b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * A fairly generic DMA-API to IOMMU-API glue layer. |
| 4 | * |
| 5 | * Copyright (C) 2014-2015 ARM Ltd. |
| 6 | * |
| 7 | * based in part on arch/arm/mm/dma-mapping.c: |
| 8 | * Copyright (C) 2000-2004 Russell King |
| 9 | */ |
| 10 | |
| 11 | #include <linux/acpi_iort.h> |
| 12 | #include <linux/device.h> |
| 13 | #include <linux/dma-contiguous.h> |
| 14 | #include <linux/dma-iommu.h> |
| 15 | #include <linux/dma-noncoherent.h> |
| 16 | #include <linux/gfp.h> |
| 17 | #include <linux/huge_mm.h> |
| 18 | #include <linux/iommu.h> |
| 19 | #include <linux/iova.h> |
| 20 | #include <linux/irq.h> |
| 21 | #include <linux/mm.h> |
| 22 | #include <linux/mutex.h> |
| 23 | #include <linux/pci.h> |
| 24 | #include <linux/scatterlist.h> |
| 25 | #include <linux/vmalloc.h> |
| 26 | |
| 27 | struct iommu_dma_msi_page { |
| 28 | struct list_head list; |
| 29 | dma_addr_t iova; |
| 30 | phys_addr_t phys; |
| 31 | }; |
| 32 | |
| 33 | enum iommu_dma_cookie_type { |
| 34 | IOMMU_DMA_IOVA_COOKIE, |
| 35 | IOMMU_DMA_MSI_COOKIE, |
| 36 | }; |
| 37 | |
| 38 | struct iommu_dma_cookie { |
| 39 | enum iommu_dma_cookie_type type; |
| 40 | union { |
| 41 | /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ |
| 42 | struct iova_domain iovad; |
| 43 | /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ |
| 44 | dma_addr_t msi_iova; |
| 45 | }; |
| 46 | struct list_head msi_page_list; |
| 47 | |
| 48 | /* Domain for flush queue callback; NULL if flush queue not in use */ |
| 49 | struct iommu_domain *fq_domain; |
| 50 | }; |
| 51 | |
| 52 | static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) |
| 53 | { |
| 54 | if (cookie->type == IOMMU_DMA_IOVA_COOKIE) |
| 55 | return cookie->iovad.granule; |
| 56 | return PAGE_SIZE; |
| 57 | } |
| 58 | |
| 59 | static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) |
| 60 | { |
| 61 | struct iommu_dma_cookie *cookie; |
| 62 | |
| 63 | cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); |
| 64 | if (cookie) { |
| 65 | INIT_LIST_HEAD(&cookie->msi_page_list); |
| 66 | cookie->type = type; |
| 67 | } |
| 68 | return cookie; |
| 69 | } |
| 70 | |
| 71 | /** |
| 72 | * iommu_get_dma_cookie - Acquire DMA-API resources for a domain |
| 73 | * @domain: IOMMU domain to prepare for DMA-API usage |
| 74 | * |
| 75 | * IOMMU drivers should normally call this from their domain_alloc |
| 76 | * callback when domain->type == IOMMU_DOMAIN_DMA. |
| 77 | */ |
| 78 | int iommu_get_dma_cookie(struct iommu_domain *domain) |
| 79 | { |
| 80 | if (domain->iova_cookie) |
| 81 | return -EEXIST; |
| 82 | |
| 83 | domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); |
| 84 | if (!domain->iova_cookie) |
| 85 | return -ENOMEM; |
| 86 | |
| 87 | return 0; |
| 88 | } |
| 89 | EXPORT_SYMBOL(iommu_get_dma_cookie); |
| 90 | |
| 91 | /** |
| 92 | * iommu_get_msi_cookie - Acquire just MSI remapping resources |
| 93 | * @domain: IOMMU domain to prepare |
| 94 | * @base: Start address of IOVA region for MSI mappings |
| 95 | * |
| 96 | * Users who manage their own IOVA allocation and do not want DMA API support, |
| 97 | * but would still like to take advantage of automatic MSI remapping, can use |
| 98 | * this to initialise their own domain appropriately. Users should reserve a |
| 99 | * contiguous IOVA region, starting at @base, large enough to accommodate the |
| 100 | * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address |
| 101 | * used by the devices attached to @domain. |
| 102 | */ |
| 103 | int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) |
| 104 | { |
| 105 | struct iommu_dma_cookie *cookie; |
| 106 | |
| 107 | if (domain->type != IOMMU_DOMAIN_UNMANAGED) |
| 108 | return -EINVAL; |
| 109 | |
| 110 | if (domain->iova_cookie) |
| 111 | return -EEXIST; |
| 112 | |
| 113 | cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); |
| 114 | if (!cookie) |
| 115 | return -ENOMEM; |
| 116 | |
| 117 | cookie->msi_iova = base; |
| 118 | domain->iova_cookie = cookie; |
| 119 | return 0; |
| 120 | } |
| 121 | EXPORT_SYMBOL(iommu_get_msi_cookie); |
| 122 | |
| 123 | /** |
| 124 | * iommu_put_dma_cookie - Release a domain's DMA mapping resources |
| 125 | * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or |
| 126 | * iommu_get_msi_cookie() |
| 127 | * |
| 128 | * IOMMU drivers should normally call this from their domain_free callback. |
| 129 | */ |
| 130 | void iommu_put_dma_cookie(struct iommu_domain *domain) |
| 131 | { |
| 132 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 133 | struct iommu_dma_msi_page *msi, *tmp; |
| 134 | |
| 135 | if (!cookie) |
| 136 | return; |
| 137 | |
| 138 | if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) |
| 139 | put_iova_domain(&cookie->iovad); |
| 140 | |
| 141 | list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { |
| 142 | list_del(&msi->list); |
| 143 | kfree(msi); |
| 144 | } |
| 145 | kfree(cookie); |
| 146 | domain->iova_cookie = NULL; |
| 147 | } |
| 148 | EXPORT_SYMBOL(iommu_put_dma_cookie); |
| 149 | |
| 150 | /** |
| 151 | * iommu_dma_get_resv_regions - Reserved region driver helper |
| 152 | * @dev: Device from iommu_get_resv_regions() |
| 153 | * @list: Reserved region list from iommu_get_resv_regions() |
| 154 | * |
| 155 | * IOMMU drivers can use this to implement their .get_resv_regions callback |
| 156 | * for general non-IOMMU-specific reservations. Currently, this covers GICv3 |
| 157 | * ITS region reservation on ACPI based ARM platforms that may require HW MSI |
| 158 | * reservation. |
| 159 | */ |
| 160 | void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) |
| 161 | { |
| 162 | |
| 163 | if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode)) |
| 164 | iort_iommu_msi_get_resv_regions(dev, list); |
| 165 | |
| 166 | } |
| 167 | EXPORT_SYMBOL(iommu_dma_get_resv_regions); |
| 168 | |
| 169 | static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, |
| 170 | phys_addr_t start, phys_addr_t end) |
| 171 | { |
| 172 | struct iova_domain *iovad = &cookie->iovad; |
| 173 | struct iommu_dma_msi_page *msi_page; |
| 174 | int i, num_pages; |
| 175 | |
| 176 | start -= iova_offset(iovad, start); |
| 177 | num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); |
| 178 | |
| 179 | for (i = 0; i < num_pages; i++) { |
| 180 | msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); |
| 181 | if (!msi_page) |
| 182 | return -ENOMEM; |
| 183 | |
| 184 | msi_page->phys = start; |
| 185 | msi_page->iova = start; |
| 186 | INIT_LIST_HEAD(&msi_page->list); |
| 187 | list_add(&msi_page->list, &cookie->msi_page_list); |
| 188 | start += iovad->granule; |
| 189 | } |
| 190 | |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | static int iova_reserve_pci_windows(struct pci_dev *dev, |
| 195 | struct iova_domain *iovad) |
| 196 | { |
| 197 | struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); |
| 198 | struct resource_entry *window; |
| 199 | unsigned long lo, hi; |
| 200 | phys_addr_t start = 0, end; |
| 201 | |
| 202 | resource_list_for_each_entry(window, &bridge->windows) { |
| 203 | if (resource_type(window->res) != IORESOURCE_MEM) |
| 204 | continue; |
| 205 | |
| 206 | lo = iova_pfn(iovad, window->res->start - window->offset); |
| 207 | hi = iova_pfn(iovad, window->res->end - window->offset); |
| 208 | reserve_iova(iovad, lo, hi); |
| 209 | } |
| 210 | |
| 211 | /* Get reserved DMA windows from host bridge */ |
| 212 | resource_list_for_each_entry(window, &bridge->dma_ranges) { |
| 213 | end = window->res->start - window->offset; |
| 214 | resv_iova: |
| 215 | if (end > start) { |
| 216 | lo = iova_pfn(iovad, start); |
| 217 | hi = iova_pfn(iovad, end); |
| 218 | reserve_iova(iovad, lo, hi); |
| 219 | } else if (end < start) { |
| 220 | /* dma_ranges list should be sorted */ |
| 221 | dev_err(&dev->dev, |
| 222 | "Failed to reserve IOVA [%pa-%pa]\n", |
| 223 | &start, &end); |
| 224 | return -EINVAL; |
| 225 | } |
| 226 | |
| 227 | start = window->res->end - window->offset + 1; |
| 228 | /* If window is last entry */ |
| 229 | if (window->node.next == &bridge->dma_ranges && |
| 230 | end != ~(phys_addr_t)0) { |
| 231 | end = ~(phys_addr_t)0; |
| 232 | goto resv_iova; |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | return 0; |
| 237 | } |
| 238 | |
| 239 | static int iova_reserve_iommu_regions(struct device *dev, |
| 240 | struct iommu_domain *domain) |
| 241 | { |
| 242 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 243 | struct iova_domain *iovad = &cookie->iovad; |
| 244 | struct iommu_resv_region *region; |
| 245 | LIST_HEAD(resv_regions); |
| 246 | int ret = 0; |
| 247 | |
| 248 | if (dev_is_pci(dev)) { |
| 249 | ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad); |
| 250 | if (ret) |
| 251 | return ret; |
| 252 | } |
| 253 | |
| 254 | iommu_get_resv_regions(dev, &resv_regions); |
| 255 | list_for_each_entry(region, &resv_regions, list) { |
| 256 | unsigned long lo, hi; |
| 257 | |
| 258 | /* We ARE the software that manages these! */ |
| 259 | if (region->type == IOMMU_RESV_SW_MSI) |
| 260 | continue; |
| 261 | |
| 262 | lo = iova_pfn(iovad, region->start); |
| 263 | hi = iova_pfn(iovad, region->start + region->length - 1); |
| 264 | reserve_iova(iovad, lo, hi); |
| 265 | |
| 266 | if (region->type == IOMMU_RESV_MSI) |
| 267 | ret = cookie_init_hw_msi_region(cookie, region->start, |
| 268 | region->start + region->length); |
| 269 | if (ret) |
| 270 | break; |
| 271 | } |
| 272 | iommu_put_resv_regions(dev, &resv_regions); |
| 273 | |
| 274 | return ret; |
| 275 | } |
| 276 | |
| 277 | static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad) |
| 278 | { |
| 279 | struct iommu_dma_cookie *cookie; |
| 280 | struct iommu_domain *domain; |
| 281 | |
| 282 | cookie = container_of(iovad, struct iommu_dma_cookie, iovad); |
| 283 | domain = cookie->fq_domain; |
| 284 | /* |
| 285 | * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE |
| 286 | * implies that ops->flush_iotlb_all must be non-NULL. |
| 287 | */ |
| 288 | domain->ops->flush_iotlb_all(domain); |
| 289 | } |
| 290 | |
| 291 | /** |
| 292 | * iommu_dma_init_domain - Initialise a DMA mapping domain |
| 293 | * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() |
| 294 | * @base: IOVA at which the mappable address space starts |
| 295 | * @size: Size of IOVA space |
| 296 | * @dev: Device the domain is being initialised for |
| 297 | * |
| 298 | * @base and @size should be exact multiples of IOMMU page granularity to |
| 299 | * avoid rounding surprises. If necessary, we reserve the page at address 0 |
| 300 | * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but |
| 301 | * any change which could make prior IOVAs invalid will fail. |
| 302 | */ |
| 303 | static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, |
| 304 | u64 size, struct device *dev) |
| 305 | { |
| 306 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 307 | unsigned long order, base_pfn; |
| 308 | struct iova_domain *iovad; |
| 309 | int attr; |
| 310 | |
| 311 | if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) |
| 312 | return -EINVAL; |
| 313 | |
| 314 | iovad = &cookie->iovad; |
| 315 | |
| 316 | /* Use the smallest supported page size for IOVA granularity */ |
| 317 | order = __ffs(domain->pgsize_bitmap); |
| 318 | base_pfn = max_t(unsigned long, 1, base >> order); |
| 319 | |
| 320 | /* Check the domain allows at least some access to the device... */ |
| 321 | if (domain->geometry.force_aperture) { |
| 322 | if (base > domain->geometry.aperture_end || |
| 323 | base + size <= domain->geometry.aperture_start) { |
| 324 | pr_warn("specified DMA range outside IOMMU capability\n"); |
| 325 | return -EFAULT; |
| 326 | } |
| 327 | /* ...then finally give it a kicking to make sure it fits */ |
| 328 | base_pfn = max_t(unsigned long, base_pfn, |
| 329 | domain->geometry.aperture_start >> order); |
| 330 | } |
| 331 | |
| 332 | /* start_pfn is always nonzero for an already-initialised domain */ |
| 333 | if (iovad->start_pfn) { |
| 334 | if (1UL << order != iovad->granule || |
| 335 | base_pfn != iovad->start_pfn) { |
| 336 | pr_warn("Incompatible range for DMA domain\n"); |
| 337 | return -EFAULT; |
| 338 | } |
| 339 | |
| 340 | return 0; |
| 341 | } |
| 342 | |
| 343 | init_iova_domain(iovad, 1UL << order, base_pfn); |
| 344 | |
| 345 | if (!cookie->fq_domain && !iommu_domain_get_attr(domain, |
| 346 | DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) { |
| 347 | cookie->fq_domain = domain; |
| 348 | init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL); |
| 349 | } |
| 350 | |
| 351 | if (!dev) |
| 352 | return 0; |
| 353 | |
| 354 | return iova_reserve_iommu_regions(dev, domain); |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * Should be called prior to using dma-apis |
| 359 | */ |
| 360 | int iommu_dma_reserve_iova(struct device *dev, dma_addr_t base, |
| 361 | u64 size) |
| 362 | { |
| 363 | struct iommu_domain *domain; |
| 364 | struct iommu_dma_cookie *cookie; |
| 365 | struct iova_domain *iovad; |
| 366 | unsigned long pfn_lo, pfn_hi; |
| 367 | |
| 368 | domain = iommu_get_domain_for_dev(dev); |
| 369 | if (!domain || !domain->iova_cookie) |
| 370 | return -EINVAL; |
| 371 | |
| 372 | cookie = domain->iova_cookie; |
| 373 | iovad = &cookie->iovad; |
| 374 | |
| 375 | /* iova will be freed automatically by put_iova_domain() */ |
| 376 | pfn_lo = iova_pfn(iovad, base); |
| 377 | pfn_hi = iova_pfn(iovad, base + size - 1); |
| 378 | if (!reserve_iova(iovad, pfn_lo, pfn_hi)) |
| 379 | return -EINVAL; |
| 380 | |
| 381 | return 0; |
| 382 | } |
| 383 | EXPORT_SYMBOL(iommu_dma_reserve_iova); |
| 384 | |
| 385 | /* |
| 386 | * Should be called prior to using dma-apis. |
| 387 | */ |
| 388 | int iommu_dma_enable_best_fit_algo(struct device *dev) |
| 389 | { |
| 390 | struct iommu_domain *domain; |
| 391 | struct iova_domain *iovad; |
| 392 | |
| 393 | domain = iommu_get_domain_for_dev(dev); |
| 394 | if (!domain || !domain->iova_cookie) |
| 395 | return -EINVAL; |
| 396 | |
| 397 | iovad = &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad; |
| 398 | iovad->best_fit = true; |
| 399 | return 0; |
| 400 | } |
| 401 | EXPORT_SYMBOL(iommu_dma_enable_best_fit_algo); |
| 402 | |
| 403 | /** |
| 404 | * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API |
| 405 | * page flags. |
| 406 | * @dir: Direction of DMA transfer |
| 407 | * @coherent: Is the DMA master cache-coherent? |
| 408 | * @attrs: DMA attributes for the mapping |
| 409 | * |
| 410 | * Return: corresponding IOMMU API page protection flags |
| 411 | */ |
| 412 | static int dma_info_to_prot(enum dma_data_direction dir, bool coherent, |
| 413 | unsigned long attrs) |
| 414 | { |
| 415 | int prot = coherent ? IOMMU_CACHE : 0; |
| 416 | |
| 417 | if (attrs & DMA_ATTR_PRIVILEGED) |
| 418 | prot |= IOMMU_PRIV; |
| 419 | |
| 420 | switch (dir) { |
| 421 | case DMA_BIDIRECTIONAL: |
| 422 | return prot | IOMMU_READ | IOMMU_WRITE; |
| 423 | case DMA_TO_DEVICE: |
| 424 | return prot | IOMMU_READ; |
| 425 | case DMA_FROM_DEVICE: |
| 426 | return prot | IOMMU_WRITE; |
| 427 | default: |
| 428 | return 0; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, |
| 433 | size_t size, dma_addr_t dma_limit, struct device *dev) |
| 434 | { |
| 435 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 436 | struct iova_domain *iovad = &cookie->iovad; |
| 437 | unsigned long shift, iova_len, iova = 0; |
| 438 | |
| 439 | if (cookie->type == IOMMU_DMA_MSI_COOKIE) { |
| 440 | cookie->msi_iova += size; |
| 441 | return cookie->msi_iova - size; |
| 442 | } |
| 443 | |
| 444 | shift = iova_shift(iovad); |
| 445 | iova_len = size >> shift; |
| 446 | /* |
| 447 | * Freeing non-power-of-two-sized allocations back into the IOVA caches |
| 448 | * will come back to bite us badly, so we have to waste a bit of space |
| 449 | * rounding up anything cacheable to make sure that can't happen. The |
| 450 | * order of the unadjusted size will still match upon freeing. |
| 451 | */ |
| 452 | if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) |
| 453 | iova_len = roundup_pow_of_two(iova_len); |
| 454 | |
| 455 | if (dev->bus_dma_mask) |
| 456 | dma_limit &= dev->bus_dma_mask; |
| 457 | |
| 458 | if (domain->geometry.force_aperture) |
| 459 | dma_limit = min(dma_limit, domain->geometry.aperture_end); |
| 460 | |
| 461 | /* Try to get PCI devices a SAC address */ |
| 462 | if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) |
| 463 | iova = alloc_iova_fast(iovad, iova_len, |
| 464 | DMA_BIT_MASK(32) >> shift, false); |
| 465 | |
| 466 | if (!iova) |
| 467 | iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, |
| 468 | true); |
| 469 | |
| 470 | return (dma_addr_t)iova << shift; |
| 471 | } |
| 472 | |
| 473 | static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, |
| 474 | dma_addr_t iova, size_t size) |
| 475 | { |
| 476 | struct iova_domain *iovad = &cookie->iovad; |
| 477 | |
| 478 | /* The MSI case is only ever cleaning up its most recent allocation */ |
| 479 | if (cookie->type == IOMMU_DMA_MSI_COOKIE) |
| 480 | cookie->msi_iova -= size; |
| 481 | else if (cookie->fq_domain) /* non-strict mode */ |
| 482 | queue_iova(iovad, iova_pfn(iovad, iova), |
| 483 | size >> iova_shift(iovad), 0); |
| 484 | else |
| 485 | free_iova_fast(iovad, iova_pfn(iovad, iova), |
| 486 | size >> iova_shift(iovad)); |
| 487 | } |
| 488 | |
| 489 | static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr, |
| 490 | size_t size) |
| 491 | { |
| 492 | struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| 493 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 494 | struct iova_domain *iovad = &cookie->iovad; |
| 495 | size_t iova_off = iova_offset(iovad, dma_addr); |
| 496 | struct iommu_iotlb_gather iotlb_gather; |
| 497 | size_t unmapped; |
| 498 | |
| 499 | dma_addr -= iova_off; |
| 500 | size = iova_align(iovad, size + iova_off); |
| 501 | iommu_iotlb_gather_init(&iotlb_gather); |
| 502 | |
| 503 | unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather); |
| 504 | WARN_ON(unmapped != size); |
| 505 | |
| 506 | if (!cookie->fq_domain) |
| 507 | iommu_tlb_sync(domain, &iotlb_gather); |
| 508 | iommu_dma_free_iova(cookie, dma_addr, size); |
| 509 | } |
| 510 | |
| 511 | static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, |
| 512 | size_t size, int prot) |
| 513 | { |
| 514 | struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| 515 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 516 | struct iova_domain *iovad = &cookie->iovad; |
| 517 | size_t iova_off = iova_offset(iovad, phys); |
| 518 | dma_addr_t iova; |
| 519 | |
| 520 | size = iova_align(iovad, size + iova_off); |
| 521 | |
| 522 | iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); |
| 523 | if (!iova) |
| 524 | return DMA_MAPPING_ERROR; |
| 525 | |
| 526 | if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) { |
| 527 | iommu_dma_free_iova(cookie, iova, size); |
| 528 | return DMA_MAPPING_ERROR; |
| 529 | } |
| 530 | return iova + iova_off; |
| 531 | } |
| 532 | |
| 533 | static void __iommu_dma_free_pages(struct page **pages, int count) |
| 534 | { |
| 535 | while (count--) |
| 536 | __free_page(pages[count]); |
| 537 | kvfree(pages); |
| 538 | } |
| 539 | |
| 540 | static struct page **__iommu_dma_alloc_pages(struct device *dev, |
| 541 | unsigned int count, unsigned long order_mask, gfp_t gfp) |
| 542 | { |
| 543 | struct page **pages; |
| 544 | unsigned int i = 0, nid = dev_to_node(dev); |
| 545 | |
| 546 | order_mask &= (2U << MAX_ORDER) - 1; |
| 547 | if (!order_mask) |
| 548 | return NULL; |
| 549 | |
| 550 | pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL); |
| 551 | if (!pages) |
| 552 | return NULL; |
| 553 | |
| 554 | /* IOMMU can map any pages, so himem can also be used here */ |
| 555 | gfp |= __GFP_NOWARN | __GFP_HIGHMEM; |
| 556 | |
| 557 | while (count) { |
| 558 | struct page *page = NULL; |
| 559 | unsigned int order_size; |
| 560 | |
| 561 | /* |
| 562 | * Higher-order allocations are a convenience rather |
| 563 | * than a necessity, hence using __GFP_NORETRY until |
| 564 | * falling back to minimum-order allocations. |
| 565 | */ |
| 566 | for (order_mask &= (2U << __fls(count)) - 1; |
| 567 | order_mask; order_mask &= ~order_size) { |
| 568 | unsigned int order = __fls(order_mask); |
| 569 | gfp_t alloc_flags = gfp; |
| 570 | |
| 571 | order_size = 1U << order; |
| 572 | if (order_mask > order_size) |
| 573 | alloc_flags |= __GFP_NORETRY; |
| 574 | page = alloc_pages_node(nid, alloc_flags, order); |
| 575 | if (!page) |
| 576 | continue; |
| 577 | if (!order) |
| 578 | break; |
| 579 | if (!PageCompound(page)) { |
| 580 | split_page(page, order); |
| 581 | break; |
| 582 | } else if (!split_huge_page(page)) { |
| 583 | break; |
| 584 | } |
| 585 | __free_pages(page, order); |
| 586 | } |
| 587 | if (!page) { |
| 588 | __iommu_dma_free_pages(pages, i); |
| 589 | return NULL; |
| 590 | } |
| 591 | count -= order_size; |
| 592 | while (order_size--) |
| 593 | pages[i++] = page++; |
| 594 | } |
| 595 | return pages; |
| 596 | } |
| 597 | |
| 598 | /** |
| 599 | * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space |
| 600 | * @dev: Device to allocate memory for. Must be a real device |
| 601 | * attached to an iommu_dma_domain |
| 602 | * @size: Size of buffer in bytes |
| 603 | * @dma_handle: Out argument for allocated DMA handle |
| 604 | * @gfp: Allocation flags |
| 605 | * @attrs: DMA attributes for this allocation |
| 606 | * |
| 607 | * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, |
| 608 | * but an IOMMU which supports smaller pages might not map the whole thing. |
| 609 | * |
| 610 | * Return: Mapped virtual address, or NULL on failure. |
| 611 | */ |
| 612 | static void *iommu_dma_alloc_remap(struct device *dev, size_t size, |
| 613 | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| 614 | { |
| 615 | struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| 616 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 617 | struct iova_domain *iovad = &cookie->iovad; |
| 618 | bool coherent = dev_is_dma_coherent(dev); |
| 619 | int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); |
| 620 | pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); |
| 621 | unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; |
| 622 | struct page **pages; |
| 623 | struct sg_table sgt; |
| 624 | dma_addr_t iova; |
| 625 | void *vaddr; |
| 626 | |
| 627 | *dma_handle = DMA_MAPPING_ERROR; |
| 628 | |
| 629 | min_size = alloc_sizes & -alloc_sizes; |
| 630 | if (min_size < PAGE_SIZE) { |
| 631 | min_size = PAGE_SIZE; |
| 632 | alloc_sizes |= PAGE_SIZE; |
| 633 | } else { |
| 634 | size = ALIGN(size, min_size); |
| 635 | } |
| 636 | if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) |
| 637 | alloc_sizes = min_size; |
| 638 | |
| 639 | count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 640 | pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT, |
| 641 | gfp); |
| 642 | if (!pages) |
| 643 | return NULL; |
| 644 | |
| 645 | size = iova_align(iovad, size); |
| 646 | iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); |
| 647 | if (!iova) |
| 648 | goto out_free_pages; |
| 649 | |
| 650 | if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) |
| 651 | goto out_free_iova; |
| 652 | |
| 653 | if (!(ioprot & IOMMU_CACHE)) { |
| 654 | struct scatterlist *sg; |
| 655 | int i; |
| 656 | |
| 657 | for_each_sg(sgt.sgl, sg, sgt.orig_nents, i) |
| 658 | arch_dma_prep_coherent(sg_page(sg), sg->length); |
| 659 | } |
| 660 | |
| 661 | if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot) |
| 662 | < size) |
| 663 | goto out_free_sg; |
| 664 | |
| 665 | vaddr = dma_common_pages_remap(pages, size, prot, |
| 666 | __builtin_return_address(0)); |
| 667 | if (!vaddr) |
| 668 | goto out_unmap; |
| 669 | |
| 670 | *dma_handle = iova; |
| 671 | sg_free_table(&sgt); |
| 672 | return vaddr; |
| 673 | |
| 674 | out_unmap: |
| 675 | __iommu_dma_unmap(dev, iova, size); |
| 676 | out_free_sg: |
| 677 | sg_free_table(&sgt); |
| 678 | out_free_iova: |
| 679 | iommu_dma_free_iova(cookie, iova, size); |
| 680 | out_free_pages: |
| 681 | __iommu_dma_free_pages(pages, count); |
| 682 | return NULL; |
| 683 | } |
| 684 | |
| 685 | /** |
| 686 | * __iommu_dma_mmap - Map a buffer into provided user VMA |
| 687 | * @pages: Array representing buffer from __iommu_dma_alloc() |
| 688 | * @size: Size of buffer in bytes |
| 689 | * @vma: VMA describing requested userspace mapping |
| 690 | * |
| 691 | * Maps the pages of the buffer in @pages into @vma. The caller is responsible |
| 692 | * for verifying the correct size and protection of @vma beforehand. |
| 693 | */ |
| 694 | static int __iommu_dma_mmap(struct page **pages, size_t size, |
| 695 | struct vm_area_struct *vma) |
| 696 | { |
| 697 | return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT); |
| 698 | } |
| 699 | |
| 700 | static void iommu_dma_sync_single_for_cpu(struct device *dev, |
| 701 | dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) |
| 702 | { |
| 703 | phys_addr_t phys; |
| 704 | |
| 705 | if (dev_is_dma_coherent(dev)) |
| 706 | return; |
| 707 | |
| 708 | phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); |
| 709 | arch_sync_dma_for_cpu(phys, size, dir); |
| 710 | } |
| 711 | |
| 712 | static void iommu_dma_sync_single_for_device(struct device *dev, |
| 713 | dma_addr_t dma_handle, size_t size, enum dma_data_direction dir) |
| 714 | { |
| 715 | phys_addr_t phys; |
| 716 | |
| 717 | if (dev_is_dma_coherent(dev)) |
| 718 | return; |
| 719 | |
| 720 | phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); |
| 721 | arch_sync_dma_for_device(phys, size, dir); |
| 722 | } |
| 723 | |
| 724 | static void iommu_dma_sync_sg_for_cpu(struct device *dev, |
| 725 | struct scatterlist *sgl, int nelems, |
| 726 | enum dma_data_direction dir) |
| 727 | { |
| 728 | struct scatterlist *sg; |
| 729 | int i; |
| 730 | |
| 731 | if (dev_is_dma_coherent(dev)) |
| 732 | return; |
| 733 | |
| 734 | for_each_sg(sgl, sg, nelems, i) |
| 735 | arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); |
| 736 | } |
| 737 | |
| 738 | static void iommu_dma_sync_sg_for_device(struct device *dev, |
| 739 | struct scatterlist *sgl, int nelems, |
| 740 | enum dma_data_direction dir) |
| 741 | { |
| 742 | struct scatterlist *sg; |
| 743 | int i; |
| 744 | |
| 745 | if (dev_is_dma_coherent(dev)) |
| 746 | return; |
| 747 | |
| 748 | for_each_sg(sgl, sg, nelems, i) |
| 749 | arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); |
| 750 | } |
| 751 | |
| 752 | static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, |
| 753 | unsigned long offset, size_t size, enum dma_data_direction dir, |
| 754 | unsigned long attrs) |
| 755 | { |
| 756 | phys_addr_t phys = page_to_phys(page) + offset; |
| 757 | bool coherent = dev_is_dma_coherent(dev); |
| 758 | int prot = dma_info_to_prot(dir, coherent, attrs); |
| 759 | dma_addr_t dma_handle; |
| 760 | |
| 761 | dma_handle =__iommu_dma_map(dev, phys, size, prot); |
| 762 | if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| 763 | dma_handle != DMA_MAPPING_ERROR) |
| 764 | arch_sync_dma_for_device(phys, size, dir); |
| 765 | return dma_handle; |
| 766 | } |
| 767 | |
| 768 | static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle, |
| 769 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 770 | { |
| 771 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 772 | iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir); |
| 773 | __iommu_dma_unmap(dev, dma_handle, size); |
| 774 | } |
| 775 | |
| 776 | /* |
| 777 | * Prepare a successfully-mapped scatterlist to give back to the caller. |
| 778 | * |
| 779 | * At this point the segments are already laid out by iommu_dma_map_sg() to |
| 780 | * avoid individually crossing any boundaries, so we merely need to check a |
| 781 | * segment's start address to avoid concatenating across one. |
| 782 | */ |
| 783 | static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, |
| 784 | dma_addr_t dma_addr) |
| 785 | { |
| 786 | struct scatterlist *s, *cur = sg; |
| 787 | unsigned long seg_mask = dma_get_seg_boundary(dev); |
| 788 | unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); |
| 789 | int i, count = 0; |
| 790 | |
| 791 | for_each_sg(sg, s, nents, i) { |
| 792 | /* Restore this segment's original unaligned fields first */ |
| 793 | unsigned int s_iova_off = sg_dma_address(s); |
| 794 | unsigned int s_length = sg_dma_len(s); |
| 795 | unsigned int s_iova_len = s->length; |
| 796 | |
| 797 | s->offset += s_iova_off; |
| 798 | s->length = s_length; |
| 799 | sg_dma_address(s) = DMA_MAPPING_ERROR; |
| 800 | sg_dma_len(s) = 0; |
| 801 | |
| 802 | /* |
| 803 | * Now fill in the real DMA data. If... |
| 804 | * - there is a valid output segment to append to |
| 805 | * - and this segment starts on an IOVA page boundary |
| 806 | * - but doesn't fall at a segment boundary |
| 807 | * - and wouldn't make the resulting output segment too long |
| 808 | */ |
| 809 | if (cur_len && !s_iova_off && (dma_addr & seg_mask) && |
| 810 | (max_len - cur_len >= s_length)) { |
| 811 | /* ...then concatenate it with the previous one */ |
| 812 | cur_len += s_length; |
| 813 | } else { |
| 814 | /* Otherwise start the next output segment */ |
| 815 | if (i > 0) |
| 816 | cur = sg_next(cur); |
| 817 | cur_len = s_length; |
| 818 | count++; |
| 819 | |
| 820 | sg_dma_address(cur) = dma_addr + s_iova_off; |
| 821 | } |
| 822 | |
| 823 | sg_dma_len(cur) = cur_len; |
| 824 | dma_addr += s_iova_len; |
| 825 | |
| 826 | if (s_length + s_iova_off < s_iova_len) |
| 827 | cur_len = 0; |
| 828 | } |
| 829 | return count; |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * If mapping failed, then just restore the original list, |
| 834 | * but making sure the DMA fields are invalidated. |
| 835 | */ |
| 836 | static void __invalidate_sg(struct scatterlist *sg, int nents) |
| 837 | { |
| 838 | struct scatterlist *s; |
| 839 | int i; |
| 840 | |
| 841 | for_each_sg(sg, s, nents, i) { |
| 842 | if (sg_dma_address(s) != DMA_MAPPING_ERROR) |
| 843 | s->offset += sg_dma_address(s); |
| 844 | if (sg_dma_len(s)) |
| 845 | s->length = sg_dma_len(s); |
| 846 | sg_dma_address(s) = DMA_MAPPING_ERROR; |
| 847 | sg_dma_len(s) = 0; |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * The DMA API client is passing in a scatterlist which could describe |
| 853 | * any old buffer layout, but the IOMMU API requires everything to be |
| 854 | * aligned to IOMMU pages. Hence the need for this complicated bit of |
| 855 | * impedance-matching, to be able to hand off a suitably-aligned list, |
| 856 | * but still preserve the original offsets and sizes for the caller. |
| 857 | */ |
| 858 | static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| 859 | int nents, enum dma_data_direction dir, unsigned long attrs) |
| 860 | { |
| 861 | struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| 862 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 863 | struct iova_domain *iovad = &cookie->iovad; |
| 864 | struct scatterlist *s, *prev = NULL; |
| 865 | int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs); |
| 866 | dma_addr_t iova; |
| 867 | size_t iova_len = 0; |
| 868 | unsigned long mask = dma_get_seg_boundary(dev); |
| 869 | int i; |
| 870 | |
| 871 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 872 | iommu_dma_sync_sg_for_device(dev, sg, nents, dir); |
| 873 | |
| 874 | /* |
| 875 | * Work out how much IOVA space we need, and align the segments to |
| 876 | * IOVA granules for the IOMMU driver to handle. With some clever |
| 877 | * trickery we can modify the list in-place, but reversibly, by |
| 878 | * stashing the unaligned parts in the as-yet-unused DMA fields. |
| 879 | */ |
| 880 | for_each_sg(sg, s, nents, i) { |
| 881 | size_t s_iova_off = iova_offset(iovad, s->offset); |
| 882 | size_t s_length = s->length; |
| 883 | size_t pad_len = (mask - iova_len + 1) & mask; |
| 884 | |
| 885 | sg_dma_address(s) = s_iova_off; |
| 886 | sg_dma_len(s) = s_length; |
| 887 | s->offset -= s_iova_off; |
| 888 | s_length = iova_align(iovad, s_length + s_iova_off); |
| 889 | s->length = s_length; |
| 890 | |
| 891 | /* |
| 892 | * Due to the alignment of our single IOVA allocation, we can |
| 893 | * depend on these assumptions about the segment boundary mask: |
| 894 | * - If mask size >= IOVA size, then the IOVA range cannot |
| 895 | * possibly fall across a boundary, so we don't care. |
| 896 | * - If mask size < IOVA size, then the IOVA range must start |
| 897 | * exactly on a boundary, therefore we can lay things out |
| 898 | * based purely on segment lengths without needing to know |
| 899 | * the actual addresses beforehand. |
| 900 | * - The mask must be a power of 2, so pad_len == 0 if |
| 901 | * iova_len == 0, thus we cannot dereference prev the first |
| 902 | * time through here (i.e. before it has a meaningful value). |
| 903 | */ |
| 904 | if (pad_len && pad_len < s_length - 1) { |
| 905 | prev->length += pad_len; |
| 906 | iova_len += pad_len; |
| 907 | } |
| 908 | |
| 909 | iova_len += s_length; |
| 910 | prev = s; |
| 911 | } |
| 912 | |
| 913 | iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); |
| 914 | if (!iova) |
| 915 | goto out_restore_sg; |
| 916 | |
| 917 | /* |
| 918 | * We'll leave any physical concatenation to the IOMMU driver's |
| 919 | * implementation - it knows better than we do. |
| 920 | */ |
| 921 | if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len) |
| 922 | goto out_free_iova; |
| 923 | |
| 924 | return __finalise_sg(dev, sg, nents, iova); |
| 925 | |
| 926 | out_free_iova: |
| 927 | iommu_dma_free_iova(cookie, iova, iova_len); |
| 928 | out_restore_sg: |
| 929 | __invalidate_sg(sg, nents); |
| 930 | return 0; |
| 931 | } |
| 932 | |
| 933 | static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, |
| 934 | int nents, enum dma_data_direction dir, unsigned long attrs) |
| 935 | { |
| 936 | dma_addr_t start, end; |
| 937 | struct scatterlist *tmp; |
| 938 | int i; |
| 939 | |
| 940 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 941 | iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir); |
| 942 | |
| 943 | /* |
| 944 | * The scatterlist segments are mapped into a single |
| 945 | * contiguous IOVA allocation, so this is incredibly easy. |
| 946 | */ |
| 947 | start = sg_dma_address(sg); |
| 948 | for_each_sg(sg_next(sg), tmp, nents - 1, i) { |
| 949 | if (sg_dma_len(tmp) == 0) |
| 950 | break; |
| 951 | sg = tmp; |
| 952 | } |
| 953 | end = sg_dma_address(sg) + sg_dma_len(sg); |
| 954 | __iommu_dma_unmap(dev, start, end - start); |
| 955 | } |
| 956 | |
| 957 | static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, |
| 958 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 959 | { |
| 960 | return __iommu_dma_map(dev, phys, size, |
| 961 | dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO); |
| 962 | } |
| 963 | |
| 964 | static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, |
| 965 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 966 | { |
| 967 | __iommu_dma_unmap(dev, handle, size); |
| 968 | } |
| 969 | |
| 970 | static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) |
| 971 | { |
| 972 | size_t alloc_size = PAGE_ALIGN(size); |
| 973 | int count = alloc_size >> PAGE_SHIFT; |
| 974 | struct page *page = NULL, **pages = NULL; |
| 975 | |
| 976 | /* Non-coherent atomic allocation? Easy */ |
| 977 | if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
| 978 | dma_free_from_pool(cpu_addr, alloc_size)) |
| 979 | return; |
| 980 | |
| 981 | if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { |
| 982 | /* |
| 983 | * If it the address is remapped, then it's either non-coherent |
| 984 | * or highmem CMA, or an iommu_dma_alloc_remap() construction. |
| 985 | */ |
| 986 | pages = dma_common_find_pages(cpu_addr); |
| 987 | if (!pages) |
| 988 | page = vmalloc_to_page(cpu_addr); |
| 989 | dma_common_free_remap(cpu_addr, alloc_size); |
| 990 | } else { |
| 991 | /* Lowmem means a coherent atomic or CMA allocation */ |
| 992 | page = virt_to_page(cpu_addr); |
| 993 | } |
| 994 | |
| 995 | if (pages) |
| 996 | __iommu_dma_free_pages(pages, count); |
| 997 | if (page) |
| 998 | dma_free_contiguous(dev, page, alloc_size); |
| 999 | } |
| 1000 | |
| 1001 | static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| 1002 | dma_addr_t handle, unsigned long attrs) |
| 1003 | { |
| 1004 | __iommu_dma_unmap(dev, handle, size); |
| 1005 | __iommu_dma_free(dev, size, cpu_addr); |
| 1006 | } |
| 1007 | |
| 1008 | static void *iommu_dma_alloc_pages(struct device *dev, size_t size, |
| 1009 | struct page **pagep, gfp_t gfp, unsigned long attrs) |
| 1010 | { |
| 1011 | bool coherent = dev_is_dma_coherent(dev); |
| 1012 | size_t alloc_size = PAGE_ALIGN(size); |
| 1013 | int node = dev_to_node(dev); |
| 1014 | struct page *page = NULL; |
| 1015 | void *cpu_addr; |
| 1016 | |
| 1017 | page = dma_alloc_contiguous(dev, alloc_size, gfp); |
| 1018 | if (!page) |
| 1019 | page = alloc_pages_node(node, gfp, get_order(alloc_size)); |
| 1020 | if (!page) |
| 1021 | return NULL; |
| 1022 | |
| 1023 | if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) { |
| 1024 | pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); |
| 1025 | |
| 1026 | cpu_addr = dma_common_contiguous_remap(page, alloc_size, |
| 1027 | prot, __builtin_return_address(0)); |
| 1028 | if (!cpu_addr) |
| 1029 | goto out_free_pages; |
| 1030 | |
| 1031 | if (!coherent) |
| 1032 | arch_dma_prep_coherent(page, size); |
| 1033 | } else { |
| 1034 | cpu_addr = page_address(page); |
| 1035 | } |
| 1036 | |
| 1037 | *pagep = page; |
| 1038 | memset(cpu_addr, 0, alloc_size); |
| 1039 | return cpu_addr; |
| 1040 | out_free_pages: |
| 1041 | dma_free_contiguous(dev, page, alloc_size); |
| 1042 | return NULL; |
| 1043 | } |
| 1044 | |
| 1045 | static void *iommu_dma_alloc(struct device *dev, size_t size, |
| 1046 | dma_addr_t *handle, gfp_t gfp, unsigned long attrs) |
| 1047 | { |
| 1048 | bool coherent = dev_is_dma_coherent(dev); |
| 1049 | int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); |
| 1050 | struct page *page = NULL; |
| 1051 | void *cpu_addr; |
| 1052 | |
| 1053 | gfp |= __GFP_ZERO; |
| 1054 | |
| 1055 | if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) && |
| 1056 | !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) |
| 1057 | return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs); |
| 1058 | |
| 1059 | if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && |
| 1060 | !gfpflags_allow_blocking(gfp) && !coherent) |
| 1061 | cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp); |
| 1062 | else |
| 1063 | cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs); |
| 1064 | if (!cpu_addr) |
| 1065 | return NULL; |
| 1066 | |
| 1067 | *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot); |
| 1068 | if (*handle == DMA_MAPPING_ERROR) { |
| 1069 | __iommu_dma_free(dev, size, cpu_addr); |
| 1070 | return NULL; |
| 1071 | } |
| 1072 | |
| 1073 | return cpu_addr; |
| 1074 | } |
| 1075 | |
| 1076 | static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| 1077 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 1078 | unsigned long attrs) |
| 1079 | { |
| 1080 | unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 1081 | unsigned long pfn, off = vma->vm_pgoff; |
| 1082 | int ret; |
| 1083 | |
| 1084 | vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); |
| 1085 | |
| 1086 | if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| 1087 | return ret; |
| 1088 | |
| 1089 | if (off >= nr_pages || vma_pages(vma) > nr_pages - off) |
| 1090 | return -ENXIO; |
| 1091 | |
| 1092 | if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { |
| 1093 | struct page **pages = dma_common_find_pages(cpu_addr); |
| 1094 | |
| 1095 | if (pages) |
| 1096 | return __iommu_dma_mmap(pages, size, vma); |
| 1097 | pfn = vmalloc_to_pfn(cpu_addr); |
| 1098 | } else { |
| 1099 | pfn = page_to_pfn(virt_to_page(cpu_addr)); |
| 1100 | } |
| 1101 | |
| 1102 | return remap_pfn_range(vma, vma->vm_start, pfn + off, |
| 1103 | vma->vm_end - vma->vm_start, |
| 1104 | vma->vm_page_prot); |
| 1105 | } |
| 1106 | |
| 1107 | static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt, |
| 1108 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 1109 | unsigned long attrs) |
| 1110 | { |
| 1111 | struct page *page; |
| 1112 | int ret; |
| 1113 | |
| 1114 | if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) { |
| 1115 | struct page **pages = dma_common_find_pages(cpu_addr); |
| 1116 | |
| 1117 | if (pages) { |
| 1118 | return sg_alloc_table_from_pages(sgt, pages, |
| 1119 | PAGE_ALIGN(size) >> PAGE_SHIFT, |
| 1120 | 0, size, GFP_KERNEL); |
| 1121 | } |
| 1122 | |
| 1123 | page = vmalloc_to_page(cpu_addr); |
| 1124 | } else { |
| 1125 | page = virt_to_page(cpu_addr); |
| 1126 | } |
| 1127 | |
| 1128 | ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| 1129 | if (!ret) |
| 1130 | sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| 1131 | return ret; |
| 1132 | } |
| 1133 | |
| 1134 | static unsigned long iommu_dma_get_merge_boundary(struct device *dev) |
| 1135 | { |
| 1136 | struct iommu_domain *domain = iommu_get_dma_domain(dev); |
| 1137 | |
| 1138 | return (1UL << __ffs(domain->pgsize_bitmap)) - 1; |
| 1139 | } |
| 1140 | |
| 1141 | static const struct dma_map_ops iommu_dma_ops = { |
| 1142 | .alloc = iommu_dma_alloc, |
| 1143 | .free = iommu_dma_free, |
| 1144 | .mmap = iommu_dma_mmap, |
| 1145 | .get_sgtable = iommu_dma_get_sgtable, |
| 1146 | .map_page = iommu_dma_map_page, |
| 1147 | .unmap_page = iommu_dma_unmap_page, |
| 1148 | .map_sg = iommu_dma_map_sg, |
| 1149 | .unmap_sg = iommu_dma_unmap_sg, |
| 1150 | .sync_single_for_cpu = iommu_dma_sync_single_for_cpu, |
| 1151 | .sync_single_for_device = iommu_dma_sync_single_for_device, |
| 1152 | .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu, |
| 1153 | .sync_sg_for_device = iommu_dma_sync_sg_for_device, |
| 1154 | .map_resource = iommu_dma_map_resource, |
| 1155 | .unmap_resource = iommu_dma_unmap_resource, |
| 1156 | .get_merge_boundary = iommu_dma_get_merge_boundary, |
| 1157 | }; |
| 1158 | |
| 1159 | /* |
| 1160 | * The IOMMU core code allocates the default DMA domain, which the underlying |
| 1161 | * IOMMU driver needs to support via the dma-iommu layer. |
| 1162 | */ |
| 1163 | void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size) |
| 1164 | { |
| 1165 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 1166 | |
| 1167 | if (!domain) |
| 1168 | goto out_err; |
| 1169 | |
| 1170 | /* |
| 1171 | * The IOMMU core code allocates the default DMA domain, which the |
| 1172 | * underlying IOMMU driver needs to support via the dma-iommu layer. |
| 1173 | */ |
| 1174 | if (domain->type == IOMMU_DOMAIN_DMA) { |
| 1175 | if (iommu_dma_init_domain(domain, dma_base, size, dev)) |
| 1176 | goto out_err; |
| 1177 | dev->dma_ops = &iommu_dma_ops; |
| 1178 | } |
| 1179 | |
| 1180 | return; |
| 1181 | out_err: |
| 1182 | pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", |
| 1183 | dev_name(dev)); |
| 1184 | } |
| 1185 | |
| 1186 | static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, |
| 1187 | phys_addr_t msi_addr, struct iommu_domain *domain) |
| 1188 | { |
| 1189 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 1190 | struct iommu_dma_msi_page *msi_page; |
| 1191 | dma_addr_t iova; |
| 1192 | int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; |
| 1193 | size_t size = cookie_msi_granule(cookie); |
| 1194 | |
| 1195 | msi_addr &= ~(phys_addr_t)(size - 1); |
| 1196 | list_for_each_entry(msi_page, &cookie->msi_page_list, list) |
| 1197 | if (msi_page->phys == msi_addr) |
| 1198 | return msi_page; |
| 1199 | |
| 1200 | msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL); |
| 1201 | if (!msi_page) |
| 1202 | return NULL; |
| 1203 | |
| 1204 | iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); |
| 1205 | if (!iova) |
| 1206 | goto out_free_page; |
| 1207 | |
| 1208 | if (iommu_map(domain, iova, msi_addr, size, prot)) |
| 1209 | goto out_free_iova; |
| 1210 | |
| 1211 | INIT_LIST_HEAD(&msi_page->list); |
| 1212 | msi_page->phys = msi_addr; |
| 1213 | msi_page->iova = iova; |
| 1214 | list_add(&msi_page->list, &cookie->msi_page_list); |
| 1215 | return msi_page; |
| 1216 | |
| 1217 | out_free_iova: |
| 1218 | iommu_dma_free_iova(cookie, iova, size); |
| 1219 | out_free_page: |
| 1220 | kfree(msi_page); |
| 1221 | return NULL; |
| 1222 | } |
| 1223 | |
| 1224 | int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr) |
| 1225 | { |
| 1226 | struct device *dev = msi_desc_to_dev(desc); |
| 1227 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 1228 | struct iommu_dma_msi_page *msi_page; |
| 1229 | static DEFINE_MUTEX(msi_prepare_lock); /* see below */ |
| 1230 | |
| 1231 | if (!domain || !domain->iova_cookie) { |
| 1232 | desc->iommu_cookie = NULL; |
| 1233 | return 0; |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * In fact the whole prepare operation should already be serialised by |
| 1238 | * irq_domain_mutex further up the callchain, but that's pretty subtle |
| 1239 | * on its own, so consider this locking as failsafe documentation... |
| 1240 | */ |
| 1241 | mutex_lock(&msi_prepare_lock); |
| 1242 | msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); |
| 1243 | mutex_unlock(&msi_prepare_lock); |
| 1244 | |
| 1245 | msi_desc_set_iommu_cookie(desc, msi_page); |
| 1246 | |
| 1247 | if (!msi_page) |
| 1248 | return -ENOMEM; |
| 1249 | return 0; |
| 1250 | } |
| 1251 | |
| 1252 | void iommu_dma_compose_msi_msg(struct msi_desc *desc, |
| 1253 | struct msi_msg *msg) |
| 1254 | { |
| 1255 | struct device *dev = msi_desc_to_dev(desc); |
| 1256 | const struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 1257 | const struct iommu_dma_msi_page *msi_page; |
| 1258 | |
| 1259 | msi_page = msi_desc_get_iommu_cookie(desc); |
| 1260 | |
| 1261 | if (!domain || !domain->iova_cookie || WARN_ON(!msi_page)) |
| 1262 | return; |
| 1263 | |
| 1264 | msg->address_hi = upper_32_bits(msi_page->iova); |
| 1265 | msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1; |
| 1266 | msg->address_lo += lower_32_bits(msi_page->iova); |
| 1267 | } |
| 1268 | |
| 1269 | static int iommu_dma_init(void) |
| 1270 | { |
| 1271 | return iova_cache_get(); |
| 1272 | } |
| 1273 | arch_initcall(iommu_dma_init); |