blob: d02636c6c99e6c80d6996c6f7346bad9e5eecfa5 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interconnect framework core driver
4 *
5 * Copyright (c) 2017-2019, Linaro Ltd.
6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
7 */
8
9#include <linux/debugfs.h>
10#include <linux/device.h>
11#include <linux/idr.h>
12#include <linux/init.h>
13#include <linux/interconnect.h>
14#include <linux/interconnect-provider.h>
15#include <linux/list.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20#include <linux/overflow.h>
21
22#include "internal.h"
23
24#define CREATE_TRACE_POINTS
25#include "trace.h"
26
27static DEFINE_IDR(icc_idr);
28static LIST_HEAD(icc_providers);
29static DEFINE_MUTEX(icc_lock);
30static struct dentry *icc_debugfs_dir;
31
32static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
33{
34 if (!n)
35 return;
36
37 seq_printf(s, "%-30s %12u %12u\n",
38 n->name, n->avg_bw, n->peak_bw);
39}
40
41static int icc_summary_show(struct seq_file *s, void *data)
42{
43 struct icc_provider *provider;
44
45 seq_puts(s, " node avg peak\n");
46 seq_puts(s, "--------------------------------------------------------\n");
47
48 mutex_lock(&icc_lock);
49
50 list_for_each_entry(provider, &icc_providers, provider_list) {
51 struct icc_node *n;
52
53 list_for_each_entry(n, &provider->nodes, node_list) {
54 struct icc_req *r;
55
56 icc_summary_show_one(s, n);
57 hlist_for_each_entry(r, &n->req_list, req_node) {
58 if (!r->dev)
59 continue;
60
61 seq_printf(s, " %-26s %12u %12u\n",
62 dev_name(r->dev), r->avg_bw,
63 r->peak_bw);
64 }
65 }
66 }
67
68 mutex_unlock(&icc_lock);
69
70 return 0;
71}
72DEFINE_SHOW_ATTRIBUTE(icc_summary);
73
74static struct icc_node *node_find(const int id)
75{
76 return idr_find(&icc_idr, id);
77}
78
79static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
80 ssize_t num_nodes)
81{
82 struct icc_node *node = dst;
83 struct icc_path *path;
84 int i;
85
86 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
87 if (!path)
88 return ERR_PTR(-ENOMEM);
89
90 path->num_nodes = num_nodes;
91
92 for (i = num_nodes - 1; i >= 0; i--) {
93 node->provider->users++;
94 hlist_add_head(&path->reqs[i].req_node, &node->req_list);
95 path->reqs[i].node = node;
96 path->reqs[i].dev = dev;
97 path->reqs[i].enabled = true;
98 /* reference to previous node was saved during path traversal */
99 node = node->reverse;
100 }
101
102 return path;
103}
104
105static struct icc_path *path_find(struct device *dev, struct icc_node *src,
106 struct icc_node *dst)
107{
108 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
109 struct icc_node *n, *node = NULL;
110 struct list_head traverse_list;
111 struct list_head edge_list;
112 struct list_head visited_list;
113 size_t i, depth = 1;
114 bool found = false;
115
116 INIT_LIST_HEAD(&traverse_list);
117 INIT_LIST_HEAD(&edge_list);
118 INIT_LIST_HEAD(&visited_list);
119
120 list_add(&src->search_list, &traverse_list);
121 src->reverse = NULL;
122
123 do {
124 list_for_each_entry_safe(node, n, &traverse_list, search_list) {
125 if (node == dst) {
126 found = true;
127 list_splice_init(&edge_list, &visited_list);
128 list_splice_init(&traverse_list, &visited_list);
129 break;
130 }
131 for (i = 0; i < node->num_links; i++) {
132 struct icc_node *tmp = node->links[i];
133
134 if (!tmp) {
135 path = ERR_PTR(-ENOENT);
136 goto out;
137 }
138
139 if (tmp->is_traversed)
140 continue;
141
142 tmp->is_traversed = true;
143 tmp->reverse = node;
144 list_add_tail(&tmp->search_list, &edge_list);
145 }
146 }
147
148 if (found)
149 break;
150
151 list_splice_init(&traverse_list, &visited_list);
152 list_splice_init(&edge_list, &traverse_list);
153
154 /* count the hops including the source */
155 depth++;
156
157 } while (!list_empty(&traverse_list));
158
159out:
160
161 /* reset the traversed state */
162 list_for_each_entry_reverse(n, &visited_list, search_list)
163 n->is_traversed = false;
164
165 if (found)
166 path = path_init(dev, dst, depth);
167
168 return path;
169}
170
171/*
172 * We want the path to honor all bandwidth requests, so the average and peak
173 * bandwidth requirements from each consumer are aggregated at each node.
174 * The aggregation is platform specific, so each platform can customize it by
175 * implementing its own aggregate() function.
176 */
177
178static int aggregate_requests(struct icc_node *node)
179{
180 struct icc_provider *p = node->provider;
181 struct icc_req *r;
182 u32 avg_bw, peak_bw;
183
184 node->avg_bw = 0;
185 node->peak_bw = 0;
186
187 if (p->pre_aggregate)
188 p->pre_aggregate(node);
189
190 hlist_for_each_entry(r, &node->req_list, req_node) {
191 if (r->enabled) {
192 avg_bw = r->avg_bw;
193 peak_bw = r->peak_bw;
194 } else {
195 avg_bw = 0;
196 peak_bw = 0;
197 }
198 p->aggregate(node, r->tag, avg_bw, peak_bw,
199 &node->avg_bw, &node->peak_bw);
200 }
201
202 return 0;
203}
204
205static int apply_constraints(struct icc_path *path)
206{
207 struct icc_node *next, *prev = NULL;
208 int ret = -EINVAL;
209 int i;
210
211 for (i = 0; i < path->num_nodes; i++) {
212 next = path->reqs[i].node;
213
214 /*
215 * Both endpoints should be valid master-slave pairs of the
216 * same interconnect provider that will be configured.
217 */
218 if (!prev || next->provider != prev->provider) {
219 prev = next;
220 continue;
221 }
222
223 /* set the constraints */
224 ret = next->provider->set(prev, next);
225 if (ret)
226 goto out;
227
228 prev = next;
229 }
230out:
231 return ret;
232}
233
234/* of_icc_xlate_onecell() - Translate function using a single index.
235 * @spec: OF phandle args to map into an interconnect node.
236 * @data: private data (pointer to struct icc_onecell_data)
237 *
238 * This is a generic translate function that can be used to model simple
239 * interconnect providers that have one device tree node and provide
240 * multiple interconnect nodes. A single cell is used as an index into
241 * an array of icc nodes specified in the icc_onecell_data struct when
242 * registering the provider.
243 */
244struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
245 void *data)
246{
247 struct icc_onecell_data *icc_data = data;
248 unsigned int idx = spec->args[0];
249
250 if (idx >= icc_data->num_nodes) {
251 pr_err("%s: invalid index %u\n", __func__, idx);
252 return ERR_PTR(-EINVAL);
253 }
254
255 return icc_data->nodes[idx];
256}
257EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
258
259/**
260 * of_icc_get_from_provider() - Look-up interconnect node
261 * @spec: OF phandle args to use for look-up
262 *
263 * Looks for interconnect provider under the node specified by @spec and if
264 * found, uses xlate function of the provider to map phandle args to node.
265 *
266 * Returns a valid pointer to struct icc_node on success or ERR_PTR()
267 * on failure.
268 */
269static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
270{
271 struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
272 struct icc_provider *provider;
273
274 if (!spec || spec->args_count != 1)
275 return ERR_PTR(-EINVAL);
276
277 mutex_lock(&icc_lock);
278 list_for_each_entry(provider, &icc_providers, provider_list) {
279 if (provider->dev->of_node == spec->np)
280 node = provider->xlate(spec, provider->data);
281 if (!IS_ERR(node))
282 break;
283 }
284 mutex_unlock(&icc_lock);
285
286 if (!node)
287 return ERR_PTR(-EINVAL);
288
289 return node;
290}
291
292/**
293 * of_icc_get() - get a path handle from a DT node based on name
294 * @dev: device pointer for the consumer device
295 * @name: interconnect path name
296 *
297 * This function will search for a path between two endpoints and return an
298 * icc_path handle on success. Use icc_put() to release constraints when they
299 * are not needed anymore.
300 * If the interconnect API is disabled, NULL is returned and the consumer
301 * drivers will still build. Drivers are free to handle this specifically,
302 * but they don't have to.
303 *
304 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
305 * when the API is disabled or the "interconnects" DT property is missing.
306 */
307struct icc_path *of_icc_get(struct device *dev, const char *name)
308{
309 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
310 struct icc_node *src_node, *dst_node;
311 struct device_node *np = NULL;
312 struct of_phandle_args src_args, dst_args;
313 int idx = 0;
314 int ret;
315
316 if (!dev || !dev->of_node)
317 return ERR_PTR(-ENODEV);
318
319 np = dev->of_node;
320
321 /*
322 * When the consumer DT node do not have "interconnects" property
323 * return a NULL path to skip setting constraints.
324 */
325 if (!of_find_property(np, "interconnects", NULL))
326 return NULL;
327
328 /*
329 * We use a combination of phandle and specifier for endpoint. For now
330 * lets support only global ids and extend this in the future if needed
331 * without breaking DT compatibility.
332 */
333 if (name) {
334 idx = of_property_match_string(np, "interconnect-names", name);
335 if (idx < 0)
336 return ERR_PTR(idx);
337 }
338
339 ret = of_parse_phandle_with_args(np, "interconnects",
340 "#interconnect-cells", idx * 2,
341 &src_args);
342 if (ret)
343 return ERR_PTR(ret);
344
345 of_node_put(src_args.np);
346
347 ret = of_parse_phandle_with_args(np, "interconnects",
348 "#interconnect-cells", idx * 2 + 1,
349 &dst_args);
350 if (ret)
351 return ERR_PTR(ret);
352
353 of_node_put(dst_args.np);
354
355 src_node = of_icc_get_from_provider(&src_args);
356
357 if (IS_ERR(src_node)) {
358 if (PTR_ERR(src_node) != -EPROBE_DEFER)
359 dev_err(dev, "error finding src node: %ld\n",
360 PTR_ERR(src_node));
361 return ERR_CAST(src_node);
362 }
363
364 dst_node = of_icc_get_from_provider(&dst_args);
365
366 if (IS_ERR(dst_node)) {
367 if (PTR_ERR(dst_node) != -EPROBE_DEFER)
368 dev_err(dev, "error finding dst node: %ld\n",
369 PTR_ERR(dst_node));
370 return ERR_CAST(dst_node);
371 }
372
373 mutex_lock(&icc_lock);
374 path = path_find(dev, src_node, dst_node);
375 mutex_unlock(&icc_lock);
376 if (IS_ERR(path)) {
377 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
378 return path;
379 }
380
381 if (name)
382 path->name = kstrdup_const(name, GFP_KERNEL);
383 else
384 path->name = kasprintf(GFP_KERNEL, "%s-%s",
385 src_node->name, dst_node->name);
386
387 if (!path->name) {
388 kfree(path);
389 return ERR_PTR(-ENOMEM);
390 }
391
392 return path;
393}
394EXPORT_SYMBOL_GPL(of_icc_get);
395
396/**
397 * icc_set_tag() - set an optional tag on a path
398 * @path: the path we want to tag
399 * @tag: the tag value
400 *
401 * This function allows consumers to append a tag to the requests associated
402 * with a path, so that a different aggregation could be done based on this tag.
403 */
404void icc_set_tag(struct icc_path *path, u32 tag)
405{
406 int i;
407
408 if (!path)
409 return;
410
411 mutex_lock(&icc_lock);
412
413 for (i = 0; i < path->num_nodes; i++)
414 path->reqs[i].tag = tag;
415
416 mutex_unlock(&icc_lock);
417}
418EXPORT_SYMBOL_GPL(icc_set_tag);
419
420/**
421 * icc_set_bw() - set bandwidth constraints on an interconnect path
422 * @path: reference to the path returned by icc_get()
423 * @avg_bw: average bandwidth in kilobytes per second
424 * @peak_bw: peak bandwidth in kilobytes per second
425 *
426 * This function is used by an interconnect consumer to express its own needs
427 * in terms of bandwidth for a previously requested path between two endpoints.
428 * The requests are aggregated and each node is updated accordingly. The entire
429 * path is locked by a mutex to ensure that the set() is completed.
430 * The @path can be NULL when the "interconnects" DT properties is missing,
431 * which will mean that no constraints will be set.
432 *
433 * Returns 0 on success, or an appropriate error code otherwise.
434 */
435int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
436{
437 struct icc_node *node;
438 u32 old_avg, old_peak;
439 size_t i;
440 int ret;
441
442 if (!path || !path->num_nodes)
443 return 0;
444
445 mutex_lock(&icc_lock);
446
447 old_avg = path->reqs[0].avg_bw;
448 old_peak = path->reqs[0].peak_bw;
449
450 for (i = 0; i < path->num_nodes; i++) {
451 node = path->reqs[i].node;
452
453 /* update the consumer request for this path */
454 path->reqs[i].avg_bw = avg_bw;
455 path->reqs[i].peak_bw = peak_bw;
456
457 /* aggregate requests for this node */
458 aggregate_requests(node);
459
460 trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
461 }
462
463 ret = apply_constraints(path);
464 if (ret) {
465 pr_debug("interconnect: error applying constraints (%d)\n",
466 ret);
467
468 for (i = 0; i < path->num_nodes; i++) {
469 node = path->reqs[i].node;
470 path->reqs[i].avg_bw = old_avg;
471 path->reqs[i].peak_bw = old_peak;
472 aggregate_requests(node);
473 }
474 apply_constraints(path);
475 }
476
477 mutex_unlock(&icc_lock);
478
479 trace_icc_set_bw_end(path, ret);
480
481 return ret;
482}
483EXPORT_SYMBOL_GPL(icc_set_bw);
484
485static int __icc_enable(struct icc_path *path, bool enable)
486{
487 int i;
488
489 if (!path)
490 return 0;
491
492 if (WARN_ON(IS_ERR(path) || !path->num_nodes))
493 return -EINVAL;
494
495 mutex_lock(&icc_lock);
496
497 for (i = 0; i < path->num_nodes; i++)
498 path->reqs[i].enabled = enable;
499
500 mutex_unlock(&icc_lock);
501
502 return icc_set_bw(path, path->reqs[0].avg_bw,
503 path->reqs[0].peak_bw);
504}
505
506int icc_enable(struct icc_path *path)
507{
508 return __icc_enable(path, true);
509}
510EXPORT_SYMBOL_GPL(icc_enable);
511
512int icc_disable(struct icc_path *path)
513{
514 return __icc_enable(path, false);
515}
516EXPORT_SYMBOL_GPL(icc_disable);
517
518/**
519 * icc_get() - return a handle for path between two endpoints
520 * @dev: the device requesting the path
521 * @src_id: source device port id
522 * @dst_id: destination device port id
523 *
524 * This function will search for a path between two endpoints and return an
525 * icc_path handle on success. Use icc_put() to release
526 * constraints when they are not needed anymore.
527 * If the interconnect API is disabled, NULL is returned and the consumer
528 * drivers will still build. Drivers are free to handle this specifically,
529 * but they don't have to.
530 *
531 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
532 * interconnect API is disabled.
533 */
534struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
535{
536 struct icc_node *src, *dst;
537 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
538
539 mutex_lock(&icc_lock);
540
541 src = node_find(src_id);
542 if (!src)
543 goto out;
544
545 dst = node_find(dst_id);
546 if (!dst)
547 goto out;
548
549 path = path_find(dev, src, dst);
550 if (IS_ERR(path)) {
551 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
552 goto out;
553 }
554
555 path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
556 if (!path->name) {
557 kfree(path);
558 path = ERR_PTR(-ENOMEM);
559 }
560out:
561 mutex_unlock(&icc_lock);
562 return path;
563}
564EXPORT_SYMBOL_GPL(icc_get);
565
566/**
567 * icc_put() - release the reference to the icc_path
568 * @path: interconnect path
569 *
570 * Use this function to release the constraints on a path when the path is
571 * no longer needed. The constraints will be re-aggregated.
572 */
573void icc_put(struct icc_path *path)
574{
575 struct icc_node *node;
576 size_t i;
577 int ret;
578
579 if (!path || WARN_ON(IS_ERR(path)))
580 return;
581
582 ret = icc_set_bw(path, 0, 0);
583 if (ret)
584 pr_err("%s: error (%d)\n", __func__, ret);
585
586 mutex_lock(&icc_lock);
587 for (i = 0; i < path->num_nodes; i++) {
588 node = path->reqs[i].node;
589 hlist_del(&path->reqs[i].req_node);
590 if (!WARN_ON(!node->provider->users))
591 node->provider->users--;
592 }
593 mutex_unlock(&icc_lock);
594
595 kfree_const(path->name);
596 kfree(path);
597}
598EXPORT_SYMBOL_GPL(icc_put);
599
600static struct icc_node *icc_node_create_nolock(int id)
601{
602 struct icc_node *node;
603
604 /* check if node already exists */
605 node = node_find(id);
606 if (node)
607 return node;
608
609 node = kzalloc(sizeof(*node), GFP_KERNEL);
610 if (!node)
611 return ERR_PTR(-ENOMEM);
612
613 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
614 if (id < 0) {
615 WARN(1, "%s: couldn't get idr\n", __func__);
616 kfree(node);
617 return ERR_PTR(id);
618 }
619
620 node->id = id;
621
622 return node;
623}
624
625/**
626 * icc_node_create() - create a node
627 * @id: node id
628 *
629 * Return: icc_node pointer on success, or ERR_PTR() on error
630 */
631struct icc_node *icc_node_create(int id)
632{
633 struct icc_node *node;
634
635 mutex_lock(&icc_lock);
636
637 node = icc_node_create_nolock(id);
638
639 mutex_unlock(&icc_lock);
640
641 return node;
642}
643EXPORT_SYMBOL_GPL(icc_node_create);
644
645/**
646 * icc_node_destroy() - destroy a node
647 * @id: node id
648 */
649void icc_node_destroy(int id)
650{
651 struct icc_node *node;
652
653 mutex_lock(&icc_lock);
654
655 node = node_find(id);
656 if (node) {
657 idr_remove(&icc_idr, node->id);
658 WARN_ON(!hlist_empty(&node->req_list));
659 }
660
661 mutex_unlock(&icc_lock);
662
663 if (!node)
664 return;
665
666 kfree(node->links);
667 kfree(node);
668}
669EXPORT_SYMBOL_GPL(icc_node_destroy);
670
671/**
672 * icc_link_create() - create a link between two nodes
673 * @node: source node id
674 * @dst_id: destination node id
675 *
676 * Create a link between two nodes. The nodes might belong to different
677 * interconnect providers and the @dst_id node might not exist (if the
678 * provider driver has not probed yet). So just create the @dst_id node
679 * and when the actual provider driver is probed, the rest of the node
680 * data is filled.
681 *
682 * Return: 0 on success, or an error code otherwise
683 */
684int icc_link_create(struct icc_node *node, const int dst_id)
685{
686 struct icc_node *dst;
687 struct icc_node **new;
688 int ret = 0;
689
690 if (!node->provider)
691 return -EINVAL;
692
693 mutex_lock(&icc_lock);
694
695 dst = node_find(dst_id);
696 if (!dst) {
697 dst = icc_node_create_nolock(dst_id);
698
699 if (IS_ERR(dst)) {
700 ret = PTR_ERR(dst);
701 goto out;
702 }
703 }
704
705 new = krealloc(node->links,
706 (node->num_links + 1) * sizeof(*node->links),
707 GFP_KERNEL);
708 if (!new) {
709 ret = -ENOMEM;
710 goto out;
711 }
712
713 node->links = new;
714 node->links[node->num_links++] = dst;
715
716out:
717 mutex_unlock(&icc_lock);
718
719 return ret;
720}
721EXPORT_SYMBOL_GPL(icc_link_create);
722
723/**
724 * icc_link_destroy() - destroy a link between two nodes
725 * @src: pointer to source node
726 * @dst: pointer to destination node
727 *
728 * Return: 0 on success, or an error code otherwise
729 */
730int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
731{
732 struct icc_node **new;
733 size_t slot;
734 int ret = 0;
735
736 if (IS_ERR_OR_NULL(src))
737 return -EINVAL;
738
739 if (IS_ERR_OR_NULL(dst))
740 return -EINVAL;
741
742 mutex_lock(&icc_lock);
743
744 for (slot = 0; slot < src->num_links; slot++)
745 if (src->links[slot] == dst)
746 break;
747
748 if (WARN_ON(slot == src->num_links)) {
749 ret = -ENXIO;
750 goto out;
751 }
752
753 src->links[slot] = src->links[--src->num_links];
754
755 new = krealloc(src->links, src->num_links * sizeof(*src->links),
756 GFP_KERNEL);
757 if (new)
758 src->links = new;
759 else
760 ret = -ENOMEM;
761
762out:
763 mutex_unlock(&icc_lock);
764
765 return ret;
766}
767EXPORT_SYMBOL_GPL(icc_link_destroy);
768
769/**
770 * icc_node_add() - add interconnect node to interconnect provider
771 * @node: pointer to the interconnect node
772 * @provider: pointer to the interconnect provider
773 */
774void icc_node_add(struct icc_node *node, struct icc_provider *provider)
775{
776 mutex_lock(&icc_lock);
777
778 node->provider = provider;
779 list_add_tail(&node->node_list, &provider->nodes);
780
781 mutex_unlock(&icc_lock);
782}
783EXPORT_SYMBOL_GPL(icc_node_add);
784
785/**
786 * icc_node_del() - delete interconnect node from interconnect provider
787 * @node: pointer to the interconnect node
788 */
789void icc_node_del(struct icc_node *node)
790{
791 mutex_lock(&icc_lock);
792
793 list_del(&node->node_list);
794
795 mutex_unlock(&icc_lock);
796}
797EXPORT_SYMBOL_GPL(icc_node_del);
798
799/**
800 * icc_provider_add() - add a new interconnect provider
801 * @provider: the interconnect provider that will be added into topology
802 *
803 * Return: 0 on success, or an error code otherwise
804 */
805int icc_provider_add(struct icc_provider *provider)
806{
807 if (WARN_ON(!provider->set))
808 return -EINVAL;
809 if (WARN_ON(!provider->xlate))
810 return -EINVAL;
811
812 mutex_lock(&icc_lock);
813
814 INIT_LIST_HEAD(&provider->nodes);
815 list_add_tail(&provider->provider_list, &icc_providers);
816
817 mutex_unlock(&icc_lock);
818
819 dev_dbg(provider->dev, "interconnect provider added to topology\n");
820
821 return 0;
822}
823EXPORT_SYMBOL_GPL(icc_provider_add);
824
825/**
826 * icc_provider_del() - delete previously added interconnect provider
827 * @provider: the interconnect provider that will be removed from topology
828 *
829 * Return: 0 on success, or an error code otherwise
830 */
831int icc_provider_del(struct icc_provider *provider)
832{
833 mutex_lock(&icc_lock);
834 if (provider->users) {
835 pr_warn("interconnect provider still has %d users\n",
836 provider->users);
837 mutex_unlock(&icc_lock);
838 return -EBUSY;
839 }
840
841 if (!list_empty(&provider->nodes)) {
842 pr_warn("interconnect provider still has nodes\n");
843 mutex_unlock(&icc_lock);
844 return -EBUSY;
845 }
846
847 list_del(&provider->provider_list);
848 mutex_unlock(&icc_lock);
849
850 return 0;
851}
852EXPORT_SYMBOL_GPL(icc_provider_del);
853
854static int __init icc_init(void)
855{
856 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
857 debugfs_create_file("interconnect_summary", 0444,
858 icc_debugfs_dir, NULL, &icc_summary_fops);
859 return 0;
860}
861
862static void __exit icc_exit(void)
863{
864 debugfs_remove_recursive(icc_debugfs_dir);
865}
866module_init(icc_init);
867module_exit(icc_exit);
868
869MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
870MODULE_DESCRIPTION("Interconnect Driver Core");
871MODULE_LICENSE("GPL v2");