blob: a4805d17317d40dc17bf109e922dd79fd8d600a5 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/intel-iommu.h>
23#include <linux/timer.h>
24#include <linux/irq.h>
25#include <linux/interrupt.h>
26#include <linux/tboot.h>
27#include <linux/dmi.h>
28#include <linux/slab.h>
29#include <linux/iommu.h>
30#include <linux/numa.h>
31#include <linux/limits.h>
32#include <asm/irq_remapping.h>
33#include <asm/iommu_table.h>
34
35#include "irq_remapping.h"
36
37typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38struct dmar_res_callback {
39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
40 void *arg[ACPI_DMAR_TYPE_RESERVED];
41 bool ignore_unhandled;
42 bool print_entry;
43};
44
45/*
46 * Assumptions:
47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48 * before IO devices managed by that unit.
49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50 * after IO devices managed by that unit.
51 * 3) Hotplug events are rare.
52 *
53 * Locking rules for DMA and interrupt remapping related global data structures:
54 * 1) Use dmar_global_lock in process context
55 * 2) Use RCU in interrupt context
56 */
57DECLARE_RWSEM(dmar_global_lock);
58LIST_HEAD(dmar_drhd_units);
59
60struct acpi_table_header * __initdata dmar_tbl;
61static int dmar_dev_scope_status = 1;
62static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63
64static int alloc_iommu(struct dmar_drhd_unit *drhd);
65static void free_iommu(struct intel_iommu *iommu);
66
67extern const struct iommu_ops intel_iommu_ops;
68
69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70{
71 /*
72 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 * the very end.
74 */
75 if (drhd->include_all)
76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 else
78 list_add_rcu(&drhd->list, &dmar_drhd_units);
79}
80
81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82{
83 struct acpi_dmar_device_scope *scope;
84
85 *cnt = 0;
86 while (start < end) {
87 scope = start;
88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 (*cnt)++;
92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 pr_warn("Unsupported device scope\n");
95 }
96 start += scope->length;
97 }
98 if (*cnt == 0)
99 return NULL;
100
101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102}
103
104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105{
106 int i;
107 struct device *tmp_dev;
108
109 if (*devices && *cnt) {
110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 put_device(tmp_dev);
112 kfree(*devices);
113 }
114
115 *devices = NULL;
116 *cnt = 0;
117}
118
119/* Optimize out kzalloc()/kfree() for normal cases */
120static char dmar_pci_notify_info_buf[64];
121
122static struct dmar_pci_notify_info *
123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124{
125 int level = 0;
126 size_t size;
127 struct pci_dev *tmp;
128 struct dmar_pci_notify_info *info;
129
130 BUG_ON(dev->is_virtfn);
131
132 /*
133 * Ignore devices that have a domain number higher than what can
134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135 */
136 if (pci_domain_nr(dev->bus) > U16_MAX)
137 return NULL;
138
139 /* Only generate path[] for device addition event */
140 if (event == BUS_NOTIFY_ADD_DEVICE)
141 for (tmp = dev; tmp; tmp = tmp->bus->self)
142 level++;
143
144 size = struct_size(info, path, level);
145 if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147 } else {
148 info = kzalloc(size, GFP_KERNEL);
149 if (!info) {
150 pr_warn("Out of memory when allocating notify_info "
151 "for %s.\n", pci_name(dev));
152 if (dmar_dev_scope_status == 0)
153 dmar_dev_scope_status = -ENOMEM;
154 return NULL;
155 }
156 }
157
158 info->event = event;
159 info->dev = dev;
160 info->seg = pci_domain_nr(dev->bus);
161 info->level = level;
162 if (event == BUS_NOTIFY_ADD_DEVICE) {
163 for (tmp = dev; tmp; tmp = tmp->bus->self) {
164 level--;
165 info->path[level].bus = tmp->bus->number;
166 info->path[level].device = PCI_SLOT(tmp->devfn);
167 info->path[level].function = PCI_FUNC(tmp->devfn);
168 if (pci_is_root_bus(tmp->bus))
169 info->bus = tmp->bus->number;
170 }
171 }
172
173 return info;
174}
175
176static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
177{
178 if ((void *)info != dmar_pci_notify_info_buf)
179 kfree(info);
180}
181
182static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183 struct acpi_dmar_pci_path *path, int count)
184{
185 int i;
186
187 if (info->bus != bus)
188 goto fallback;
189 if (info->level != count)
190 goto fallback;
191
192 for (i = 0; i < count; i++) {
193 if (path[i].device != info->path[i].device ||
194 path[i].function != info->path[i].function)
195 goto fallback;
196 }
197
198 return true;
199
200fallback:
201
202 if (count != 1)
203 return false;
204
205 i = info->level - 1;
206 if (bus == info->path[i].bus &&
207 path[0].device == info->path[i].device &&
208 path[0].function == info->path[i].function) {
209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210 bus, path[0].device, path[0].function);
211 return true;
212 }
213
214 return false;
215}
216
217/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219 void *start, void*end, u16 segment,
220 struct dmar_dev_scope *devices,
221 int devices_cnt)
222{
223 int i, level;
224 struct device *tmp, *dev = &info->dev->dev;
225 struct acpi_dmar_device_scope *scope;
226 struct acpi_dmar_pci_path *path;
227
228 if (segment != info->seg)
229 return 0;
230
231 for (; start < end; start += scope->length) {
232 scope = start;
233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
235 continue;
236
237 path = (struct acpi_dmar_pci_path *)(scope + 1);
238 level = (scope->length - sizeof(*scope)) / sizeof(*path);
239 if (!dmar_match_pci_path(info, scope->bus, path, level))
240 continue;
241
242 /*
243 * We expect devices with endpoint scope to have normal PCI
244 * headers, and devices with bridge scope to have bridge PCI
245 * headers. However PCI NTB devices may be listed in the
246 * DMAR table with bridge scope, even though they have a
247 * normal PCI header. NTB devices are identified by class
248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249 * for this special case.
250 */
251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255 info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
256 pr_warn("Device scope type does not match for %s\n",
257 pci_name(info->dev));
258 return -EINVAL;
259 }
260
261 for_each_dev_scope(devices, devices_cnt, i, tmp)
262 if (tmp == NULL) {
263 devices[i].bus = info->dev->bus->number;
264 devices[i].devfn = info->dev->devfn;
265 rcu_assign_pointer(devices[i].dev,
266 get_device(dev));
267 return 1;
268 }
269 BUG_ON(i >= devices_cnt);
270 }
271
272 return 0;
273}
274
275int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276 struct dmar_dev_scope *devices, int count)
277{
278 int index;
279 struct device *tmp;
280
281 if (info->seg != segment)
282 return 0;
283
284 for_each_active_dev_scope(devices, count, index, tmp)
285 if (tmp == &info->dev->dev) {
286 RCU_INIT_POINTER(devices[index].dev, NULL);
287 synchronize_rcu();
288 put_device(tmp);
289 return 1;
290 }
291
292 return 0;
293}
294
295static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
296{
297 int ret = 0;
298 struct dmar_drhd_unit *dmaru;
299 struct acpi_dmar_hardware_unit *drhd;
300
301 for_each_drhd_unit(dmaru) {
302 if (dmaru->include_all)
303 continue;
304
305 drhd = container_of(dmaru->hdr,
306 struct acpi_dmar_hardware_unit, header);
307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308 ((void *)drhd) + drhd->header.length,
309 dmaru->segment,
310 dmaru->devices, dmaru->devices_cnt);
311 if (ret)
312 break;
313 }
314 if (ret >= 0)
315 ret = dmar_iommu_notify_scope_dev(info);
316 if (ret < 0 && dmar_dev_scope_status == 0)
317 dmar_dev_scope_status = ret;
318
319 return ret;
320}
321
322static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323{
324 struct dmar_drhd_unit *dmaru;
325
326 for_each_drhd_unit(dmaru)
327 if (dmar_remove_dev_scope(info, dmaru->segment,
328 dmaru->devices, dmaru->devices_cnt))
329 break;
330 dmar_iommu_notify_scope_dev(info);
331}
332
333static int dmar_pci_bus_notifier(struct notifier_block *nb,
334 unsigned long action, void *data)
335{
336 struct pci_dev *pdev = to_pci_dev(data);
337 struct dmar_pci_notify_info *info;
338
339 /* Only care about add/remove events for physical functions.
340 * For VFs we actually do the lookup based on the corresponding
341 * PF in device_to_iommu() anyway. */
342 if (pdev->is_virtfn)
343 return NOTIFY_DONE;
344 if (action != BUS_NOTIFY_ADD_DEVICE &&
345 action != BUS_NOTIFY_REMOVED_DEVICE)
346 return NOTIFY_DONE;
347
348 info = dmar_alloc_pci_notify_info(pdev, action);
349 if (!info)
350 return NOTIFY_DONE;
351
352 down_write(&dmar_global_lock);
353 if (action == BUS_NOTIFY_ADD_DEVICE)
354 dmar_pci_bus_add_dev(info);
355 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
356 dmar_pci_bus_del_dev(info);
357 up_write(&dmar_global_lock);
358
359 dmar_free_pci_notify_info(info);
360
361 return NOTIFY_OK;
362}
363
364static struct notifier_block dmar_pci_bus_nb = {
365 .notifier_call = dmar_pci_bus_notifier,
366 .priority = 1,
367};
368
369static struct dmar_drhd_unit *
370dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
371{
372 struct dmar_drhd_unit *dmaru;
373
374 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
375 dmar_rcu_check())
376 if (dmaru->segment == drhd->segment &&
377 dmaru->reg_base_addr == drhd->address)
378 return dmaru;
379
380 return NULL;
381}
382
383/**
384 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
385 * structure which uniquely represent one DMA remapping hardware unit
386 * present in the platform
387 */
388static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
389{
390 struct acpi_dmar_hardware_unit *drhd;
391 struct dmar_drhd_unit *dmaru;
392 int ret;
393
394 drhd = (struct acpi_dmar_hardware_unit *)header;
395 dmaru = dmar_find_dmaru(drhd);
396 if (dmaru)
397 goto out;
398
399 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
400 if (!dmaru)
401 return -ENOMEM;
402
403 /*
404 * If header is allocated from slab by ACPI _DSM method, we need to
405 * copy the content because the memory buffer will be freed on return.
406 */
407 dmaru->hdr = (void *)(dmaru + 1);
408 memcpy(dmaru->hdr, header, header->length);
409 dmaru->reg_base_addr = drhd->address;
410 dmaru->segment = drhd->segment;
411 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
412 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
413 ((void *)drhd) + drhd->header.length,
414 &dmaru->devices_cnt);
415 if (dmaru->devices_cnt && dmaru->devices == NULL) {
416 kfree(dmaru);
417 return -ENOMEM;
418 }
419
420 ret = alloc_iommu(dmaru);
421 if (ret) {
422 dmar_free_dev_scope(&dmaru->devices,
423 &dmaru->devices_cnt);
424 kfree(dmaru);
425 return ret;
426 }
427 dmar_register_drhd_unit(dmaru);
428
429out:
430 if (arg)
431 (*(int *)arg)++;
432
433 return 0;
434}
435
436static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
437{
438 if (dmaru->devices && dmaru->devices_cnt)
439 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
440 if (dmaru->iommu)
441 free_iommu(dmaru->iommu);
442 kfree(dmaru);
443}
444
445static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
446 void *arg)
447{
448 struct acpi_dmar_andd *andd = (void *)header;
449
450 /* Check for NUL termination within the designated length */
451 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
452 pr_warn(FW_BUG
453 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
454 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
455 dmi_get_system_info(DMI_BIOS_VENDOR),
456 dmi_get_system_info(DMI_BIOS_VERSION),
457 dmi_get_system_info(DMI_PRODUCT_VERSION));
458 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
459 return -EINVAL;
460 }
461 pr_info("ANDD device: %x name: %s\n", andd->device_number,
462 andd->device_name);
463
464 return 0;
465}
466
467#ifdef CONFIG_ACPI_NUMA
468static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
469{
470 struct acpi_dmar_rhsa *rhsa;
471 struct dmar_drhd_unit *drhd;
472
473 rhsa = (struct acpi_dmar_rhsa *)header;
474 for_each_drhd_unit(drhd) {
475 if (drhd->reg_base_addr == rhsa->base_address) {
476 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
477
478 if (node != NUMA_NO_NODE && !node_online(node))
479 node = NUMA_NO_NODE;
480 drhd->iommu->node = node;
481 return 0;
482 }
483 }
484 pr_warn(FW_BUG
485 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
486 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
487 rhsa->base_address,
488 dmi_get_system_info(DMI_BIOS_VENDOR),
489 dmi_get_system_info(DMI_BIOS_VERSION),
490 dmi_get_system_info(DMI_PRODUCT_VERSION));
491 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
492
493 return 0;
494}
495#else
496#define dmar_parse_one_rhsa dmar_res_noop
497#endif
498
499static void
500dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
501{
502 struct acpi_dmar_hardware_unit *drhd;
503 struct acpi_dmar_reserved_memory *rmrr;
504 struct acpi_dmar_atsr *atsr;
505 struct acpi_dmar_rhsa *rhsa;
506
507 switch (header->type) {
508 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
509 drhd = container_of(header, struct acpi_dmar_hardware_unit,
510 header);
511 pr_info("DRHD base: %#016Lx flags: %#x\n",
512 (unsigned long long)drhd->address, drhd->flags);
513 break;
514 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
515 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
516 header);
517 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
518 (unsigned long long)rmrr->base_address,
519 (unsigned long long)rmrr->end_address);
520 break;
521 case ACPI_DMAR_TYPE_ROOT_ATS:
522 atsr = container_of(header, struct acpi_dmar_atsr, header);
523 pr_info("ATSR flags: %#x\n", atsr->flags);
524 break;
525 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
526 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
527 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
528 (unsigned long long)rhsa->base_address,
529 rhsa->proximity_domain);
530 break;
531 case ACPI_DMAR_TYPE_NAMESPACE:
532 /* We don't print this here because we need to sanity-check
533 it first. So print it in dmar_parse_one_andd() instead. */
534 break;
535 }
536}
537
538/**
539 * dmar_table_detect - checks to see if the platform supports DMAR devices
540 */
541static int __init dmar_table_detect(void)
542{
543 acpi_status status = AE_OK;
544
545 /* if we could find DMAR table, then there are DMAR devices */
546 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
547
548 if (ACPI_SUCCESS(status) && !dmar_tbl) {
549 pr_warn("Unable to map DMAR\n");
550 status = AE_NOT_FOUND;
551 }
552
553 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
554}
555
556static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
557 size_t len, struct dmar_res_callback *cb)
558{
559 struct acpi_dmar_header *iter, *next;
560 struct acpi_dmar_header *end = ((void *)start) + len;
561
562 for (iter = start; iter < end; iter = next) {
563 next = (void *)iter + iter->length;
564 if (iter->length == 0) {
565 /* Avoid looping forever on bad ACPI tables */
566 pr_debug(FW_BUG "Invalid 0-length structure\n");
567 break;
568 } else if (next > end) {
569 /* Avoid passing table end */
570 pr_warn(FW_BUG "Record passes table end\n");
571 return -EINVAL;
572 }
573
574 if (cb->print_entry)
575 dmar_table_print_dmar_entry(iter);
576
577 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
578 /* continue for forward compatibility */
579 pr_debug("Unknown DMAR structure type %d\n",
580 iter->type);
581 } else if (cb->cb[iter->type]) {
582 int ret;
583
584 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
585 if (ret)
586 return ret;
587 } else if (!cb->ignore_unhandled) {
588 pr_warn("No handler for DMAR structure type %d\n",
589 iter->type);
590 return -EINVAL;
591 }
592 }
593
594 return 0;
595}
596
597static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
598 struct dmar_res_callback *cb)
599{
600 return dmar_walk_remapping_entries((void *)(dmar + 1),
601 dmar->header.length - sizeof(*dmar), cb);
602}
603
604/**
605 * parse_dmar_table - parses the DMA reporting table
606 */
607static int __init
608parse_dmar_table(void)
609{
610 struct acpi_table_dmar *dmar;
611 int drhd_count = 0;
612 int ret;
613 struct dmar_res_callback cb = {
614 .print_entry = true,
615 .ignore_unhandled = true,
616 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
617 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
618 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
619 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
620 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
621 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
622 };
623
624 /*
625 * Do it again, earlier dmar_tbl mapping could be mapped with
626 * fixed map.
627 */
628 dmar_table_detect();
629
630 /*
631 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
632 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
633 */
634 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
635
636 dmar = (struct acpi_table_dmar *)dmar_tbl;
637 if (!dmar)
638 return -ENODEV;
639
640 if (dmar->width < PAGE_SHIFT - 1) {
641 pr_warn("Invalid DMAR haw\n");
642 return -EINVAL;
643 }
644
645 pr_info("Host address width %d\n", dmar->width + 1);
646 ret = dmar_walk_dmar_table(dmar, &cb);
647 if (ret == 0 && drhd_count == 0)
648 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
649
650 return ret;
651}
652
653static int dmar_pci_device_match(struct dmar_dev_scope devices[],
654 int cnt, struct pci_dev *dev)
655{
656 int index;
657 struct device *tmp;
658
659 while (dev) {
660 for_each_active_dev_scope(devices, cnt, index, tmp)
661 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
662 return 1;
663
664 /* Check our parent */
665 dev = dev->bus->self;
666 }
667
668 return 0;
669}
670
671struct dmar_drhd_unit *
672dmar_find_matched_drhd_unit(struct pci_dev *dev)
673{
674 struct dmar_drhd_unit *dmaru;
675 struct acpi_dmar_hardware_unit *drhd;
676
677 dev = pci_physfn(dev);
678
679 rcu_read_lock();
680 for_each_drhd_unit(dmaru) {
681 drhd = container_of(dmaru->hdr,
682 struct acpi_dmar_hardware_unit,
683 header);
684
685 if (dmaru->include_all &&
686 drhd->segment == pci_domain_nr(dev->bus))
687 goto out;
688
689 if (dmar_pci_device_match(dmaru->devices,
690 dmaru->devices_cnt, dev))
691 goto out;
692 }
693 dmaru = NULL;
694out:
695 rcu_read_unlock();
696
697 return dmaru;
698}
699
700static void __init dmar_acpi_insert_dev_scope(u8 device_number,
701 struct acpi_device *adev)
702{
703 struct dmar_drhd_unit *dmaru;
704 struct acpi_dmar_hardware_unit *drhd;
705 struct acpi_dmar_device_scope *scope;
706 struct device *tmp;
707 int i;
708 struct acpi_dmar_pci_path *path;
709
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
713 header);
714
715 for (scope = (void *)(drhd + 1);
716 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
717 scope = ((void *)scope) + scope->length) {
718 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
719 continue;
720 if (scope->enumeration_id != device_number)
721 continue;
722
723 path = (void *)(scope + 1);
724 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
725 dev_name(&adev->dev), dmaru->reg_base_addr,
726 scope->bus, path->device, path->function);
727 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
728 if (tmp == NULL) {
729 dmaru->devices[i].bus = scope->bus;
730 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
731 path->function);
732 rcu_assign_pointer(dmaru->devices[i].dev,
733 get_device(&adev->dev));
734 return;
735 }
736 BUG_ON(i >= dmaru->devices_cnt);
737 }
738 }
739 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
740 device_number, dev_name(&adev->dev));
741}
742
743static int __init dmar_acpi_dev_scope_init(void)
744{
745 struct acpi_dmar_andd *andd;
746
747 if (dmar_tbl == NULL)
748 return -ENODEV;
749
750 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
751 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
752 andd = ((void *)andd) + andd->header.length) {
753 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
754 acpi_handle h;
755 struct acpi_device *adev;
756
757 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
758 andd->device_name,
759 &h))) {
760 pr_err("Failed to find handle for ACPI object %s\n",
761 andd->device_name);
762 continue;
763 }
764 if (acpi_bus_get_device(h, &adev)) {
765 pr_err("Failed to get device for ACPI object %s\n",
766 andd->device_name);
767 continue;
768 }
769 dmar_acpi_insert_dev_scope(andd->device_number, adev);
770 }
771 }
772 return 0;
773}
774
775int __init dmar_dev_scope_init(void)
776{
777 struct pci_dev *dev = NULL;
778 struct dmar_pci_notify_info *info;
779
780 if (dmar_dev_scope_status != 1)
781 return dmar_dev_scope_status;
782
783 if (list_empty(&dmar_drhd_units)) {
784 dmar_dev_scope_status = -ENODEV;
785 } else {
786 dmar_dev_scope_status = 0;
787
788 dmar_acpi_dev_scope_init();
789
790 for_each_pci_dev(dev) {
791 if (dev->is_virtfn)
792 continue;
793
794 info = dmar_alloc_pci_notify_info(dev,
795 BUS_NOTIFY_ADD_DEVICE);
796 if (!info) {
797 pci_dev_put(dev);
798 return dmar_dev_scope_status;
799 } else {
800 dmar_pci_bus_add_dev(info);
801 dmar_free_pci_notify_info(info);
802 }
803 }
804 }
805
806 return dmar_dev_scope_status;
807}
808
809void __init dmar_register_bus_notifier(void)
810{
811 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
812}
813
814
815int __init dmar_table_init(void)
816{
817 static int dmar_table_initialized;
818 int ret;
819
820 if (dmar_table_initialized == 0) {
821 ret = parse_dmar_table();
822 if (ret < 0) {
823 if (ret != -ENODEV)
824 pr_info("Parse DMAR table failure.\n");
825 } else if (list_empty(&dmar_drhd_units)) {
826 pr_info("No DMAR devices found\n");
827 ret = -ENODEV;
828 }
829
830 if (ret < 0)
831 dmar_table_initialized = ret;
832 else
833 dmar_table_initialized = 1;
834 }
835
836 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
837}
838
839static void warn_invalid_dmar(u64 addr, const char *message)
840{
841 pr_warn_once(FW_BUG
842 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
843 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
844 addr, message,
845 dmi_get_system_info(DMI_BIOS_VENDOR),
846 dmi_get_system_info(DMI_BIOS_VERSION),
847 dmi_get_system_info(DMI_PRODUCT_VERSION));
848 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
849}
850
851static int __ref
852dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
853{
854 struct acpi_dmar_hardware_unit *drhd;
855 void __iomem *addr;
856 u64 cap, ecap;
857
858 drhd = (void *)entry;
859 if (!drhd->address) {
860 warn_invalid_dmar(0, "");
861 return -EINVAL;
862 }
863
864 if (arg)
865 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
866 else
867 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
868 if (!addr) {
869 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
870 return -EINVAL;
871 }
872
873 cap = dmar_readq(addr + DMAR_CAP_REG);
874 ecap = dmar_readq(addr + DMAR_ECAP_REG);
875
876 if (arg)
877 iounmap(addr);
878 else
879 early_iounmap(addr, VTD_PAGE_SIZE);
880
881 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
882 warn_invalid_dmar(drhd->address, " returns all ones");
883 return -EINVAL;
884 }
885
886 return 0;
887}
888
889int __init detect_intel_iommu(void)
890{
891 int ret;
892 struct dmar_res_callback validate_drhd_cb = {
893 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
894 .ignore_unhandled = true,
895 };
896
897 down_write(&dmar_global_lock);
898 ret = dmar_table_detect();
899 if (!ret)
900 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
901 &validate_drhd_cb);
902 if (!ret && !no_iommu && !iommu_detected &&
903 (!dmar_disabled || dmar_platform_optin())) {
904 iommu_detected = 1;
905 /* Make sure ACS will be enabled */
906 pci_request_acs();
907 }
908
909#ifdef CONFIG_X86
910 if (!ret)
911 x86_init.iommu.iommu_init = intel_iommu_init;
912#endif
913
914 if (dmar_tbl) {
915 acpi_put_table(dmar_tbl);
916 dmar_tbl = NULL;
917 }
918 up_write(&dmar_global_lock);
919
920 return ret ? ret : 1;
921}
922
923static void unmap_iommu(struct intel_iommu *iommu)
924{
925 iounmap(iommu->reg);
926 release_mem_region(iommu->reg_phys, iommu->reg_size);
927}
928
929/**
930 * map_iommu: map the iommu's registers
931 * @iommu: the iommu to map
932 * @phys_addr: the physical address of the base resgister
933 *
934 * Memory map the iommu's registers. Start w/ a single page, and
935 * possibly expand if that turns out to be insufficent.
936 */
937static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
938{
939 int map_size, err=0;
940
941 iommu->reg_phys = phys_addr;
942 iommu->reg_size = VTD_PAGE_SIZE;
943
944 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
945 pr_err("Can't reserve memory\n");
946 err = -EBUSY;
947 goto out;
948 }
949
950 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
951 if (!iommu->reg) {
952 pr_err("Can't map the region\n");
953 err = -ENOMEM;
954 goto release;
955 }
956
957 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
958 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
959
960 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
961 err = -EINVAL;
962 warn_invalid_dmar(phys_addr, " returns all ones");
963 goto unmap;
964 }
965
966 /* the registers might be more than one page */
967 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
968 cap_max_fault_reg_offset(iommu->cap));
969 map_size = VTD_PAGE_ALIGN(map_size);
970 if (map_size > iommu->reg_size) {
971 iounmap(iommu->reg);
972 release_mem_region(iommu->reg_phys, iommu->reg_size);
973 iommu->reg_size = map_size;
974 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
975 iommu->name)) {
976 pr_err("Can't reserve memory\n");
977 err = -EBUSY;
978 goto out;
979 }
980 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
981 if (!iommu->reg) {
982 pr_err("Can't map the region\n");
983 err = -ENOMEM;
984 goto release;
985 }
986 }
987 err = 0;
988 goto out;
989
990unmap:
991 iounmap(iommu->reg);
992release:
993 release_mem_region(iommu->reg_phys, iommu->reg_size);
994out:
995 return err;
996}
997
998static int dmar_alloc_seq_id(struct intel_iommu *iommu)
999{
1000 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1001 DMAR_UNITS_SUPPORTED);
1002 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1003 iommu->seq_id = -1;
1004 } else {
1005 set_bit(iommu->seq_id, dmar_seq_ids);
1006 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1007 }
1008
1009 return iommu->seq_id;
1010}
1011
1012static void dmar_free_seq_id(struct intel_iommu *iommu)
1013{
1014 if (iommu->seq_id >= 0) {
1015 clear_bit(iommu->seq_id, dmar_seq_ids);
1016 iommu->seq_id = -1;
1017 }
1018}
1019
1020static int alloc_iommu(struct dmar_drhd_unit *drhd)
1021{
1022 struct intel_iommu *iommu;
1023 u32 ver, sts;
1024 int agaw = -1;
1025 int msagaw = -1;
1026 int err;
1027
1028 if (!drhd->reg_base_addr) {
1029 warn_invalid_dmar(0, "");
1030 return -EINVAL;
1031 }
1032
1033 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1034 if (!iommu)
1035 return -ENOMEM;
1036
1037 if (dmar_alloc_seq_id(iommu) < 0) {
1038 pr_err("Failed to allocate seq_id\n");
1039 err = -ENOSPC;
1040 goto error;
1041 }
1042
1043 err = map_iommu(iommu, drhd->reg_base_addr);
1044 if (err) {
1045 pr_err("Failed to map %s\n", iommu->name);
1046 goto error_free_seq_id;
1047 }
1048
1049 err = -EINVAL;
1050 if (cap_sagaw(iommu->cap) == 0) {
1051 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1052 iommu->name);
1053 drhd->ignored = 1;
1054 }
1055
1056 if (!drhd->ignored) {
1057 agaw = iommu_calculate_agaw(iommu);
1058 if (agaw < 0) {
1059 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1060 iommu->seq_id);
1061 drhd->ignored = 1;
1062 }
1063 }
1064 if (!drhd->ignored) {
1065 msagaw = iommu_calculate_max_sagaw(iommu);
1066 if (msagaw < 0) {
1067 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1068 iommu->seq_id);
1069 drhd->ignored = 1;
1070 agaw = -1;
1071 }
1072 }
1073 iommu->agaw = agaw;
1074 iommu->msagaw = msagaw;
1075 iommu->segment = drhd->segment;
1076
1077 iommu->node = NUMA_NO_NODE;
1078
1079 ver = readl(iommu->reg + DMAR_VER_REG);
1080 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1081 iommu->name,
1082 (unsigned long long)drhd->reg_base_addr,
1083 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1084 (unsigned long long)iommu->cap,
1085 (unsigned long long)iommu->ecap);
1086
1087 /* Reflect status in gcmd */
1088 sts = readl(iommu->reg + DMAR_GSTS_REG);
1089 if (sts & DMA_GSTS_IRES)
1090 iommu->gcmd |= DMA_GCMD_IRE;
1091 if (sts & DMA_GSTS_TES)
1092 iommu->gcmd |= DMA_GCMD_TE;
1093 if (sts & DMA_GSTS_QIES)
1094 iommu->gcmd |= DMA_GCMD_QIE;
1095
1096 raw_spin_lock_init(&iommu->register_lock);
1097
1098 /*
1099 * This is only for hotplug; at boot time intel_iommu_enabled won't
1100 * be set yet. When intel_iommu_init() runs, it registers the units
1101 * present at boot time, then sets intel_iommu_enabled.
1102 */
1103 if (intel_iommu_enabled && !drhd->ignored) {
1104 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1105 intel_iommu_groups,
1106 "%s", iommu->name);
1107 if (err)
1108 goto err_unmap;
1109
1110 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1111
1112 err = iommu_device_register(&iommu->iommu);
1113 if (err)
1114 goto err_sysfs;
1115 }
1116
1117 drhd->iommu = iommu;
1118 iommu->drhd = drhd;
1119
1120 return 0;
1121
1122err_sysfs:
1123 iommu_device_sysfs_remove(&iommu->iommu);
1124err_unmap:
1125 unmap_iommu(iommu);
1126error_free_seq_id:
1127 dmar_free_seq_id(iommu);
1128error:
1129 kfree(iommu);
1130 return err;
1131}
1132
1133static void free_iommu(struct intel_iommu *iommu)
1134{
1135 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1136 iommu_device_unregister(&iommu->iommu);
1137 iommu_device_sysfs_remove(&iommu->iommu);
1138 }
1139
1140 if (iommu->irq) {
1141 if (iommu->pr_irq) {
1142 free_irq(iommu->pr_irq, iommu);
1143 dmar_free_hwirq(iommu->pr_irq);
1144 iommu->pr_irq = 0;
1145 }
1146 free_irq(iommu->irq, iommu);
1147 dmar_free_hwirq(iommu->irq);
1148 iommu->irq = 0;
1149 }
1150
1151 if (iommu->qi) {
1152 free_page((unsigned long)iommu->qi->desc);
1153 kfree(iommu->qi->desc_status);
1154 kfree(iommu->qi);
1155 }
1156
1157 if (iommu->reg)
1158 unmap_iommu(iommu);
1159
1160 dmar_free_seq_id(iommu);
1161 kfree(iommu);
1162}
1163
1164/*
1165 * Reclaim all the submitted descriptors which have completed its work.
1166 */
1167static inline void reclaim_free_desc(struct q_inval *qi)
1168{
1169 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1170 qi->desc_status[qi->free_tail] == QI_ABORT) {
1171 qi->desc_status[qi->free_tail] = QI_FREE;
1172 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1173 qi->free_cnt++;
1174 }
1175}
1176
1177static int qi_check_fault(struct intel_iommu *iommu, int index)
1178{
1179 u32 fault;
1180 int head, tail;
1181 struct q_inval *qi = iommu->qi;
1182 int wait_index = (index + 1) % QI_LENGTH;
1183 int shift = qi_shift(iommu);
1184
1185 if (qi->desc_status[wait_index] == QI_ABORT)
1186 return -EAGAIN;
1187
1188 fault = readl(iommu->reg + DMAR_FSTS_REG);
1189
1190 /*
1191 * If IQE happens, the head points to the descriptor associated
1192 * with the error. No new descriptors are fetched until the IQE
1193 * is cleared.
1194 */
1195 if (fault & DMA_FSTS_IQE) {
1196 head = readl(iommu->reg + DMAR_IQH_REG);
1197 if ((head >> shift) == index) {
1198 struct qi_desc *desc = qi->desc + head;
1199
1200 /*
1201 * desc->qw2 and desc->qw3 are either reserved or
1202 * used by software as private data. We won't print
1203 * out these two qw's for security consideration.
1204 */
1205 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1206 (unsigned long long)desc->qw0,
1207 (unsigned long long)desc->qw1);
1208 memcpy(desc, qi->desc + (wait_index << shift),
1209 1 << shift);
1210 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1211 return -EINVAL;
1212 }
1213 }
1214
1215 /*
1216 * If ITE happens, all pending wait_desc commands are aborted.
1217 * No new descriptors are fetched until the ITE is cleared.
1218 */
1219 if (fault & DMA_FSTS_ITE) {
1220 head = readl(iommu->reg + DMAR_IQH_REG);
1221 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1222 head |= 1;
1223 tail = readl(iommu->reg + DMAR_IQT_REG);
1224 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1225
1226 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1227
1228 do {
1229 if (qi->desc_status[head] == QI_IN_USE)
1230 qi->desc_status[head] = QI_ABORT;
1231 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1232 } while (head != tail);
1233
1234 if (qi->desc_status[wait_index] == QI_ABORT)
1235 return -EAGAIN;
1236 }
1237
1238 if (fault & DMA_FSTS_ICE)
1239 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1240
1241 return 0;
1242}
1243
1244/*
1245 * Submit the queued invalidation descriptor to the remapping
1246 * hardware unit and wait for its completion.
1247 */
1248int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1249{
1250 int rc;
1251 struct q_inval *qi = iommu->qi;
1252 int offset, shift, length;
1253 struct qi_desc wait_desc;
1254 int wait_index, index;
1255 unsigned long flags;
1256
1257 if (!qi)
1258 return 0;
1259
1260restart:
1261 rc = 0;
1262
1263 raw_spin_lock_irqsave(&qi->q_lock, flags);
1264 while (qi->free_cnt < 3) {
1265 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1266 cpu_relax();
1267 raw_spin_lock_irqsave(&qi->q_lock, flags);
1268 }
1269
1270 index = qi->free_head;
1271 wait_index = (index + 1) % QI_LENGTH;
1272 shift = qi_shift(iommu);
1273 length = 1 << shift;
1274
1275 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1276
1277 offset = index << shift;
1278 memcpy(qi->desc + offset, desc, length);
1279 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1280 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1281 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1282 wait_desc.qw2 = 0;
1283 wait_desc.qw3 = 0;
1284
1285 offset = wait_index << shift;
1286 memcpy(qi->desc + offset, &wait_desc, length);
1287
1288 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1289 qi->free_cnt -= 2;
1290
1291 /*
1292 * update the HW tail register indicating the presence of
1293 * new descriptors.
1294 */
1295 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1296
1297 while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) {
1298 /*
1299 * We will leave the interrupts disabled, to prevent interrupt
1300 * context to queue another cmd while a cmd is already submitted
1301 * and waiting for completion on this cpu. This is to avoid
1302 * a deadlock where the interrupt context can wait indefinitely
1303 * for free slots in the queue.
1304 */
1305 rc = qi_check_fault(iommu, index);
1306 if (rc)
1307 break;
1308
1309 raw_spin_unlock(&qi->q_lock);
1310 cpu_relax();
1311 raw_spin_lock(&qi->q_lock);
1312 }
1313
1314 qi->desc_status[index] = QI_DONE;
1315
1316 reclaim_free_desc(qi);
1317 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1318
1319 if (rc == -EAGAIN)
1320 goto restart;
1321
1322 return rc;
1323}
1324
1325/*
1326 * Flush the global interrupt entry cache.
1327 */
1328void qi_global_iec(struct intel_iommu *iommu)
1329{
1330 struct qi_desc desc;
1331
1332 desc.qw0 = QI_IEC_TYPE;
1333 desc.qw1 = 0;
1334 desc.qw2 = 0;
1335 desc.qw3 = 0;
1336
1337 /* should never fail */
1338 qi_submit_sync(&desc, iommu);
1339}
1340
1341void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1342 u64 type)
1343{
1344 struct qi_desc desc;
1345
1346 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1347 | QI_CC_GRAN(type) | QI_CC_TYPE;
1348 desc.qw1 = 0;
1349 desc.qw2 = 0;
1350 desc.qw3 = 0;
1351
1352 qi_submit_sync(&desc, iommu);
1353}
1354
1355void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1356 unsigned int size_order, u64 type)
1357{
1358 u8 dw = 0, dr = 0;
1359
1360 struct qi_desc desc;
1361 int ih = 0;
1362
1363 if (cap_write_drain(iommu->cap))
1364 dw = 1;
1365
1366 if (cap_read_drain(iommu->cap))
1367 dr = 1;
1368
1369 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1370 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1371 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1372 | QI_IOTLB_AM(size_order);
1373 desc.qw2 = 0;
1374 desc.qw3 = 0;
1375
1376 qi_submit_sync(&desc, iommu);
1377}
1378
1379void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1380 u16 qdep, u64 addr, unsigned mask)
1381{
1382 struct qi_desc desc;
1383
1384 if (mask) {
1385 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1386 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1387 } else
1388 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1389
1390 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1391 qdep = 0;
1392
1393 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1394 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1395 desc.qw2 = 0;
1396 desc.qw3 = 0;
1397
1398 qi_submit_sync(&desc, iommu);
1399}
1400
1401/*
1402 * Disable Queued Invalidation interface.
1403 */
1404void dmar_disable_qi(struct intel_iommu *iommu)
1405{
1406 unsigned long flags;
1407 u32 sts;
1408 cycles_t start_time = get_cycles();
1409
1410 if (!ecap_qis(iommu->ecap))
1411 return;
1412
1413 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1414
1415 sts = readl(iommu->reg + DMAR_GSTS_REG);
1416 if (!(sts & DMA_GSTS_QIES))
1417 goto end;
1418
1419 /*
1420 * Give a chance to HW to complete the pending invalidation requests.
1421 */
1422 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1423 readl(iommu->reg + DMAR_IQH_REG)) &&
1424 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1425 cpu_relax();
1426
1427 iommu->gcmd &= ~DMA_GCMD_QIE;
1428 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1429
1430 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1431 !(sts & DMA_GSTS_QIES), sts);
1432end:
1433 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1434}
1435
1436/*
1437 * Enable queued invalidation.
1438 */
1439static void __dmar_enable_qi(struct intel_iommu *iommu)
1440{
1441 u32 sts;
1442 unsigned long flags;
1443 struct q_inval *qi = iommu->qi;
1444 u64 val = virt_to_phys(qi->desc);
1445
1446 qi->free_head = qi->free_tail = 0;
1447 qi->free_cnt = QI_LENGTH;
1448
1449 /*
1450 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1451 * is present.
1452 */
1453 if (ecap_smts(iommu->ecap))
1454 val |= (1 << 11) | 1;
1455
1456 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1457
1458 /* write zero to the tail reg */
1459 writel(0, iommu->reg + DMAR_IQT_REG);
1460
1461 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1462
1463 iommu->gcmd |= DMA_GCMD_QIE;
1464 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1465
1466 /* Make sure hardware complete it */
1467 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1468
1469 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1470}
1471
1472/*
1473 * Enable Queued Invalidation interface. This is a must to support
1474 * interrupt-remapping. Also used by DMA-remapping, which replaces
1475 * register based IOTLB invalidation.
1476 */
1477int dmar_enable_qi(struct intel_iommu *iommu)
1478{
1479 struct q_inval *qi;
1480 struct page *desc_page;
1481
1482 if (!ecap_qis(iommu->ecap))
1483 return -ENOENT;
1484
1485 /*
1486 * queued invalidation is already setup and enabled.
1487 */
1488 if (iommu->qi)
1489 return 0;
1490
1491 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1492 if (!iommu->qi)
1493 return -ENOMEM;
1494
1495 qi = iommu->qi;
1496
1497 /*
1498 * Need two pages to accommodate 256 descriptors of 256 bits each
1499 * if the remapping hardware supports scalable mode translation.
1500 */
1501 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1502 !!ecap_smts(iommu->ecap));
1503 if (!desc_page) {
1504 kfree(qi);
1505 iommu->qi = NULL;
1506 return -ENOMEM;
1507 }
1508
1509 qi->desc = page_address(desc_page);
1510
1511 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1512 if (!qi->desc_status) {
1513 free_page((unsigned long) qi->desc);
1514 kfree(qi);
1515 iommu->qi = NULL;
1516 return -ENOMEM;
1517 }
1518
1519 raw_spin_lock_init(&qi->q_lock);
1520
1521 __dmar_enable_qi(iommu);
1522
1523 return 0;
1524}
1525
1526/* iommu interrupt handling. Most stuff are MSI-like. */
1527
1528enum faulttype {
1529 DMA_REMAP,
1530 INTR_REMAP,
1531 UNKNOWN,
1532};
1533
1534static const char *dma_remap_fault_reasons[] =
1535{
1536 "Software",
1537 "Present bit in root entry is clear",
1538 "Present bit in context entry is clear",
1539 "Invalid context entry",
1540 "Access beyond MGAW",
1541 "PTE Write access is not set",
1542 "PTE Read access is not set",
1543 "Next page table ptr is invalid",
1544 "Root table address invalid",
1545 "Context table ptr is invalid",
1546 "non-zero reserved fields in RTP",
1547 "non-zero reserved fields in CTP",
1548 "non-zero reserved fields in PTE",
1549 "PCE for translation request specifies blocking",
1550};
1551
1552static const char * const dma_remap_sm_fault_reasons[] = {
1553 "SM: Invalid Root Table Address",
1554 "SM: TTM 0 for request with PASID",
1555 "SM: TTM 0 for page group request",
1556 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1557 "SM: Error attempting to access Root Entry",
1558 "SM: Present bit in Root Entry is clear",
1559 "SM: Non-zero reserved field set in Root Entry",
1560 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1561 "SM: Error attempting to access Context Entry",
1562 "SM: Present bit in Context Entry is clear",
1563 "SM: Non-zero reserved field set in the Context Entry",
1564 "SM: Invalid Context Entry",
1565 "SM: DTE field in Context Entry is clear",
1566 "SM: PASID Enable field in Context Entry is clear",
1567 "SM: PASID is larger than the max in Context Entry",
1568 "SM: PRE field in Context-Entry is clear",
1569 "SM: RID_PASID field error in Context-Entry",
1570 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1571 "SM: Error attempting to access the PASID Directory Entry",
1572 "SM: Present bit in Directory Entry is clear",
1573 "SM: Non-zero reserved field set in PASID Directory Entry",
1574 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1575 "SM: Error attempting to access PASID Table Entry",
1576 "SM: Present bit in PASID Table Entry is clear",
1577 "SM: Non-zero reserved field set in PASID Table Entry",
1578 "SM: Invalid Scalable-Mode PASID Table Entry",
1579 "SM: ERE field is clear in PASID Table Entry",
1580 "SM: SRE field is clear in PASID Table Entry",
1581 "Unknown", "Unknown",/* 0x5E-0x5F */
1582 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1583 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1584 "SM: Error attempting to access first-level paging entry",
1585 "SM: Present bit in first-level paging entry is clear",
1586 "SM: Non-zero reserved field set in first-level paging entry",
1587 "SM: Error attempting to access FL-PML4 entry",
1588 "SM: First-level entry address beyond MGAW in Nested translation",
1589 "SM: Read permission error in FL-PML4 entry in Nested translation",
1590 "SM: Read permission error in first-level paging entry in Nested translation",
1591 "SM: Write permission error in first-level paging entry in Nested translation",
1592 "SM: Error attempting to access second-level paging entry",
1593 "SM: Read/Write permission error in second-level paging entry",
1594 "SM: Non-zero reserved field set in second-level paging entry",
1595 "SM: Invalid second-level page table pointer",
1596 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1597 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1598 "SM: Address in first-level translation is not canonical",
1599 "SM: U/S set 0 for first-level translation with user privilege",
1600 "SM: No execute permission for request with PASID and ER=1",
1601 "SM: Address beyond the DMA hardware max",
1602 "SM: Second-level entry address beyond the max",
1603 "SM: No write permission for Write/AtomicOp request",
1604 "SM: No read permission for Read/AtomicOp request",
1605 "SM: Invalid address-interrupt address",
1606 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1607 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1608};
1609
1610static const char *irq_remap_fault_reasons[] =
1611{
1612 "Detected reserved fields in the decoded interrupt-remapped request",
1613 "Interrupt index exceeded the interrupt-remapping table size",
1614 "Present field in the IRTE entry is clear",
1615 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1616 "Detected reserved fields in the IRTE entry",
1617 "Blocked a compatibility format interrupt request",
1618 "Blocked an interrupt request due to source-id verification failure",
1619};
1620
1621static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1622{
1623 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1624 ARRAY_SIZE(irq_remap_fault_reasons))) {
1625 *fault_type = INTR_REMAP;
1626 return irq_remap_fault_reasons[fault_reason - 0x20];
1627 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1628 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1629 *fault_type = DMA_REMAP;
1630 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1631 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1632 *fault_type = DMA_REMAP;
1633 return dma_remap_fault_reasons[fault_reason];
1634 } else {
1635 *fault_type = UNKNOWN;
1636 return "Unknown";
1637 }
1638}
1639
1640
1641static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1642{
1643 if (iommu->irq == irq)
1644 return DMAR_FECTL_REG;
1645 else if (iommu->pr_irq == irq)
1646 return DMAR_PECTL_REG;
1647 else
1648 BUG();
1649}
1650
1651void dmar_msi_unmask(struct irq_data *data)
1652{
1653 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1654 int reg = dmar_msi_reg(iommu, data->irq);
1655 unsigned long flag;
1656
1657 /* unmask it */
1658 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1659 writel(0, iommu->reg + reg);
1660 /* Read a reg to force flush the post write */
1661 readl(iommu->reg + reg);
1662 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1663}
1664
1665void dmar_msi_mask(struct irq_data *data)
1666{
1667 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1668 int reg = dmar_msi_reg(iommu, data->irq);
1669 unsigned long flag;
1670
1671 /* mask it */
1672 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1673 writel(DMA_FECTL_IM, iommu->reg + reg);
1674 /* Read a reg to force flush the post write */
1675 readl(iommu->reg + reg);
1676 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1677}
1678
1679void dmar_msi_write(int irq, struct msi_msg *msg)
1680{
1681 struct intel_iommu *iommu = irq_get_handler_data(irq);
1682 int reg = dmar_msi_reg(iommu, irq);
1683 unsigned long flag;
1684
1685 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1686 writel(msg->data, iommu->reg + reg + 4);
1687 writel(msg->address_lo, iommu->reg + reg + 8);
1688 writel(msg->address_hi, iommu->reg + reg + 12);
1689 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1690}
1691
1692void dmar_msi_read(int irq, struct msi_msg *msg)
1693{
1694 struct intel_iommu *iommu = irq_get_handler_data(irq);
1695 int reg = dmar_msi_reg(iommu, irq);
1696 unsigned long flag;
1697
1698 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1699 msg->data = readl(iommu->reg + reg + 4);
1700 msg->address_lo = readl(iommu->reg + reg + 8);
1701 msg->address_hi = readl(iommu->reg + reg + 12);
1702 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1703}
1704
1705static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1706 u8 fault_reason, int pasid, u16 source_id,
1707 unsigned long long addr)
1708{
1709 const char *reason;
1710 int fault_type;
1711
1712 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1713
1714 if (fault_type == INTR_REMAP)
1715 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1716 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1717 PCI_FUNC(source_id & 0xFF), addr >> 48,
1718 fault_reason, reason);
1719 else
1720 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1721 type ? "DMA Read" : "DMA Write",
1722 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1723 PCI_FUNC(source_id & 0xFF), pasid, addr,
1724 fault_reason, reason);
1725 return 0;
1726}
1727
1728#define PRIMARY_FAULT_REG_LEN (16)
1729irqreturn_t dmar_fault(int irq, void *dev_id)
1730{
1731 struct intel_iommu *iommu = dev_id;
1732 int reg, fault_index;
1733 u32 fault_status;
1734 unsigned long flag;
1735 static DEFINE_RATELIMIT_STATE(rs,
1736 DEFAULT_RATELIMIT_INTERVAL,
1737 DEFAULT_RATELIMIT_BURST);
1738
1739 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1740 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1741 if (fault_status && __ratelimit(&rs))
1742 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1743
1744 /* TBD: ignore advanced fault log currently */
1745 if (!(fault_status & DMA_FSTS_PPF))
1746 goto unlock_exit;
1747
1748 fault_index = dma_fsts_fault_record_index(fault_status);
1749 reg = cap_fault_reg_offset(iommu->cap);
1750 while (1) {
1751 /* Disable printing, simply clear the fault when ratelimited */
1752 bool ratelimited = !__ratelimit(&rs);
1753 u8 fault_reason;
1754 u16 source_id;
1755 u64 guest_addr;
1756 int type, pasid;
1757 u32 data;
1758 bool pasid_present;
1759
1760 /* highest 32 bits */
1761 data = readl(iommu->reg + reg +
1762 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1763 if (!(data & DMA_FRCD_F))
1764 break;
1765
1766 if (!ratelimited) {
1767 fault_reason = dma_frcd_fault_reason(data);
1768 type = dma_frcd_type(data);
1769
1770 pasid = dma_frcd_pasid_value(data);
1771 data = readl(iommu->reg + reg +
1772 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1773 source_id = dma_frcd_source_id(data);
1774
1775 pasid_present = dma_frcd_pasid_present(data);
1776 guest_addr = dmar_readq(iommu->reg + reg +
1777 fault_index * PRIMARY_FAULT_REG_LEN);
1778 guest_addr = dma_frcd_page_addr(guest_addr);
1779 }
1780
1781 /* clear the fault */
1782 writel(DMA_FRCD_F, iommu->reg + reg +
1783 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1784
1785 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1786
1787 if (!ratelimited)
1788 /* Using pasid -1 if pasid is not present */
1789 dmar_fault_do_one(iommu, type, fault_reason,
1790 pasid_present ? pasid : -1,
1791 source_id, guest_addr);
1792
1793 fault_index++;
1794 if (fault_index >= cap_num_fault_regs(iommu->cap))
1795 fault_index = 0;
1796 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1797 }
1798
1799 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1800 iommu->reg + DMAR_FSTS_REG);
1801
1802unlock_exit:
1803 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1804 return IRQ_HANDLED;
1805}
1806
1807int dmar_set_interrupt(struct intel_iommu *iommu)
1808{
1809 int irq, ret;
1810
1811 /*
1812 * Check if the fault interrupt is already initialized.
1813 */
1814 if (iommu->irq)
1815 return 0;
1816
1817 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1818 if (irq > 0) {
1819 iommu->irq = irq;
1820 } else {
1821 pr_err("No free IRQ vectors\n");
1822 return -EINVAL;
1823 }
1824
1825 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1826 if (ret)
1827 pr_err("Can't request irq\n");
1828 return ret;
1829}
1830
1831int __init enable_drhd_fault_handling(void)
1832{
1833 struct dmar_drhd_unit *drhd;
1834 struct intel_iommu *iommu;
1835
1836 /*
1837 * Enable fault control interrupt.
1838 */
1839 for_each_iommu(iommu, drhd) {
1840 u32 fault_status;
1841 int ret = dmar_set_interrupt(iommu);
1842
1843 if (ret) {
1844 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1845 (unsigned long long)drhd->reg_base_addr, ret);
1846 return -1;
1847 }
1848
1849 /*
1850 * Clear any previous faults.
1851 */
1852 dmar_fault(iommu->irq, iommu);
1853 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1854 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1855 }
1856
1857 return 0;
1858}
1859
1860/*
1861 * Re-enable Queued Invalidation interface.
1862 */
1863int dmar_reenable_qi(struct intel_iommu *iommu)
1864{
1865 if (!ecap_qis(iommu->ecap))
1866 return -ENOENT;
1867
1868 if (!iommu->qi)
1869 return -ENOENT;
1870
1871 /*
1872 * First disable queued invalidation.
1873 */
1874 dmar_disable_qi(iommu);
1875 /*
1876 * Then enable queued invalidation again. Since there is no pending
1877 * invalidation requests now, it's safe to re-enable queued
1878 * invalidation.
1879 */
1880 __dmar_enable_qi(iommu);
1881
1882 return 0;
1883}
1884
1885/*
1886 * Check interrupt remapping support in DMAR table description.
1887 */
1888int __init dmar_ir_support(void)
1889{
1890 struct acpi_table_dmar *dmar;
1891 dmar = (struct acpi_table_dmar *)dmar_tbl;
1892 if (!dmar)
1893 return 0;
1894 return dmar->flags & 0x1;
1895}
1896
1897/* Check whether DMAR units are in use */
1898static inline bool dmar_in_use(void)
1899{
1900 return irq_remapping_enabled || intel_iommu_enabled;
1901}
1902
1903static int __init dmar_free_unused_resources(void)
1904{
1905 struct dmar_drhd_unit *dmaru, *dmaru_n;
1906
1907 if (dmar_in_use())
1908 return 0;
1909
1910 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1911 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1912
1913 down_write(&dmar_global_lock);
1914 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1915 list_del(&dmaru->list);
1916 dmar_free_drhd(dmaru);
1917 }
1918 up_write(&dmar_global_lock);
1919
1920 return 0;
1921}
1922
1923late_initcall(dmar_free_unused_resources);
1924IOMMU_INIT_POST(detect_intel_iommu);
1925
1926/*
1927 * DMAR Hotplug Support
1928 * For more details, please refer to Intel(R) Virtualization Technology
1929 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1930 * "Remapping Hardware Unit Hot Plug".
1931 */
1932static guid_t dmar_hp_guid =
1933 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
1934 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
1935
1936/*
1937 * Currently there's only one revision and BIOS will not check the revision id,
1938 * so use 0 for safety.
1939 */
1940#define DMAR_DSM_REV_ID 0
1941#define DMAR_DSM_FUNC_DRHD 1
1942#define DMAR_DSM_FUNC_ATSR 2
1943#define DMAR_DSM_FUNC_RHSA 3
1944
1945static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1946{
1947 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
1948}
1949
1950static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1951 dmar_res_handler_t handler, void *arg)
1952{
1953 int ret = -ENODEV;
1954 union acpi_object *obj;
1955 struct acpi_dmar_header *start;
1956 struct dmar_res_callback callback;
1957 static int res_type[] = {
1958 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1959 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1960 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1961 };
1962
1963 if (!dmar_detect_dsm(handle, func))
1964 return 0;
1965
1966 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
1967 func, NULL, ACPI_TYPE_BUFFER);
1968 if (!obj)
1969 return -ENODEV;
1970
1971 memset(&callback, 0, sizeof(callback));
1972 callback.cb[res_type[func]] = handler;
1973 callback.arg[res_type[func]] = arg;
1974 start = (struct acpi_dmar_header *)obj->buffer.pointer;
1975 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1976
1977 ACPI_FREE(obj);
1978
1979 return ret;
1980}
1981
1982static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1983{
1984 int ret;
1985 struct dmar_drhd_unit *dmaru;
1986
1987 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1988 if (!dmaru)
1989 return -ENODEV;
1990
1991 ret = dmar_ir_hotplug(dmaru, true);
1992 if (ret == 0)
1993 ret = dmar_iommu_hotplug(dmaru, true);
1994
1995 return ret;
1996}
1997
1998static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1999{
2000 int i, ret;
2001 struct device *dev;
2002 struct dmar_drhd_unit *dmaru;
2003
2004 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2005 if (!dmaru)
2006 return 0;
2007
2008 /*
2009 * All PCI devices managed by this unit should have been destroyed.
2010 */
2011 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2012 for_each_active_dev_scope(dmaru->devices,
2013 dmaru->devices_cnt, i, dev)
2014 return -EBUSY;
2015 }
2016
2017 ret = dmar_ir_hotplug(dmaru, false);
2018 if (ret == 0)
2019 ret = dmar_iommu_hotplug(dmaru, false);
2020
2021 return ret;
2022}
2023
2024static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2025{
2026 struct dmar_drhd_unit *dmaru;
2027
2028 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2029 if (dmaru) {
2030 list_del_rcu(&dmaru->list);
2031 synchronize_rcu();
2032 dmar_free_drhd(dmaru);
2033 }
2034
2035 return 0;
2036}
2037
2038static int dmar_hotplug_insert(acpi_handle handle)
2039{
2040 int ret;
2041 int drhd_count = 0;
2042
2043 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2044 &dmar_validate_one_drhd, (void *)1);
2045 if (ret)
2046 goto out;
2047
2048 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2049 &dmar_parse_one_drhd, (void *)&drhd_count);
2050 if (ret == 0 && drhd_count == 0) {
2051 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2052 goto out;
2053 } else if (ret) {
2054 goto release_drhd;
2055 }
2056
2057 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2058 &dmar_parse_one_rhsa, NULL);
2059 if (ret)
2060 goto release_drhd;
2061
2062 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2063 &dmar_parse_one_atsr, NULL);
2064 if (ret)
2065 goto release_atsr;
2066
2067 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2068 &dmar_hp_add_drhd, NULL);
2069 if (!ret)
2070 return 0;
2071
2072 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2073 &dmar_hp_remove_drhd, NULL);
2074release_atsr:
2075 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2076 &dmar_release_one_atsr, NULL);
2077release_drhd:
2078 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2079 &dmar_hp_release_drhd, NULL);
2080out:
2081 return ret;
2082}
2083
2084static int dmar_hotplug_remove(acpi_handle handle)
2085{
2086 int ret;
2087
2088 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2089 &dmar_check_one_atsr, NULL);
2090 if (ret)
2091 return ret;
2092
2093 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2094 &dmar_hp_remove_drhd, NULL);
2095 if (ret == 0) {
2096 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2097 &dmar_release_one_atsr, NULL));
2098 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2099 &dmar_hp_release_drhd, NULL));
2100 } else {
2101 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2102 &dmar_hp_add_drhd, NULL);
2103 }
2104
2105 return ret;
2106}
2107
2108static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2109 void *context, void **retval)
2110{
2111 acpi_handle *phdl = retval;
2112
2113 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2114 *phdl = handle;
2115 return AE_CTRL_TERMINATE;
2116 }
2117
2118 return AE_OK;
2119}
2120
2121static int dmar_device_hotplug(acpi_handle handle, bool insert)
2122{
2123 int ret;
2124 acpi_handle tmp = NULL;
2125 acpi_status status;
2126
2127 if (!dmar_in_use())
2128 return 0;
2129
2130 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2131 tmp = handle;
2132 } else {
2133 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2134 ACPI_UINT32_MAX,
2135 dmar_get_dsm_handle,
2136 NULL, NULL, &tmp);
2137 if (ACPI_FAILURE(status)) {
2138 pr_warn("Failed to locate _DSM method.\n");
2139 return -ENXIO;
2140 }
2141 }
2142 if (tmp == NULL)
2143 return 0;
2144
2145 down_write(&dmar_global_lock);
2146 if (insert)
2147 ret = dmar_hotplug_insert(tmp);
2148 else
2149 ret = dmar_hotplug_remove(tmp);
2150 up_write(&dmar_global_lock);
2151
2152 return ret;
2153}
2154
2155int dmar_device_add(acpi_handle handle)
2156{
2157 return dmar_device_hotplug(handle, true);
2158}
2159
2160int dmar_device_remove(acpi_handle handle)
2161{
2162 return dmar_device_hotplug(handle, false);
2163}
2164
2165/*
2166 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2167 *
2168 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2169 * the ACPI DMAR table. This means that the platform boot firmware has made
2170 * sure no device can issue DMA outside of RMRR regions.
2171 */
2172bool dmar_platform_optin(void)
2173{
2174 struct acpi_table_dmar *dmar;
2175 acpi_status status;
2176 bool ret;
2177
2178 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2179 (struct acpi_table_header **)&dmar);
2180 if (ACPI_FAILURE(status))
2181 return false;
2182
2183 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2184 acpi_put_table((struct acpi_table_header *)dmar);
2185
2186 return ret;
2187}
2188EXPORT_SYMBOL_GPL(dmar_platform_optin);