b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * bcache setup/teardown code, and some metadata io - read a superblock and |
| 4 | * figure out what to do with it. |
| 5 | * |
| 6 | * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| 7 | * Copyright 2012 Google, Inc. |
| 8 | */ |
| 9 | |
| 10 | #include "bcache.h" |
| 11 | #include "btree.h" |
| 12 | #include "debug.h" |
| 13 | #include "extents.h" |
| 14 | #include "request.h" |
| 15 | #include "writeback.h" |
| 16 | |
| 17 | #include <linux/blkdev.h> |
| 18 | #include <linux/buffer_head.h> |
| 19 | #include <linux/debugfs.h> |
| 20 | #include <linux/genhd.h> |
| 21 | #include <linux/idr.h> |
| 22 | #include <linux/kthread.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/random.h> |
| 25 | #include <linux/reboot.h> |
| 26 | #include <linux/sysfs.h> |
| 27 | |
| 28 | unsigned int bch_cutoff_writeback; |
| 29 | unsigned int bch_cutoff_writeback_sync; |
| 30 | |
| 31 | static const char bcache_magic[] = { |
| 32 | 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, |
| 33 | 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 |
| 34 | }; |
| 35 | |
| 36 | static const char invalid_uuid[] = { |
| 37 | 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, |
| 38 | 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 |
| 39 | }; |
| 40 | |
| 41 | static struct kobject *bcache_kobj; |
| 42 | struct mutex bch_register_lock; |
| 43 | bool bcache_is_reboot; |
| 44 | LIST_HEAD(bch_cache_sets); |
| 45 | static LIST_HEAD(uncached_devices); |
| 46 | |
| 47 | static int bcache_major; |
| 48 | static DEFINE_IDA(bcache_device_idx); |
| 49 | static wait_queue_head_t unregister_wait; |
| 50 | struct workqueue_struct *bcache_wq; |
| 51 | struct workqueue_struct *bch_flush_wq; |
| 52 | struct workqueue_struct *bch_journal_wq; |
| 53 | |
| 54 | |
| 55 | #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) |
| 56 | /* limitation of partitions number on single bcache device */ |
| 57 | #define BCACHE_MINORS 128 |
| 58 | /* limitation of bcache devices number on single system */ |
| 59 | #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) |
| 60 | |
| 61 | /* Superblock */ |
| 62 | |
| 63 | static const char *read_super(struct cache_sb *sb, struct block_device *bdev, |
| 64 | struct page **res) |
| 65 | { |
| 66 | const char *err; |
| 67 | struct cache_sb *s; |
| 68 | struct buffer_head *bh = __bread(bdev, 1, SB_SIZE); |
| 69 | unsigned int i; |
| 70 | |
| 71 | if (!bh) |
| 72 | return "IO error"; |
| 73 | |
| 74 | s = (struct cache_sb *) bh->b_data; |
| 75 | |
| 76 | sb->offset = le64_to_cpu(s->offset); |
| 77 | sb->version = le64_to_cpu(s->version); |
| 78 | |
| 79 | memcpy(sb->magic, s->magic, 16); |
| 80 | memcpy(sb->uuid, s->uuid, 16); |
| 81 | memcpy(sb->set_uuid, s->set_uuid, 16); |
| 82 | memcpy(sb->label, s->label, SB_LABEL_SIZE); |
| 83 | |
| 84 | sb->flags = le64_to_cpu(s->flags); |
| 85 | sb->seq = le64_to_cpu(s->seq); |
| 86 | sb->last_mount = le32_to_cpu(s->last_mount); |
| 87 | sb->first_bucket = le16_to_cpu(s->first_bucket); |
| 88 | sb->keys = le16_to_cpu(s->keys); |
| 89 | |
| 90 | for (i = 0; i < SB_JOURNAL_BUCKETS; i++) |
| 91 | sb->d[i] = le64_to_cpu(s->d[i]); |
| 92 | |
| 93 | pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u", |
| 94 | sb->version, sb->flags, sb->seq, sb->keys); |
| 95 | |
| 96 | err = "Not a bcache superblock"; |
| 97 | if (sb->offset != SB_SECTOR) |
| 98 | goto err; |
| 99 | |
| 100 | if (memcmp(sb->magic, bcache_magic, 16)) |
| 101 | goto err; |
| 102 | |
| 103 | err = "Too many journal buckets"; |
| 104 | if (sb->keys > SB_JOURNAL_BUCKETS) |
| 105 | goto err; |
| 106 | |
| 107 | err = "Bad checksum"; |
| 108 | if (s->csum != csum_set(s)) |
| 109 | goto err; |
| 110 | |
| 111 | err = "Bad UUID"; |
| 112 | if (bch_is_zero(sb->uuid, 16)) |
| 113 | goto err; |
| 114 | |
| 115 | sb->block_size = le16_to_cpu(s->block_size); |
| 116 | |
| 117 | err = "Superblock block size smaller than device block size"; |
| 118 | if (sb->block_size << 9 < bdev_logical_block_size(bdev)) |
| 119 | goto err; |
| 120 | |
| 121 | switch (sb->version) { |
| 122 | case BCACHE_SB_VERSION_BDEV: |
| 123 | sb->data_offset = BDEV_DATA_START_DEFAULT; |
| 124 | break; |
| 125 | case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: |
| 126 | sb->data_offset = le64_to_cpu(s->data_offset); |
| 127 | |
| 128 | err = "Bad data offset"; |
| 129 | if (sb->data_offset < BDEV_DATA_START_DEFAULT) |
| 130 | goto err; |
| 131 | |
| 132 | break; |
| 133 | case BCACHE_SB_VERSION_CDEV: |
| 134 | case BCACHE_SB_VERSION_CDEV_WITH_UUID: |
| 135 | sb->nbuckets = le64_to_cpu(s->nbuckets); |
| 136 | sb->bucket_size = le16_to_cpu(s->bucket_size); |
| 137 | |
| 138 | sb->nr_in_set = le16_to_cpu(s->nr_in_set); |
| 139 | sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); |
| 140 | |
| 141 | err = "Too many buckets"; |
| 142 | if (sb->nbuckets > LONG_MAX) |
| 143 | goto err; |
| 144 | |
| 145 | err = "Not enough buckets"; |
| 146 | if (sb->nbuckets < 1 << 7) |
| 147 | goto err; |
| 148 | |
| 149 | err = "Bad block/bucket size"; |
| 150 | if (!is_power_of_2(sb->block_size) || |
| 151 | sb->block_size > PAGE_SECTORS || |
| 152 | !is_power_of_2(sb->bucket_size) || |
| 153 | sb->bucket_size < PAGE_SECTORS) |
| 154 | goto err; |
| 155 | |
| 156 | err = "Invalid superblock: device too small"; |
| 157 | if (get_capacity(bdev->bd_disk) < |
| 158 | sb->bucket_size * sb->nbuckets) |
| 159 | goto err; |
| 160 | |
| 161 | err = "Bad UUID"; |
| 162 | if (bch_is_zero(sb->set_uuid, 16)) |
| 163 | goto err; |
| 164 | |
| 165 | err = "Bad cache device number in set"; |
| 166 | if (!sb->nr_in_set || |
| 167 | sb->nr_in_set <= sb->nr_this_dev || |
| 168 | sb->nr_in_set > MAX_CACHES_PER_SET) |
| 169 | goto err; |
| 170 | |
| 171 | err = "Journal buckets not sequential"; |
| 172 | for (i = 0; i < sb->keys; i++) |
| 173 | if (sb->d[i] != sb->first_bucket + i) |
| 174 | goto err; |
| 175 | |
| 176 | err = "Too many journal buckets"; |
| 177 | if (sb->first_bucket + sb->keys > sb->nbuckets) |
| 178 | goto err; |
| 179 | |
| 180 | err = "Invalid superblock: first bucket comes before end of super"; |
| 181 | if (sb->first_bucket * sb->bucket_size < 16) |
| 182 | goto err; |
| 183 | |
| 184 | break; |
| 185 | default: |
| 186 | err = "Unsupported superblock version"; |
| 187 | goto err; |
| 188 | } |
| 189 | |
| 190 | sb->last_mount = (u32)ktime_get_real_seconds(); |
| 191 | err = NULL; |
| 192 | |
| 193 | get_page(bh->b_page); |
| 194 | *res = bh->b_page; |
| 195 | err: |
| 196 | put_bh(bh); |
| 197 | return err; |
| 198 | } |
| 199 | |
| 200 | static void write_bdev_super_endio(struct bio *bio) |
| 201 | { |
| 202 | struct cached_dev *dc = bio->bi_private; |
| 203 | |
| 204 | if (bio->bi_status) |
| 205 | bch_count_backing_io_errors(dc, bio); |
| 206 | |
| 207 | closure_put(&dc->sb_write); |
| 208 | } |
| 209 | |
| 210 | static void __write_super(struct cache_sb *sb, struct bio *bio) |
| 211 | { |
| 212 | struct cache_sb *out = page_address(bio_first_page_all(bio)); |
| 213 | unsigned int i; |
| 214 | |
| 215 | bio->bi_iter.bi_sector = SB_SECTOR; |
| 216 | bio->bi_iter.bi_size = SB_SIZE; |
| 217 | bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META); |
| 218 | bch_bio_map(bio, NULL); |
| 219 | |
| 220 | out->offset = cpu_to_le64(sb->offset); |
| 221 | out->version = cpu_to_le64(sb->version); |
| 222 | |
| 223 | memcpy(out->uuid, sb->uuid, 16); |
| 224 | memcpy(out->set_uuid, sb->set_uuid, 16); |
| 225 | memcpy(out->label, sb->label, SB_LABEL_SIZE); |
| 226 | |
| 227 | out->flags = cpu_to_le64(sb->flags); |
| 228 | out->seq = cpu_to_le64(sb->seq); |
| 229 | |
| 230 | out->last_mount = cpu_to_le32(sb->last_mount); |
| 231 | out->first_bucket = cpu_to_le16(sb->first_bucket); |
| 232 | out->keys = cpu_to_le16(sb->keys); |
| 233 | |
| 234 | for (i = 0; i < sb->keys; i++) |
| 235 | out->d[i] = cpu_to_le64(sb->d[i]); |
| 236 | |
| 237 | out->csum = csum_set(out); |
| 238 | |
| 239 | pr_debug("ver %llu, flags %llu, seq %llu", |
| 240 | sb->version, sb->flags, sb->seq); |
| 241 | |
| 242 | submit_bio(bio); |
| 243 | } |
| 244 | |
| 245 | static void bch_write_bdev_super_unlock(struct closure *cl) |
| 246 | { |
| 247 | struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); |
| 248 | |
| 249 | up(&dc->sb_write_mutex); |
| 250 | } |
| 251 | |
| 252 | void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) |
| 253 | { |
| 254 | struct closure *cl = &dc->sb_write; |
| 255 | struct bio *bio = &dc->sb_bio; |
| 256 | |
| 257 | down(&dc->sb_write_mutex); |
| 258 | closure_init(cl, parent); |
| 259 | |
| 260 | bio_reset(bio); |
| 261 | bio_set_dev(bio, dc->bdev); |
| 262 | bio->bi_end_io = write_bdev_super_endio; |
| 263 | bio->bi_private = dc; |
| 264 | |
| 265 | closure_get(cl); |
| 266 | /* I/O request sent to backing device */ |
| 267 | __write_super(&dc->sb, bio); |
| 268 | |
| 269 | closure_return_with_destructor(cl, bch_write_bdev_super_unlock); |
| 270 | } |
| 271 | |
| 272 | static void write_super_endio(struct bio *bio) |
| 273 | { |
| 274 | struct cache *ca = bio->bi_private; |
| 275 | |
| 276 | /* is_read = 0 */ |
| 277 | bch_count_io_errors(ca, bio->bi_status, 0, |
| 278 | "writing superblock"); |
| 279 | closure_put(&ca->set->sb_write); |
| 280 | } |
| 281 | |
| 282 | static void bcache_write_super_unlock(struct closure *cl) |
| 283 | { |
| 284 | struct cache_set *c = container_of(cl, struct cache_set, sb_write); |
| 285 | |
| 286 | up(&c->sb_write_mutex); |
| 287 | } |
| 288 | |
| 289 | void bcache_write_super(struct cache_set *c) |
| 290 | { |
| 291 | struct closure *cl = &c->sb_write; |
| 292 | struct cache *ca; |
| 293 | unsigned int i; |
| 294 | |
| 295 | down(&c->sb_write_mutex); |
| 296 | closure_init(cl, &c->cl); |
| 297 | |
| 298 | c->sb.seq++; |
| 299 | |
| 300 | for_each_cache(ca, c, i) { |
| 301 | struct bio *bio = &ca->sb_bio; |
| 302 | |
| 303 | ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; |
| 304 | ca->sb.seq = c->sb.seq; |
| 305 | ca->sb.last_mount = c->sb.last_mount; |
| 306 | |
| 307 | SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); |
| 308 | |
| 309 | bio_reset(bio); |
| 310 | bio_set_dev(bio, ca->bdev); |
| 311 | bio->bi_end_io = write_super_endio; |
| 312 | bio->bi_private = ca; |
| 313 | |
| 314 | closure_get(cl); |
| 315 | __write_super(&ca->sb, bio); |
| 316 | } |
| 317 | |
| 318 | closure_return_with_destructor(cl, bcache_write_super_unlock); |
| 319 | } |
| 320 | |
| 321 | /* UUID io */ |
| 322 | |
| 323 | static void uuid_endio(struct bio *bio) |
| 324 | { |
| 325 | struct closure *cl = bio->bi_private; |
| 326 | struct cache_set *c = container_of(cl, struct cache_set, uuid_write); |
| 327 | |
| 328 | cache_set_err_on(bio->bi_status, c, "accessing uuids"); |
| 329 | bch_bbio_free(bio, c); |
| 330 | closure_put(cl); |
| 331 | } |
| 332 | |
| 333 | static void uuid_io_unlock(struct closure *cl) |
| 334 | { |
| 335 | struct cache_set *c = container_of(cl, struct cache_set, uuid_write); |
| 336 | |
| 337 | up(&c->uuid_write_mutex); |
| 338 | } |
| 339 | |
| 340 | static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, |
| 341 | struct bkey *k, struct closure *parent) |
| 342 | { |
| 343 | struct closure *cl = &c->uuid_write; |
| 344 | struct uuid_entry *u; |
| 345 | unsigned int i; |
| 346 | char buf[80]; |
| 347 | |
| 348 | BUG_ON(!parent); |
| 349 | down(&c->uuid_write_mutex); |
| 350 | closure_init(cl, parent); |
| 351 | |
| 352 | for (i = 0; i < KEY_PTRS(k); i++) { |
| 353 | struct bio *bio = bch_bbio_alloc(c); |
| 354 | |
| 355 | bio->bi_opf = REQ_SYNC | REQ_META | op_flags; |
| 356 | bio->bi_iter.bi_size = KEY_SIZE(k) << 9; |
| 357 | |
| 358 | bio->bi_end_io = uuid_endio; |
| 359 | bio->bi_private = cl; |
| 360 | bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); |
| 361 | bch_bio_map(bio, c->uuids); |
| 362 | |
| 363 | bch_submit_bbio(bio, c, k, i); |
| 364 | |
| 365 | if (op != REQ_OP_WRITE) |
| 366 | break; |
| 367 | } |
| 368 | |
| 369 | bch_extent_to_text(buf, sizeof(buf), k); |
| 370 | pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf); |
| 371 | |
| 372 | for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) |
| 373 | if (!bch_is_zero(u->uuid, 16)) |
| 374 | pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u", |
| 375 | u - c->uuids, u->uuid, u->label, |
| 376 | u->first_reg, u->last_reg, u->invalidated); |
| 377 | |
| 378 | closure_return_with_destructor(cl, uuid_io_unlock); |
| 379 | } |
| 380 | |
| 381 | static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) |
| 382 | { |
| 383 | struct bkey *k = &j->uuid_bucket; |
| 384 | |
| 385 | if (__bch_btree_ptr_invalid(c, k)) |
| 386 | return "bad uuid pointer"; |
| 387 | |
| 388 | bkey_copy(&c->uuid_bucket, k); |
| 389 | uuid_io(c, REQ_OP_READ, 0, k, cl); |
| 390 | |
| 391 | if (j->version < BCACHE_JSET_VERSION_UUIDv1) { |
| 392 | struct uuid_entry_v0 *u0 = (void *) c->uuids; |
| 393 | struct uuid_entry *u1 = (void *) c->uuids; |
| 394 | int i; |
| 395 | |
| 396 | closure_sync(cl); |
| 397 | |
| 398 | /* |
| 399 | * Since the new uuid entry is bigger than the old, we have to |
| 400 | * convert starting at the highest memory address and work down |
| 401 | * in order to do it in place |
| 402 | */ |
| 403 | |
| 404 | for (i = c->nr_uuids - 1; |
| 405 | i >= 0; |
| 406 | --i) { |
| 407 | memcpy(u1[i].uuid, u0[i].uuid, 16); |
| 408 | memcpy(u1[i].label, u0[i].label, 32); |
| 409 | |
| 410 | u1[i].first_reg = u0[i].first_reg; |
| 411 | u1[i].last_reg = u0[i].last_reg; |
| 412 | u1[i].invalidated = u0[i].invalidated; |
| 413 | |
| 414 | u1[i].flags = 0; |
| 415 | u1[i].sectors = 0; |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | return NULL; |
| 420 | } |
| 421 | |
| 422 | static int __uuid_write(struct cache_set *c) |
| 423 | { |
| 424 | BKEY_PADDED(key) k; |
| 425 | struct closure cl; |
| 426 | struct cache *ca; |
| 427 | |
| 428 | closure_init_stack(&cl); |
| 429 | lockdep_assert_held(&bch_register_lock); |
| 430 | |
| 431 | if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) |
| 432 | return 1; |
| 433 | |
| 434 | SET_KEY_SIZE(&k.key, c->sb.bucket_size); |
| 435 | uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); |
| 436 | closure_sync(&cl); |
| 437 | |
| 438 | /* Only one bucket used for uuid write */ |
| 439 | ca = PTR_CACHE(c, &k.key, 0); |
| 440 | atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); |
| 441 | |
| 442 | bkey_copy(&c->uuid_bucket, &k.key); |
| 443 | bkey_put(c, &k.key); |
| 444 | return 0; |
| 445 | } |
| 446 | |
| 447 | int bch_uuid_write(struct cache_set *c) |
| 448 | { |
| 449 | int ret = __uuid_write(c); |
| 450 | |
| 451 | if (!ret) |
| 452 | bch_journal_meta(c, NULL); |
| 453 | |
| 454 | return ret; |
| 455 | } |
| 456 | |
| 457 | static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) |
| 458 | { |
| 459 | struct uuid_entry *u; |
| 460 | |
| 461 | for (u = c->uuids; |
| 462 | u < c->uuids + c->nr_uuids; u++) |
| 463 | if (!memcmp(u->uuid, uuid, 16)) |
| 464 | return u; |
| 465 | |
| 466 | return NULL; |
| 467 | } |
| 468 | |
| 469 | static struct uuid_entry *uuid_find_empty(struct cache_set *c) |
| 470 | { |
| 471 | static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; |
| 472 | |
| 473 | return uuid_find(c, zero_uuid); |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * Bucket priorities/gens: |
| 478 | * |
| 479 | * For each bucket, we store on disk its |
| 480 | * 8 bit gen |
| 481 | * 16 bit priority |
| 482 | * |
| 483 | * See alloc.c for an explanation of the gen. The priority is used to implement |
| 484 | * lru (and in the future other) cache replacement policies; for most purposes |
| 485 | * it's just an opaque integer. |
| 486 | * |
| 487 | * The gens and the priorities don't have a whole lot to do with each other, and |
| 488 | * it's actually the gens that must be written out at specific times - it's no |
| 489 | * big deal if the priorities don't get written, if we lose them we just reuse |
| 490 | * buckets in suboptimal order. |
| 491 | * |
| 492 | * On disk they're stored in a packed array, and in as many buckets are required |
| 493 | * to fit them all. The buckets we use to store them form a list; the journal |
| 494 | * header points to the first bucket, the first bucket points to the second |
| 495 | * bucket, et cetera. |
| 496 | * |
| 497 | * This code is used by the allocation code; periodically (whenever it runs out |
| 498 | * of buckets to allocate from) the allocation code will invalidate some |
| 499 | * buckets, but it can't use those buckets until their new gens are safely on |
| 500 | * disk. |
| 501 | */ |
| 502 | |
| 503 | static void prio_endio(struct bio *bio) |
| 504 | { |
| 505 | struct cache *ca = bio->bi_private; |
| 506 | |
| 507 | cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); |
| 508 | bch_bbio_free(bio, ca->set); |
| 509 | closure_put(&ca->prio); |
| 510 | } |
| 511 | |
| 512 | static void prio_io(struct cache *ca, uint64_t bucket, int op, |
| 513 | unsigned long op_flags) |
| 514 | { |
| 515 | struct closure *cl = &ca->prio; |
| 516 | struct bio *bio = bch_bbio_alloc(ca->set); |
| 517 | |
| 518 | closure_init_stack(cl); |
| 519 | |
| 520 | bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; |
| 521 | bio_set_dev(bio, ca->bdev); |
| 522 | bio->bi_iter.bi_size = bucket_bytes(ca); |
| 523 | |
| 524 | bio->bi_end_io = prio_endio; |
| 525 | bio->bi_private = ca; |
| 526 | bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); |
| 527 | bch_bio_map(bio, ca->disk_buckets); |
| 528 | |
| 529 | closure_bio_submit(ca->set, bio, &ca->prio); |
| 530 | closure_sync(cl); |
| 531 | } |
| 532 | |
| 533 | int bch_prio_write(struct cache *ca, bool wait) |
| 534 | { |
| 535 | int i; |
| 536 | struct bucket *b; |
| 537 | struct closure cl; |
| 538 | |
| 539 | pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu", |
| 540 | fifo_used(&ca->free[RESERVE_PRIO]), |
| 541 | fifo_used(&ca->free[RESERVE_NONE]), |
| 542 | fifo_used(&ca->free_inc)); |
| 543 | |
| 544 | /* |
| 545 | * Pre-check if there are enough free buckets. In the non-blocking |
| 546 | * scenario it's better to fail early rather than starting to allocate |
| 547 | * buckets and do a cleanup later in case of failure. |
| 548 | */ |
| 549 | if (!wait) { |
| 550 | size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + |
| 551 | fifo_used(&ca->free[RESERVE_NONE]); |
| 552 | if (prio_buckets(ca) > avail) |
| 553 | return -ENOMEM; |
| 554 | } |
| 555 | |
| 556 | closure_init_stack(&cl); |
| 557 | |
| 558 | lockdep_assert_held(&ca->set->bucket_lock); |
| 559 | |
| 560 | ca->disk_buckets->seq++; |
| 561 | |
| 562 | atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), |
| 563 | &ca->meta_sectors_written); |
| 564 | |
| 565 | for (i = prio_buckets(ca) - 1; i >= 0; --i) { |
| 566 | long bucket; |
| 567 | struct prio_set *p = ca->disk_buckets; |
| 568 | struct bucket_disk *d = p->data; |
| 569 | struct bucket_disk *end = d + prios_per_bucket(ca); |
| 570 | |
| 571 | for (b = ca->buckets + i * prios_per_bucket(ca); |
| 572 | b < ca->buckets + ca->sb.nbuckets && d < end; |
| 573 | b++, d++) { |
| 574 | d->prio = cpu_to_le16(b->prio); |
| 575 | d->gen = b->gen; |
| 576 | } |
| 577 | |
| 578 | p->next_bucket = ca->prio_buckets[i + 1]; |
| 579 | p->magic = pset_magic(&ca->sb); |
| 580 | p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); |
| 581 | |
| 582 | bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); |
| 583 | BUG_ON(bucket == -1); |
| 584 | |
| 585 | mutex_unlock(&ca->set->bucket_lock); |
| 586 | prio_io(ca, bucket, REQ_OP_WRITE, 0); |
| 587 | mutex_lock(&ca->set->bucket_lock); |
| 588 | |
| 589 | ca->prio_buckets[i] = bucket; |
| 590 | atomic_dec_bug(&ca->buckets[bucket].pin); |
| 591 | } |
| 592 | |
| 593 | mutex_unlock(&ca->set->bucket_lock); |
| 594 | |
| 595 | bch_journal_meta(ca->set, &cl); |
| 596 | closure_sync(&cl); |
| 597 | |
| 598 | mutex_lock(&ca->set->bucket_lock); |
| 599 | |
| 600 | /* |
| 601 | * Don't want the old priorities to get garbage collected until after we |
| 602 | * finish writing the new ones, and they're journalled |
| 603 | */ |
| 604 | for (i = 0; i < prio_buckets(ca); i++) { |
| 605 | if (ca->prio_last_buckets[i]) |
| 606 | __bch_bucket_free(ca, |
| 607 | &ca->buckets[ca->prio_last_buckets[i]]); |
| 608 | |
| 609 | ca->prio_last_buckets[i] = ca->prio_buckets[i]; |
| 610 | } |
| 611 | return 0; |
| 612 | } |
| 613 | |
| 614 | static void prio_read(struct cache *ca, uint64_t bucket) |
| 615 | { |
| 616 | struct prio_set *p = ca->disk_buckets; |
| 617 | struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; |
| 618 | struct bucket *b; |
| 619 | unsigned int bucket_nr = 0; |
| 620 | |
| 621 | for (b = ca->buckets; |
| 622 | b < ca->buckets + ca->sb.nbuckets; |
| 623 | b++, d++) { |
| 624 | if (d == end) { |
| 625 | ca->prio_buckets[bucket_nr] = bucket; |
| 626 | ca->prio_last_buckets[bucket_nr] = bucket; |
| 627 | bucket_nr++; |
| 628 | |
| 629 | prio_io(ca, bucket, REQ_OP_READ, 0); |
| 630 | |
| 631 | if (p->csum != |
| 632 | bch_crc64(&p->magic, bucket_bytes(ca) - 8)) |
| 633 | pr_warn("bad csum reading priorities"); |
| 634 | |
| 635 | if (p->magic != pset_magic(&ca->sb)) |
| 636 | pr_warn("bad magic reading priorities"); |
| 637 | |
| 638 | bucket = p->next_bucket; |
| 639 | d = p->data; |
| 640 | } |
| 641 | |
| 642 | b->prio = le16_to_cpu(d->prio); |
| 643 | b->gen = b->last_gc = d->gen; |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | /* Bcache device */ |
| 648 | |
| 649 | static int open_dev(struct block_device *b, fmode_t mode) |
| 650 | { |
| 651 | struct bcache_device *d = b->bd_disk->private_data; |
| 652 | |
| 653 | if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) |
| 654 | return -ENXIO; |
| 655 | |
| 656 | closure_get(&d->cl); |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | static void release_dev(struct gendisk *b, fmode_t mode) |
| 661 | { |
| 662 | struct bcache_device *d = b->private_data; |
| 663 | |
| 664 | closure_put(&d->cl); |
| 665 | } |
| 666 | |
| 667 | static int ioctl_dev(struct block_device *b, fmode_t mode, |
| 668 | unsigned int cmd, unsigned long arg) |
| 669 | { |
| 670 | struct bcache_device *d = b->bd_disk->private_data; |
| 671 | |
| 672 | return d->ioctl(d, mode, cmd, arg); |
| 673 | } |
| 674 | |
| 675 | static const struct block_device_operations bcache_ops = { |
| 676 | .open = open_dev, |
| 677 | .release = release_dev, |
| 678 | .ioctl = ioctl_dev, |
| 679 | .owner = THIS_MODULE, |
| 680 | }; |
| 681 | |
| 682 | void bcache_device_stop(struct bcache_device *d) |
| 683 | { |
| 684 | if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) |
| 685 | /* |
| 686 | * closure_fn set to |
| 687 | * - cached device: cached_dev_flush() |
| 688 | * - flash dev: flash_dev_flush() |
| 689 | */ |
| 690 | closure_queue(&d->cl); |
| 691 | } |
| 692 | |
| 693 | static void bcache_device_unlink(struct bcache_device *d) |
| 694 | { |
| 695 | lockdep_assert_held(&bch_register_lock); |
| 696 | |
| 697 | if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { |
| 698 | unsigned int i; |
| 699 | struct cache *ca; |
| 700 | |
| 701 | sysfs_remove_link(&d->c->kobj, d->name); |
| 702 | sysfs_remove_link(&d->kobj, "cache"); |
| 703 | |
| 704 | for_each_cache(ca, d->c, i) |
| 705 | bd_unlink_disk_holder(ca->bdev, d->disk); |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | static void bcache_device_link(struct bcache_device *d, struct cache_set *c, |
| 710 | const char *name) |
| 711 | { |
| 712 | unsigned int i; |
| 713 | struct cache *ca; |
| 714 | int ret; |
| 715 | |
| 716 | for_each_cache(ca, d->c, i) |
| 717 | bd_link_disk_holder(ca->bdev, d->disk); |
| 718 | |
| 719 | snprintf(d->name, BCACHEDEVNAME_SIZE, |
| 720 | "%s%u", name, d->id); |
| 721 | |
| 722 | ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); |
| 723 | if (ret < 0) |
| 724 | pr_err("Couldn't create device -> cache set symlink"); |
| 725 | |
| 726 | ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); |
| 727 | if (ret < 0) |
| 728 | pr_err("Couldn't create cache set -> device symlink"); |
| 729 | |
| 730 | clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); |
| 731 | } |
| 732 | |
| 733 | static void bcache_device_detach(struct bcache_device *d) |
| 734 | { |
| 735 | lockdep_assert_held(&bch_register_lock); |
| 736 | |
| 737 | atomic_dec(&d->c->attached_dev_nr); |
| 738 | |
| 739 | if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { |
| 740 | struct uuid_entry *u = d->c->uuids + d->id; |
| 741 | |
| 742 | SET_UUID_FLASH_ONLY(u, 0); |
| 743 | memcpy(u->uuid, invalid_uuid, 16); |
| 744 | u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); |
| 745 | bch_uuid_write(d->c); |
| 746 | } |
| 747 | |
| 748 | bcache_device_unlink(d); |
| 749 | |
| 750 | d->c->devices[d->id] = NULL; |
| 751 | closure_put(&d->c->caching); |
| 752 | d->c = NULL; |
| 753 | } |
| 754 | |
| 755 | static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, |
| 756 | unsigned int id) |
| 757 | { |
| 758 | d->id = id; |
| 759 | d->c = c; |
| 760 | c->devices[id] = d; |
| 761 | |
| 762 | if (id >= c->devices_max_used) |
| 763 | c->devices_max_used = id + 1; |
| 764 | |
| 765 | closure_get(&c->caching); |
| 766 | } |
| 767 | |
| 768 | static inline int first_minor_to_idx(int first_minor) |
| 769 | { |
| 770 | return (first_minor/BCACHE_MINORS); |
| 771 | } |
| 772 | |
| 773 | static inline int idx_to_first_minor(int idx) |
| 774 | { |
| 775 | return (idx * BCACHE_MINORS); |
| 776 | } |
| 777 | |
| 778 | static void bcache_device_free(struct bcache_device *d) |
| 779 | { |
| 780 | struct gendisk *disk = d->disk; |
| 781 | |
| 782 | lockdep_assert_held(&bch_register_lock); |
| 783 | |
| 784 | if (disk) |
| 785 | pr_info("%s stopped", disk->disk_name); |
| 786 | else |
| 787 | pr_err("bcache device (NULL gendisk) stopped"); |
| 788 | |
| 789 | if (d->c) |
| 790 | bcache_device_detach(d); |
| 791 | |
| 792 | if (disk) { |
| 793 | bool disk_added = (disk->flags & GENHD_FL_UP) != 0; |
| 794 | |
| 795 | if (disk_added) |
| 796 | del_gendisk(disk); |
| 797 | |
| 798 | if (disk->queue) |
| 799 | blk_cleanup_queue(disk->queue); |
| 800 | |
| 801 | ida_simple_remove(&bcache_device_idx, |
| 802 | first_minor_to_idx(disk->first_minor)); |
| 803 | if (disk_added) |
| 804 | put_disk(disk); |
| 805 | } |
| 806 | |
| 807 | bioset_exit(&d->bio_split); |
| 808 | kvfree(d->full_dirty_stripes); |
| 809 | kvfree(d->stripe_sectors_dirty); |
| 810 | |
| 811 | closure_debug_destroy(&d->cl); |
| 812 | } |
| 813 | |
| 814 | static int bcache_device_init(struct bcache_device *d, unsigned int block_size, |
| 815 | sector_t sectors) |
| 816 | { |
| 817 | struct request_queue *q; |
| 818 | const size_t max_stripes = min_t(size_t, INT_MAX, |
| 819 | SIZE_MAX / sizeof(atomic_t)); |
| 820 | uint64_t n; |
| 821 | int idx; |
| 822 | |
| 823 | if (!d->stripe_size) |
| 824 | d->stripe_size = 1 << 31; |
| 825 | else if (d->stripe_size < BCH_MIN_STRIPE_SZ) |
| 826 | d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size); |
| 827 | |
| 828 | n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); |
| 829 | if (!n || n > max_stripes) { |
| 830 | pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", |
| 831 | n); |
| 832 | return -ENOMEM; |
| 833 | } |
| 834 | d->nr_stripes = n; |
| 835 | |
| 836 | n = d->nr_stripes * sizeof(atomic_t); |
| 837 | d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); |
| 838 | if (!d->stripe_sectors_dirty) |
| 839 | return -ENOMEM; |
| 840 | |
| 841 | n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); |
| 842 | d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); |
| 843 | if (!d->full_dirty_stripes) |
| 844 | goto out_free_stripe_sectors_dirty; |
| 845 | |
| 846 | idx = ida_simple_get(&bcache_device_idx, 0, |
| 847 | BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); |
| 848 | if (idx < 0) |
| 849 | goto out_free_full_dirty_stripes; |
| 850 | |
| 851 | if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), |
| 852 | BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) |
| 853 | goto out_ida_remove; |
| 854 | |
| 855 | d->disk = alloc_disk(BCACHE_MINORS); |
| 856 | if (!d->disk) |
| 857 | goto out_bioset_exit; |
| 858 | |
| 859 | set_capacity(d->disk, sectors); |
| 860 | snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); |
| 861 | |
| 862 | d->disk->major = bcache_major; |
| 863 | d->disk->first_minor = idx_to_first_minor(idx); |
| 864 | d->disk->fops = &bcache_ops; |
| 865 | d->disk->private_data = d; |
| 866 | |
| 867 | q = blk_alloc_queue(GFP_KERNEL); |
| 868 | if (!q) |
| 869 | return -ENOMEM; |
| 870 | |
| 871 | blk_queue_make_request(q, NULL); |
| 872 | d->disk->queue = q; |
| 873 | q->queuedata = d; |
| 874 | q->backing_dev_info->congested_data = d; |
| 875 | q->limits.max_hw_sectors = UINT_MAX; |
| 876 | q->limits.max_sectors = UINT_MAX; |
| 877 | q->limits.max_segment_size = UINT_MAX; |
| 878 | q->limits.max_segments = BIO_MAX_PAGES; |
| 879 | blk_queue_max_discard_sectors(q, UINT_MAX); |
| 880 | q->limits.discard_granularity = 512; |
| 881 | q->limits.io_min = block_size; |
| 882 | q->limits.logical_block_size = block_size; |
| 883 | q->limits.physical_block_size = block_size; |
| 884 | blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); |
| 885 | blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); |
| 886 | blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); |
| 887 | |
| 888 | blk_queue_write_cache(q, true, true); |
| 889 | |
| 890 | return 0; |
| 891 | |
| 892 | out_bioset_exit: |
| 893 | bioset_exit(&d->bio_split); |
| 894 | out_ida_remove: |
| 895 | ida_simple_remove(&bcache_device_idx, idx); |
| 896 | out_free_full_dirty_stripes: |
| 897 | kvfree(d->full_dirty_stripes); |
| 898 | out_free_stripe_sectors_dirty: |
| 899 | kvfree(d->stripe_sectors_dirty); |
| 900 | return -ENOMEM; |
| 901 | |
| 902 | } |
| 903 | |
| 904 | /* Cached device */ |
| 905 | |
| 906 | static void calc_cached_dev_sectors(struct cache_set *c) |
| 907 | { |
| 908 | uint64_t sectors = 0; |
| 909 | struct cached_dev *dc; |
| 910 | |
| 911 | list_for_each_entry(dc, &c->cached_devs, list) |
| 912 | sectors += bdev_sectors(dc->bdev); |
| 913 | |
| 914 | c->cached_dev_sectors = sectors; |
| 915 | } |
| 916 | |
| 917 | #define BACKING_DEV_OFFLINE_TIMEOUT 5 |
| 918 | static int cached_dev_status_update(void *arg) |
| 919 | { |
| 920 | struct cached_dev *dc = arg; |
| 921 | struct request_queue *q; |
| 922 | |
| 923 | /* |
| 924 | * If this delayed worker is stopping outside, directly quit here. |
| 925 | * dc->io_disable might be set via sysfs interface, so check it |
| 926 | * here too. |
| 927 | */ |
| 928 | while (!kthread_should_stop() && !dc->io_disable) { |
| 929 | q = bdev_get_queue(dc->bdev); |
| 930 | if (blk_queue_dying(q)) |
| 931 | dc->offline_seconds++; |
| 932 | else |
| 933 | dc->offline_seconds = 0; |
| 934 | |
| 935 | if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { |
| 936 | pr_err("%s: device offline for %d seconds", |
| 937 | dc->backing_dev_name, |
| 938 | BACKING_DEV_OFFLINE_TIMEOUT); |
| 939 | pr_err("%s: disable I/O request due to backing " |
| 940 | "device offline", dc->disk.name); |
| 941 | dc->io_disable = true; |
| 942 | /* let others know earlier that io_disable is true */ |
| 943 | smp_mb(); |
| 944 | bcache_device_stop(&dc->disk); |
| 945 | break; |
| 946 | } |
| 947 | schedule_timeout_interruptible(HZ); |
| 948 | } |
| 949 | |
| 950 | wait_for_kthread_stop(); |
| 951 | return 0; |
| 952 | } |
| 953 | |
| 954 | |
| 955 | int bch_cached_dev_run(struct cached_dev *dc) |
| 956 | { |
| 957 | struct bcache_device *d = &dc->disk; |
| 958 | char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); |
| 959 | char *env[] = { |
| 960 | "DRIVER=bcache", |
| 961 | kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), |
| 962 | kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), |
| 963 | NULL, |
| 964 | }; |
| 965 | |
| 966 | if (dc->io_disable) { |
| 967 | pr_err("I/O disabled on cached dev %s", |
| 968 | dc->backing_dev_name); |
| 969 | kfree(env[1]); |
| 970 | kfree(env[2]); |
| 971 | kfree(buf); |
| 972 | return -EIO; |
| 973 | } |
| 974 | |
| 975 | if (atomic_xchg(&dc->running, 1)) { |
| 976 | kfree(env[1]); |
| 977 | kfree(env[2]); |
| 978 | kfree(buf); |
| 979 | pr_info("cached dev %s is running already", |
| 980 | dc->backing_dev_name); |
| 981 | return -EBUSY; |
| 982 | } |
| 983 | |
| 984 | if (!d->c && |
| 985 | BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { |
| 986 | struct closure cl; |
| 987 | |
| 988 | closure_init_stack(&cl); |
| 989 | |
| 990 | SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); |
| 991 | bch_write_bdev_super(dc, &cl); |
| 992 | closure_sync(&cl); |
| 993 | } |
| 994 | |
| 995 | add_disk(d->disk); |
| 996 | bd_link_disk_holder(dc->bdev, dc->disk.disk); |
| 997 | /* |
| 998 | * won't show up in the uevent file, use udevadm monitor -e instead |
| 999 | * only class / kset properties are persistent |
| 1000 | */ |
| 1001 | kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); |
| 1002 | kfree(env[1]); |
| 1003 | kfree(env[2]); |
| 1004 | kfree(buf); |
| 1005 | |
| 1006 | if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || |
| 1007 | sysfs_create_link(&disk_to_dev(d->disk)->kobj, |
| 1008 | &d->kobj, "bcache")) { |
| 1009 | pr_err("Couldn't create bcache dev <-> disk sysfs symlinks"); |
| 1010 | return -ENOMEM; |
| 1011 | } |
| 1012 | |
| 1013 | dc->status_update_thread = kthread_run(cached_dev_status_update, |
| 1014 | dc, "bcache_status_update"); |
| 1015 | if (IS_ERR(dc->status_update_thread)) { |
| 1016 | pr_warn("failed to create bcache_status_update kthread, " |
| 1017 | "continue to run without monitoring backing " |
| 1018 | "device status"); |
| 1019 | } |
| 1020 | |
| 1021 | return 0; |
| 1022 | } |
| 1023 | |
| 1024 | /* |
| 1025 | * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed |
| 1026 | * work dc->writeback_rate_update is running. Wait until the routine |
| 1027 | * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to |
| 1028 | * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out |
| 1029 | * seconds, give up waiting here and continue to cancel it too. |
| 1030 | */ |
| 1031 | static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) |
| 1032 | { |
| 1033 | int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; |
| 1034 | |
| 1035 | do { |
| 1036 | if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, |
| 1037 | &dc->disk.flags)) |
| 1038 | break; |
| 1039 | time_out--; |
| 1040 | schedule_timeout_interruptible(1); |
| 1041 | } while (time_out > 0); |
| 1042 | |
| 1043 | if (time_out == 0) |
| 1044 | pr_warn("give up waiting for dc->writeback_write_update to quit"); |
| 1045 | |
| 1046 | cancel_delayed_work_sync(&dc->writeback_rate_update); |
| 1047 | } |
| 1048 | |
| 1049 | static void cached_dev_detach_finish(struct work_struct *w) |
| 1050 | { |
| 1051 | struct cached_dev *dc = container_of(w, struct cached_dev, detach); |
| 1052 | struct closure cl; |
| 1053 | |
| 1054 | closure_init_stack(&cl); |
| 1055 | |
| 1056 | BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); |
| 1057 | BUG_ON(refcount_read(&dc->count)); |
| 1058 | |
| 1059 | |
| 1060 | if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) |
| 1061 | cancel_writeback_rate_update_dwork(dc); |
| 1062 | |
| 1063 | if (!IS_ERR_OR_NULL(dc->writeback_thread)) { |
| 1064 | kthread_stop(dc->writeback_thread); |
| 1065 | dc->writeback_thread = NULL; |
| 1066 | } |
| 1067 | |
| 1068 | memset(&dc->sb.set_uuid, 0, 16); |
| 1069 | SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); |
| 1070 | |
| 1071 | bch_write_bdev_super(dc, &cl); |
| 1072 | closure_sync(&cl); |
| 1073 | |
| 1074 | mutex_lock(&bch_register_lock); |
| 1075 | |
| 1076 | calc_cached_dev_sectors(dc->disk.c); |
| 1077 | bcache_device_detach(&dc->disk); |
| 1078 | list_move(&dc->list, &uncached_devices); |
| 1079 | |
| 1080 | clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); |
| 1081 | clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); |
| 1082 | |
| 1083 | mutex_unlock(&bch_register_lock); |
| 1084 | |
| 1085 | pr_info("Caching disabled for %s", dc->backing_dev_name); |
| 1086 | |
| 1087 | /* Drop ref we took in cached_dev_detach() */ |
| 1088 | closure_put(&dc->disk.cl); |
| 1089 | } |
| 1090 | |
| 1091 | void bch_cached_dev_detach(struct cached_dev *dc) |
| 1092 | { |
| 1093 | lockdep_assert_held(&bch_register_lock); |
| 1094 | |
| 1095 | if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) |
| 1096 | return; |
| 1097 | |
| 1098 | if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) |
| 1099 | return; |
| 1100 | |
| 1101 | /* |
| 1102 | * Block the device from being closed and freed until we're finished |
| 1103 | * detaching |
| 1104 | */ |
| 1105 | closure_get(&dc->disk.cl); |
| 1106 | |
| 1107 | bch_writeback_queue(dc); |
| 1108 | |
| 1109 | cached_dev_put(dc); |
| 1110 | } |
| 1111 | |
| 1112 | int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, |
| 1113 | uint8_t *set_uuid) |
| 1114 | { |
| 1115 | uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); |
| 1116 | struct uuid_entry *u; |
| 1117 | struct cached_dev *exist_dc, *t; |
| 1118 | int ret = 0; |
| 1119 | |
| 1120 | if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || |
| 1121 | (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) |
| 1122 | return -ENOENT; |
| 1123 | |
| 1124 | if (dc->disk.c) { |
| 1125 | pr_err("Can't attach %s: already attached", |
| 1126 | dc->backing_dev_name); |
| 1127 | return -EINVAL; |
| 1128 | } |
| 1129 | |
| 1130 | if (test_bit(CACHE_SET_STOPPING, &c->flags)) { |
| 1131 | pr_err("Can't attach %s: shutting down", |
| 1132 | dc->backing_dev_name); |
| 1133 | return -EINVAL; |
| 1134 | } |
| 1135 | |
| 1136 | if (dc->sb.block_size < c->sb.block_size) { |
| 1137 | /* Will die */ |
| 1138 | pr_err("Couldn't attach %s: block size less than set's block size", |
| 1139 | dc->backing_dev_name); |
| 1140 | return -EINVAL; |
| 1141 | } |
| 1142 | |
| 1143 | /* Check whether already attached */ |
| 1144 | list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { |
| 1145 | if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { |
| 1146 | pr_err("Tried to attach %s but duplicate UUID already attached", |
| 1147 | dc->backing_dev_name); |
| 1148 | |
| 1149 | return -EINVAL; |
| 1150 | } |
| 1151 | } |
| 1152 | |
| 1153 | u = uuid_find(c, dc->sb.uuid); |
| 1154 | |
| 1155 | if (u && |
| 1156 | (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || |
| 1157 | BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { |
| 1158 | memcpy(u->uuid, invalid_uuid, 16); |
| 1159 | u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); |
| 1160 | u = NULL; |
| 1161 | } |
| 1162 | |
| 1163 | if (!u) { |
| 1164 | if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { |
| 1165 | pr_err("Couldn't find uuid for %s in set", |
| 1166 | dc->backing_dev_name); |
| 1167 | return -ENOENT; |
| 1168 | } |
| 1169 | |
| 1170 | u = uuid_find_empty(c); |
| 1171 | if (!u) { |
| 1172 | pr_err("Not caching %s, no room for UUID", |
| 1173 | dc->backing_dev_name); |
| 1174 | return -EINVAL; |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * Deadlocks since we're called via sysfs... |
| 1180 | * sysfs_remove_file(&dc->kobj, &sysfs_attach); |
| 1181 | */ |
| 1182 | |
| 1183 | if (bch_is_zero(u->uuid, 16)) { |
| 1184 | struct closure cl; |
| 1185 | |
| 1186 | closure_init_stack(&cl); |
| 1187 | |
| 1188 | memcpy(u->uuid, dc->sb.uuid, 16); |
| 1189 | memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); |
| 1190 | u->first_reg = u->last_reg = rtime; |
| 1191 | bch_uuid_write(c); |
| 1192 | |
| 1193 | memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); |
| 1194 | SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); |
| 1195 | |
| 1196 | bch_write_bdev_super(dc, &cl); |
| 1197 | closure_sync(&cl); |
| 1198 | } else { |
| 1199 | u->last_reg = rtime; |
| 1200 | bch_uuid_write(c); |
| 1201 | } |
| 1202 | |
| 1203 | bcache_device_attach(&dc->disk, c, u - c->uuids); |
| 1204 | list_move(&dc->list, &c->cached_devs); |
| 1205 | calc_cached_dev_sectors(c); |
| 1206 | |
| 1207 | /* |
| 1208 | * dc->c must be set before dc->count != 0 - paired with the mb in |
| 1209 | * cached_dev_get() |
| 1210 | */ |
| 1211 | smp_wmb(); |
| 1212 | refcount_set(&dc->count, 1); |
| 1213 | |
| 1214 | /* Block writeback thread, but spawn it */ |
| 1215 | down_write(&dc->writeback_lock); |
| 1216 | if (bch_cached_dev_writeback_start(dc)) { |
| 1217 | up_write(&dc->writeback_lock); |
| 1218 | pr_err("Couldn't start writeback facilities for %s", |
| 1219 | dc->disk.disk->disk_name); |
| 1220 | return -ENOMEM; |
| 1221 | } |
| 1222 | |
| 1223 | if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { |
| 1224 | atomic_set(&dc->has_dirty, 1); |
| 1225 | bch_writeback_queue(dc); |
| 1226 | } |
| 1227 | |
| 1228 | bch_sectors_dirty_init(&dc->disk); |
| 1229 | |
| 1230 | ret = bch_cached_dev_run(dc); |
| 1231 | if (ret && (ret != -EBUSY)) { |
| 1232 | up_write(&dc->writeback_lock); |
| 1233 | /* |
| 1234 | * bch_register_lock is held, bcache_device_stop() is not |
| 1235 | * able to be directly called. The kthread and kworker |
| 1236 | * created previously in bch_cached_dev_writeback_start() |
| 1237 | * have to be stopped manually here. |
| 1238 | */ |
| 1239 | kthread_stop(dc->writeback_thread); |
| 1240 | cancel_writeback_rate_update_dwork(dc); |
| 1241 | pr_err("Couldn't run cached device %s", |
| 1242 | dc->backing_dev_name); |
| 1243 | return ret; |
| 1244 | } |
| 1245 | |
| 1246 | bcache_device_link(&dc->disk, c, "bdev"); |
| 1247 | atomic_inc(&c->attached_dev_nr); |
| 1248 | |
| 1249 | /* Allow the writeback thread to proceed */ |
| 1250 | up_write(&dc->writeback_lock); |
| 1251 | |
| 1252 | pr_info("Caching %s as %s on set %pU", |
| 1253 | dc->backing_dev_name, |
| 1254 | dc->disk.disk->disk_name, |
| 1255 | dc->disk.c->sb.set_uuid); |
| 1256 | return 0; |
| 1257 | } |
| 1258 | |
| 1259 | /* when dc->disk.kobj released */ |
| 1260 | void bch_cached_dev_release(struct kobject *kobj) |
| 1261 | { |
| 1262 | struct cached_dev *dc = container_of(kobj, struct cached_dev, |
| 1263 | disk.kobj); |
| 1264 | kfree(dc); |
| 1265 | module_put(THIS_MODULE); |
| 1266 | } |
| 1267 | |
| 1268 | static void cached_dev_free(struct closure *cl) |
| 1269 | { |
| 1270 | struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); |
| 1271 | |
| 1272 | if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) |
| 1273 | cancel_writeback_rate_update_dwork(dc); |
| 1274 | |
| 1275 | if (!IS_ERR_OR_NULL(dc->writeback_thread)) |
| 1276 | kthread_stop(dc->writeback_thread); |
| 1277 | if (!IS_ERR_OR_NULL(dc->status_update_thread)) |
| 1278 | kthread_stop(dc->status_update_thread); |
| 1279 | |
| 1280 | mutex_lock(&bch_register_lock); |
| 1281 | |
| 1282 | if (atomic_read(&dc->running)) |
| 1283 | bd_unlink_disk_holder(dc->bdev, dc->disk.disk); |
| 1284 | bcache_device_free(&dc->disk); |
| 1285 | list_del(&dc->list); |
| 1286 | |
| 1287 | mutex_unlock(&bch_register_lock); |
| 1288 | |
| 1289 | if (dc->sb_bio.bi_inline_vecs[0].bv_page) |
| 1290 | put_page(bio_first_page_all(&dc->sb_bio)); |
| 1291 | |
| 1292 | if (!IS_ERR_OR_NULL(dc->bdev)) |
| 1293 | blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); |
| 1294 | |
| 1295 | wake_up(&unregister_wait); |
| 1296 | |
| 1297 | kobject_put(&dc->disk.kobj); |
| 1298 | } |
| 1299 | |
| 1300 | static void cached_dev_flush(struct closure *cl) |
| 1301 | { |
| 1302 | struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); |
| 1303 | struct bcache_device *d = &dc->disk; |
| 1304 | |
| 1305 | mutex_lock(&bch_register_lock); |
| 1306 | bcache_device_unlink(d); |
| 1307 | mutex_unlock(&bch_register_lock); |
| 1308 | |
| 1309 | bch_cache_accounting_destroy(&dc->accounting); |
| 1310 | kobject_del(&d->kobj); |
| 1311 | |
| 1312 | continue_at(cl, cached_dev_free, system_wq); |
| 1313 | } |
| 1314 | |
| 1315 | static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) |
| 1316 | { |
| 1317 | int ret; |
| 1318 | struct io *io; |
| 1319 | struct request_queue *q = bdev_get_queue(dc->bdev); |
| 1320 | |
| 1321 | __module_get(THIS_MODULE); |
| 1322 | INIT_LIST_HEAD(&dc->list); |
| 1323 | closure_init(&dc->disk.cl, NULL); |
| 1324 | set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); |
| 1325 | kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); |
| 1326 | INIT_WORK(&dc->detach, cached_dev_detach_finish); |
| 1327 | sema_init(&dc->sb_write_mutex, 1); |
| 1328 | INIT_LIST_HEAD(&dc->io_lru); |
| 1329 | spin_lock_init(&dc->io_lock); |
| 1330 | bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); |
| 1331 | |
| 1332 | dc->sequential_cutoff = 4 << 20; |
| 1333 | |
| 1334 | for (io = dc->io; io < dc->io + RECENT_IO; io++) { |
| 1335 | list_add(&io->lru, &dc->io_lru); |
| 1336 | hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); |
| 1337 | } |
| 1338 | |
| 1339 | dc->disk.stripe_size = q->limits.io_opt >> 9; |
| 1340 | |
| 1341 | if (dc->disk.stripe_size) |
| 1342 | dc->partial_stripes_expensive = |
| 1343 | q->limits.raid_partial_stripes_expensive; |
| 1344 | |
| 1345 | ret = bcache_device_init(&dc->disk, block_size, |
| 1346 | dc->bdev->bd_part->nr_sects - dc->sb.data_offset); |
| 1347 | if (ret) |
| 1348 | return ret; |
| 1349 | |
| 1350 | dc->disk.disk->queue->backing_dev_info->ra_pages = |
| 1351 | max(dc->disk.disk->queue->backing_dev_info->ra_pages, |
| 1352 | q->backing_dev_info->ra_pages); |
| 1353 | |
| 1354 | atomic_set(&dc->io_errors, 0); |
| 1355 | dc->io_disable = false; |
| 1356 | dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; |
| 1357 | /* default to auto */ |
| 1358 | dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; |
| 1359 | |
| 1360 | bch_cached_dev_request_init(dc); |
| 1361 | bch_cached_dev_writeback_init(dc); |
| 1362 | return 0; |
| 1363 | } |
| 1364 | |
| 1365 | /* Cached device - bcache superblock */ |
| 1366 | |
| 1367 | static int register_bdev(struct cache_sb *sb, struct page *sb_page, |
| 1368 | struct block_device *bdev, |
| 1369 | struct cached_dev *dc) |
| 1370 | { |
| 1371 | const char *err = "cannot allocate memory"; |
| 1372 | struct cache_set *c; |
| 1373 | int ret = -ENOMEM; |
| 1374 | |
| 1375 | bdevname(bdev, dc->backing_dev_name); |
| 1376 | memcpy(&dc->sb, sb, sizeof(struct cache_sb)); |
| 1377 | dc->bdev = bdev; |
| 1378 | dc->bdev->bd_holder = dc; |
| 1379 | |
| 1380 | bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1); |
| 1381 | bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page; |
| 1382 | get_page(sb_page); |
| 1383 | |
| 1384 | |
| 1385 | if (cached_dev_init(dc, sb->block_size << 9)) |
| 1386 | goto err; |
| 1387 | |
| 1388 | err = "error creating kobject"; |
| 1389 | if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, |
| 1390 | "bcache")) |
| 1391 | goto err; |
| 1392 | if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) |
| 1393 | goto err; |
| 1394 | |
| 1395 | pr_info("registered backing device %s", dc->backing_dev_name); |
| 1396 | |
| 1397 | list_add(&dc->list, &uncached_devices); |
| 1398 | /* attach to a matched cache set if it exists */ |
| 1399 | list_for_each_entry(c, &bch_cache_sets, list) |
| 1400 | bch_cached_dev_attach(dc, c, NULL); |
| 1401 | |
| 1402 | if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || |
| 1403 | BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { |
| 1404 | err = "failed to run cached device"; |
| 1405 | ret = bch_cached_dev_run(dc); |
| 1406 | if (ret) |
| 1407 | goto err; |
| 1408 | } |
| 1409 | |
| 1410 | return 0; |
| 1411 | err: |
| 1412 | pr_notice("error %s: %s", dc->backing_dev_name, err); |
| 1413 | bcache_device_stop(&dc->disk); |
| 1414 | return ret; |
| 1415 | } |
| 1416 | |
| 1417 | /* Flash only volumes */ |
| 1418 | |
| 1419 | /* When d->kobj released */ |
| 1420 | void bch_flash_dev_release(struct kobject *kobj) |
| 1421 | { |
| 1422 | struct bcache_device *d = container_of(kobj, struct bcache_device, |
| 1423 | kobj); |
| 1424 | kfree(d); |
| 1425 | } |
| 1426 | |
| 1427 | static void flash_dev_free(struct closure *cl) |
| 1428 | { |
| 1429 | struct bcache_device *d = container_of(cl, struct bcache_device, cl); |
| 1430 | |
| 1431 | mutex_lock(&bch_register_lock); |
| 1432 | atomic_long_sub(bcache_dev_sectors_dirty(d), |
| 1433 | &d->c->flash_dev_dirty_sectors); |
| 1434 | bcache_device_free(d); |
| 1435 | mutex_unlock(&bch_register_lock); |
| 1436 | kobject_put(&d->kobj); |
| 1437 | } |
| 1438 | |
| 1439 | static void flash_dev_flush(struct closure *cl) |
| 1440 | { |
| 1441 | struct bcache_device *d = container_of(cl, struct bcache_device, cl); |
| 1442 | |
| 1443 | mutex_lock(&bch_register_lock); |
| 1444 | bcache_device_unlink(d); |
| 1445 | mutex_unlock(&bch_register_lock); |
| 1446 | kobject_del(&d->kobj); |
| 1447 | continue_at(cl, flash_dev_free, system_wq); |
| 1448 | } |
| 1449 | |
| 1450 | static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) |
| 1451 | { |
| 1452 | struct bcache_device *d = kzalloc(sizeof(struct bcache_device), |
| 1453 | GFP_KERNEL); |
| 1454 | if (!d) |
| 1455 | return -ENOMEM; |
| 1456 | |
| 1457 | closure_init(&d->cl, NULL); |
| 1458 | set_closure_fn(&d->cl, flash_dev_flush, system_wq); |
| 1459 | |
| 1460 | kobject_init(&d->kobj, &bch_flash_dev_ktype); |
| 1461 | |
| 1462 | if (bcache_device_init(d, block_bytes(c), u->sectors)) |
| 1463 | goto err; |
| 1464 | |
| 1465 | bcache_device_attach(d, c, u - c->uuids); |
| 1466 | bch_sectors_dirty_init(d); |
| 1467 | bch_flash_dev_request_init(d); |
| 1468 | add_disk(d->disk); |
| 1469 | |
| 1470 | if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) |
| 1471 | goto err; |
| 1472 | |
| 1473 | bcache_device_link(d, c, "volume"); |
| 1474 | |
| 1475 | return 0; |
| 1476 | err: |
| 1477 | kobject_put(&d->kobj); |
| 1478 | return -ENOMEM; |
| 1479 | } |
| 1480 | |
| 1481 | static int flash_devs_run(struct cache_set *c) |
| 1482 | { |
| 1483 | int ret = 0; |
| 1484 | struct uuid_entry *u; |
| 1485 | |
| 1486 | for (u = c->uuids; |
| 1487 | u < c->uuids + c->nr_uuids && !ret; |
| 1488 | u++) |
| 1489 | if (UUID_FLASH_ONLY(u)) |
| 1490 | ret = flash_dev_run(c, u); |
| 1491 | |
| 1492 | return ret; |
| 1493 | } |
| 1494 | |
| 1495 | int bch_flash_dev_create(struct cache_set *c, uint64_t size) |
| 1496 | { |
| 1497 | struct uuid_entry *u; |
| 1498 | |
| 1499 | if (test_bit(CACHE_SET_STOPPING, &c->flags)) |
| 1500 | return -EINTR; |
| 1501 | |
| 1502 | if (!test_bit(CACHE_SET_RUNNING, &c->flags)) |
| 1503 | return -EPERM; |
| 1504 | |
| 1505 | u = uuid_find_empty(c); |
| 1506 | if (!u) { |
| 1507 | pr_err("Can't create volume, no room for UUID"); |
| 1508 | return -EINVAL; |
| 1509 | } |
| 1510 | |
| 1511 | get_random_bytes(u->uuid, 16); |
| 1512 | memset(u->label, 0, 32); |
| 1513 | u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); |
| 1514 | |
| 1515 | SET_UUID_FLASH_ONLY(u, 1); |
| 1516 | u->sectors = size >> 9; |
| 1517 | |
| 1518 | bch_uuid_write(c); |
| 1519 | |
| 1520 | return flash_dev_run(c, u); |
| 1521 | } |
| 1522 | |
| 1523 | bool bch_cached_dev_error(struct cached_dev *dc) |
| 1524 | { |
| 1525 | if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) |
| 1526 | return false; |
| 1527 | |
| 1528 | dc->io_disable = true; |
| 1529 | /* make others know io_disable is true earlier */ |
| 1530 | smp_mb(); |
| 1531 | |
| 1532 | pr_err("stop %s: too many IO errors on backing device %s\n", |
| 1533 | dc->disk.disk->disk_name, dc->backing_dev_name); |
| 1534 | |
| 1535 | bcache_device_stop(&dc->disk); |
| 1536 | return true; |
| 1537 | } |
| 1538 | |
| 1539 | /* Cache set */ |
| 1540 | |
| 1541 | __printf(2, 3) |
| 1542 | bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) |
| 1543 | { |
| 1544 | va_list args; |
| 1545 | |
| 1546 | if (c->on_error != ON_ERROR_PANIC && |
| 1547 | test_bit(CACHE_SET_STOPPING, &c->flags)) |
| 1548 | return false; |
| 1549 | |
| 1550 | if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) |
| 1551 | pr_info("CACHE_SET_IO_DISABLE already set"); |
| 1552 | |
| 1553 | /* |
| 1554 | * XXX: we can be called from atomic context |
| 1555 | * acquire_console_sem(); |
| 1556 | */ |
| 1557 | |
| 1558 | pr_err("bcache: error on %pU: ", c->sb.set_uuid); |
| 1559 | |
| 1560 | va_start(args, fmt); |
| 1561 | vprintk(fmt, args); |
| 1562 | va_end(args); |
| 1563 | |
| 1564 | pr_err(", disabling caching\n"); |
| 1565 | |
| 1566 | if (c->on_error == ON_ERROR_PANIC) |
| 1567 | panic("panic forced after error\n"); |
| 1568 | |
| 1569 | bch_cache_set_unregister(c); |
| 1570 | return true; |
| 1571 | } |
| 1572 | |
| 1573 | /* When c->kobj released */ |
| 1574 | void bch_cache_set_release(struct kobject *kobj) |
| 1575 | { |
| 1576 | struct cache_set *c = container_of(kobj, struct cache_set, kobj); |
| 1577 | |
| 1578 | kfree(c); |
| 1579 | module_put(THIS_MODULE); |
| 1580 | } |
| 1581 | |
| 1582 | static void cache_set_free(struct closure *cl) |
| 1583 | { |
| 1584 | struct cache_set *c = container_of(cl, struct cache_set, cl); |
| 1585 | struct cache *ca; |
| 1586 | unsigned int i; |
| 1587 | |
| 1588 | debugfs_remove(c->debug); |
| 1589 | |
| 1590 | bch_open_buckets_free(c); |
| 1591 | bch_btree_cache_free(c); |
| 1592 | bch_journal_free(c); |
| 1593 | |
| 1594 | mutex_lock(&bch_register_lock); |
| 1595 | for_each_cache(ca, c, i) |
| 1596 | if (ca) { |
| 1597 | ca->set = NULL; |
| 1598 | c->cache[ca->sb.nr_this_dev] = NULL; |
| 1599 | kobject_put(&ca->kobj); |
| 1600 | } |
| 1601 | |
| 1602 | bch_bset_sort_state_free(&c->sort); |
| 1603 | free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); |
| 1604 | |
| 1605 | if (c->moving_gc_wq) |
| 1606 | destroy_workqueue(c->moving_gc_wq); |
| 1607 | bioset_exit(&c->bio_split); |
| 1608 | mempool_exit(&c->fill_iter); |
| 1609 | mempool_exit(&c->bio_meta); |
| 1610 | mempool_exit(&c->search); |
| 1611 | kfree(c->devices); |
| 1612 | |
| 1613 | list_del(&c->list); |
| 1614 | mutex_unlock(&bch_register_lock); |
| 1615 | |
| 1616 | pr_info("Cache set %pU unregistered", c->sb.set_uuid); |
| 1617 | wake_up(&unregister_wait); |
| 1618 | |
| 1619 | closure_debug_destroy(&c->cl); |
| 1620 | kobject_put(&c->kobj); |
| 1621 | } |
| 1622 | |
| 1623 | static void cache_set_flush(struct closure *cl) |
| 1624 | { |
| 1625 | struct cache_set *c = container_of(cl, struct cache_set, caching); |
| 1626 | struct cache *ca; |
| 1627 | struct btree *b; |
| 1628 | unsigned int i; |
| 1629 | |
| 1630 | bch_cache_accounting_destroy(&c->accounting); |
| 1631 | |
| 1632 | kobject_put(&c->internal); |
| 1633 | kobject_del(&c->kobj); |
| 1634 | |
| 1635 | if (!IS_ERR_OR_NULL(c->gc_thread)) |
| 1636 | kthread_stop(c->gc_thread); |
| 1637 | |
| 1638 | if (!IS_ERR_OR_NULL(c->root)) |
| 1639 | list_add(&c->root->list, &c->btree_cache); |
| 1640 | |
| 1641 | /* |
| 1642 | * Avoid flushing cached nodes if cache set is retiring |
| 1643 | * due to too many I/O errors detected. |
| 1644 | */ |
| 1645 | if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) |
| 1646 | list_for_each_entry(b, &c->btree_cache, list) { |
| 1647 | mutex_lock(&b->write_lock); |
| 1648 | if (btree_node_dirty(b)) |
| 1649 | __bch_btree_node_write(b, NULL); |
| 1650 | mutex_unlock(&b->write_lock); |
| 1651 | } |
| 1652 | |
| 1653 | for_each_cache(ca, c, i) |
| 1654 | if (ca->alloc_thread) |
| 1655 | kthread_stop(ca->alloc_thread); |
| 1656 | |
| 1657 | if (c->journal.cur) { |
| 1658 | cancel_delayed_work_sync(&c->journal.work); |
| 1659 | /* flush last journal entry if needed */ |
| 1660 | c->journal.work.work.func(&c->journal.work.work); |
| 1661 | } |
| 1662 | |
| 1663 | closure_return(cl); |
| 1664 | } |
| 1665 | |
| 1666 | /* |
| 1667 | * This function is only called when CACHE_SET_IO_DISABLE is set, which means |
| 1668 | * cache set is unregistering due to too many I/O errors. In this condition, |
| 1669 | * the bcache device might be stopped, it depends on stop_when_cache_set_failed |
| 1670 | * value and whether the broken cache has dirty data: |
| 1671 | * |
| 1672 | * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device |
| 1673 | * BCH_CACHED_STOP_AUTO 0 NO |
| 1674 | * BCH_CACHED_STOP_AUTO 1 YES |
| 1675 | * BCH_CACHED_DEV_STOP_ALWAYS 0 YES |
| 1676 | * BCH_CACHED_DEV_STOP_ALWAYS 1 YES |
| 1677 | * |
| 1678 | * The expected behavior is, if stop_when_cache_set_failed is configured to |
| 1679 | * "auto" via sysfs interface, the bcache device will not be stopped if the |
| 1680 | * backing device is clean on the broken cache device. |
| 1681 | */ |
| 1682 | static void conditional_stop_bcache_device(struct cache_set *c, |
| 1683 | struct bcache_device *d, |
| 1684 | struct cached_dev *dc) |
| 1685 | { |
| 1686 | if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { |
| 1687 | pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.", |
| 1688 | d->disk->disk_name, c->sb.set_uuid); |
| 1689 | bcache_device_stop(d); |
| 1690 | } else if (atomic_read(&dc->has_dirty)) { |
| 1691 | /* |
| 1692 | * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO |
| 1693 | * and dc->has_dirty == 1 |
| 1694 | */ |
| 1695 | pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.", |
| 1696 | d->disk->disk_name); |
| 1697 | /* |
| 1698 | * There might be a small time gap that cache set is |
| 1699 | * released but bcache device is not. Inside this time |
| 1700 | * gap, regular I/O requests will directly go into |
| 1701 | * backing device as no cache set attached to. This |
| 1702 | * behavior may also introduce potential inconsistence |
| 1703 | * data in writeback mode while cache is dirty. |
| 1704 | * Therefore before calling bcache_device_stop() due |
| 1705 | * to a broken cache device, dc->io_disable should be |
| 1706 | * explicitly set to true. |
| 1707 | */ |
| 1708 | dc->io_disable = true; |
| 1709 | /* make others know io_disable is true earlier */ |
| 1710 | smp_mb(); |
| 1711 | bcache_device_stop(d); |
| 1712 | } else { |
| 1713 | /* |
| 1714 | * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO |
| 1715 | * and dc->has_dirty == 0 |
| 1716 | */ |
| 1717 | pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.", |
| 1718 | d->disk->disk_name); |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | static void __cache_set_unregister(struct closure *cl) |
| 1723 | { |
| 1724 | struct cache_set *c = container_of(cl, struct cache_set, caching); |
| 1725 | struct cached_dev *dc; |
| 1726 | struct bcache_device *d; |
| 1727 | size_t i; |
| 1728 | |
| 1729 | mutex_lock(&bch_register_lock); |
| 1730 | |
| 1731 | for (i = 0; i < c->devices_max_used; i++) { |
| 1732 | d = c->devices[i]; |
| 1733 | if (!d) |
| 1734 | continue; |
| 1735 | |
| 1736 | if (!UUID_FLASH_ONLY(&c->uuids[i]) && |
| 1737 | test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { |
| 1738 | dc = container_of(d, struct cached_dev, disk); |
| 1739 | bch_cached_dev_detach(dc); |
| 1740 | if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) |
| 1741 | conditional_stop_bcache_device(c, d, dc); |
| 1742 | } else { |
| 1743 | bcache_device_stop(d); |
| 1744 | } |
| 1745 | } |
| 1746 | |
| 1747 | mutex_unlock(&bch_register_lock); |
| 1748 | |
| 1749 | continue_at(cl, cache_set_flush, system_wq); |
| 1750 | } |
| 1751 | |
| 1752 | void bch_cache_set_stop(struct cache_set *c) |
| 1753 | { |
| 1754 | if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) |
| 1755 | /* closure_fn set to __cache_set_unregister() */ |
| 1756 | closure_queue(&c->caching); |
| 1757 | } |
| 1758 | |
| 1759 | void bch_cache_set_unregister(struct cache_set *c) |
| 1760 | { |
| 1761 | set_bit(CACHE_SET_UNREGISTERING, &c->flags); |
| 1762 | bch_cache_set_stop(c); |
| 1763 | } |
| 1764 | |
| 1765 | #define alloc_bucket_pages(gfp, c) \ |
| 1766 | ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(bucket_pages(c)))) |
| 1767 | |
| 1768 | struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) |
| 1769 | { |
| 1770 | int iter_size; |
| 1771 | struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); |
| 1772 | |
| 1773 | if (!c) |
| 1774 | return NULL; |
| 1775 | |
| 1776 | __module_get(THIS_MODULE); |
| 1777 | closure_init(&c->cl, NULL); |
| 1778 | set_closure_fn(&c->cl, cache_set_free, system_wq); |
| 1779 | |
| 1780 | closure_init(&c->caching, &c->cl); |
| 1781 | set_closure_fn(&c->caching, __cache_set_unregister, system_wq); |
| 1782 | |
| 1783 | /* Maybe create continue_at_noreturn() and use it here? */ |
| 1784 | closure_set_stopped(&c->cl); |
| 1785 | closure_put(&c->cl); |
| 1786 | |
| 1787 | kobject_init(&c->kobj, &bch_cache_set_ktype); |
| 1788 | kobject_init(&c->internal, &bch_cache_set_internal_ktype); |
| 1789 | |
| 1790 | bch_cache_accounting_init(&c->accounting, &c->cl); |
| 1791 | |
| 1792 | memcpy(c->sb.set_uuid, sb->set_uuid, 16); |
| 1793 | c->sb.block_size = sb->block_size; |
| 1794 | c->sb.bucket_size = sb->bucket_size; |
| 1795 | c->sb.nr_in_set = sb->nr_in_set; |
| 1796 | c->sb.last_mount = sb->last_mount; |
| 1797 | c->bucket_bits = ilog2(sb->bucket_size); |
| 1798 | c->block_bits = ilog2(sb->block_size); |
| 1799 | c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); |
| 1800 | c->devices_max_used = 0; |
| 1801 | atomic_set(&c->attached_dev_nr, 0); |
| 1802 | c->btree_pages = bucket_pages(c); |
| 1803 | if (c->btree_pages > BTREE_MAX_PAGES) |
| 1804 | c->btree_pages = max_t(int, c->btree_pages / 4, |
| 1805 | BTREE_MAX_PAGES); |
| 1806 | |
| 1807 | sema_init(&c->sb_write_mutex, 1); |
| 1808 | mutex_init(&c->bucket_lock); |
| 1809 | init_waitqueue_head(&c->btree_cache_wait); |
| 1810 | spin_lock_init(&c->btree_cannibalize_lock); |
| 1811 | init_waitqueue_head(&c->bucket_wait); |
| 1812 | init_waitqueue_head(&c->gc_wait); |
| 1813 | sema_init(&c->uuid_write_mutex, 1); |
| 1814 | |
| 1815 | spin_lock_init(&c->btree_gc_time.lock); |
| 1816 | spin_lock_init(&c->btree_split_time.lock); |
| 1817 | spin_lock_init(&c->btree_read_time.lock); |
| 1818 | |
| 1819 | bch_moving_init_cache_set(c); |
| 1820 | |
| 1821 | INIT_LIST_HEAD(&c->list); |
| 1822 | INIT_LIST_HEAD(&c->cached_devs); |
| 1823 | INIT_LIST_HEAD(&c->btree_cache); |
| 1824 | INIT_LIST_HEAD(&c->btree_cache_freeable); |
| 1825 | INIT_LIST_HEAD(&c->btree_cache_freed); |
| 1826 | INIT_LIST_HEAD(&c->data_buckets); |
| 1827 | |
| 1828 | iter_size = (sb->bucket_size / sb->block_size + 1) * |
| 1829 | sizeof(struct btree_iter_set); |
| 1830 | |
| 1831 | if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) || |
| 1832 | mempool_init_slab_pool(&c->search, 32, bch_search_cache) || |
| 1833 | mempool_init_kmalloc_pool(&c->bio_meta, 2, |
| 1834 | sizeof(struct bbio) + sizeof(struct bio_vec) * |
| 1835 | bucket_pages(c)) || |
| 1836 | mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || |
| 1837 | bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), |
| 1838 | BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) || |
| 1839 | !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || |
| 1840 | !(c->moving_gc_wq = alloc_workqueue("bcache_gc", |
| 1841 | WQ_MEM_RECLAIM, 0)) || |
| 1842 | bch_journal_alloc(c) || |
| 1843 | bch_btree_cache_alloc(c) || |
| 1844 | bch_open_buckets_alloc(c) || |
| 1845 | bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) |
| 1846 | goto err; |
| 1847 | |
| 1848 | c->congested_read_threshold_us = 2000; |
| 1849 | c->congested_write_threshold_us = 20000; |
| 1850 | c->error_limit = DEFAULT_IO_ERROR_LIMIT; |
| 1851 | WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); |
| 1852 | |
| 1853 | return c; |
| 1854 | err: |
| 1855 | bch_cache_set_unregister(c); |
| 1856 | return NULL; |
| 1857 | } |
| 1858 | |
| 1859 | static int run_cache_set(struct cache_set *c) |
| 1860 | { |
| 1861 | const char *err = "cannot allocate memory"; |
| 1862 | struct cached_dev *dc, *t; |
| 1863 | struct cache *ca; |
| 1864 | struct closure cl; |
| 1865 | unsigned int i; |
| 1866 | LIST_HEAD(journal); |
| 1867 | struct journal_replay *l; |
| 1868 | |
| 1869 | closure_init_stack(&cl); |
| 1870 | |
| 1871 | for_each_cache(ca, c, i) |
| 1872 | c->nbuckets += ca->sb.nbuckets; |
| 1873 | set_gc_sectors(c); |
| 1874 | |
| 1875 | if (CACHE_SYNC(&c->sb)) { |
| 1876 | struct bkey *k; |
| 1877 | struct jset *j; |
| 1878 | |
| 1879 | err = "cannot allocate memory for journal"; |
| 1880 | if (bch_journal_read(c, &journal)) |
| 1881 | goto err; |
| 1882 | |
| 1883 | pr_debug("btree_journal_read() done"); |
| 1884 | |
| 1885 | err = "no journal entries found"; |
| 1886 | if (list_empty(&journal)) |
| 1887 | goto err; |
| 1888 | |
| 1889 | j = &list_entry(journal.prev, struct journal_replay, list)->j; |
| 1890 | |
| 1891 | err = "IO error reading priorities"; |
| 1892 | for_each_cache(ca, c, i) |
| 1893 | prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]); |
| 1894 | |
| 1895 | /* |
| 1896 | * If prio_read() fails it'll call cache_set_error and we'll |
| 1897 | * tear everything down right away, but if we perhaps checked |
| 1898 | * sooner we could avoid journal replay. |
| 1899 | */ |
| 1900 | |
| 1901 | k = &j->btree_root; |
| 1902 | |
| 1903 | err = "bad btree root"; |
| 1904 | if (__bch_btree_ptr_invalid(c, k)) |
| 1905 | goto err; |
| 1906 | |
| 1907 | err = "error reading btree root"; |
| 1908 | c->root = bch_btree_node_get(c, NULL, k, |
| 1909 | j->btree_level, |
| 1910 | true, NULL); |
| 1911 | if (IS_ERR(c->root)) |
| 1912 | goto err; |
| 1913 | |
| 1914 | list_del_init(&c->root->list); |
| 1915 | rw_unlock(true, c->root); |
| 1916 | |
| 1917 | err = uuid_read(c, j, &cl); |
| 1918 | if (err) |
| 1919 | goto err; |
| 1920 | |
| 1921 | err = "error in recovery"; |
| 1922 | if (bch_btree_check(c)) |
| 1923 | goto err; |
| 1924 | |
| 1925 | /* |
| 1926 | * bch_btree_check() may occupy too much system memory which |
| 1927 | * has negative effects to user space application (e.g. data |
| 1928 | * base) performance. Shrink the mca cache memory proactively |
| 1929 | * here to avoid competing memory with user space workloads.. |
| 1930 | */ |
| 1931 | if (!c->shrinker_disabled) { |
| 1932 | struct shrink_control sc; |
| 1933 | |
| 1934 | sc.gfp_mask = GFP_KERNEL; |
| 1935 | sc.nr_to_scan = c->btree_cache_used * c->btree_pages; |
| 1936 | /* first run to clear b->accessed tag */ |
| 1937 | c->shrink.scan_objects(&c->shrink, &sc); |
| 1938 | /* second run to reap non-accessed nodes */ |
| 1939 | c->shrink.scan_objects(&c->shrink, &sc); |
| 1940 | } |
| 1941 | |
| 1942 | bch_journal_mark(c, &journal); |
| 1943 | bch_initial_gc_finish(c); |
| 1944 | pr_debug("btree_check() done"); |
| 1945 | |
| 1946 | /* |
| 1947 | * bcache_journal_next() can't happen sooner, or |
| 1948 | * btree_gc_finish() will give spurious errors about last_gc > |
| 1949 | * gc_gen - this is a hack but oh well. |
| 1950 | */ |
| 1951 | bch_journal_next(&c->journal); |
| 1952 | |
| 1953 | err = "error starting allocator thread"; |
| 1954 | for_each_cache(ca, c, i) |
| 1955 | if (bch_cache_allocator_start(ca)) |
| 1956 | goto err; |
| 1957 | |
| 1958 | /* |
| 1959 | * First place it's safe to allocate: btree_check() and |
| 1960 | * btree_gc_finish() have to run before we have buckets to |
| 1961 | * allocate, and bch_bucket_alloc_set() might cause a journal |
| 1962 | * entry to be written so bcache_journal_next() has to be called |
| 1963 | * first. |
| 1964 | * |
| 1965 | * If the uuids were in the old format we have to rewrite them |
| 1966 | * before the next journal entry is written: |
| 1967 | */ |
| 1968 | if (j->version < BCACHE_JSET_VERSION_UUID) |
| 1969 | __uuid_write(c); |
| 1970 | |
| 1971 | err = "bcache: replay journal failed"; |
| 1972 | if (bch_journal_replay(c, &journal)) |
| 1973 | goto err; |
| 1974 | } else { |
| 1975 | pr_notice("invalidating existing data"); |
| 1976 | |
| 1977 | for_each_cache(ca, c, i) { |
| 1978 | unsigned int j; |
| 1979 | |
| 1980 | ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, |
| 1981 | 2, SB_JOURNAL_BUCKETS); |
| 1982 | |
| 1983 | for (j = 0; j < ca->sb.keys; j++) |
| 1984 | ca->sb.d[j] = ca->sb.first_bucket + j; |
| 1985 | } |
| 1986 | |
| 1987 | bch_initial_gc_finish(c); |
| 1988 | |
| 1989 | err = "error starting allocator thread"; |
| 1990 | for_each_cache(ca, c, i) |
| 1991 | if (bch_cache_allocator_start(ca)) |
| 1992 | goto err; |
| 1993 | |
| 1994 | mutex_lock(&c->bucket_lock); |
| 1995 | for_each_cache(ca, c, i) |
| 1996 | bch_prio_write(ca, true); |
| 1997 | mutex_unlock(&c->bucket_lock); |
| 1998 | |
| 1999 | err = "cannot allocate new UUID bucket"; |
| 2000 | if (__uuid_write(c)) |
| 2001 | goto err; |
| 2002 | |
| 2003 | err = "cannot allocate new btree root"; |
| 2004 | c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); |
| 2005 | if (IS_ERR(c->root)) |
| 2006 | goto err; |
| 2007 | |
| 2008 | mutex_lock(&c->root->write_lock); |
| 2009 | bkey_copy_key(&c->root->key, &MAX_KEY); |
| 2010 | bch_btree_node_write(c->root, &cl); |
| 2011 | mutex_unlock(&c->root->write_lock); |
| 2012 | |
| 2013 | bch_btree_set_root(c->root); |
| 2014 | rw_unlock(true, c->root); |
| 2015 | |
| 2016 | /* |
| 2017 | * We don't want to write the first journal entry until |
| 2018 | * everything is set up - fortunately journal entries won't be |
| 2019 | * written until the SET_CACHE_SYNC() here: |
| 2020 | */ |
| 2021 | SET_CACHE_SYNC(&c->sb, true); |
| 2022 | |
| 2023 | bch_journal_next(&c->journal); |
| 2024 | bch_journal_meta(c, &cl); |
| 2025 | } |
| 2026 | |
| 2027 | err = "error starting gc thread"; |
| 2028 | if (bch_gc_thread_start(c)) |
| 2029 | goto err; |
| 2030 | |
| 2031 | closure_sync(&cl); |
| 2032 | c->sb.last_mount = (u32)ktime_get_real_seconds(); |
| 2033 | bcache_write_super(c); |
| 2034 | |
| 2035 | list_for_each_entry_safe(dc, t, &uncached_devices, list) |
| 2036 | bch_cached_dev_attach(dc, c, NULL); |
| 2037 | |
| 2038 | flash_devs_run(c); |
| 2039 | |
| 2040 | set_bit(CACHE_SET_RUNNING, &c->flags); |
| 2041 | return 0; |
| 2042 | err: |
| 2043 | while (!list_empty(&journal)) { |
| 2044 | l = list_first_entry(&journal, struct journal_replay, list); |
| 2045 | list_del(&l->list); |
| 2046 | kfree(l); |
| 2047 | } |
| 2048 | |
| 2049 | closure_sync(&cl); |
| 2050 | |
| 2051 | bch_cache_set_error(c, "%s", err); |
| 2052 | |
| 2053 | return -EIO; |
| 2054 | } |
| 2055 | |
| 2056 | static bool can_attach_cache(struct cache *ca, struct cache_set *c) |
| 2057 | { |
| 2058 | return ca->sb.block_size == c->sb.block_size && |
| 2059 | ca->sb.bucket_size == c->sb.bucket_size && |
| 2060 | ca->sb.nr_in_set == c->sb.nr_in_set; |
| 2061 | } |
| 2062 | |
| 2063 | static const char *register_cache_set(struct cache *ca) |
| 2064 | { |
| 2065 | char buf[12]; |
| 2066 | const char *err = "cannot allocate memory"; |
| 2067 | struct cache_set *c; |
| 2068 | |
| 2069 | list_for_each_entry(c, &bch_cache_sets, list) |
| 2070 | if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { |
| 2071 | if (c->cache[ca->sb.nr_this_dev]) |
| 2072 | return "duplicate cache set member"; |
| 2073 | |
| 2074 | if (!can_attach_cache(ca, c)) |
| 2075 | return "cache sb does not match set"; |
| 2076 | |
| 2077 | if (!CACHE_SYNC(&ca->sb)) |
| 2078 | SET_CACHE_SYNC(&c->sb, false); |
| 2079 | |
| 2080 | goto found; |
| 2081 | } |
| 2082 | |
| 2083 | c = bch_cache_set_alloc(&ca->sb); |
| 2084 | if (!c) |
| 2085 | return err; |
| 2086 | |
| 2087 | err = "error creating kobject"; |
| 2088 | if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || |
| 2089 | kobject_add(&c->internal, &c->kobj, "internal")) |
| 2090 | goto err; |
| 2091 | |
| 2092 | if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) |
| 2093 | goto err; |
| 2094 | |
| 2095 | bch_debug_init_cache_set(c); |
| 2096 | |
| 2097 | list_add(&c->list, &bch_cache_sets); |
| 2098 | found: |
| 2099 | sprintf(buf, "cache%i", ca->sb.nr_this_dev); |
| 2100 | if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || |
| 2101 | sysfs_create_link(&c->kobj, &ca->kobj, buf)) |
| 2102 | goto err; |
| 2103 | |
| 2104 | /* |
| 2105 | * A special case is both ca->sb.seq and c->sb.seq are 0, |
| 2106 | * such condition happens on a new created cache device whose |
| 2107 | * super block is never flushed yet. In this case c->sb.version |
| 2108 | * and other members should be updated too, otherwise we will |
| 2109 | * have a mistaken super block version in cache set. |
| 2110 | */ |
| 2111 | if (ca->sb.seq > c->sb.seq || c->sb.seq == 0) { |
| 2112 | c->sb.version = ca->sb.version; |
| 2113 | memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); |
| 2114 | c->sb.flags = ca->sb.flags; |
| 2115 | c->sb.seq = ca->sb.seq; |
| 2116 | pr_debug("set version = %llu", c->sb.version); |
| 2117 | } |
| 2118 | |
| 2119 | kobject_get(&ca->kobj); |
| 2120 | ca->set = c; |
| 2121 | ca->set->cache[ca->sb.nr_this_dev] = ca; |
| 2122 | c->cache_by_alloc[c->caches_loaded++] = ca; |
| 2123 | |
| 2124 | if (c->caches_loaded == c->sb.nr_in_set) { |
| 2125 | err = "failed to run cache set"; |
| 2126 | if (run_cache_set(c) < 0) |
| 2127 | goto err; |
| 2128 | } |
| 2129 | |
| 2130 | return NULL; |
| 2131 | err: |
| 2132 | bch_cache_set_unregister(c); |
| 2133 | return err; |
| 2134 | } |
| 2135 | |
| 2136 | /* Cache device */ |
| 2137 | |
| 2138 | /* When ca->kobj released */ |
| 2139 | void bch_cache_release(struct kobject *kobj) |
| 2140 | { |
| 2141 | struct cache *ca = container_of(kobj, struct cache, kobj); |
| 2142 | unsigned int i; |
| 2143 | |
| 2144 | if (ca->set) { |
| 2145 | BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); |
| 2146 | ca->set->cache[ca->sb.nr_this_dev] = NULL; |
| 2147 | } |
| 2148 | |
| 2149 | free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); |
| 2150 | kfree(ca->prio_buckets); |
| 2151 | vfree(ca->buckets); |
| 2152 | |
| 2153 | free_heap(&ca->heap); |
| 2154 | free_fifo(&ca->free_inc); |
| 2155 | |
| 2156 | for (i = 0; i < RESERVE_NR; i++) |
| 2157 | free_fifo(&ca->free[i]); |
| 2158 | |
| 2159 | if (ca->sb_bio.bi_inline_vecs[0].bv_page) |
| 2160 | put_page(bio_first_page_all(&ca->sb_bio)); |
| 2161 | |
| 2162 | if (!IS_ERR_OR_NULL(ca->bdev)) |
| 2163 | blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); |
| 2164 | |
| 2165 | kfree(ca); |
| 2166 | module_put(THIS_MODULE); |
| 2167 | } |
| 2168 | |
| 2169 | static int cache_alloc(struct cache *ca) |
| 2170 | { |
| 2171 | size_t free; |
| 2172 | size_t btree_buckets; |
| 2173 | struct bucket *b; |
| 2174 | int ret = -ENOMEM; |
| 2175 | const char *err = NULL; |
| 2176 | |
| 2177 | __module_get(THIS_MODULE); |
| 2178 | kobject_init(&ca->kobj, &bch_cache_ktype); |
| 2179 | |
| 2180 | bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); |
| 2181 | |
| 2182 | /* |
| 2183 | * when ca->sb.njournal_buckets is not zero, journal exists, |
| 2184 | * and in bch_journal_replay(), tree node may split, |
| 2185 | * so bucket of RESERVE_BTREE type is needed, |
| 2186 | * the worst situation is all journal buckets are valid journal, |
| 2187 | * and all the keys need to replay, |
| 2188 | * so the number of RESERVE_BTREE type buckets should be as much |
| 2189 | * as journal buckets |
| 2190 | */ |
| 2191 | btree_buckets = ca->sb.njournal_buckets ?: 8; |
| 2192 | free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; |
| 2193 | if (!free) { |
| 2194 | ret = -EPERM; |
| 2195 | err = "ca->sb.nbuckets is too small"; |
| 2196 | goto err_free; |
| 2197 | } |
| 2198 | |
| 2199 | if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, |
| 2200 | GFP_KERNEL)) { |
| 2201 | err = "ca->free[RESERVE_BTREE] alloc failed"; |
| 2202 | goto err_btree_alloc; |
| 2203 | } |
| 2204 | |
| 2205 | if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), |
| 2206 | GFP_KERNEL)) { |
| 2207 | err = "ca->free[RESERVE_PRIO] alloc failed"; |
| 2208 | goto err_prio_alloc; |
| 2209 | } |
| 2210 | |
| 2211 | if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { |
| 2212 | err = "ca->free[RESERVE_MOVINGGC] alloc failed"; |
| 2213 | goto err_movinggc_alloc; |
| 2214 | } |
| 2215 | |
| 2216 | if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { |
| 2217 | err = "ca->free[RESERVE_NONE] alloc failed"; |
| 2218 | goto err_none_alloc; |
| 2219 | } |
| 2220 | |
| 2221 | if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { |
| 2222 | err = "ca->free_inc alloc failed"; |
| 2223 | goto err_free_inc_alloc; |
| 2224 | } |
| 2225 | |
| 2226 | if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { |
| 2227 | err = "ca->heap alloc failed"; |
| 2228 | goto err_heap_alloc; |
| 2229 | } |
| 2230 | |
| 2231 | ca->buckets = vzalloc(array_size(sizeof(struct bucket), |
| 2232 | ca->sb.nbuckets)); |
| 2233 | if (!ca->buckets) { |
| 2234 | err = "ca->buckets alloc failed"; |
| 2235 | goto err_buckets_alloc; |
| 2236 | } |
| 2237 | |
| 2238 | ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), |
| 2239 | prio_buckets(ca), 2), |
| 2240 | GFP_KERNEL); |
| 2241 | if (!ca->prio_buckets) { |
| 2242 | err = "ca->prio_buckets alloc failed"; |
| 2243 | goto err_prio_buckets_alloc; |
| 2244 | } |
| 2245 | |
| 2246 | ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca); |
| 2247 | if (!ca->disk_buckets) { |
| 2248 | err = "ca->disk_buckets alloc failed"; |
| 2249 | goto err_disk_buckets_alloc; |
| 2250 | } |
| 2251 | |
| 2252 | ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); |
| 2253 | |
| 2254 | for_each_bucket(b, ca) |
| 2255 | atomic_set(&b->pin, 0); |
| 2256 | return 0; |
| 2257 | |
| 2258 | err_disk_buckets_alloc: |
| 2259 | kfree(ca->prio_buckets); |
| 2260 | err_prio_buckets_alloc: |
| 2261 | vfree(ca->buckets); |
| 2262 | err_buckets_alloc: |
| 2263 | free_heap(&ca->heap); |
| 2264 | err_heap_alloc: |
| 2265 | free_fifo(&ca->free_inc); |
| 2266 | err_free_inc_alloc: |
| 2267 | free_fifo(&ca->free[RESERVE_NONE]); |
| 2268 | err_none_alloc: |
| 2269 | free_fifo(&ca->free[RESERVE_MOVINGGC]); |
| 2270 | err_movinggc_alloc: |
| 2271 | free_fifo(&ca->free[RESERVE_PRIO]); |
| 2272 | err_prio_alloc: |
| 2273 | free_fifo(&ca->free[RESERVE_BTREE]); |
| 2274 | err_btree_alloc: |
| 2275 | err_free: |
| 2276 | module_put(THIS_MODULE); |
| 2277 | if (err) |
| 2278 | pr_notice("error %s: %s", ca->cache_dev_name, err); |
| 2279 | return ret; |
| 2280 | } |
| 2281 | |
| 2282 | static int register_cache(struct cache_sb *sb, struct page *sb_page, |
| 2283 | struct block_device *bdev, struct cache *ca) |
| 2284 | { |
| 2285 | const char *err = NULL; /* must be set for any error case */ |
| 2286 | int ret = 0; |
| 2287 | |
| 2288 | bdevname(bdev, ca->cache_dev_name); |
| 2289 | memcpy(&ca->sb, sb, sizeof(struct cache_sb)); |
| 2290 | ca->bdev = bdev; |
| 2291 | ca->bdev->bd_holder = ca; |
| 2292 | |
| 2293 | bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1); |
| 2294 | bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page; |
| 2295 | get_page(sb_page); |
| 2296 | |
| 2297 | if (blk_queue_discard(bdev_get_queue(bdev))) |
| 2298 | ca->discard = CACHE_DISCARD(&ca->sb); |
| 2299 | |
| 2300 | ret = cache_alloc(ca); |
| 2301 | if (ret != 0) { |
| 2302 | /* |
| 2303 | * If we failed here, it means ca->kobj is not initialized yet, |
| 2304 | * kobject_put() won't be called and there is no chance to |
| 2305 | * call blkdev_put() to bdev in bch_cache_release(). So we |
| 2306 | * explicitly call blkdev_put() here. |
| 2307 | */ |
| 2308 | blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); |
| 2309 | if (ret == -ENOMEM) |
| 2310 | err = "cache_alloc(): -ENOMEM"; |
| 2311 | else if (ret == -EPERM) |
| 2312 | err = "cache_alloc(): cache device is too small"; |
| 2313 | else |
| 2314 | err = "cache_alloc(): unknown error"; |
| 2315 | goto err; |
| 2316 | } |
| 2317 | |
| 2318 | if (kobject_add(&ca->kobj, |
| 2319 | &part_to_dev(bdev->bd_part)->kobj, |
| 2320 | "bcache")) { |
| 2321 | err = "error calling kobject_add"; |
| 2322 | ret = -ENOMEM; |
| 2323 | goto out; |
| 2324 | } |
| 2325 | |
| 2326 | mutex_lock(&bch_register_lock); |
| 2327 | err = register_cache_set(ca); |
| 2328 | mutex_unlock(&bch_register_lock); |
| 2329 | |
| 2330 | if (err) { |
| 2331 | ret = -ENODEV; |
| 2332 | goto out; |
| 2333 | } |
| 2334 | |
| 2335 | pr_info("registered cache device %s", ca->cache_dev_name); |
| 2336 | |
| 2337 | out: |
| 2338 | kobject_put(&ca->kobj); |
| 2339 | |
| 2340 | err: |
| 2341 | if (err) |
| 2342 | pr_notice("error %s: %s", ca->cache_dev_name, err); |
| 2343 | |
| 2344 | return ret; |
| 2345 | } |
| 2346 | |
| 2347 | /* Global interfaces/init */ |
| 2348 | |
| 2349 | static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, |
| 2350 | const char *buffer, size_t size); |
| 2351 | static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, |
| 2352 | struct kobj_attribute *attr, |
| 2353 | const char *buffer, size_t size); |
| 2354 | |
| 2355 | kobj_attribute_write(register, register_bcache); |
| 2356 | kobj_attribute_write(register_quiet, register_bcache); |
| 2357 | kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); |
| 2358 | |
| 2359 | static bool bch_is_open_backing(struct block_device *bdev) |
| 2360 | { |
| 2361 | struct cache_set *c, *tc; |
| 2362 | struct cached_dev *dc, *t; |
| 2363 | |
| 2364 | list_for_each_entry_safe(c, tc, &bch_cache_sets, list) |
| 2365 | list_for_each_entry_safe(dc, t, &c->cached_devs, list) |
| 2366 | if (dc->bdev == bdev) |
| 2367 | return true; |
| 2368 | list_for_each_entry_safe(dc, t, &uncached_devices, list) |
| 2369 | if (dc->bdev == bdev) |
| 2370 | return true; |
| 2371 | return false; |
| 2372 | } |
| 2373 | |
| 2374 | static bool bch_is_open_cache(struct block_device *bdev) |
| 2375 | { |
| 2376 | struct cache_set *c, *tc; |
| 2377 | struct cache *ca; |
| 2378 | unsigned int i; |
| 2379 | |
| 2380 | list_for_each_entry_safe(c, tc, &bch_cache_sets, list) |
| 2381 | for_each_cache(ca, c, i) |
| 2382 | if (ca->bdev == bdev) |
| 2383 | return true; |
| 2384 | return false; |
| 2385 | } |
| 2386 | |
| 2387 | static bool bch_is_open(struct block_device *bdev) |
| 2388 | { |
| 2389 | return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); |
| 2390 | } |
| 2391 | |
| 2392 | static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, |
| 2393 | const char *buffer, size_t size) |
| 2394 | { |
| 2395 | const char *err; |
| 2396 | char *path = NULL; |
| 2397 | struct cache_sb *sb; |
| 2398 | struct block_device *bdev = NULL; |
| 2399 | struct page *sb_page; |
| 2400 | ssize_t ret; |
| 2401 | |
| 2402 | ret = -EBUSY; |
| 2403 | err = "failed to reference bcache module"; |
| 2404 | if (!try_module_get(THIS_MODULE)) |
| 2405 | goto out; |
| 2406 | |
| 2407 | /* For latest state of bcache_is_reboot */ |
| 2408 | smp_mb(); |
| 2409 | err = "bcache is in reboot"; |
| 2410 | if (bcache_is_reboot) |
| 2411 | goto out_module_put; |
| 2412 | |
| 2413 | ret = -ENOMEM; |
| 2414 | err = "cannot allocate memory"; |
| 2415 | path = kstrndup(buffer, size, GFP_KERNEL); |
| 2416 | if (!path) |
| 2417 | goto out_module_put; |
| 2418 | |
| 2419 | sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); |
| 2420 | if (!sb) |
| 2421 | goto out_free_path; |
| 2422 | |
| 2423 | ret = -EINVAL; |
| 2424 | err = "failed to open device"; |
| 2425 | bdev = blkdev_get_by_path(strim(path), |
| 2426 | FMODE_READ|FMODE_WRITE|FMODE_EXCL, |
| 2427 | sb); |
| 2428 | if (IS_ERR(bdev)) { |
| 2429 | if (bdev == ERR_PTR(-EBUSY)) { |
| 2430 | bdev = lookup_bdev(strim(path)); |
| 2431 | mutex_lock(&bch_register_lock); |
| 2432 | if (!IS_ERR(bdev) && bch_is_open(bdev)) |
| 2433 | err = "device already registered"; |
| 2434 | else |
| 2435 | err = "device busy"; |
| 2436 | mutex_unlock(&bch_register_lock); |
| 2437 | if (!IS_ERR(bdev)) |
| 2438 | bdput(bdev); |
| 2439 | if (attr == &ksysfs_register_quiet) |
| 2440 | goto done; |
| 2441 | } |
| 2442 | goto out_free_sb; |
| 2443 | } |
| 2444 | |
| 2445 | err = "failed to set blocksize"; |
| 2446 | if (set_blocksize(bdev, 4096)) |
| 2447 | goto out_blkdev_put; |
| 2448 | |
| 2449 | err = read_super(sb, bdev, &sb_page); |
| 2450 | if (err) |
| 2451 | goto out_blkdev_put; |
| 2452 | |
| 2453 | err = "failed to register device"; |
| 2454 | if (SB_IS_BDEV(sb)) { |
| 2455 | struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); |
| 2456 | |
| 2457 | if (!dc) |
| 2458 | goto out_put_sb_page; |
| 2459 | |
| 2460 | mutex_lock(&bch_register_lock); |
| 2461 | ret = register_bdev(sb, sb_page, bdev, dc); |
| 2462 | mutex_unlock(&bch_register_lock); |
| 2463 | /* blkdev_put() will be called in cached_dev_free() */ |
| 2464 | if (ret < 0) { |
| 2465 | bdev = NULL; |
| 2466 | goto out_put_sb_page; |
| 2467 | } |
| 2468 | } else { |
| 2469 | struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); |
| 2470 | |
| 2471 | if (!ca) |
| 2472 | goto out_put_sb_page; |
| 2473 | |
| 2474 | /* blkdev_put() will be called in bch_cache_release() */ |
| 2475 | if (register_cache(sb, sb_page, bdev, ca) != 0) { |
| 2476 | bdev = NULL; |
| 2477 | goto out_put_sb_page; |
| 2478 | } |
| 2479 | } |
| 2480 | |
| 2481 | put_page(sb_page); |
| 2482 | done: |
| 2483 | kfree(sb); |
| 2484 | kfree(path); |
| 2485 | module_put(THIS_MODULE); |
| 2486 | return size; |
| 2487 | |
| 2488 | out_put_sb_page: |
| 2489 | put_page(sb_page); |
| 2490 | out_blkdev_put: |
| 2491 | if (bdev) |
| 2492 | blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
| 2493 | out_free_sb: |
| 2494 | kfree(sb); |
| 2495 | out_free_path: |
| 2496 | kfree(path); |
| 2497 | path = NULL; |
| 2498 | out_module_put: |
| 2499 | module_put(THIS_MODULE); |
| 2500 | out: |
| 2501 | pr_info("error %s: %s", path?path:"", err); |
| 2502 | return ret; |
| 2503 | } |
| 2504 | |
| 2505 | |
| 2506 | struct pdev { |
| 2507 | struct list_head list; |
| 2508 | struct cached_dev *dc; |
| 2509 | }; |
| 2510 | |
| 2511 | static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, |
| 2512 | struct kobj_attribute *attr, |
| 2513 | const char *buffer, |
| 2514 | size_t size) |
| 2515 | { |
| 2516 | LIST_HEAD(pending_devs); |
| 2517 | ssize_t ret = size; |
| 2518 | struct cached_dev *dc, *tdc; |
| 2519 | struct pdev *pdev, *tpdev; |
| 2520 | struct cache_set *c, *tc; |
| 2521 | |
| 2522 | mutex_lock(&bch_register_lock); |
| 2523 | list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { |
| 2524 | pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); |
| 2525 | if (!pdev) |
| 2526 | break; |
| 2527 | pdev->dc = dc; |
| 2528 | list_add(&pdev->list, &pending_devs); |
| 2529 | } |
| 2530 | |
| 2531 | list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { |
| 2532 | list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { |
| 2533 | char *pdev_set_uuid = pdev->dc->sb.set_uuid; |
| 2534 | char *set_uuid = c->sb.uuid; |
| 2535 | |
| 2536 | if (!memcmp(pdev_set_uuid, set_uuid, 16)) { |
| 2537 | list_del(&pdev->list); |
| 2538 | kfree(pdev); |
| 2539 | break; |
| 2540 | } |
| 2541 | } |
| 2542 | } |
| 2543 | mutex_unlock(&bch_register_lock); |
| 2544 | |
| 2545 | list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { |
| 2546 | pr_info("delete pdev %p", pdev); |
| 2547 | list_del(&pdev->list); |
| 2548 | bcache_device_stop(&pdev->dc->disk); |
| 2549 | kfree(pdev); |
| 2550 | } |
| 2551 | |
| 2552 | return ret; |
| 2553 | } |
| 2554 | |
| 2555 | static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) |
| 2556 | { |
| 2557 | if (bcache_is_reboot) |
| 2558 | return NOTIFY_DONE; |
| 2559 | |
| 2560 | if (code == SYS_DOWN || |
| 2561 | code == SYS_HALT || |
| 2562 | code == SYS_POWER_OFF) { |
| 2563 | DEFINE_WAIT(wait); |
| 2564 | unsigned long start = jiffies; |
| 2565 | bool stopped = false; |
| 2566 | |
| 2567 | struct cache_set *c, *tc; |
| 2568 | struct cached_dev *dc, *tdc; |
| 2569 | |
| 2570 | mutex_lock(&bch_register_lock); |
| 2571 | |
| 2572 | if (bcache_is_reboot) |
| 2573 | goto out; |
| 2574 | |
| 2575 | /* New registration is rejected since now */ |
| 2576 | bcache_is_reboot = true; |
| 2577 | /* |
| 2578 | * Make registering caller (if there is) on other CPU |
| 2579 | * core know bcache_is_reboot set to true earlier |
| 2580 | */ |
| 2581 | smp_mb(); |
| 2582 | |
| 2583 | if (list_empty(&bch_cache_sets) && |
| 2584 | list_empty(&uncached_devices)) |
| 2585 | goto out; |
| 2586 | |
| 2587 | mutex_unlock(&bch_register_lock); |
| 2588 | |
| 2589 | pr_info("Stopping all devices:"); |
| 2590 | |
| 2591 | /* |
| 2592 | * The reason bch_register_lock is not held to call |
| 2593 | * bch_cache_set_stop() and bcache_device_stop() is to |
| 2594 | * avoid potential deadlock during reboot, because cache |
| 2595 | * set or bcache device stopping process will acqurie |
| 2596 | * bch_register_lock too. |
| 2597 | * |
| 2598 | * We are safe here because bcache_is_reboot sets to |
| 2599 | * true already, register_bcache() will reject new |
| 2600 | * registration now. bcache_is_reboot also makes sure |
| 2601 | * bcache_reboot() won't be re-entered on by other thread, |
| 2602 | * so there is no race in following list iteration by |
| 2603 | * list_for_each_entry_safe(). |
| 2604 | */ |
| 2605 | list_for_each_entry_safe(c, tc, &bch_cache_sets, list) |
| 2606 | bch_cache_set_stop(c); |
| 2607 | |
| 2608 | list_for_each_entry_safe(dc, tdc, &uncached_devices, list) |
| 2609 | bcache_device_stop(&dc->disk); |
| 2610 | |
| 2611 | |
| 2612 | /* |
| 2613 | * Give an early chance for other kthreads and |
| 2614 | * kworkers to stop themselves |
| 2615 | */ |
| 2616 | schedule(); |
| 2617 | |
| 2618 | /* What's a condition variable? */ |
| 2619 | while (1) { |
| 2620 | long timeout = start + 10 * HZ - jiffies; |
| 2621 | |
| 2622 | mutex_lock(&bch_register_lock); |
| 2623 | stopped = list_empty(&bch_cache_sets) && |
| 2624 | list_empty(&uncached_devices); |
| 2625 | |
| 2626 | if (timeout < 0 || stopped) |
| 2627 | break; |
| 2628 | |
| 2629 | prepare_to_wait(&unregister_wait, &wait, |
| 2630 | TASK_UNINTERRUPTIBLE); |
| 2631 | |
| 2632 | mutex_unlock(&bch_register_lock); |
| 2633 | schedule_timeout(timeout); |
| 2634 | } |
| 2635 | |
| 2636 | finish_wait(&unregister_wait, &wait); |
| 2637 | |
| 2638 | if (stopped) |
| 2639 | pr_info("All devices stopped"); |
| 2640 | else |
| 2641 | pr_notice("Timeout waiting for devices to be closed"); |
| 2642 | out: |
| 2643 | mutex_unlock(&bch_register_lock); |
| 2644 | } |
| 2645 | |
| 2646 | return NOTIFY_DONE; |
| 2647 | } |
| 2648 | |
| 2649 | static struct notifier_block reboot = { |
| 2650 | .notifier_call = bcache_reboot, |
| 2651 | .priority = INT_MAX, /* before any real devices */ |
| 2652 | }; |
| 2653 | |
| 2654 | static void bcache_exit(void) |
| 2655 | { |
| 2656 | bch_debug_exit(); |
| 2657 | bch_request_exit(); |
| 2658 | if (bcache_kobj) |
| 2659 | kobject_put(bcache_kobj); |
| 2660 | if (bcache_wq) |
| 2661 | destroy_workqueue(bcache_wq); |
| 2662 | if (bch_journal_wq) |
| 2663 | destroy_workqueue(bch_journal_wq); |
| 2664 | if (bch_flush_wq) |
| 2665 | destroy_workqueue(bch_flush_wq); |
| 2666 | bch_btree_exit(); |
| 2667 | |
| 2668 | if (bcache_major) |
| 2669 | unregister_blkdev(bcache_major, "bcache"); |
| 2670 | unregister_reboot_notifier(&reboot); |
| 2671 | mutex_destroy(&bch_register_lock); |
| 2672 | } |
| 2673 | |
| 2674 | /* Check and fixup module parameters */ |
| 2675 | static void check_module_parameters(void) |
| 2676 | { |
| 2677 | if (bch_cutoff_writeback_sync == 0) |
| 2678 | bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; |
| 2679 | else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { |
| 2680 | pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u", |
| 2681 | bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); |
| 2682 | bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; |
| 2683 | } |
| 2684 | |
| 2685 | if (bch_cutoff_writeback == 0) |
| 2686 | bch_cutoff_writeback = CUTOFF_WRITEBACK; |
| 2687 | else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { |
| 2688 | pr_warn("set bch_cutoff_writeback (%u) to max value %u", |
| 2689 | bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); |
| 2690 | bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; |
| 2691 | } |
| 2692 | |
| 2693 | if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { |
| 2694 | pr_warn("set bch_cutoff_writeback (%u) to %u", |
| 2695 | bch_cutoff_writeback, bch_cutoff_writeback_sync); |
| 2696 | bch_cutoff_writeback = bch_cutoff_writeback_sync; |
| 2697 | } |
| 2698 | } |
| 2699 | |
| 2700 | static int __init bcache_init(void) |
| 2701 | { |
| 2702 | static const struct attribute *files[] = { |
| 2703 | &ksysfs_register.attr, |
| 2704 | &ksysfs_register_quiet.attr, |
| 2705 | &ksysfs_pendings_cleanup.attr, |
| 2706 | NULL |
| 2707 | }; |
| 2708 | |
| 2709 | check_module_parameters(); |
| 2710 | |
| 2711 | mutex_init(&bch_register_lock); |
| 2712 | init_waitqueue_head(&unregister_wait); |
| 2713 | register_reboot_notifier(&reboot); |
| 2714 | |
| 2715 | bcache_major = register_blkdev(0, "bcache"); |
| 2716 | if (bcache_major < 0) { |
| 2717 | unregister_reboot_notifier(&reboot); |
| 2718 | mutex_destroy(&bch_register_lock); |
| 2719 | return bcache_major; |
| 2720 | } |
| 2721 | |
| 2722 | if (bch_btree_init()) |
| 2723 | goto err; |
| 2724 | |
| 2725 | bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); |
| 2726 | if (!bcache_wq) |
| 2727 | goto err; |
| 2728 | |
| 2729 | /* |
| 2730 | * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: |
| 2731 | * |
| 2732 | * 1. It used `system_wq` before which also does no memory reclaim. |
| 2733 | * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and |
| 2734 | * reduced throughput can be observed. |
| 2735 | * |
| 2736 | * We still want to user our own queue to not congest the `system_wq`. |
| 2737 | */ |
| 2738 | bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); |
| 2739 | if (!bch_flush_wq) |
| 2740 | goto err; |
| 2741 | |
| 2742 | bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); |
| 2743 | if (!bch_journal_wq) |
| 2744 | goto err; |
| 2745 | |
| 2746 | bcache_kobj = kobject_create_and_add("bcache", fs_kobj); |
| 2747 | if (!bcache_kobj) |
| 2748 | goto err; |
| 2749 | |
| 2750 | if (bch_request_init() || |
| 2751 | sysfs_create_files(bcache_kobj, files)) |
| 2752 | goto err; |
| 2753 | |
| 2754 | bch_debug_init(); |
| 2755 | closure_debug_init(); |
| 2756 | |
| 2757 | bcache_is_reboot = false; |
| 2758 | |
| 2759 | return 0; |
| 2760 | err: |
| 2761 | bcache_exit(); |
| 2762 | return -ENOMEM; |
| 2763 | } |
| 2764 | |
| 2765 | /* |
| 2766 | * Module hooks |
| 2767 | */ |
| 2768 | module_exit(bcache_exit); |
| 2769 | module_init(bcache_init); |
| 2770 | |
| 2771 | module_param(bch_cutoff_writeback, uint, 0); |
| 2772 | MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); |
| 2773 | |
| 2774 | module_param(bch_cutoff_writeback_sync, uint, 0); |
| 2775 | MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); |
| 2776 | |
| 2777 | MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); |
| 2778 | MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); |
| 2779 | MODULE_LICENSE("GPL"); |