HEAD(&dev->h_list);
1912 INIT_LIST_HEAD(&dev->node);
1913
1914 dev_set_name(&dev->dev, "input%lu",
1915 (unsigned long)atomic_inc_return(&input_no));
1916
1917 __module_get(THIS_MODULE);
1918 }
1919
1920 return dev;
1921}
1922EXPORT_SYMBOL(input_allocate_device);
1923
1924struct input_devres {
1925 struct input_dev *input;
1926};
1927
1928static int devm_input_device_match(struct device *dev, void *res, void *data)
1929{
1930 struct input_devres *devres = res;
1931
1932 return devres->input == data;
1933}
1934
1935static void devm_input_device_release(struct device *dev, void *res)
1936{
1937 struct input_devres *devres = res;
1938 struct input_dev *input = devres->input;
1939
1940 dev_dbg(dev, "%s: dropping reference to %s\n",
1941 __func__, dev_name(&input->dev));
1942 input_put_device(input);
1943}
1944
1945/**
1946 * devm_input_allocate_device - allocate managed input device
1947 * @dev: device owning the input device being created
1948 *
1949 * Returns prepared struct input_dev or %NULL.
1950 *
1951 * Managed input devices do not need to be explicitly unregistered or
1952 * freed as it will be done automatically when owner device unbinds from
1953 * its driver (or binding fails). Once managed input device is allocated,
1954 * it is ready to be set up and registered in the same fashion as regular
1955 * input device. There are no special devm_input_device_[un]register()
1956 * variants, regular ones work with both managed and unmanaged devices,
1957 * should you need them. In most cases however, managed input device need
1958 * not be explicitly unregistered or freed.
1959 *
1960 * NOTE: the owner device is set up as parent of input device and users
1961 * should not override it.
1962 */
1963struct input_dev *devm_input_allocate_device(struct device *dev)
1964{
1965 struct input_dev *input;
1966 struct input_devres *devres;
1967
1968 devres = devres_alloc(devm_input_device_release,
1969 sizeof(*devres), GFP_KERNEL);
1970 if (!devres)
1971 return NULL;
1972
1973 input = input_allocate_device();
1974 if (!input) {
1975 devres_free(devres);
1976 return NULL;
1977 }
1978
1979 input->dev.parent = dev;
1980 input->devres_managed = true;
1981
1982 devres->input = input;
1983 devres_add(dev, devres);
1984
1985 return input;
1986}
1987EXPORT_SYMBOL(devm_input_allocate_device);
1988
1989/**
1990 * input_free_device - free memory occupied by input_dev structure
1991 * @dev: input device to free
1992 *
1993 * This function should only be used if input_register_device()
1994 * was not called yet or if it failed. Once device was registered
1995 * use input_unregister_device() and memory will be freed once last
1996 * reference to the device is dropped.
1997 *
1998 * Device should be allocated by input_allocate_device().
1999 *
2000 * NOTE: If there are references to the input device then memory
2001 * will not be freed until last reference is dropped.
2002 */
2003void input_free_device(struct input_dev *dev)
2004{
2005 if (dev) {
2006 if (dev->devres_managed)
2007 WARN_ON(devres_destroy(dev->dev.parent,
2008 devm_input_device_release,
2009 devm_input_device_match,
2010 dev));
2011 input_put_device(dev);
2012 }
2013}
2014EXPORT_SYMBOL(input_free_device);
2015
2016/**
2017 * input_set_timestamp - set timestamp for input events
2018 * @dev: input device to set timestamp for
2019 * @timestamp: the time at which the event has occurred
2020 * in CLOCK_MONOTONIC
2021 *
2022 * This function is intended to provide to the input system a more
2023 * accurate time of when an event actually occurred. The driver should
2024 * call this function as soon as a timestamp is acquired ensuring
2025 * clock conversions in input_set_timestamp are done correctly.
2026 *
2027 * The system entering suspend state between timestamp acquisition and
2028 * calling input_set_timestamp can result in inaccurate conversions.
2029 */
2030void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2031{
2032 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2033 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2034 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2035 TK_OFFS_BOOT);
2036}
2037EXPORT_SYMBOL(input_set_timestamp);
2038
2039/**
2040 * input_get_timestamp - get timestamp for input events
2041 * @dev: input device to get timestamp from
2042 *
2043 * A valid timestamp is a timestamp of non-zero value.
2044 */
2045ktime_t *input_get_timestamp(struct input_dev *dev)
2046{
2047 const ktime_t invalid_timestamp = ktime_set(0, 0);
2048
2049 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2050 input_set_timestamp(dev, ktime_get());
2051
2052 return dev->timestamp;
2053}
2054EXPORT_SYMBOL(input_get_timestamp);
2055
2056/**
2057 * input_set_capability - mark device as capable of a certain event
2058 * @dev: device that is capable of emitting or accepting event
2059 * @type: type of the event (EV_KEY, EV_REL, etc...)
2060 * @code: event code
2061 *
2062 * In addition to setting up corresponding bit in appropriate capability
2063 * bitmap the function also adjusts dev->evbit.
2064 */
2065void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2066{
2067 if (type < EV_CNT && input_max_code[type] &&
2068 code > input_max_code[type]) {
2069 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2070 type);
2071 dump_stack();
2072 return;
2073 }
2074
2075 switch (type) {
2076 case EV_KEY:
2077 __set_bit(code, dev->keybit);
2078 break;
2079
2080 case EV_REL:
2081 __set_bit(code, dev->relbit);
2082 break;
2083
2084 case EV_ABS:
2085 input_alloc_absinfo(dev);
2086 if (!dev->absinfo)
2087 return;
2088
2089 __set_bit(code, dev->absbit);
2090 break;
2091
2092 case EV_MSC:
2093 __set_bit(code, dev->mscbit);
2094 break;
2095
2096 case EV_SW:
2097 __set_bit(code, dev->swbit);
2098 break;
2099
2100 case EV_LED:
2101 __set_bit(code, dev->ledbit);
2102 break;
2103
2104 case EV_SND:
2105 __set_bit(code, dev->sndbit);
2106 break;
2107
2108 case EV_FF:
2109 __set_bit(code, dev->ffbit);
2110 break;
2111
2112 case EV_PWR:
2113 /* do nothing */
2114 break;
2115
2116 default:
2117 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2118 dump_stack();
2119 return;
2120 }
2121
2122 __set_bit(type, dev->evbit);
2123}
2124EXPORT_SYMBOL(input_set_capability);
2125
2126static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2127{
2128 int mt_slots;
2129 int i;
2130 unsigned int events;
2131
2132 if (dev->mt) {
2133 mt_slots = dev->mt->num_slots;
2134 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2135 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2136 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2137 mt_slots = clamp(mt_slots, 2, 32);
2138 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2139 mt_slots = 2;
2140 } else {
2141 mt_slots = 0;
2142 }
2143
2144 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2145
2146 if (test_bit(EV_ABS, dev->evbit))
2147 for_each_set_bit(i, dev->absbit, ABS_CNT)
2148 events += input_is_mt_axis(i) ? mt_slots : 1;
2149
2150 if (test_bit(EV_REL, dev->evbit))
2151 events += bitmap_weight(dev->relbit, REL_CNT);
2152
2153 /* Make room for KEY and MSC events */
2154 events += 7;
2155
2156 return events;
2157}
2158
2159#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2160 do { \
2161 if (!test_bit(EV_##type, dev->evbit)) \
2162 memset(dev->bits##bit, 0, \
2163 sizeof(dev->bits##bit)); \
2164 } while (0)
2165
2166static void input_cleanse_bitmasks(struct input_dev *dev)
2167{
2168 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2169 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2170 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2171 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2172 INPUT_CLEANSE_BITMASK(dev, LED, led);
2173 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2174 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2175 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2176}
2177
2178static void __input_unregister_device(struct input_dev *dev)
2179{
2180 struct input_handle *handle, *next;
2181
2182 input_disconnect_device(dev);
2183
2184 mutex_lock(&input_mutex);
2185
2186 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2187 handle->handler->disconnect(handle);
2188 WARN_ON(!list_empty(&dev->h_list));
2189
2190 del_timer_sync(&dev->timer);
2191 list_del_init(&dev->node);
2192
2193 input_wakeup_procfs_readers();
2194
2195 mutex_unlock(&input_mutex);
2196
2197 device_del(&dev->dev);
2198}
2199
2200static void devm_input_device_unregister(struct device *dev, void *res)
2201{
2202 struct input_devres *devres = res;
2203 struct input_dev *input = devres->input;
2204
2205 dev_dbg(dev, "%s: unregistering device %s\n",
2206 __func__, dev_name(&input->dev));
2207 __input_unregister_device(input);
2208}
2209
2210/**
2211 * input_enable_softrepeat - enable software autorepeat
2212 * @dev: input device
2213 * @delay: repeat delay
2214 * @period: repeat period
2215 *
2216 * Enable software autorepeat on the input device.
2217 */
2218void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2219{
2220 dev->timer.function = input_repeat_key;
2221 dev->rep[REP_DELAY] = delay;
2222 dev->rep[REP_PERIOD] = period;
2223}
2224EXPORT_SYMBOL(input_enable_softrepeat);
2225
2226/**
2227 * input_register_device - register device with input core
2228 * @dev: device to be registered
2229 *
2230 * This function registers device with input core. The device must be
2231 * allocated with input_allocate_device() and all it's capabilities
2232 * set up before registering.
2233 * If function fails the device must be freed with input_free_device().
2234 * Once device has been successfully registered it can be unregistered
2235 * with input_unregister_device(); input_free_device() should not be
2236 * called in this case.
2237 *
2238 * Note that this function is also used to register managed input devices
2239 * (ones allocated with devm_input_allocate_device()). Such managed input
2240 * devices need not be explicitly unregistered or freed, their tear down
2241 * is controlled by the devres infrastructure. It is also worth noting
2242 * that tear down of managed input devices is internally a 2-step process:
2243 * registered managed input device is first unregistered, but stays in
2244 * memory and can still handle input_event() calls (although events will
2245 * not be delivered anywhere). The freeing of managed input device will
2246 * happen later, when devres stack is unwound to the point where device
2247 * allocation was made.
2248 */
2249int input_register_device(struct input_dev *dev)
2250{
2251 struct input_devres *devres = NULL;
2252 struct input_handler *handler;
2253 unsigned int packet_size;
2254 const char *path;
2255 int error;
2256
2257 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2258 dev_err(&dev->dev,
2259 "Absolute device without dev->absinfo, refusing to register\n");
2260 return -EINVAL;
2261 }
2262
2263 if (dev->devres_managed) {
2264 devres = devres_alloc(devm_input_device_unregister,
2265 sizeof(*devres), GFP_KERNEL);
2266 if (!devres)
2267 return -ENOMEM;
2268
2269 devres->input = dev;
2270 }
2271
2272 /* Every input device generates EV_SYN/SYN_REPORT events. */
2273 __set_bit(EV_SYN, dev->evbit);
2274
2275 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2276 __clear_bit(KEY_RESERVED, dev->keybit);
2277
2278 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2279 input_cleanse_bitmasks(dev);
2280
2281 packet_size = input_estimate_events_per_packet(dev);
2282 if (dev->hint_events_per_packet < packet_size)
2283 dev->hint_events_per_packet = packet_size;
2284
2285 dev->max_vals = dev->hint_events_per_packet + 2;
2286 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2287 if (!dev->vals) {
2288 error = -ENOMEM;
2289 goto err_devres_free;
2290 }
2291
2292 /*
2293 * If delay and period are pre-set by the driver, then autorepeating
2294 * is handled by the driver itself and we don't do it in input.c.
2295 */
2296 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2297 input_enable_softrepeat(dev, 250, 33);
2298
2299 if (!dev->getkeycode)
2300 dev->getkeycode = input_default_getkeycode;
2301
2302 if (!dev->setkeycode)
2303 dev->setkeycode = input_default_setkeycode;
2304
2305 if (dev->poller)
2306 input_dev_poller_finalize(dev->poller);
2307
2308 error = device_add(&dev->dev);
2309 if (error)
2310 goto err_free_vals;
2311
2312 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2313 pr_info("%s as %s\n",
2314 dev->name ? dev->name : "Unspecified device",
2315 path ? path : "N/A");
2316 kfree(path);
2317
2318 error = mutex_lock_interruptible(&input_mutex);
2319 if (error)
2320 goto err_device_del;
2321
2322 list_add_tail(&dev->node, &input_dev_list);
2323
2324 list_for_each_entry(handler, &input_handler_list, node)
2325 input_attach_handler(dev, handler);
2326
2327 input_wakeup_procfs_readers();
2328
2329 mutex_unlock(&input_mutex);
2330
2331 if (dev->devres_managed) {
2332 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2333 __func__, dev_name(&dev->dev));
2334 devres_add(dev->dev.parent, devres);
2335 }
2336 return 0;
2337
2338err_device_del:
2339 device_del(&dev->dev);
2340err_free_vals:
2341 kfree(dev->vals);
2342 dev->vals = NULL;
2343err_devres_free:
2344 devres_free(devres);
2345 return error;
2346}
2347EXPORT_SYMBOL(input_register_device);
2348
2349/**
2350 * input_unregister_device - unregister previously registered device
2351 * @dev: device to be unregistered
2352 *
2353 * This function unregisters an input device. Once device is unregistered
2354 * the caller should not try to access it as it may get freed at any moment.
2355 */
2356void input_unregister_device(struct input_dev *dev)
2357{
2358 if (dev->devres_managed) {
2359 WARN_ON(devres_destroy(dev->dev.parent,
2360 devm_input_device_unregister,
2361 devm_input_device_match,
2362 dev));
2363 __input_unregister_device(dev);
2364 /*
2365 * We do not do input_put_device() here because it will be done
2366 * when 2nd devres fires up.
2367 */
2368 } else {
2369 __input_unregister_device(dev);
2370 input_put_device(dev);
2371 }
2372}
2373EXPORT_SYMBOL(input_unregister_device);
2374
2375/**
2376 * input_register_handler - register a new input handler
2377 * @handler: handler to be registered
2378 *
2379 * This function registers a new input handler (interface) for input
2380 * devices in the system and attaches it to all input devices that
2381 * are compatible with the handler.
2382 */
2383int input_register_handler(struct input_handler *handler)
2384{
2385 struct input_dev *dev;
2386 int error;
2387
2388 error = mutex_lock_interruptible(&input_mutex);
2389 if (error)
2390 return error;
2391
2392 INIT_LIST_HEAD(&handler->h_list);
2393
2394 list_add_tail(&handler->node, &input_handler_list);
2395
2396 list_for_each_entry(dev, &input_dev_list, node)
2397 input_attach_handler(dev, handler);
2398
2399 input_wakeup_procfs_readers();
2400
2401 mutex_unlock(&input_mutex);
2402 return 0;
2403}
2404EXPORT_SYMBOL(input_register_handler);
2405
2406/**
2407 * input_unregister_handler - unregisters an input handler
2408 * @handler: handler to be unregistered
2409 *
2410 * This function disconnects a handler from its input devices and
2411 * removes it from lists of known handlers.
2412 */
2413void input_unregister_handler(struct input_handler *handler)
2414{
2415 struct input_handle *handle, *next;
2416
2417 mutex_lock(&input_mutex);
2418
2419 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2420 handler->disconnect(handle);
2421 WARN_ON(!list_empty(&handler->h_list));
2422
2423 list_del_init(&handler->node);
2424
2425 input_wakeup_procfs_readers();
2426
2427 mutex_unlock(&input_mutex);
2428}
2429EXPORT_SYMBOL(input_unregister_handler);
2430
2431/**
2432 * input_handler_for_each_handle - handle iterator
2433 * @handler: input handler to iterate
2434 * @data: data for the callback
2435 * @fn: function to be called for each handle
2436 *
2437 * Iterate over @bus's list of devices, and call @fn for each, passing
2438 * it @data and stop when @fn returns a non-zero value. The function is
2439 * using RCU to traverse the list and therefore may be using in atomic
2440 * contexts. The @fn callback is invoked from RCU critical section and
2441 * thus must not sleep.
2442 */
2443int input_handler_for_each_handle(struct input_handler *handler, void *data,
2444 int (*fn)(struct input_handle *, void *))
2445{
2446 struct input_handle *handle;
2447 int retval = 0;
2448
2449 rcu_read_lock();
2450
2451 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2452 retval = fn(handle, data);
2453 if (retval)
2454 break;
2455 }
2456
2457 rcu_read_unlock();
2458
2459 return retval;
2460}
2461EXPORT_SYMBOL(input_handler_for_each_handle);
2462
2463/**
2464 * input_register_handle - register a new input handle
2465 * @handle: handle to register
2466 *
2467 * This function puts a new input handle onto device's
2468 * and handler's lists so that events can flow through
2469 * it once it is opened using input_open_device().
2470 *
2471 * This function is supposed to be called from handler's
2472 * connect() method.
2473 */
2474int input_register_handle(struct input_handle *handle)
2475{
2476 struct input_handler *handler = handle->handler;
2477 struct input_dev *dev = handle->dev;
2478 int error;
2479
2480 /*
2481 * We take dev->mutex here to prevent race with
2482 * input_release_device().
2483 */
2484 error = mutex_lock_interruptible(&dev->mutex);
2485 if (error)
2486 return error;
2487
2488 /*
2489 * Filters go to the head of the list, normal handlers
2490 * to the tail.
2491 */
2492 if (handler->filter)
2493 list_add_rcu(&handle->d_node, &dev->h_list);
2494 else
2495 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2496
2497 mutex_unlock(&dev->mutex);
2498
2499 /*
2500 * Since we are supposed to be called from ->connect()
2501 * which is mutually exclusive with ->disconnect()
2502 * we can't be racing with input_unregister_handle()
2503 * and so separate lock is not needed here.
2504 */
2505 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2506
2507 if (handler->start)
2508 handler->start(handle);
2509
2510 return 0;
2511}
2512EXPORT_SYMBOL(input_register_handle);
2513
2514/**
2515 * input_unregister_handle - unregister an input handle
2516 * @handle: handle to unregister
2517 *
2518 * This function removes input handle from device's
2519 * and handler's lists.
2520 *
2521 * This function is supposed to be called from handler's
2522 * disconnect() method.
2523 */
2524void input_unregister_handle(struct input_handle *handle)
2525{
2526 struct input_dev *dev = handle->dev;
2527
2528 list_del_rcu(&handle->h_node);
2529
2530 /*
2531 * Take dev->mutex to prevent race with input_release_device().
2532 */
2533 mutex_lock(&dev->mutex);
2534 list_del_rcu(&handle->d_node);
2535 mutex_unlock(&dev->mutex);
2536
2537 synchronize_rcu();
2538}
2539EXPORT_SYMBOL(input_unregister_handle);
2540
2541/**
2542 * input_get_new_minor - allocates a new input minor number
2543 * @legacy_base: beginning or the legacy range to be searched
2544 * @legacy_num: size of legacy range
2545 * @allow_dynamic: whether we can also take ID from the dynamic range
2546 *
2547 * This function allocates a new device minor for from input major namespace.
2548 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2549 * parameters and whether ID can be allocated from dynamic range if there are
2550 * no free IDs in legacy range.
2551 */
2552int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2553 bool allow_dynamic)
2554{
2555 /*
2556 * This function should be called from input handler's ->connect()
2557 * methods, which are serialized with input_mutex, so no additional
2558 * locking is needed here.
2559 */
2560 if (legacy_base >= 0) {
2561 int minor = ida_simple_get(&input_ida,
2562 legacy_base,
2563 legacy_base + legacy_num,
2564 GFP_KERNEL);
2565 if (minor >= 0 || !allow_dynamic)
2566 return minor;
2567 }
2568
2569 return ida_simple_get(&input_ida,
2570 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2571 GFP_KERNEL);
2572}
2573EXPORT_SYMBOL(input_get_new_minor);
2574
2575/**
2576 * input_free_minor - release previously allocated minor
2577 * @minor: minor to be released
2578 *
2579 * This function releases previously allocated input minor so that it can be
2580 * reused later.
2581 */
2582void input_free_minor(unsigned int minor)
2583{
2584 ida_simple_remove(&input_ida, minor);
2585}
2586EXPORT_SYMBOL(input_free_minor);
2587
2588static int __init input_init(void)
2589{
2590 int err;
2591
2592 err = class_register(&input_class);
2593 if (err) {
2594 pr_err("unable to register input_dev class\n");
2595 return err;
2596 }
2597
2598 err = input_proc_init();
2599 if (err)
2600 goto fail1;
2601
2602 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2603 INPUT_MAX_CHAR_DEVICES, "input");
2604 if (err) {
2605 pr_err("unable to register char major %d", INPUT_MAJOR);
2606 goto fail2;
2607 }
2608
2609 return 0;
2610
2611 fail2: input_proc_exit();
2612 fail1: class_unregister(&input_class);
2613 return err;
2614}
2615
2616static void __exit input_exit(void)
2617{
2618 input_proc_exit();
2619 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2620 INPUT_MAX_CHAR_DEVICES);
2621 class_unregister(&input_class);
2622}
2623
2624subsys_initcall(input_init);
2625module_exit(input_exit);