blob: 5be54700adee98d05d931bbae0f1575d1c4d88cd [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11#include <linux/acpi_iort.h>
12#include <linux/device.h>
13#include <linux/dma-contiguous.h>
14#include <linux/dma-iommu.h>
15#include <linux/dma-noncoherent.h>
16#include <linux/gfp.h>
17#include <linux/huge_mm.h>
18#include <linux/iommu.h>
19#include <linux/iova.h>
20#include <linux/irq.h>
21#include <linux/mm.h>
22#include <linux/mutex.h>
23#include <linux/pci.h>
24#include <linux/scatterlist.h>
25#include <linux/vmalloc.h>
26
27struct iommu_dma_msi_page {
28 struct list_head list;
29 dma_addr_t iova;
30 phys_addr_t phys;
31};
32
33enum iommu_dma_cookie_type {
34 IOMMU_DMA_IOVA_COOKIE,
35 IOMMU_DMA_MSI_COOKIE,
36};
37
38struct iommu_dma_cookie {
39 enum iommu_dma_cookie_type type;
40 union {
41 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
42 struct iova_domain iovad;
43 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
44 dma_addr_t msi_iova;
45 };
46 struct list_head msi_page_list;
47
48 /* Domain for flush queue callback; NULL if flush queue not in use */
49 struct iommu_domain *fq_domain;
50};
51
52static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
53{
54 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
55 return cookie->iovad.granule;
56 return PAGE_SIZE;
57}
58
59static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
60{
61 struct iommu_dma_cookie *cookie;
62
63 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
64 if (cookie) {
65 INIT_LIST_HEAD(&cookie->msi_page_list);
66 cookie->type = type;
67 }
68 return cookie;
69}
70
71/**
72 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
73 * @domain: IOMMU domain to prepare for DMA-API usage
74 *
75 * IOMMU drivers should normally call this from their domain_alloc
76 * callback when domain->type == IOMMU_DOMAIN_DMA.
77 */
78int iommu_get_dma_cookie(struct iommu_domain *domain)
79{
80 if (domain->iova_cookie)
81 return -EEXIST;
82
83 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
84 if (!domain->iova_cookie)
85 return -ENOMEM;
86
87 return 0;
88}
89EXPORT_SYMBOL(iommu_get_dma_cookie);
90
91/**
92 * iommu_get_msi_cookie - Acquire just MSI remapping resources
93 * @domain: IOMMU domain to prepare
94 * @base: Start address of IOVA region for MSI mappings
95 *
96 * Users who manage their own IOVA allocation and do not want DMA API support,
97 * but would still like to take advantage of automatic MSI remapping, can use
98 * this to initialise their own domain appropriately. Users should reserve a
99 * contiguous IOVA region, starting at @base, large enough to accommodate the
100 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
101 * used by the devices attached to @domain.
102 */
103int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
104{
105 struct iommu_dma_cookie *cookie;
106
107 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
108 return -EINVAL;
109
110 if (domain->iova_cookie)
111 return -EEXIST;
112
113 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
114 if (!cookie)
115 return -ENOMEM;
116
117 cookie->msi_iova = base;
118 domain->iova_cookie = cookie;
119 return 0;
120}
121EXPORT_SYMBOL(iommu_get_msi_cookie);
122
123/**
124 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
125 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
126 * iommu_get_msi_cookie()
127 *
128 * IOMMU drivers should normally call this from their domain_free callback.
129 */
130void iommu_put_dma_cookie(struct iommu_domain *domain)
131{
132 struct iommu_dma_cookie *cookie = domain->iova_cookie;
133 struct iommu_dma_msi_page *msi, *tmp;
134
135 if (!cookie)
136 return;
137
138 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
139 put_iova_domain(&cookie->iovad);
140
141 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
142 list_del(&msi->list);
143 kfree(msi);
144 }
145 kfree(cookie);
146 domain->iova_cookie = NULL;
147}
148EXPORT_SYMBOL(iommu_put_dma_cookie);
149
150/**
151 * iommu_dma_get_resv_regions - Reserved region driver helper
152 * @dev: Device from iommu_get_resv_regions()
153 * @list: Reserved region list from iommu_get_resv_regions()
154 *
155 * IOMMU drivers can use this to implement their .get_resv_regions callback
156 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
157 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
158 * reservation.
159 */
160void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
161{
162
163 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
164 iort_iommu_msi_get_resv_regions(dev, list);
165
166}
167EXPORT_SYMBOL(iommu_dma_get_resv_regions);
168
169static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
170 phys_addr_t start, phys_addr_t end)
171{
172 struct iova_domain *iovad = &cookie->iovad;
173 struct iommu_dma_msi_page *msi_page;
174 int i, num_pages;
175
176 start -= iova_offset(iovad, start);
177 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
178
179 for (i = 0; i < num_pages; i++) {
180 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
181 if (!msi_page)
182 return -ENOMEM;
183
184 msi_page->phys = start;
185 msi_page->iova = start;
186 INIT_LIST_HEAD(&msi_page->list);
187 list_add(&msi_page->list, &cookie->msi_page_list);
188 start += iovad->granule;
189 }
190
191 return 0;
192}
193
194static int iova_reserve_pci_windows(struct pci_dev *dev,
195 struct iova_domain *iovad)
196{
197 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
198 struct resource_entry *window;
199 unsigned long lo, hi;
200 phys_addr_t start = 0, end;
201
202 resource_list_for_each_entry(window, &bridge->windows) {
203 if (resource_type(window->res) != IORESOURCE_MEM)
204 continue;
205
206 lo = iova_pfn(iovad, window->res->start - window->offset);
207 hi = iova_pfn(iovad, window->res->end - window->offset);
208 reserve_iova(iovad, lo, hi);
209 }
210
211 /* Get reserved DMA windows from host bridge */
212 resource_list_for_each_entry(window, &bridge->dma_ranges) {
213 end = window->res->start - window->offset;
214resv_iova:
215 if (end > start) {
216 lo = iova_pfn(iovad, start);
217 hi = iova_pfn(iovad, end);
218 reserve_iova(iovad, lo, hi);
219 } else if (end < start) {
220 /* dma_ranges list should be sorted */
221 dev_err(&dev->dev,
222 "Failed to reserve IOVA [%pa-%pa]\n",
223 &start, &end);
224 return -EINVAL;
225 }
226
227 start = window->res->end - window->offset + 1;
228 /* If window is last entry */
229 if (window->node.next == &bridge->dma_ranges &&
230 end != ~(phys_addr_t)0) {
231 end = ~(phys_addr_t)0;
232 goto resv_iova;
233 }
234 }
235
236 return 0;
237}
238
239static int iova_reserve_iommu_regions(struct device *dev,
240 struct iommu_domain *domain)
241{
242 struct iommu_dma_cookie *cookie = domain->iova_cookie;
243 struct iova_domain *iovad = &cookie->iovad;
244 struct iommu_resv_region *region;
245 LIST_HEAD(resv_regions);
246 int ret = 0;
247
248 if (dev_is_pci(dev)) {
249 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
250 if (ret)
251 return ret;
252 }
253
254 iommu_get_resv_regions(dev, &resv_regions);
255 list_for_each_entry(region, &resv_regions, list) {
256 unsigned long lo, hi;
257
258 /* We ARE the software that manages these! */
259 if (region->type == IOMMU_RESV_SW_MSI)
260 continue;
261
262 lo = iova_pfn(iovad, region->start);
263 hi = iova_pfn(iovad, region->start + region->length - 1);
264 reserve_iova(iovad, lo, hi);
265
266 if (region->type == IOMMU_RESV_MSI)
267 ret = cookie_init_hw_msi_region(cookie, region->start,
268 region->start + region->length);
269 if (ret)
270 break;
271 }
272 iommu_put_resv_regions(dev, &resv_regions);
273
274 return ret;
275}
276
277static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
278{
279 struct iommu_dma_cookie *cookie;
280 struct iommu_domain *domain;
281
282 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
283 domain = cookie->fq_domain;
284 /*
285 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
286 * implies that ops->flush_iotlb_all must be non-NULL.
287 */
288 domain->ops->flush_iotlb_all(domain);
289}
290
291/**
292 * iommu_dma_init_domain - Initialise a DMA mapping domain
293 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
294 * @base: IOVA at which the mappable address space starts
295 * @size: Size of IOVA space
296 * @dev: Device the domain is being initialised for
297 *
298 * @base and @size should be exact multiples of IOMMU page granularity to
299 * avoid rounding surprises. If necessary, we reserve the page at address 0
300 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
301 * any change which could make prior IOVAs invalid will fail.
302 */
303static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
304 u64 size, struct device *dev)
305{
306 struct iommu_dma_cookie *cookie = domain->iova_cookie;
307 unsigned long order, base_pfn;
308 struct iova_domain *iovad;
309 int attr;
310
311 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
312 return -EINVAL;
313
314 iovad = &cookie->iovad;
315
316 /* Use the smallest supported page size for IOVA granularity */
317 order = __ffs(domain->pgsize_bitmap);
318 base_pfn = max_t(unsigned long, 1, base >> order);
319
320 /* Check the domain allows at least some access to the device... */
321 if (domain->geometry.force_aperture) {
322 if (base > domain->geometry.aperture_end ||
323 base + size <= domain->geometry.aperture_start) {
324 pr_warn("specified DMA range outside IOMMU capability\n");
325 return -EFAULT;
326 }
327 /* ...then finally give it a kicking to make sure it fits */
328 base_pfn = max_t(unsigned long, base_pfn,
329 domain->geometry.aperture_start >> order);
330 }
331
332 /* start_pfn is always nonzero for an already-initialised domain */
333 if (iovad->start_pfn) {
334 if (1UL << order != iovad->granule ||
335 base_pfn != iovad->start_pfn) {
336 pr_warn("Incompatible range for DMA domain\n");
337 return -EFAULT;
338 }
339
340 return 0;
341 }
342
343 init_iova_domain(iovad, 1UL << order, base_pfn);
344
345 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
346 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
347 cookie->fq_domain = domain;
348 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
349 }
350
351 if (!dev)
352 return 0;
353
354 return iova_reserve_iommu_regions(dev, domain);
355}
356
357/*
358 * Should be called prior to using dma-apis
359 */
360int iommu_dma_reserve_iova(struct device *dev, dma_addr_t base,
361 u64 size)
362{
363 struct iommu_domain *domain;
364 struct iommu_dma_cookie *cookie;
365 struct iova_domain *iovad;
366 unsigned long pfn_lo, pfn_hi;
367
368 domain = iommu_get_domain_for_dev(dev);
369 if (!domain || !domain->iova_cookie)
370 return -EINVAL;
371
372 cookie = domain->iova_cookie;
373 iovad = &cookie->iovad;
374
375 /* iova will be freed automatically by put_iova_domain() */
376 pfn_lo = iova_pfn(iovad, base);
377 pfn_hi = iova_pfn(iovad, base + size - 1);
378 if (!reserve_iova(iovad, pfn_lo, pfn_hi))
379 return -EINVAL;
380
381 return 0;
382}
383EXPORT_SYMBOL(iommu_dma_reserve_iova);
384
385/*
386 * Should be called prior to using dma-apis.
387 */
388int iommu_dma_enable_best_fit_algo(struct device *dev)
389{
390 struct iommu_domain *domain;
391 struct iova_domain *iovad;
392
393 domain = iommu_get_domain_for_dev(dev);
394 if (!domain || !domain->iova_cookie)
395 return -EINVAL;
396
397 iovad = &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
398 iovad->best_fit = true;
399 return 0;
400}
401EXPORT_SYMBOL(iommu_dma_enable_best_fit_algo);
402
403/**
404 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
405 * page flags.
406 * @dir: Direction of DMA transfer
407 * @coherent: Is the DMA master cache-coherent?
408 * @attrs: DMA attributes for the mapping
409 *
410 * Return: corresponding IOMMU API page protection flags
411 */
412static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
413 unsigned long attrs)
414{
415 int prot = coherent ? IOMMU_CACHE : 0;
416
417 if (attrs & DMA_ATTR_PRIVILEGED)
418 prot |= IOMMU_PRIV;
419
420 switch (dir) {
421 case DMA_BIDIRECTIONAL:
422 return prot | IOMMU_READ | IOMMU_WRITE;
423 case DMA_TO_DEVICE:
424 return prot | IOMMU_READ;
425 case DMA_FROM_DEVICE:
426 return prot | IOMMU_WRITE;
427 default:
428 return 0;
429 }
430}
431
432static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
433 size_t size, dma_addr_t dma_limit, struct device *dev)
434{
435 struct iommu_dma_cookie *cookie = domain->iova_cookie;
436 struct iova_domain *iovad = &cookie->iovad;
437 unsigned long shift, iova_len, iova = 0;
438
439 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
440 cookie->msi_iova += size;
441 return cookie->msi_iova - size;
442 }
443
444 shift = iova_shift(iovad);
445 iova_len = size >> shift;
446 /*
447 * Freeing non-power-of-two-sized allocations back into the IOVA caches
448 * will come back to bite us badly, so we have to waste a bit of space
449 * rounding up anything cacheable to make sure that can't happen. The
450 * order of the unadjusted size will still match upon freeing.
451 */
452 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
453 iova_len = roundup_pow_of_two(iova_len);
454
455 if (dev->bus_dma_mask)
456 dma_limit &= dev->bus_dma_mask;
457
458 if (domain->geometry.force_aperture)
459 dma_limit = min(dma_limit, domain->geometry.aperture_end);
460
461 /* Try to get PCI devices a SAC address */
462 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
463 iova = alloc_iova_fast(iovad, iova_len,
464 DMA_BIT_MASK(32) >> shift, false);
465
466 if (!iova)
467 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
468 true);
469
470 return (dma_addr_t)iova << shift;
471}
472
473static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
474 dma_addr_t iova, size_t size)
475{
476 struct iova_domain *iovad = &cookie->iovad;
477
478 /* The MSI case is only ever cleaning up its most recent allocation */
479 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
480 cookie->msi_iova -= size;
481 else if (cookie->fq_domain) /* non-strict mode */
482 queue_iova(iovad, iova_pfn(iovad, iova),
483 size >> iova_shift(iovad), 0);
484 else
485 free_iova_fast(iovad, iova_pfn(iovad, iova),
486 size >> iova_shift(iovad));
487}
488
489static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
490 size_t size)
491{
492 struct iommu_domain *domain = iommu_get_dma_domain(dev);
493 struct iommu_dma_cookie *cookie = domain->iova_cookie;
494 struct iova_domain *iovad = &cookie->iovad;
495 size_t iova_off = iova_offset(iovad, dma_addr);
496 struct iommu_iotlb_gather iotlb_gather;
497 size_t unmapped;
498
499 dma_addr -= iova_off;
500 size = iova_align(iovad, size + iova_off);
501 iommu_iotlb_gather_init(&iotlb_gather);
502
503 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
504 WARN_ON(unmapped != size);
505
506 if (!cookie->fq_domain)
507 iommu_tlb_sync(domain, &iotlb_gather);
508 iommu_dma_free_iova(cookie, dma_addr, size);
509}
510
511static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
512 size_t size, int prot)
513{
514 struct iommu_domain *domain = iommu_get_dma_domain(dev);
515 struct iommu_dma_cookie *cookie = domain->iova_cookie;
516 struct iova_domain *iovad = &cookie->iovad;
517 size_t iova_off = iova_offset(iovad, phys);
518 dma_addr_t iova;
519
520 size = iova_align(iovad, size + iova_off);
521
522 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
523 if (!iova)
524 return DMA_MAPPING_ERROR;
525
526 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
527 iommu_dma_free_iova(cookie, iova, size);
528 return DMA_MAPPING_ERROR;
529 }
530 return iova + iova_off;
531}
532
533static void __iommu_dma_free_pages(struct page **pages, int count)
534{
535 while (count--)
536 __free_page(pages[count]);
537 kvfree(pages);
538}
539
540static struct page **__iommu_dma_alloc_pages(struct device *dev,
541 unsigned int count, unsigned long order_mask, gfp_t gfp)
542{
543 struct page **pages;
544 unsigned int i = 0, nid = dev_to_node(dev);
545
546 order_mask &= (2U << MAX_ORDER) - 1;
547 if (!order_mask)
548 return NULL;
549
550 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
551 if (!pages)
552 return NULL;
553
554 /* IOMMU can map any pages, so himem can also be used here */
555 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
556
557 while (count) {
558 struct page *page = NULL;
559 unsigned int order_size;
560
561 /*
562 * Higher-order allocations are a convenience rather
563 * than a necessity, hence using __GFP_NORETRY until
564 * falling back to minimum-order allocations.
565 */
566 for (order_mask &= (2U << __fls(count)) - 1;
567 order_mask; order_mask &= ~order_size) {
568 unsigned int order = __fls(order_mask);
569 gfp_t alloc_flags = gfp;
570
571 order_size = 1U << order;
572 if (order_mask > order_size)
573 alloc_flags |= __GFP_NORETRY;
574 page = alloc_pages_node(nid, alloc_flags, order);
575 if (!page)
576 continue;
577 if (!order)
578 break;
579 if (!PageCompound(page)) {
580 split_page(page, order);
581 break;
582 } else if (!split_huge_page(page)) {
583 break;
584 }
585 __free_pages(page, order);
586 }
587 if (!page) {
588 __iommu_dma_free_pages(pages, i);
589 return NULL;
590 }
591 count -= order_size;
592 while (order_size--)
593 pages[i++] = page++;
594 }
595 return pages;
596}
597
598/**
599 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
600 * @dev: Device to allocate memory for. Must be a real device
601 * attached to an iommu_dma_domain
602 * @size: Size of buffer in bytes
603 * @dma_handle: Out argument for allocated DMA handle
604 * @gfp: Allocation flags
605 * @attrs: DMA attributes for this allocation
606 *
607 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
608 * but an IOMMU which supports smaller pages might not map the whole thing.
609 *
610 * Return: Mapped virtual address, or NULL on failure.
611 */
612static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
613 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
614{
615 struct iommu_domain *domain = iommu_get_dma_domain(dev);
616 struct iommu_dma_cookie *cookie = domain->iova_cookie;
617 struct iova_domain *iovad = &cookie->iovad;
618 bool coherent = dev_is_dma_coherent(dev);
619 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
620 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
621 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
622 struct page **pages;
623 struct sg_table sgt;
624 dma_addr_t iova;
625 void *vaddr;
626
627 *dma_handle = DMA_MAPPING_ERROR;
628
629 min_size = alloc_sizes & -alloc_sizes;
630 if (min_size < PAGE_SIZE) {
631 min_size = PAGE_SIZE;
632 alloc_sizes |= PAGE_SIZE;
633 } else {
634 size = ALIGN(size, min_size);
635 }
636 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
637 alloc_sizes = min_size;
638
639 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
640 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
641 gfp);
642 if (!pages)
643 return NULL;
644
645 size = iova_align(iovad, size);
646 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
647 if (!iova)
648 goto out_free_pages;
649
650 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
651 goto out_free_iova;
652
653 if (!(ioprot & IOMMU_CACHE)) {
654 struct scatterlist *sg;
655 int i;
656
657 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
658 arch_dma_prep_coherent(sg_page(sg), sg->length);
659 }
660
661 if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
662 < size)
663 goto out_free_sg;
664
665 vaddr = dma_common_pages_remap(pages, size, prot,
666 __builtin_return_address(0));
667 if (!vaddr)
668 goto out_unmap;
669
670 *dma_handle = iova;
671 sg_free_table(&sgt);
672 return vaddr;
673
674out_unmap:
675 __iommu_dma_unmap(dev, iova, size);
676out_free_sg:
677 sg_free_table(&sgt);
678out_free_iova:
679 iommu_dma_free_iova(cookie, iova, size);
680out_free_pages:
681 __iommu_dma_free_pages(pages, count);
682 return NULL;
683}
684
685/**
686 * __iommu_dma_mmap - Map a buffer into provided user VMA
687 * @pages: Array representing buffer from __iommu_dma_alloc()
688 * @size: Size of buffer in bytes
689 * @vma: VMA describing requested userspace mapping
690 *
691 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
692 * for verifying the correct size and protection of @vma beforehand.
693 */
694static int __iommu_dma_mmap(struct page **pages, size_t size,
695 struct vm_area_struct *vma)
696{
697 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
698}
699
700static void iommu_dma_sync_single_for_cpu(struct device *dev,
701 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
702{
703 phys_addr_t phys;
704
705 if (dev_is_dma_coherent(dev))
706 return;
707
708 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
709 arch_sync_dma_for_cpu(phys, size, dir);
710}
711
712static void iommu_dma_sync_single_for_device(struct device *dev,
713 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
714{
715 phys_addr_t phys;
716
717 if (dev_is_dma_coherent(dev))
718 return;
719
720 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
721 arch_sync_dma_for_device(phys, size, dir);
722}
723
724static void iommu_dma_sync_sg_for_cpu(struct device *dev,
725 struct scatterlist *sgl, int nelems,
726 enum dma_data_direction dir)
727{
728 struct scatterlist *sg;
729 int i;
730
731 if (dev_is_dma_coherent(dev))
732 return;
733
734 for_each_sg(sgl, sg, nelems, i)
735 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
736}
737
738static void iommu_dma_sync_sg_for_device(struct device *dev,
739 struct scatterlist *sgl, int nelems,
740 enum dma_data_direction dir)
741{
742 struct scatterlist *sg;
743 int i;
744
745 if (dev_is_dma_coherent(dev))
746 return;
747
748 for_each_sg(sgl, sg, nelems, i)
749 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
750}
751
752static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
753 unsigned long offset, size_t size, enum dma_data_direction dir,
754 unsigned long attrs)
755{
756 phys_addr_t phys = page_to_phys(page) + offset;
757 bool coherent = dev_is_dma_coherent(dev);
758 int prot = dma_info_to_prot(dir, coherent, attrs);
759 dma_addr_t dma_handle;
760
761 dma_handle =__iommu_dma_map(dev, phys, size, prot);
762 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
763 dma_handle != DMA_MAPPING_ERROR)
764 arch_sync_dma_for_device(phys, size, dir);
765 return dma_handle;
766}
767
768static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
769 size_t size, enum dma_data_direction dir, unsigned long attrs)
770{
771 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
772 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
773 __iommu_dma_unmap(dev, dma_handle, size);
774}
775
776/*
777 * Prepare a successfully-mapped scatterlist to give back to the caller.
778 *
779 * At this point the segments are already laid out by iommu_dma_map_sg() to
780 * avoid individually crossing any boundaries, so we merely need to check a
781 * segment's start address to avoid concatenating across one.
782 */
783static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
784 dma_addr_t dma_addr)
785{
786 struct scatterlist *s, *cur = sg;
787 unsigned long seg_mask = dma_get_seg_boundary(dev);
788 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
789 int i, count = 0;
790
791 for_each_sg(sg, s, nents, i) {
792 /* Restore this segment's original unaligned fields first */
793 unsigned int s_iova_off = sg_dma_address(s);
794 unsigned int s_length = sg_dma_len(s);
795 unsigned int s_iova_len = s->length;
796
797 s->offset += s_iova_off;
798 s->length = s_length;
799 sg_dma_address(s) = DMA_MAPPING_ERROR;
800 sg_dma_len(s) = 0;
801
802 /*
803 * Now fill in the real DMA data. If...
804 * - there is a valid output segment to append to
805 * - and this segment starts on an IOVA page boundary
806 * - but doesn't fall at a segment boundary
807 * - and wouldn't make the resulting output segment too long
808 */
809 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
810 (max_len - cur_len >= s_length)) {
811 /* ...then concatenate it with the previous one */
812 cur_len += s_length;
813 } else {
814 /* Otherwise start the next output segment */
815 if (i > 0)
816 cur = sg_next(cur);
817 cur_len = s_length;
818 count++;
819
820 sg_dma_address(cur) = dma_addr + s_iova_off;
821 }
822
823 sg_dma_len(cur) = cur_len;
824 dma_addr += s_iova_len;
825
826 if (s_length + s_iova_off < s_iova_len)
827 cur_len = 0;
828 }
829 return count;
830}
831
832/*
833 * If mapping failed, then just restore the original list,
834 * but making sure the DMA fields are invalidated.
835 */
836static void __invalidate_sg(struct scatterlist *sg, int nents)
837{
838 struct scatterlist *s;
839 int i;
840
841 for_each_sg(sg, s, nents, i) {
842 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
843 s->offset += sg_dma_address(s);
844 if (sg_dma_len(s))
845 s->length = sg_dma_len(s);
846 sg_dma_address(s) = DMA_MAPPING_ERROR;
847 sg_dma_len(s) = 0;
848 }
849}
850
851/*
852 * The DMA API client is passing in a scatterlist which could describe
853 * any old buffer layout, but the IOMMU API requires everything to be
854 * aligned to IOMMU pages. Hence the need for this complicated bit of
855 * impedance-matching, to be able to hand off a suitably-aligned list,
856 * but still preserve the original offsets and sizes for the caller.
857 */
858static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
859 int nents, enum dma_data_direction dir, unsigned long attrs)
860{
861 struct iommu_domain *domain = iommu_get_dma_domain(dev);
862 struct iommu_dma_cookie *cookie = domain->iova_cookie;
863 struct iova_domain *iovad = &cookie->iovad;
864 struct scatterlist *s, *prev = NULL;
865 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
866 dma_addr_t iova;
867 size_t iova_len = 0;
868 unsigned long mask = dma_get_seg_boundary(dev);
869 int i;
870
871 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
872 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
873
874 /*
875 * Work out how much IOVA space we need, and align the segments to
876 * IOVA granules for the IOMMU driver to handle. With some clever
877 * trickery we can modify the list in-place, but reversibly, by
878 * stashing the unaligned parts in the as-yet-unused DMA fields.
879 */
880 for_each_sg(sg, s, nents, i) {
881 size_t s_iova_off = iova_offset(iovad, s->offset);
882 size_t s_length = s->length;
883 size_t pad_len = (mask - iova_len + 1) & mask;
884
885 sg_dma_address(s) = s_iova_off;
886 sg_dma_len(s) = s_length;
887 s->offset -= s_iova_off;
888 s_length = iova_align(iovad, s_length + s_iova_off);
889 s->length = s_length;
890
891 /*
892 * Due to the alignment of our single IOVA allocation, we can
893 * depend on these assumptions about the segment boundary mask:
894 * - If mask size >= IOVA size, then the IOVA range cannot
895 * possibly fall across a boundary, so we don't care.
896 * - If mask size < IOVA size, then the IOVA range must start
897 * exactly on a boundary, therefore we can lay things out
898 * based purely on segment lengths without needing to know
899 * the actual addresses beforehand.
900 * - The mask must be a power of 2, so pad_len == 0 if
901 * iova_len == 0, thus we cannot dereference prev the first
902 * time through here (i.e. before it has a meaningful value).
903 */
904 if (pad_len && pad_len < s_length - 1) {
905 prev->length += pad_len;
906 iova_len += pad_len;
907 }
908
909 iova_len += s_length;
910 prev = s;
911 }
912
913 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
914 if (!iova)
915 goto out_restore_sg;
916
917 /*
918 * We'll leave any physical concatenation to the IOMMU driver's
919 * implementation - it knows better than we do.
920 */
921 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
922 goto out_free_iova;
923
924 return __finalise_sg(dev, sg, nents, iova);
925
926out_free_iova:
927 iommu_dma_free_iova(cookie, iova, iova_len);
928out_restore_sg:
929 __invalidate_sg(sg, nents);
930 return 0;
931}
932
933static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
934 int nents, enum dma_data_direction dir, unsigned long attrs)
935{
936 dma_addr_t start, end;
937 struct scatterlist *tmp;
938 int i;
939
940 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
941 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
942
943 /*
944 * The scatterlist segments are mapped into a single
945 * contiguous IOVA allocation, so this is incredibly easy.
946 */
947 start = sg_dma_address(sg);
948 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
949 if (sg_dma_len(tmp) == 0)
950 break;
951 sg = tmp;
952 }
953 end = sg_dma_address(sg) + sg_dma_len(sg);
954 __iommu_dma_unmap(dev, start, end - start);
955}
956
957static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
958 size_t size, enum dma_data_direction dir, unsigned long attrs)
959{
960 return __iommu_dma_map(dev, phys, size,
961 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
962}
963
964static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
965 size_t size, enum dma_data_direction dir, unsigned long attrs)
966{
967 __iommu_dma_unmap(dev, handle, size);
968}
969
970static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
971{
972 size_t alloc_size = PAGE_ALIGN(size);
973 int count = alloc_size >> PAGE_SHIFT;
974 struct page *page = NULL, **pages = NULL;
975
976 /* Non-coherent atomic allocation? Easy */
977 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
978 dma_free_from_pool(cpu_addr, alloc_size))
979 return;
980
981 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
982 /*
983 * If it the address is remapped, then it's either non-coherent
984 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
985 */
986 pages = dma_common_find_pages(cpu_addr);
987 if (!pages)
988 page = vmalloc_to_page(cpu_addr);
989 dma_common_free_remap(cpu_addr, alloc_size);
990 } else {
991 /* Lowmem means a coherent atomic or CMA allocation */
992 page = virt_to_page(cpu_addr);
993 }
994
995 if (pages)
996 __iommu_dma_free_pages(pages, count);
997 if (page)
998 dma_free_contiguous(dev, page, alloc_size);
999}
1000
1001static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1002 dma_addr_t handle, unsigned long attrs)
1003{
1004 __iommu_dma_unmap(dev, handle, size);
1005 __iommu_dma_free(dev, size, cpu_addr);
1006}
1007
1008static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1009 struct page **pagep, gfp_t gfp, unsigned long attrs)
1010{
1011 bool coherent = dev_is_dma_coherent(dev);
1012 size_t alloc_size = PAGE_ALIGN(size);
1013 int node = dev_to_node(dev);
1014 struct page *page = NULL;
1015 void *cpu_addr;
1016
1017 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1018 if (!page)
1019 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1020 if (!page)
1021 return NULL;
1022
1023 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1024 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1025
1026 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1027 prot, __builtin_return_address(0));
1028 if (!cpu_addr)
1029 goto out_free_pages;
1030
1031 if (!coherent)
1032 arch_dma_prep_coherent(page, size);
1033 } else {
1034 cpu_addr = page_address(page);
1035 }
1036
1037 *pagep = page;
1038 memset(cpu_addr, 0, alloc_size);
1039 return cpu_addr;
1040out_free_pages:
1041 dma_free_contiguous(dev, page, alloc_size);
1042 return NULL;
1043}
1044
1045static void *iommu_dma_alloc(struct device *dev, size_t size,
1046 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1047{
1048 bool coherent = dev_is_dma_coherent(dev);
1049 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1050 struct page *page = NULL;
1051 void *cpu_addr;
1052
1053 gfp |= __GFP_ZERO;
1054
1055 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1056 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1057 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1058
1059 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1060 !gfpflags_allow_blocking(gfp) && !coherent)
1061 cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1062 else
1063 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1064 if (!cpu_addr)
1065 return NULL;
1066
1067 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot);
1068 if (*handle == DMA_MAPPING_ERROR) {
1069 __iommu_dma_free(dev, size, cpu_addr);
1070 return NULL;
1071 }
1072
1073 return cpu_addr;
1074}
1075
1076static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1077 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1078 unsigned long attrs)
1079{
1080 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1081 unsigned long pfn, off = vma->vm_pgoff;
1082 int ret;
1083
1084 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1085
1086 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1087 return ret;
1088
1089 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1090 return -ENXIO;
1091
1092 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1093 struct page **pages = dma_common_find_pages(cpu_addr);
1094
1095 if (pages)
1096 return __iommu_dma_mmap(pages, size, vma);
1097 pfn = vmalloc_to_pfn(cpu_addr);
1098 } else {
1099 pfn = page_to_pfn(virt_to_page(cpu_addr));
1100 }
1101
1102 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1103 vma->vm_end - vma->vm_start,
1104 vma->vm_page_prot);
1105}
1106
1107static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1108 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1109 unsigned long attrs)
1110{
1111 struct page *page;
1112 int ret;
1113
1114 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1115 struct page **pages = dma_common_find_pages(cpu_addr);
1116
1117 if (pages) {
1118 return sg_alloc_table_from_pages(sgt, pages,
1119 PAGE_ALIGN(size) >> PAGE_SHIFT,
1120 0, size, GFP_KERNEL);
1121 }
1122
1123 page = vmalloc_to_page(cpu_addr);
1124 } else {
1125 page = virt_to_page(cpu_addr);
1126 }
1127
1128 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1129 if (!ret)
1130 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1131 return ret;
1132}
1133
1134static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1135{
1136 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1137
1138 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1139}
1140
1141static const struct dma_map_ops iommu_dma_ops = {
1142 .alloc = iommu_dma_alloc,
1143 .free = iommu_dma_free,
1144 .mmap = iommu_dma_mmap,
1145 .get_sgtable = iommu_dma_get_sgtable,
1146 .map_page = iommu_dma_map_page,
1147 .unmap_page = iommu_dma_unmap_page,
1148 .map_sg = iommu_dma_map_sg,
1149 .unmap_sg = iommu_dma_unmap_sg,
1150 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1151 .sync_single_for_device = iommu_dma_sync_single_for_device,
1152 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1153 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1154 .map_resource = iommu_dma_map_resource,
1155 .unmap_resource = iommu_dma_unmap_resource,
1156 .get_merge_boundary = iommu_dma_get_merge_boundary,
1157};
1158
1159/*
1160 * The IOMMU core code allocates the default DMA domain, which the underlying
1161 * IOMMU driver needs to support via the dma-iommu layer.
1162 */
1163void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1164{
1165 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1166
1167 if (!domain)
1168 goto out_err;
1169
1170 /*
1171 * The IOMMU core code allocates the default DMA domain, which the
1172 * underlying IOMMU driver needs to support via the dma-iommu layer.
1173 */
1174 if (domain->type == IOMMU_DOMAIN_DMA) {
1175 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1176 goto out_err;
1177 dev->dma_ops = &iommu_dma_ops;
1178 }
1179
1180 return;
1181out_err:
1182 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1183 dev_name(dev));
1184}
1185
1186static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1187 phys_addr_t msi_addr, struct iommu_domain *domain)
1188{
1189 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1190 struct iommu_dma_msi_page *msi_page;
1191 dma_addr_t iova;
1192 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1193 size_t size = cookie_msi_granule(cookie);
1194
1195 msi_addr &= ~(phys_addr_t)(size - 1);
1196 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1197 if (msi_page->phys == msi_addr)
1198 return msi_page;
1199
1200 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1201 if (!msi_page)
1202 return NULL;
1203
1204 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1205 if (!iova)
1206 goto out_free_page;
1207
1208 if (iommu_map(domain, iova, msi_addr, size, prot))
1209 goto out_free_iova;
1210
1211 INIT_LIST_HEAD(&msi_page->list);
1212 msi_page->phys = msi_addr;
1213 msi_page->iova = iova;
1214 list_add(&msi_page->list, &cookie->msi_page_list);
1215 return msi_page;
1216
1217out_free_iova:
1218 iommu_dma_free_iova(cookie, iova, size);
1219out_free_page:
1220 kfree(msi_page);
1221 return NULL;
1222}
1223
1224int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1225{
1226 struct device *dev = msi_desc_to_dev(desc);
1227 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1228 struct iommu_dma_msi_page *msi_page;
1229 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1230
1231 if (!domain || !domain->iova_cookie) {
1232 desc->iommu_cookie = NULL;
1233 return 0;
1234 }
1235
1236 /*
1237 * In fact the whole prepare operation should already be serialised by
1238 * irq_domain_mutex further up the callchain, but that's pretty subtle
1239 * on its own, so consider this locking as failsafe documentation...
1240 */
1241 mutex_lock(&msi_prepare_lock);
1242 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1243 mutex_unlock(&msi_prepare_lock);
1244
1245 msi_desc_set_iommu_cookie(desc, msi_page);
1246
1247 if (!msi_page)
1248 return -ENOMEM;
1249 return 0;
1250}
1251
1252void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1253 struct msi_msg *msg)
1254{
1255 struct device *dev = msi_desc_to_dev(desc);
1256 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1257 const struct iommu_dma_msi_page *msi_page;
1258
1259 msi_page = msi_desc_get_iommu_cookie(desc);
1260
1261 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1262 return;
1263
1264 msg->address_hi = upper_32_bits(msi_page->iova);
1265 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1266 msg->address_lo += lower_32_bits(msi_page->iova);
1267}
1268
1269static int iommu_dma_init(void)
1270{
1271 return iova_cache_get();
1272}
1273arch_initcall(iommu_dma_init);