blob: 4b634633b4a5efd003c4cbbb7acb96a2518cd96e [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-bio-record.h"
10
11#include <linux/compiler.h>
12#include <linux/module.h>
13#include <linux/device-mapper.h>
14#include <linux/dm-io.h>
15#include <linux/vmalloc.h>
16#include <linux/sort.h>
17#include <linux/rbtree.h>
18#include <linux/delay.h>
19#include <linux/random.h>
20#include <linux/reboot.h>
21#include <crypto/hash.h>
22#include <crypto/skcipher.h>
23#include <linux/async_tx.h>
24#include <linux/dm-bufio.h>
25
26#define DM_MSG_PREFIX "integrity"
27
28#define DEFAULT_INTERLEAVE_SECTORS 32768
29#define DEFAULT_JOURNAL_SIZE_FACTOR 7
30#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
31#define DEFAULT_BUFFER_SECTORS 128
32#define DEFAULT_JOURNAL_WATERMARK 50
33#define DEFAULT_SYNC_MSEC 10000
34#define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
35#define MIN_LOG2_INTERLEAVE_SECTORS 3
36#define MAX_LOG2_INTERLEAVE_SECTORS 31
37#define METADATA_WORKQUEUE_MAX_ACTIVE 16
38#define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
39#define RECALC_WRITE_SUPER 16
40#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
41#define BITMAP_FLUSH_INTERVAL (10 * HZ)
42
43/*
44 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
45 * so it should not be enabled in the official kernel
46 */
47//#define DEBUG_PRINT
48//#define INTERNAL_VERIFY
49
50/*
51 * On disk structures
52 */
53
54#define SB_MAGIC "integrt"
55#define SB_VERSION_1 1
56#define SB_VERSION_2 2
57#define SB_VERSION_3 3
58#define SB_SECTORS 8
59#define MAX_SECTORS_PER_BLOCK 8
60
61struct superblock {
62 __u8 magic[8];
63 __u8 version;
64 __u8 log2_interleave_sectors;
65 __u16 integrity_tag_size;
66 __u32 journal_sections;
67 __u64 provided_data_sectors; /* userspace uses this value */
68 __u32 flags;
69 __u8 log2_sectors_per_block;
70 __u8 log2_blocks_per_bitmap_bit;
71 __u8 pad[2];
72 __u64 recalc_sector;
73};
74
75#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
76#define SB_FLAG_RECALCULATING 0x2
77#define SB_FLAG_DIRTY_BITMAP 0x4
78
79#define JOURNAL_ENTRY_ROUNDUP 8
80
81typedef __u64 commit_id_t;
82#define JOURNAL_MAC_PER_SECTOR 8
83
84struct journal_entry {
85 union {
86 struct {
87 __u32 sector_lo;
88 __u32 sector_hi;
89 } s;
90 __u64 sector;
91 } u;
92 commit_id_t last_bytes[0];
93 /* __u8 tag[0]; */
94};
95
96#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
97
98#if BITS_PER_LONG == 64
99#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
100#else
101#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
102#endif
103#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
104#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
105#define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
106#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
107#define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
108
109#define JOURNAL_BLOCK_SECTORS 8
110#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
111#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
112
113struct journal_sector {
114 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
115 __u8 mac[JOURNAL_MAC_PER_SECTOR];
116 commit_id_t commit_id;
117};
118
119#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
120
121#define METADATA_PADDING_SECTORS 8
122
123#define N_COMMIT_IDS 4
124
125static unsigned char prev_commit_seq(unsigned char seq)
126{
127 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
128}
129
130static unsigned char next_commit_seq(unsigned char seq)
131{
132 return (seq + 1) % N_COMMIT_IDS;
133}
134
135/*
136 * In-memory structures
137 */
138
139struct journal_node {
140 struct rb_node node;
141 sector_t sector;
142};
143
144struct alg_spec {
145 char *alg_string;
146 char *key_string;
147 __u8 *key;
148 unsigned key_size;
149};
150
151struct dm_integrity_c {
152 struct dm_dev *dev;
153 struct dm_dev *meta_dev;
154 unsigned tag_size;
155 __s8 log2_tag_size;
156 sector_t start;
157 mempool_t journal_io_mempool;
158 struct dm_io_client *io;
159 struct dm_bufio_client *bufio;
160 struct workqueue_struct *metadata_wq;
161 struct superblock *sb;
162 unsigned journal_pages;
163 unsigned n_bitmap_blocks;
164
165 struct page_list *journal;
166 struct page_list *journal_io;
167 struct page_list *journal_xor;
168 struct page_list *recalc_bitmap;
169 struct page_list *may_write_bitmap;
170 struct bitmap_block_status *bbs;
171 unsigned bitmap_flush_interval;
172 int synchronous_mode;
173 struct bio_list synchronous_bios;
174 struct delayed_work bitmap_flush_work;
175
176 struct crypto_skcipher *journal_crypt;
177 struct scatterlist **journal_scatterlist;
178 struct scatterlist **journal_io_scatterlist;
179 struct skcipher_request **sk_requests;
180
181 struct crypto_shash *journal_mac;
182
183 struct journal_node *journal_tree;
184 struct rb_root journal_tree_root;
185
186 sector_t provided_data_sectors;
187
188 unsigned short journal_entry_size;
189 unsigned char journal_entries_per_sector;
190 unsigned char journal_section_entries;
191 unsigned short journal_section_sectors;
192 unsigned journal_sections;
193 unsigned journal_entries;
194 sector_t data_device_sectors;
195 sector_t meta_device_sectors;
196 unsigned initial_sectors;
197 unsigned metadata_run;
198 __s8 log2_metadata_run;
199 __u8 log2_buffer_sectors;
200 __u8 sectors_per_block;
201 __u8 log2_blocks_per_bitmap_bit;
202
203 unsigned char mode;
204
205 int failed;
206
207 struct crypto_shash *internal_hash;
208
209 struct dm_target *ti;
210
211 /* these variables are locked with endio_wait.lock */
212 struct rb_root in_progress;
213 struct list_head wait_list;
214 wait_queue_head_t endio_wait;
215 struct workqueue_struct *wait_wq;
216 struct workqueue_struct *offload_wq;
217
218 unsigned char commit_seq;
219 commit_id_t commit_ids[N_COMMIT_IDS];
220
221 unsigned committed_section;
222 unsigned n_committed_sections;
223
224 unsigned uncommitted_section;
225 unsigned n_uncommitted_sections;
226
227 unsigned free_section;
228 unsigned char free_section_entry;
229 unsigned free_sectors;
230
231 unsigned free_sectors_threshold;
232
233 struct workqueue_struct *commit_wq;
234 struct work_struct commit_work;
235
236 struct workqueue_struct *writer_wq;
237 struct work_struct writer_work;
238
239 struct workqueue_struct *recalc_wq;
240 struct work_struct recalc_work;
241 u8 *recalc_buffer;
242 u8 *recalc_tags;
243
244 struct bio_list flush_bio_list;
245
246 unsigned long autocommit_jiffies;
247 struct timer_list autocommit_timer;
248 unsigned autocommit_msec;
249
250 wait_queue_head_t copy_to_journal_wait;
251
252 struct completion crypto_backoff;
253
254 bool journal_uptodate;
255 bool just_formatted;
256 bool recalculate_flag;
257 bool legacy_recalculate;
258
259 struct alg_spec internal_hash_alg;
260 struct alg_spec journal_crypt_alg;
261 struct alg_spec journal_mac_alg;
262
263 atomic64_t number_of_mismatches;
264
265 struct notifier_block reboot_notifier;
266};
267
268struct dm_integrity_range {
269 sector_t logical_sector;
270 sector_t n_sectors;
271 bool waiting;
272 union {
273 struct rb_node node;
274 struct {
275 struct task_struct *task;
276 struct list_head wait_entry;
277 };
278 };
279};
280
281struct dm_integrity_io {
282 struct work_struct work;
283
284 struct dm_integrity_c *ic;
285 bool write;
286 bool fua;
287
288 struct dm_integrity_range range;
289
290 sector_t metadata_block;
291 unsigned metadata_offset;
292
293 atomic_t in_flight;
294 blk_status_t bi_status;
295
296 struct completion *completion;
297
298 struct dm_bio_details bio_details;
299};
300
301struct journal_completion {
302 struct dm_integrity_c *ic;
303 atomic_t in_flight;
304 struct completion comp;
305};
306
307struct journal_io {
308 struct dm_integrity_range range;
309 struct journal_completion *comp;
310};
311
312struct bitmap_block_status {
313 struct work_struct work;
314 struct dm_integrity_c *ic;
315 unsigned idx;
316 unsigned long *bitmap;
317 struct bio_list bio_queue;
318 spinlock_t bio_queue_lock;
319
320};
321
322static struct kmem_cache *journal_io_cache;
323
324#define JOURNAL_IO_MEMPOOL 32
325
326#ifdef DEBUG_PRINT
327#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
328static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
329{
330 va_list args;
331 va_start(args, msg);
332 vprintk(msg, args);
333 va_end(args);
334 if (len)
335 pr_cont(":");
336 while (len) {
337 pr_cont(" %02x", *bytes);
338 bytes++;
339 len--;
340 }
341 pr_cont("\n");
342}
343#define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
344#else
345#define DEBUG_print(x, ...) do { } while (0)
346#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
347#endif
348
349static void dm_integrity_prepare(struct request *rq)
350{
351}
352
353static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
354{
355}
356
357/*
358 * DM Integrity profile, protection is performed layer above (dm-crypt)
359 */
360static const struct blk_integrity_profile dm_integrity_profile = {
361 .name = "DM-DIF-EXT-TAG",
362 .generate_fn = NULL,
363 .verify_fn = NULL,
364 .prepare_fn = dm_integrity_prepare,
365 .complete_fn = dm_integrity_complete,
366};
367
368static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
369static void integrity_bio_wait(struct work_struct *w);
370static void dm_integrity_dtr(struct dm_target *ti);
371
372static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
373{
374 if (err == -EILSEQ)
375 atomic64_inc(&ic->number_of_mismatches);
376 if (!cmpxchg(&ic->failed, 0, err))
377 DMERR("Error on %s: %d", msg, err);
378}
379
380static int dm_integrity_failed(struct dm_integrity_c *ic)
381{
382 return READ_ONCE(ic->failed);
383}
384
385static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
386{
387 if ((ic->internal_hash_alg.key || ic->journal_mac_alg.key) &&
388 !ic->legacy_recalculate)
389 return true;
390 return false;
391}
392
393static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
394 unsigned j, unsigned char seq)
395{
396 /*
397 * Xor the number with section and sector, so that if a piece of
398 * journal is written at wrong place, it is detected.
399 */
400 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
401}
402
403static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
404 sector_t *area, sector_t *offset)
405{
406 if (!ic->meta_dev) {
407 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
408 *area = data_sector >> log2_interleave_sectors;
409 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
410 } else {
411 *area = 0;
412 *offset = data_sector;
413 }
414}
415
416#define sector_to_block(ic, n) \
417do { \
418 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
419 (n) >>= (ic)->sb->log2_sectors_per_block; \
420} while (0)
421
422static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
423 sector_t offset, unsigned *metadata_offset)
424{
425 __u64 ms;
426 unsigned mo;
427
428 ms = area << ic->sb->log2_interleave_sectors;
429 if (likely(ic->log2_metadata_run >= 0))
430 ms += area << ic->log2_metadata_run;
431 else
432 ms += area * ic->metadata_run;
433 ms >>= ic->log2_buffer_sectors;
434
435 sector_to_block(ic, offset);
436
437 if (likely(ic->log2_tag_size >= 0)) {
438 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
439 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
440 } else {
441 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
442 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
443 }
444 *metadata_offset = mo;
445 return ms;
446}
447
448static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
449{
450 sector_t result;
451
452 if (ic->meta_dev)
453 return offset;
454
455 result = area << ic->sb->log2_interleave_sectors;
456 if (likely(ic->log2_metadata_run >= 0))
457 result += (area + 1) << ic->log2_metadata_run;
458 else
459 result += (area + 1) * ic->metadata_run;
460
461 result += (sector_t)ic->initial_sectors + offset;
462 result += ic->start;
463
464 return result;
465}
466
467static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
468{
469 if (unlikely(*sec_ptr >= ic->journal_sections))
470 *sec_ptr -= ic->journal_sections;
471}
472
473static void sb_set_version(struct dm_integrity_c *ic)
474{
475 if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
476 ic->sb->version = SB_VERSION_3;
477 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
478 ic->sb->version = SB_VERSION_2;
479 else
480 ic->sb->version = SB_VERSION_1;
481}
482
483static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
484{
485 struct dm_io_request io_req;
486 struct dm_io_region io_loc;
487
488 io_req.bi_op = op;
489 io_req.bi_op_flags = op_flags;
490 io_req.mem.type = DM_IO_KMEM;
491 io_req.mem.ptr.addr = ic->sb;
492 io_req.notify.fn = NULL;
493 io_req.client = ic->io;
494 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
495 io_loc.sector = ic->start;
496 io_loc.count = SB_SECTORS;
497
498 if (op == REQ_OP_WRITE)
499 sb_set_version(ic);
500
501 return dm_io(&io_req, 1, &io_loc, NULL);
502}
503
504#define BITMAP_OP_TEST_ALL_SET 0
505#define BITMAP_OP_TEST_ALL_CLEAR 1
506#define BITMAP_OP_SET 2
507#define BITMAP_OP_CLEAR 3
508
509static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
510 sector_t sector, sector_t n_sectors, int mode)
511{
512 unsigned long bit, end_bit, this_end_bit, page, end_page;
513 unsigned long *data;
514
515 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
516 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
517 (unsigned long long)sector,
518 (unsigned long long)n_sectors,
519 ic->sb->log2_sectors_per_block,
520 ic->log2_blocks_per_bitmap_bit,
521 mode);
522 BUG();
523 }
524
525 if (unlikely(!n_sectors))
526 return true;
527
528 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
529 end_bit = (sector + n_sectors - 1) >>
530 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
531
532 page = bit / (PAGE_SIZE * 8);
533 bit %= PAGE_SIZE * 8;
534
535 end_page = end_bit / (PAGE_SIZE * 8);
536 end_bit %= PAGE_SIZE * 8;
537
538repeat:
539 if (page < end_page) {
540 this_end_bit = PAGE_SIZE * 8 - 1;
541 } else {
542 this_end_bit = end_bit;
543 }
544
545 data = lowmem_page_address(bitmap[page].page);
546
547 if (mode == BITMAP_OP_TEST_ALL_SET) {
548 while (bit <= this_end_bit) {
549 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
550 do {
551 if (data[bit / BITS_PER_LONG] != -1)
552 return false;
553 bit += BITS_PER_LONG;
554 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
555 continue;
556 }
557 if (!test_bit(bit, data))
558 return false;
559 bit++;
560 }
561 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
562 while (bit <= this_end_bit) {
563 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
564 do {
565 if (data[bit / BITS_PER_LONG] != 0)
566 return false;
567 bit += BITS_PER_LONG;
568 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
569 continue;
570 }
571 if (test_bit(bit, data))
572 return false;
573 bit++;
574 }
575 } else if (mode == BITMAP_OP_SET) {
576 while (bit <= this_end_bit) {
577 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
578 do {
579 data[bit / BITS_PER_LONG] = -1;
580 bit += BITS_PER_LONG;
581 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
582 continue;
583 }
584 __set_bit(bit, data);
585 bit++;
586 }
587 } else if (mode == BITMAP_OP_CLEAR) {
588 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
589 clear_page(data);
590 else while (bit <= this_end_bit) {
591 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
592 do {
593 data[bit / BITS_PER_LONG] = 0;
594 bit += BITS_PER_LONG;
595 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
596 continue;
597 }
598 __clear_bit(bit, data);
599 bit++;
600 }
601 } else {
602 BUG();
603 }
604
605 if (unlikely(page < end_page)) {
606 bit = 0;
607 page++;
608 goto repeat;
609 }
610
611 return true;
612}
613
614static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
615{
616 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
617 unsigned i;
618
619 for (i = 0; i < n_bitmap_pages; i++) {
620 unsigned long *dst_data = lowmem_page_address(dst[i].page);
621 unsigned long *src_data = lowmem_page_address(src[i].page);
622 copy_page(dst_data, src_data);
623 }
624}
625
626static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
627{
628 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
629 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
630
631 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
632 return &ic->bbs[bitmap_block];
633}
634
635static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
636 bool e, const char *function)
637{
638#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
639 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
640
641 if (unlikely(section >= ic->journal_sections) ||
642 unlikely(offset >= limit)) {
643 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
644 function, section, offset, ic->journal_sections, limit);
645 BUG();
646 }
647#endif
648}
649
650static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
651 unsigned *pl_index, unsigned *pl_offset)
652{
653 unsigned sector;
654
655 access_journal_check(ic, section, offset, false, "page_list_location");
656
657 sector = section * ic->journal_section_sectors + offset;
658
659 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
660 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
661}
662
663static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
664 unsigned section, unsigned offset, unsigned *n_sectors)
665{
666 unsigned pl_index, pl_offset;
667 char *va;
668
669 page_list_location(ic, section, offset, &pl_index, &pl_offset);
670
671 if (n_sectors)
672 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
673
674 va = lowmem_page_address(pl[pl_index].page);
675
676 return (struct journal_sector *)(va + pl_offset);
677}
678
679static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
680{
681 return access_page_list(ic, ic->journal, section, offset, NULL);
682}
683
684static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
685{
686 unsigned rel_sector, offset;
687 struct journal_sector *js;
688
689 access_journal_check(ic, section, n, true, "access_journal_entry");
690
691 rel_sector = n % JOURNAL_BLOCK_SECTORS;
692 offset = n / JOURNAL_BLOCK_SECTORS;
693
694 js = access_journal(ic, section, rel_sector);
695 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
696}
697
698static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
699{
700 n <<= ic->sb->log2_sectors_per_block;
701
702 n += JOURNAL_BLOCK_SECTORS;
703
704 access_journal_check(ic, section, n, false, "access_journal_data");
705
706 return access_journal(ic, section, n);
707}
708
709static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
710{
711 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
712 int r;
713 unsigned j, size;
714
715 desc->tfm = ic->journal_mac;
716
717 r = crypto_shash_init(desc);
718 if (unlikely(r)) {
719 dm_integrity_io_error(ic, "crypto_shash_init", r);
720 goto err;
721 }
722
723 for (j = 0; j < ic->journal_section_entries; j++) {
724 struct journal_entry *je = access_journal_entry(ic, section, j);
725 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
726 if (unlikely(r)) {
727 dm_integrity_io_error(ic, "crypto_shash_update", r);
728 goto err;
729 }
730 }
731
732 size = crypto_shash_digestsize(ic->journal_mac);
733
734 if (likely(size <= JOURNAL_MAC_SIZE)) {
735 r = crypto_shash_final(desc, result);
736 if (unlikely(r)) {
737 dm_integrity_io_error(ic, "crypto_shash_final", r);
738 goto err;
739 }
740 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
741 } else {
742 __u8 digest[HASH_MAX_DIGESTSIZE];
743
744 if (WARN_ON(size > sizeof(digest))) {
745 dm_integrity_io_error(ic, "digest_size", -EINVAL);
746 goto err;
747 }
748 r = crypto_shash_final(desc, digest);
749 if (unlikely(r)) {
750 dm_integrity_io_error(ic, "crypto_shash_final", r);
751 goto err;
752 }
753 memcpy(result, digest, JOURNAL_MAC_SIZE);
754 }
755
756 return;
757err:
758 memset(result, 0, JOURNAL_MAC_SIZE);
759}
760
761static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
762{
763 __u8 result[JOURNAL_MAC_SIZE];
764 unsigned j;
765
766 if (!ic->journal_mac)
767 return;
768
769 section_mac(ic, section, result);
770
771 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
772 struct journal_sector *js = access_journal(ic, section, j);
773
774 if (likely(wr))
775 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
776 else {
777 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
778 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
779 }
780 }
781}
782
783static void complete_journal_op(void *context)
784{
785 struct journal_completion *comp = context;
786 BUG_ON(!atomic_read(&comp->in_flight));
787 if (likely(atomic_dec_and_test(&comp->in_flight)))
788 complete(&comp->comp);
789}
790
791static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
792 unsigned n_sections, struct journal_completion *comp)
793{
794 struct async_submit_ctl submit;
795 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
796 unsigned pl_index, pl_offset, section_index;
797 struct page_list *source_pl, *target_pl;
798
799 if (likely(encrypt)) {
800 source_pl = ic->journal;
801 target_pl = ic->journal_io;
802 } else {
803 source_pl = ic->journal_io;
804 target_pl = ic->journal;
805 }
806
807 page_list_location(ic, section, 0, &pl_index, &pl_offset);
808
809 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
810
811 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
812
813 section_index = pl_index;
814
815 do {
816 size_t this_step;
817 struct page *src_pages[2];
818 struct page *dst_page;
819
820 while (unlikely(pl_index == section_index)) {
821 unsigned dummy;
822 if (likely(encrypt))
823 rw_section_mac(ic, section, true);
824 section++;
825 n_sections--;
826 if (!n_sections)
827 break;
828 page_list_location(ic, section, 0, &section_index, &dummy);
829 }
830
831 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
832 dst_page = target_pl[pl_index].page;
833 src_pages[0] = source_pl[pl_index].page;
834 src_pages[1] = ic->journal_xor[pl_index].page;
835
836 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
837
838 pl_index++;
839 pl_offset = 0;
840 n_bytes -= this_step;
841 } while (n_bytes);
842
843 BUG_ON(n_sections);
844
845 async_tx_issue_pending_all();
846}
847
848static void complete_journal_encrypt(struct crypto_async_request *req, int err)
849{
850 struct journal_completion *comp = req->data;
851 if (unlikely(err)) {
852 if (likely(err == -EINPROGRESS)) {
853 complete(&comp->ic->crypto_backoff);
854 return;
855 }
856 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
857 }
858 complete_journal_op(comp);
859}
860
861static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
862{
863 int r;
864 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
865 complete_journal_encrypt, comp);
866 if (likely(encrypt))
867 r = crypto_skcipher_encrypt(req);
868 else
869 r = crypto_skcipher_decrypt(req);
870 if (likely(!r))
871 return false;
872 if (likely(r == -EINPROGRESS))
873 return true;
874 if (likely(r == -EBUSY)) {
875 wait_for_completion(&comp->ic->crypto_backoff);
876 reinit_completion(&comp->ic->crypto_backoff);
877 return true;
878 }
879 dm_integrity_io_error(comp->ic, "encrypt", r);
880 return false;
881}
882
883static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
884 unsigned n_sections, struct journal_completion *comp)
885{
886 struct scatterlist **source_sg;
887 struct scatterlist **target_sg;
888
889 atomic_add(2, &comp->in_flight);
890
891 if (likely(encrypt)) {
892 source_sg = ic->journal_scatterlist;
893 target_sg = ic->journal_io_scatterlist;
894 } else {
895 source_sg = ic->journal_io_scatterlist;
896 target_sg = ic->journal_scatterlist;
897 }
898
899 do {
900 struct skcipher_request *req;
901 unsigned ivsize;
902 char *iv;
903
904 if (likely(encrypt))
905 rw_section_mac(ic, section, true);
906
907 req = ic->sk_requests[section];
908 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
909 iv = req->iv;
910
911 memcpy(iv, iv + ivsize, ivsize);
912
913 req->src = source_sg[section];
914 req->dst = target_sg[section];
915
916 if (unlikely(do_crypt(encrypt, req, comp)))
917 atomic_inc(&comp->in_flight);
918
919 section++;
920 n_sections--;
921 } while (n_sections);
922
923 atomic_dec(&comp->in_flight);
924 complete_journal_op(comp);
925}
926
927static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
928 unsigned n_sections, struct journal_completion *comp)
929{
930 if (ic->journal_xor)
931 return xor_journal(ic, encrypt, section, n_sections, comp);
932 else
933 return crypt_journal(ic, encrypt, section, n_sections, comp);
934}
935
936static void complete_journal_io(unsigned long error, void *context)
937{
938 struct journal_completion *comp = context;
939 if (unlikely(error != 0))
940 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
941 complete_journal_op(comp);
942}
943
944static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
945 unsigned sector, unsigned n_sectors, struct journal_completion *comp)
946{
947 struct dm_io_request io_req;
948 struct dm_io_region io_loc;
949 unsigned pl_index, pl_offset;
950 int r;
951
952 if (unlikely(dm_integrity_failed(ic))) {
953 if (comp)
954 complete_journal_io(-1UL, comp);
955 return;
956 }
957
958 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
959 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
960
961 io_req.bi_op = op;
962 io_req.bi_op_flags = op_flags;
963 io_req.mem.type = DM_IO_PAGE_LIST;
964 if (ic->journal_io)
965 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
966 else
967 io_req.mem.ptr.pl = &ic->journal[pl_index];
968 io_req.mem.offset = pl_offset;
969 if (likely(comp != NULL)) {
970 io_req.notify.fn = complete_journal_io;
971 io_req.notify.context = comp;
972 } else {
973 io_req.notify.fn = NULL;
974 }
975 io_req.client = ic->io;
976 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
977 io_loc.sector = ic->start + SB_SECTORS + sector;
978 io_loc.count = n_sectors;
979
980 r = dm_io(&io_req, 1, &io_loc, NULL);
981 if (unlikely(r)) {
982 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
983 if (comp) {
984 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
985 complete_journal_io(-1UL, comp);
986 }
987 }
988}
989
990static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
991 unsigned n_sections, struct journal_completion *comp)
992{
993 unsigned sector, n_sectors;
994
995 sector = section * ic->journal_section_sectors;
996 n_sectors = n_sections * ic->journal_section_sectors;
997
998 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
999}
1000
1001static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1002{
1003 struct journal_completion io_comp;
1004 struct journal_completion crypt_comp_1;
1005 struct journal_completion crypt_comp_2;
1006 unsigned i;
1007
1008 io_comp.ic = ic;
1009 init_completion(&io_comp.comp);
1010
1011 if (commit_start + commit_sections <= ic->journal_sections) {
1012 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1013 if (ic->journal_io) {
1014 crypt_comp_1.ic = ic;
1015 init_completion(&crypt_comp_1.comp);
1016 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1017 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1018 wait_for_completion_io(&crypt_comp_1.comp);
1019 } else {
1020 for (i = 0; i < commit_sections; i++)
1021 rw_section_mac(ic, commit_start + i, true);
1022 }
1023 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1024 commit_sections, &io_comp);
1025 } else {
1026 unsigned to_end;
1027 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1028 to_end = ic->journal_sections - commit_start;
1029 if (ic->journal_io) {
1030 crypt_comp_1.ic = ic;
1031 init_completion(&crypt_comp_1.comp);
1032 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1033 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1034 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1035 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1036 reinit_completion(&crypt_comp_1.comp);
1037 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1038 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1039 wait_for_completion_io(&crypt_comp_1.comp);
1040 } else {
1041 crypt_comp_2.ic = ic;
1042 init_completion(&crypt_comp_2.comp);
1043 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1044 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1045 wait_for_completion_io(&crypt_comp_1.comp);
1046 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1047 wait_for_completion_io(&crypt_comp_2.comp);
1048 }
1049 } else {
1050 for (i = 0; i < to_end; i++)
1051 rw_section_mac(ic, commit_start + i, true);
1052 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1053 for (i = 0; i < commit_sections - to_end; i++)
1054 rw_section_mac(ic, i, true);
1055 }
1056 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1057 }
1058
1059 wait_for_completion_io(&io_comp.comp);
1060}
1061
1062static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1063 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1064{
1065 struct dm_io_request io_req;
1066 struct dm_io_region io_loc;
1067 int r;
1068 unsigned sector, pl_index, pl_offset;
1069
1070 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1071
1072 if (unlikely(dm_integrity_failed(ic))) {
1073 fn(-1UL, data);
1074 return;
1075 }
1076
1077 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1078
1079 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1080 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1081
1082 io_req.bi_op = REQ_OP_WRITE;
1083 io_req.bi_op_flags = 0;
1084 io_req.mem.type = DM_IO_PAGE_LIST;
1085 io_req.mem.ptr.pl = &ic->journal[pl_index];
1086 io_req.mem.offset = pl_offset;
1087 io_req.notify.fn = fn;
1088 io_req.notify.context = data;
1089 io_req.client = ic->io;
1090 io_loc.bdev = ic->dev->bdev;
1091 io_loc.sector = target;
1092 io_loc.count = n_sectors;
1093
1094 r = dm_io(&io_req, 1, &io_loc, NULL);
1095 if (unlikely(r)) {
1096 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1097 fn(-1UL, data);
1098 }
1099}
1100
1101static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1102{
1103 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1104 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1105}
1106
1107static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1108{
1109 struct rb_node **n = &ic->in_progress.rb_node;
1110 struct rb_node *parent;
1111
1112 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1113
1114 if (likely(check_waiting)) {
1115 struct dm_integrity_range *range;
1116 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1117 if (unlikely(ranges_overlap(range, new_range)))
1118 return false;
1119 }
1120 }
1121
1122 parent = NULL;
1123
1124 while (*n) {
1125 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1126
1127 parent = *n;
1128 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1129 n = &range->node.rb_left;
1130 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1131 n = &range->node.rb_right;
1132 } else {
1133 return false;
1134 }
1135 }
1136
1137 rb_link_node(&new_range->node, parent, n);
1138 rb_insert_color(&new_range->node, &ic->in_progress);
1139
1140 return true;
1141}
1142
1143static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1144{
1145 rb_erase(&range->node, &ic->in_progress);
1146 while (unlikely(!list_empty(&ic->wait_list))) {
1147 struct dm_integrity_range *last_range =
1148 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1149 struct task_struct *last_range_task;
1150 last_range_task = last_range->task;
1151 list_del(&last_range->wait_entry);
1152 if (!add_new_range(ic, last_range, false)) {
1153 last_range->task = last_range_task;
1154 list_add(&last_range->wait_entry, &ic->wait_list);
1155 break;
1156 }
1157 last_range->waiting = false;
1158 wake_up_process(last_range_task);
1159 }
1160}
1161
1162static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1163{
1164 unsigned long flags;
1165
1166 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1167 remove_range_unlocked(ic, range);
1168 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1169}
1170
1171static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1172{
1173 new_range->waiting = true;
1174 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1175 new_range->task = current;
1176 do {
1177 __set_current_state(TASK_UNINTERRUPTIBLE);
1178 spin_unlock_irq(&ic->endio_wait.lock);
1179 io_schedule();
1180 spin_lock_irq(&ic->endio_wait.lock);
1181 } while (unlikely(new_range->waiting));
1182}
1183
1184static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1185{
1186 if (unlikely(!add_new_range(ic, new_range, true)))
1187 wait_and_add_new_range(ic, new_range);
1188}
1189
1190static void init_journal_node(struct journal_node *node)
1191{
1192 RB_CLEAR_NODE(&node->node);
1193 node->sector = (sector_t)-1;
1194}
1195
1196static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1197{
1198 struct rb_node **link;
1199 struct rb_node *parent;
1200
1201 node->sector = sector;
1202 BUG_ON(!RB_EMPTY_NODE(&node->node));
1203
1204 link = &ic->journal_tree_root.rb_node;
1205 parent = NULL;
1206
1207 while (*link) {
1208 struct journal_node *j;
1209 parent = *link;
1210 j = container_of(parent, struct journal_node, node);
1211 if (sector < j->sector)
1212 link = &j->node.rb_left;
1213 else
1214 link = &j->node.rb_right;
1215 }
1216
1217 rb_link_node(&node->node, parent, link);
1218 rb_insert_color(&node->node, &ic->journal_tree_root);
1219}
1220
1221static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1222{
1223 BUG_ON(RB_EMPTY_NODE(&node->node));
1224 rb_erase(&node->node, &ic->journal_tree_root);
1225 init_journal_node(node);
1226}
1227
1228#define NOT_FOUND (-1U)
1229
1230static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1231{
1232 struct rb_node *n = ic->journal_tree_root.rb_node;
1233 unsigned found = NOT_FOUND;
1234 *next_sector = (sector_t)-1;
1235 while (n) {
1236 struct journal_node *j = container_of(n, struct journal_node, node);
1237 if (sector == j->sector) {
1238 found = j - ic->journal_tree;
1239 }
1240 if (sector < j->sector) {
1241 *next_sector = j->sector;
1242 n = j->node.rb_left;
1243 } else {
1244 n = j->node.rb_right;
1245 }
1246 }
1247
1248 return found;
1249}
1250
1251static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1252{
1253 struct journal_node *node, *next_node;
1254 struct rb_node *next;
1255
1256 if (unlikely(pos >= ic->journal_entries))
1257 return false;
1258 node = &ic->journal_tree[pos];
1259 if (unlikely(RB_EMPTY_NODE(&node->node)))
1260 return false;
1261 if (unlikely(node->sector != sector))
1262 return false;
1263
1264 next = rb_next(&node->node);
1265 if (unlikely(!next))
1266 return true;
1267
1268 next_node = container_of(next, struct journal_node, node);
1269 return next_node->sector != sector;
1270}
1271
1272static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1273{
1274 struct rb_node *next;
1275 struct journal_node *next_node;
1276 unsigned next_section;
1277
1278 BUG_ON(RB_EMPTY_NODE(&node->node));
1279
1280 next = rb_next(&node->node);
1281 if (unlikely(!next))
1282 return false;
1283
1284 next_node = container_of(next, struct journal_node, node);
1285
1286 if (next_node->sector != node->sector)
1287 return false;
1288
1289 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1290 if (next_section >= ic->committed_section &&
1291 next_section < ic->committed_section + ic->n_committed_sections)
1292 return true;
1293 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1294 return true;
1295
1296 return false;
1297}
1298
1299#define TAG_READ 0
1300#define TAG_WRITE 1
1301#define TAG_CMP 2
1302
1303static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1304 unsigned *metadata_offset, unsigned total_size, int op)
1305{
1306 do {
1307 unsigned char *data, *dp;
1308 struct dm_buffer *b;
1309 unsigned to_copy;
1310 int r;
1311
1312 r = dm_integrity_failed(ic);
1313 if (unlikely(r))
1314 return r;
1315
1316 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1317 if (IS_ERR(data))
1318 return PTR_ERR(data);
1319
1320 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1321 dp = data + *metadata_offset;
1322 if (op == TAG_READ) {
1323 memcpy(tag, dp, to_copy);
1324 } else if (op == TAG_WRITE) {
1325 memcpy(dp, tag, to_copy);
1326 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1327 } else {
1328 /* e.g.: op == TAG_CMP */
1329 if (unlikely(memcmp(dp, tag, to_copy))) {
1330 unsigned i;
1331
1332 for (i = 0; i < to_copy; i++) {
1333 if (dp[i] != tag[i])
1334 break;
1335 total_size--;
1336 }
1337 dm_bufio_release(b);
1338 return total_size;
1339 }
1340 }
1341 dm_bufio_release(b);
1342
1343 tag += to_copy;
1344 *metadata_offset += to_copy;
1345 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1346 (*metadata_block)++;
1347 *metadata_offset = 0;
1348 }
1349 total_size -= to_copy;
1350 } while (unlikely(total_size));
1351
1352 return 0;
1353}
1354
1355struct flush_request {
1356 struct dm_io_request io_req;
1357 struct dm_io_region io_reg;
1358 struct dm_integrity_c *ic;
1359 struct completion comp;
1360};
1361
1362static void flush_notify(unsigned long error, void *fr_)
1363{
1364 struct flush_request *fr = fr_;
1365 if (unlikely(error != 0))
1366 dm_integrity_io_error(fr->ic, "flusing disk cache", -EIO);
1367 complete(&fr->comp);
1368}
1369
1370static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1371{
1372 int r;
1373
1374 struct flush_request fr;
1375
1376 if (!ic->meta_dev)
1377 flush_data = false;
1378 if (flush_data) {
1379 fr.io_req.bi_op = REQ_OP_WRITE,
1380 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1381 fr.io_req.mem.type = DM_IO_KMEM,
1382 fr.io_req.mem.ptr.addr = NULL,
1383 fr.io_req.notify.fn = flush_notify,
1384 fr.io_req.notify.context = &fr;
1385 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1386 fr.io_reg.bdev = ic->dev->bdev,
1387 fr.io_reg.sector = 0,
1388 fr.io_reg.count = 0,
1389 fr.ic = ic;
1390 init_completion(&fr.comp);
1391 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1392 BUG_ON(r);
1393 }
1394
1395 r = dm_bufio_write_dirty_buffers(ic->bufio);
1396 if (unlikely(r))
1397 dm_integrity_io_error(ic, "writing tags", r);
1398
1399 if (flush_data)
1400 wait_for_completion(&fr.comp);
1401}
1402
1403static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1404{
1405 DECLARE_WAITQUEUE(wait, current);
1406 __add_wait_queue(&ic->endio_wait, &wait);
1407 __set_current_state(TASK_UNINTERRUPTIBLE);
1408 spin_unlock_irq(&ic->endio_wait.lock);
1409 io_schedule();
1410 spin_lock_irq(&ic->endio_wait.lock);
1411 __remove_wait_queue(&ic->endio_wait, &wait);
1412}
1413
1414static void autocommit_fn(struct timer_list *t)
1415{
1416 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1417
1418 if (likely(!dm_integrity_failed(ic)))
1419 queue_work(ic->commit_wq, &ic->commit_work);
1420}
1421
1422static void schedule_autocommit(struct dm_integrity_c *ic)
1423{
1424 if (!timer_pending(&ic->autocommit_timer))
1425 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1426}
1427
1428static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1429{
1430 struct bio *bio;
1431 unsigned long flags;
1432
1433 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1434 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1435 bio_list_add(&ic->flush_bio_list, bio);
1436 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1437
1438 queue_work(ic->commit_wq, &ic->commit_work);
1439}
1440
1441static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1442{
1443 int r = dm_integrity_failed(ic);
1444 if (unlikely(r) && !bio->bi_status)
1445 bio->bi_status = errno_to_blk_status(r);
1446 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1447 unsigned long flags;
1448 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1449 bio_list_add(&ic->synchronous_bios, bio);
1450 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1451 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1452 return;
1453 }
1454 bio_endio(bio);
1455}
1456
1457static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1458{
1459 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1460
1461 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1462 submit_flush_bio(ic, dio);
1463 else
1464 do_endio(ic, bio);
1465}
1466
1467static void dec_in_flight(struct dm_integrity_io *dio)
1468{
1469 if (atomic_dec_and_test(&dio->in_flight)) {
1470 struct dm_integrity_c *ic = dio->ic;
1471 struct bio *bio;
1472
1473 remove_range(ic, &dio->range);
1474
1475 if (unlikely(dio->write))
1476 schedule_autocommit(ic);
1477
1478 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1479
1480 if (unlikely(dio->bi_status) && !bio->bi_status)
1481 bio->bi_status = dio->bi_status;
1482 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1483 dio->range.logical_sector += dio->range.n_sectors;
1484 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1485 INIT_WORK(&dio->work, integrity_bio_wait);
1486 queue_work(ic->offload_wq, &dio->work);
1487 return;
1488 }
1489 do_endio_flush(ic, dio);
1490 }
1491}
1492
1493static void integrity_end_io(struct bio *bio)
1494{
1495 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1496
1497 dm_bio_restore(&dio->bio_details, bio);
1498 if (bio->bi_integrity)
1499 bio->bi_opf |= REQ_INTEGRITY;
1500
1501 if (dio->completion)
1502 complete(dio->completion);
1503
1504 dec_in_flight(dio);
1505}
1506
1507static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1508 const char *data, char *result)
1509{
1510 __u64 sector_le = cpu_to_le64(sector);
1511 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1512 int r;
1513 unsigned digest_size;
1514
1515 req->tfm = ic->internal_hash;
1516
1517 r = crypto_shash_init(req);
1518 if (unlikely(r < 0)) {
1519 dm_integrity_io_error(ic, "crypto_shash_init", r);
1520 goto failed;
1521 }
1522
1523 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1524 if (unlikely(r < 0)) {
1525 dm_integrity_io_error(ic, "crypto_shash_update", r);
1526 goto failed;
1527 }
1528
1529 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1530 if (unlikely(r < 0)) {
1531 dm_integrity_io_error(ic, "crypto_shash_update", r);
1532 goto failed;
1533 }
1534
1535 r = crypto_shash_final(req, result);
1536 if (unlikely(r < 0)) {
1537 dm_integrity_io_error(ic, "crypto_shash_final", r);
1538 goto failed;
1539 }
1540
1541 digest_size = crypto_shash_digestsize(ic->internal_hash);
1542 if (unlikely(digest_size < ic->tag_size))
1543 memset(result + digest_size, 0, ic->tag_size - digest_size);
1544
1545 return;
1546
1547failed:
1548 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1549 get_random_bytes(result, ic->tag_size);
1550}
1551
1552static void integrity_metadata(struct work_struct *w)
1553{
1554 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1555 struct dm_integrity_c *ic = dio->ic;
1556
1557 int r;
1558
1559 if (ic->internal_hash) {
1560 struct bvec_iter iter;
1561 struct bio_vec bv;
1562 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1563 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1564 char *checksums;
1565 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1566 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1567 unsigned sectors_to_process = dio->range.n_sectors;
1568 sector_t sector = dio->range.logical_sector;
1569
1570 if (unlikely(ic->mode == 'R'))
1571 goto skip_io;
1572
1573 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1574 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1575 if (!checksums) {
1576 checksums = checksums_onstack;
1577 if (WARN_ON(extra_space &&
1578 digest_size > sizeof(checksums_onstack))) {
1579 r = -EINVAL;
1580 goto error;
1581 }
1582 }
1583
1584 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1585 struct bio_vec bv_copy = bv;
1586 unsigned pos;
1587 char *mem, *checksums_ptr;
1588
1589again:
1590 mem = (char *)kmap_atomic(bv_copy.bv_page) + bv_copy.bv_offset;
1591 pos = 0;
1592 checksums_ptr = checksums;
1593 do {
1594 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1595 checksums_ptr += ic->tag_size;
1596 sectors_to_process -= ic->sectors_per_block;
1597 pos += ic->sectors_per_block << SECTOR_SHIFT;
1598 sector += ic->sectors_per_block;
1599 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1600 kunmap_atomic(mem);
1601
1602 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1603 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1604 if (unlikely(r)) {
1605 if (r > 0) {
1606 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1607 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1608 r = -EILSEQ;
1609 atomic64_inc(&ic->number_of_mismatches);
1610 }
1611 if (likely(checksums != checksums_onstack))
1612 kfree(checksums);
1613 goto error;
1614 }
1615
1616 if (!sectors_to_process)
1617 break;
1618
1619 if (unlikely(pos < bv_copy.bv_len)) {
1620 bv_copy.bv_offset += pos;
1621 bv_copy.bv_len -= pos;
1622 goto again;
1623 }
1624 }
1625
1626 if (likely(checksums != checksums_onstack))
1627 kfree(checksums);
1628 } else {
1629 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1630
1631 if (bip) {
1632 struct bio_vec biv;
1633 struct bvec_iter iter;
1634 unsigned data_to_process = dio->range.n_sectors;
1635 sector_to_block(ic, data_to_process);
1636 data_to_process *= ic->tag_size;
1637
1638 bip_for_each_vec(biv, bip, iter) {
1639 unsigned char *tag;
1640 unsigned this_len;
1641
1642 BUG_ON(PageHighMem(biv.bv_page));
1643 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1644 this_len = min(biv.bv_len, data_to_process);
1645 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1646 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1647 if (unlikely(r))
1648 goto error;
1649 data_to_process -= this_len;
1650 if (!data_to_process)
1651 break;
1652 }
1653 }
1654 }
1655skip_io:
1656 dec_in_flight(dio);
1657 return;
1658error:
1659 dio->bi_status = errno_to_blk_status(r);
1660 dec_in_flight(dio);
1661}
1662
1663static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1664{
1665 struct dm_integrity_c *ic = ti->private;
1666 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1667 struct bio_integrity_payload *bip;
1668
1669 sector_t area, offset;
1670
1671 dio->ic = ic;
1672 dio->bi_status = 0;
1673
1674 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1675 submit_flush_bio(ic, dio);
1676 return DM_MAPIO_SUBMITTED;
1677 }
1678
1679 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1680 dio->write = bio_op(bio) == REQ_OP_WRITE;
1681 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1682 if (unlikely(dio->fua)) {
1683 /*
1684 * Don't pass down the FUA flag because we have to flush
1685 * disk cache anyway.
1686 */
1687 bio->bi_opf &= ~REQ_FUA;
1688 }
1689 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1690 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1691 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1692 (unsigned long long)ic->provided_data_sectors);
1693 return DM_MAPIO_KILL;
1694 }
1695 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1696 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1697 ic->sectors_per_block,
1698 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1699 return DM_MAPIO_KILL;
1700 }
1701
1702 if (ic->sectors_per_block > 1) {
1703 struct bvec_iter iter;
1704 struct bio_vec bv;
1705 bio_for_each_segment(bv, bio, iter) {
1706 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1707 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1708 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1709 return DM_MAPIO_KILL;
1710 }
1711 }
1712 }
1713
1714 bip = bio_integrity(bio);
1715 if (!ic->internal_hash) {
1716 if (bip) {
1717 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1718 if (ic->log2_tag_size >= 0)
1719 wanted_tag_size <<= ic->log2_tag_size;
1720 else
1721 wanted_tag_size *= ic->tag_size;
1722 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1723 DMERR("Invalid integrity data size %u, expected %u",
1724 bip->bip_iter.bi_size, wanted_tag_size);
1725 return DM_MAPIO_KILL;
1726 }
1727 }
1728 } else {
1729 if (unlikely(bip != NULL)) {
1730 DMERR("Unexpected integrity data when using internal hash");
1731 return DM_MAPIO_KILL;
1732 }
1733 }
1734
1735 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1736 return DM_MAPIO_KILL;
1737
1738 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1739 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1740 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1741
1742 dm_integrity_map_continue(dio, true);
1743 return DM_MAPIO_SUBMITTED;
1744}
1745
1746static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1747 unsigned journal_section, unsigned journal_entry)
1748{
1749 struct dm_integrity_c *ic = dio->ic;
1750 sector_t logical_sector;
1751 unsigned n_sectors;
1752
1753 logical_sector = dio->range.logical_sector;
1754 n_sectors = dio->range.n_sectors;
1755 do {
1756 struct bio_vec bv = bio_iovec(bio);
1757 char *mem;
1758
1759 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1760 bv.bv_len = n_sectors << SECTOR_SHIFT;
1761 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1762 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1763retry_kmap:
1764 mem = kmap_atomic(bv.bv_page);
1765 if (likely(dio->write))
1766 flush_dcache_page(bv.bv_page);
1767
1768 do {
1769 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1770
1771 if (unlikely(!dio->write)) {
1772 struct journal_sector *js;
1773 char *mem_ptr;
1774 unsigned s;
1775
1776 if (unlikely(journal_entry_is_inprogress(je))) {
1777 flush_dcache_page(bv.bv_page);
1778 kunmap_atomic(mem);
1779
1780 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1781 goto retry_kmap;
1782 }
1783 smp_rmb();
1784 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1785 js = access_journal_data(ic, journal_section, journal_entry);
1786 mem_ptr = mem + bv.bv_offset;
1787 s = 0;
1788 do {
1789 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1790 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1791 js++;
1792 mem_ptr += 1 << SECTOR_SHIFT;
1793 } while (++s < ic->sectors_per_block);
1794#ifdef INTERNAL_VERIFY
1795 if (ic->internal_hash) {
1796 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1797
1798 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1799 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1800 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1801 (unsigned long long)logical_sector);
1802 }
1803 }
1804#endif
1805 }
1806
1807 if (!ic->internal_hash) {
1808 struct bio_integrity_payload *bip = bio_integrity(bio);
1809 unsigned tag_todo = ic->tag_size;
1810 char *tag_ptr = journal_entry_tag(ic, je);
1811
1812 if (bip) do {
1813 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1814 unsigned tag_now = min(biv.bv_len, tag_todo);
1815 char *tag_addr;
1816 BUG_ON(PageHighMem(biv.bv_page));
1817 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1818 if (likely(dio->write))
1819 memcpy(tag_ptr, tag_addr, tag_now);
1820 else
1821 memcpy(tag_addr, tag_ptr, tag_now);
1822 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1823 tag_ptr += tag_now;
1824 tag_todo -= tag_now;
1825 } while (unlikely(tag_todo)); else {
1826 if (likely(dio->write))
1827 memset(tag_ptr, 0, tag_todo);
1828 }
1829 }
1830
1831 if (likely(dio->write)) {
1832 struct journal_sector *js;
1833 unsigned s;
1834
1835 js = access_journal_data(ic, journal_section, journal_entry);
1836 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1837
1838 s = 0;
1839 do {
1840 je->last_bytes[s] = js[s].commit_id;
1841 } while (++s < ic->sectors_per_block);
1842
1843 if (ic->internal_hash) {
1844 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1845 if (unlikely(digest_size > ic->tag_size)) {
1846 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1847 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1848 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1849 } else
1850 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1851 }
1852
1853 journal_entry_set_sector(je, logical_sector);
1854 }
1855 logical_sector += ic->sectors_per_block;
1856
1857 journal_entry++;
1858 if (unlikely(journal_entry == ic->journal_section_entries)) {
1859 journal_entry = 0;
1860 journal_section++;
1861 wraparound_section(ic, &journal_section);
1862 }
1863
1864 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1865 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1866
1867 if (unlikely(!dio->write))
1868 flush_dcache_page(bv.bv_page);
1869 kunmap_atomic(mem);
1870 } while (n_sectors);
1871
1872 if (likely(dio->write)) {
1873 smp_mb();
1874 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1875 wake_up(&ic->copy_to_journal_wait);
1876 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1877 queue_work(ic->commit_wq, &ic->commit_work);
1878 } else {
1879 schedule_autocommit(ic);
1880 }
1881 } else {
1882 remove_range(ic, &dio->range);
1883 }
1884
1885 if (unlikely(bio->bi_iter.bi_size)) {
1886 sector_t area, offset;
1887
1888 dio->range.logical_sector = logical_sector;
1889 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1890 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1891 return true;
1892 }
1893
1894 return false;
1895}
1896
1897static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1898{
1899 struct dm_integrity_c *ic = dio->ic;
1900 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1901 unsigned journal_section, journal_entry;
1902 unsigned journal_read_pos;
1903 struct completion read_comp;
1904 bool need_sync_io = ic->internal_hash && !dio->write;
1905
1906 if (need_sync_io && from_map) {
1907 INIT_WORK(&dio->work, integrity_bio_wait);
1908 queue_work(ic->offload_wq, &dio->work);
1909 return;
1910 }
1911
1912lock_retry:
1913 spin_lock_irq(&ic->endio_wait.lock);
1914retry:
1915 if (unlikely(dm_integrity_failed(ic))) {
1916 spin_unlock_irq(&ic->endio_wait.lock);
1917 do_endio(ic, bio);
1918 return;
1919 }
1920 dio->range.n_sectors = bio_sectors(bio);
1921 journal_read_pos = NOT_FOUND;
1922 if (likely(ic->mode == 'J')) {
1923 if (dio->write) {
1924 unsigned next_entry, i, pos;
1925 unsigned ws, we, range_sectors;
1926
1927 dio->range.n_sectors = min(dio->range.n_sectors,
1928 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1929 if (unlikely(!dio->range.n_sectors)) {
1930 if (from_map)
1931 goto offload_to_thread;
1932 sleep_on_endio_wait(ic);
1933 goto retry;
1934 }
1935 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1936 ic->free_sectors -= range_sectors;
1937 journal_section = ic->free_section;
1938 journal_entry = ic->free_section_entry;
1939
1940 next_entry = ic->free_section_entry + range_sectors;
1941 ic->free_section_entry = next_entry % ic->journal_section_entries;
1942 ic->free_section += next_entry / ic->journal_section_entries;
1943 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1944 wraparound_section(ic, &ic->free_section);
1945
1946 pos = journal_section * ic->journal_section_entries + journal_entry;
1947 ws = journal_section;
1948 we = journal_entry;
1949 i = 0;
1950 do {
1951 struct journal_entry *je;
1952
1953 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1954 pos++;
1955 if (unlikely(pos >= ic->journal_entries))
1956 pos = 0;
1957
1958 je = access_journal_entry(ic, ws, we);
1959 BUG_ON(!journal_entry_is_unused(je));
1960 journal_entry_set_inprogress(je);
1961 we++;
1962 if (unlikely(we == ic->journal_section_entries)) {
1963 we = 0;
1964 ws++;
1965 wraparound_section(ic, &ws);
1966 }
1967 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1968
1969 spin_unlock_irq(&ic->endio_wait.lock);
1970 goto journal_read_write;
1971 } else {
1972 sector_t next_sector;
1973 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1974 if (likely(journal_read_pos == NOT_FOUND)) {
1975 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1976 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1977 } else {
1978 unsigned i;
1979 unsigned jp = journal_read_pos + 1;
1980 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1981 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1982 break;
1983 }
1984 dio->range.n_sectors = i;
1985 }
1986 }
1987 }
1988 if (unlikely(!add_new_range(ic, &dio->range, true))) {
1989 /*
1990 * We must not sleep in the request routine because it could
1991 * stall bios on current->bio_list.
1992 * So, we offload the bio to a workqueue if we have to sleep.
1993 */
1994 if (from_map) {
1995offload_to_thread:
1996 spin_unlock_irq(&ic->endio_wait.lock);
1997 INIT_WORK(&dio->work, integrity_bio_wait);
1998 queue_work(ic->wait_wq, &dio->work);
1999 return;
2000 }
2001 if (journal_read_pos != NOT_FOUND)
2002 dio->range.n_sectors = ic->sectors_per_block;
2003 wait_and_add_new_range(ic, &dio->range);
2004 /*
2005 * wait_and_add_new_range drops the spinlock, so the journal
2006 * may have been changed arbitrarily. We need to recheck.
2007 * To simplify the code, we restrict I/O size to just one block.
2008 */
2009 if (journal_read_pos != NOT_FOUND) {
2010 sector_t next_sector;
2011 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2012 if (unlikely(new_pos != journal_read_pos)) {
2013 remove_range_unlocked(ic, &dio->range);
2014 goto retry;
2015 }
2016 }
2017 }
2018 spin_unlock_irq(&ic->endio_wait.lock);
2019
2020 if (unlikely(journal_read_pos != NOT_FOUND)) {
2021 journal_section = journal_read_pos / ic->journal_section_entries;
2022 journal_entry = journal_read_pos % ic->journal_section_entries;
2023 goto journal_read_write;
2024 }
2025
2026 if (ic->mode == 'B' && dio->write) {
2027 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2028 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2029 struct bitmap_block_status *bbs;
2030
2031 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2032 spin_lock(&bbs->bio_queue_lock);
2033 bio_list_add(&bbs->bio_queue, bio);
2034 spin_unlock(&bbs->bio_queue_lock);
2035 queue_work(ic->writer_wq, &bbs->work);
2036 return;
2037 }
2038 }
2039
2040 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2041
2042 if (need_sync_io) {
2043 init_completion(&read_comp);
2044 dio->completion = &read_comp;
2045 } else
2046 dio->completion = NULL;
2047
2048 dm_bio_record(&dio->bio_details, bio);
2049 bio_set_dev(bio, ic->dev->bdev);
2050 bio->bi_integrity = NULL;
2051 bio->bi_opf &= ~REQ_INTEGRITY;
2052 bio->bi_end_io = integrity_end_io;
2053 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2054
2055 generic_make_request(bio);
2056
2057 if (need_sync_io) {
2058 wait_for_completion_io(&read_comp);
2059 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2060 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2061 goto skip_check;
2062 if (ic->mode == 'B') {
2063 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2064 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2065 goto skip_check;
2066 }
2067
2068 if (likely(!bio->bi_status))
2069 integrity_metadata(&dio->work);
2070 else
2071skip_check:
2072 dec_in_flight(dio);
2073
2074 } else {
2075 INIT_WORK(&dio->work, integrity_metadata);
2076 queue_work(ic->metadata_wq, &dio->work);
2077 }
2078
2079 return;
2080
2081journal_read_write:
2082 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2083 goto lock_retry;
2084
2085 do_endio_flush(ic, dio);
2086}
2087
2088
2089static void integrity_bio_wait(struct work_struct *w)
2090{
2091 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2092
2093 dm_integrity_map_continue(dio, false);
2094}
2095
2096static void pad_uncommitted(struct dm_integrity_c *ic)
2097{
2098 if (ic->free_section_entry) {
2099 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2100 ic->free_section_entry = 0;
2101 ic->free_section++;
2102 wraparound_section(ic, &ic->free_section);
2103 ic->n_uncommitted_sections++;
2104 }
2105 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2106 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2107 ic->journal_section_entries + ic->free_sectors)) {
2108 DMCRIT("journal_sections %u, journal_section_entries %u, "
2109 "n_uncommitted_sections %u, n_committed_sections %u, "
2110 "journal_section_entries %u, free_sectors %u",
2111 ic->journal_sections, ic->journal_section_entries,
2112 ic->n_uncommitted_sections, ic->n_committed_sections,
2113 ic->journal_section_entries, ic->free_sectors);
2114 }
2115}
2116
2117static void integrity_commit(struct work_struct *w)
2118{
2119 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2120 unsigned commit_start, commit_sections;
2121 unsigned i, j, n;
2122 struct bio *flushes;
2123
2124 del_timer(&ic->autocommit_timer);
2125
2126 spin_lock_irq(&ic->endio_wait.lock);
2127 flushes = bio_list_get(&ic->flush_bio_list);
2128 if (unlikely(ic->mode != 'J')) {
2129 spin_unlock_irq(&ic->endio_wait.lock);
2130 dm_integrity_flush_buffers(ic, true);
2131 goto release_flush_bios;
2132 }
2133
2134 pad_uncommitted(ic);
2135 commit_start = ic->uncommitted_section;
2136 commit_sections = ic->n_uncommitted_sections;
2137 spin_unlock_irq(&ic->endio_wait.lock);
2138
2139 if (!commit_sections)
2140 goto release_flush_bios;
2141
2142 i = commit_start;
2143 for (n = 0; n < commit_sections; n++) {
2144 for (j = 0; j < ic->journal_section_entries; j++) {
2145 struct journal_entry *je;
2146 je = access_journal_entry(ic, i, j);
2147 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2148 }
2149 for (j = 0; j < ic->journal_section_sectors; j++) {
2150 struct journal_sector *js;
2151 js = access_journal(ic, i, j);
2152 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2153 }
2154 i++;
2155 if (unlikely(i >= ic->journal_sections))
2156 ic->commit_seq = next_commit_seq(ic->commit_seq);
2157 wraparound_section(ic, &i);
2158 }
2159 smp_rmb();
2160
2161 write_journal(ic, commit_start, commit_sections);
2162
2163 spin_lock_irq(&ic->endio_wait.lock);
2164 ic->uncommitted_section += commit_sections;
2165 wraparound_section(ic, &ic->uncommitted_section);
2166 ic->n_uncommitted_sections -= commit_sections;
2167 ic->n_committed_sections += commit_sections;
2168 spin_unlock_irq(&ic->endio_wait.lock);
2169
2170 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2171 queue_work(ic->writer_wq, &ic->writer_work);
2172
2173release_flush_bios:
2174 while (flushes) {
2175 struct bio *next = flushes->bi_next;
2176 flushes->bi_next = NULL;
2177 do_endio(ic, flushes);
2178 flushes = next;
2179 }
2180}
2181
2182static void complete_copy_from_journal(unsigned long error, void *context)
2183{
2184 struct journal_io *io = context;
2185 struct journal_completion *comp = io->comp;
2186 struct dm_integrity_c *ic = comp->ic;
2187 remove_range(ic, &io->range);
2188 mempool_free(io, &ic->journal_io_mempool);
2189 if (unlikely(error != 0))
2190 dm_integrity_io_error(ic, "copying from journal", -EIO);
2191 complete_journal_op(comp);
2192}
2193
2194static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2195 struct journal_entry *je)
2196{
2197 unsigned s = 0;
2198 do {
2199 js->commit_id = je->last_bytes[s];
2200 js++;
2201 } while (++s < ic->sectors_per_block);
2202}
2203
2204static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2205 unsigned write_sections, bool from_replay)
2206{
2207 unsigned i, j, n;
2208 struct journal_completion comp;
2209 struct blk_plug plug;
2210
2211 blk_start_plug(&plug);
2212
2213 comp.ic = ic;
2214 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2215 init_completion(&comp.comp);
2216
2217 i = write_start;
2218 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2219#ifndef INTERNAL_VERIFY
2220 if (unlikely(from_replay))
2221#endif
2222 rw_section_mac(ic, i, false);
2223 for (j = 0; j < ic->journal_section_entries; j++) {
2224 struct journal_entry *je = access_journal_entry(ic, i, j);
2225 sector_t sec, area, offset;
2226 unsigned k, l, next_loop;
2227 sector_t metadata_block;
2228 unsigned metadata_offset;
2229 struct journal_io *io;
2230
2231 if (journal_entry_is_unused(je))
2232 continue;
2233 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2234 sec = journal_entry_get_sector(je);
2235 if (unlikely(from_replay)) {
2236 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2237 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2238 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2239 }
2240 }
2241 get_area_and_offset(ic, sec, &area, &offset);
2242 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2243 for (k = j + 1; k < ic->journal_section_entries; k++) {
2244 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2245 sector_t sec2, area2, offset2;
2246 if (journal_entry_is_unused(je2))
2247 break;
2248 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2249 sec2 = journal_entry_get_sector(je2);
2250 get_area_and_offset(ic, sec2, &area2, &offset2);
2251 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2252 break;
2253 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2254 }
2255 next_loop = k - 1;
2256
2257 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2258 io->comp = &comp;
2259 io->range.logical_sector = sec;
2260 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2261
2262 spin_lock_irq(&ic->endio_wait.lock);
2263 add_new_range_and_wait(ic, &io->range);
2264
2265 if (likely(!from_replay)) {
2266 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2267
2268 /* don't write if there is newer committed sector */
2269 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2270 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2271
2272 journal_entry_set_unused(je2);
2273 remove_journal_node(ic, &section_node[j]);
2274 j++;
2275 sec += ic->sectors_per_block;
2276 offset += ic->sectors_per_block;
2277 }
2278 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2279 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2280
2281 journal_entry_set_unused(je2);
2282 remove_journal_node(ic, &section_node[k - 1]);
2283 k--;
2284 }
2285 if (j == k) {
2286 remove_range_unlocked(ic, &io->range);
2287 spin_unlock_irq(&ic->endio_wait.lock);
2288 mempool_free(io, &ic->journal_io_mempool);
2289 goto skip_io;
2290 }
2291 for (l = j; l < k; l++) {
2292 remove_journal_node(ic, &section_node[l]);
2293 }
2294 }
2295 spin_unlock_irq(&ic->endio_wait.lock);
2296
2297 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2298 for (l = j; l < k; l++) {
2299 int r;
2300 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2301
2302 if (
2303#ifndef INTERNAL_VERIFY
2304 unlikely(from_replay) &&
2305#endif
2306 ic->internal_hash) {
2307 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2308
2309 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2310 (char *)access_journal_data(ic, i, l), test_tag);
2311 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2312 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2313 }
2314
2315 journal_entry_set_unused(je2);
2316 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2317 ic->tag_size, TAG_WRITE);
2318 if (unlikely(r)) {
2319 dm_integrity_io_error(ic, "reading tags", r);
2320 }
2321 }
2322
2323 atomic_inc(&comp.in_flight);
2324 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2325 (k - j) << ic->sb->log2_sectors_per_block,
2326 get_data_sector(ic, area, offset),
2327 complete_copy_from_journal, io);
2328skip_io:
2329 j = next_loop;
2330 }
2331 }
2332
2333 dm_bufio_write_dirty_buffers_async(ic->bufio);
2334
2335 blk_finish_plug(&plug);
2336
2337 complete_journal_op(&comp);
2338 wait_for_completion_io(&comp.comp);
2339
2340 dm_integrity_flush_buffers(ic, true);
2341}
2342
2343static void integrity_writer(struct work_struct *w)
2344{
2345 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2346 unsigned write_start, write_sections;
2347
2348 unsigned prev_free_sectors;
2349
2350 spin_lock_irq(&ic->endio_wait.lock);
2351 write_start = ic->committed_section;
2352 write_sections = ic->n_committed_sections;
2353 spin_unlock_irq(&ic->endio_wait.lock);
2354
2355 if (!write_sections)
2356 return;
2357
2358 do_journal_write(ic, write_start, write_sections, false);
2359
2360 spin_lock_irq(&ic->endio_wait.lock);
2361
2362 ic->committed_section += write_sections;
2363 wraparound_section(ic, &ic->committed_section);
2364 ic->n_committed_sections -= write_sections;
2365
2366 prev_free_sectors = ic->free_sectors;
2367 ic->free_sectors += write_sections * ic->journal_section_entries;
2368 if (unlikely(!prev_free_sectors))
2369 wake_up_locked(&ic->endio_wait);
2370
2371 spin_unlock_irq(&ic->endio_wait.lock);
2372}
2373
2374static void recalc_write_super(struct dm_integrity_c *ic)
2375{
2376 int r;
2377
2378 dm_integrity_flush_buffers(ic, false);
2379 if (dm_integrity_failed(ic))
2380 return;
2381
2382 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2383 if (unlikely(r))
2384 dm_integrity_io_error(ic, "writing superblock", r);
2385}
2386
2387static void integrity_recalc(struct work_struct *w)
2388{
2389 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2390 struct dm_integrity_range range;
2391 struct dm_io_request io_req;
2392 struct dm_io_region io_loc;
2393 sector_t area, offset;
2394 sector_t metadata_block;
2395 unsigned metadata_offset;
2396 sector_t logical_sector, n_sectors;
2397 __u8 *t;
2398 unsigned i;
2399 int r;
2400 unsigned super_counter = 0;
2401
2402 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2403
2404 spin_lock_irq(&ic->endio_wait.lock);
2405
2406next_chunk:
2407
2408 if (unlikely(dm_post_suspending(ic->ti)))
2409 goto unlock_ret;
2410
2411 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2412 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2413 if (ic->mode == 'B') {
2414 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2415 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2416 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2417 }
2418 goto unlock_ret;
2419 }
2420
2421 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2422 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2423 if (!ic->meta_dev)
2424 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2425
2426 add_new_range_and_wait(ic, &range);
2427 spin_unlock_irq(&ic->endio_wait.lock);
2428 logical_sector = range.logical_sector;
2429 n_sectors = range.n_sectors;
2430
2431 if (ic->mode == 'B') {
2432 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2433 goto advance_and_next;
2434 }
2435 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2436 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2437 logical_sector += ic->sectors_per_block;
2438 n_sectors -= ic->sectors_per_block;
2439 cond_resched();
2440 }
2441 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2442 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2443 n_sectors -= ic->sectors_per_block;
2444 cond_resched();
2445 }
2446 get_area_and_offset(ic, logical_sector, &area, &offset);
2447 }
2448
2449 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2450
2451 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2452 recalc_write_super(ic);
2453 if (ic->mode == 'B') {
2454 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2455 }
2456 super_counter = 0;
2457 }
2458
2459 if (unlikely(dm_integrity_failed(ic)))
2460 goto err;
2461
2462 io_req.bi_op = REQ_OP_READ;
2463 io_req.bi_op_flags = 0;
2464 io_req.mem.type = DM_IO_VMA;
2465 io_req.mem.ptr.addr = ic->recalc_buffer;
2466 io_req.notify.fn = NULL;
2467 io_req.client = ic->io;
2468 io_loc.bdev = ic->dev->bdev;
2469 io_loc.sector = get_data_sector(ic, area, offset);
2470 io_loc.count = n_sectors;
2471
2472 r = dm_io(&io_req, 1, &io_loc, NULL);
2473 if (unlikely(r)) {
2474 dm_integrity_io_error(ic, "reading data", r);
2475 goto err;
2476 }
2477
2478 t = ic->recalc_tags;
2479 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2480 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2481 t += ic->tag_size;
2482 }
2483
2484 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2485
2486 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2487 if (unlikely(r)) {
2488 dm_integrity_io_error(ic, "writing tags", r);
2489 goto err;
2490 }
2491
2492 if (ic->mode == 'B') {
2493 sector_t start, end;
2494 start = (range.logical_sector >>
2495 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2496 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2497 end = ((range.logical_sector + range.n_sectors) >>
2498 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2499 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2500 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2501 }
2502
2503advance_and_next:
2504 cond_resched();
2505
2506 spin_lock_irq(&ic->endio_wait.lock);
2507 remove_range_unlocked(ic, &range);
2508 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2509 goto next_chunk;
2510
2511err:
2512 remove_range(ic, &range);
2513 return;
2514
2515unlock_ret:
2516 spin_unlock_irq(&ic->endio_wait.lock);
2517
2518 recalc_write_super(ic);
2519}
2520
2521static void bitmap_block_work(struct work_struct *w)
2522{
2523 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2524 struct dm_integrity_c *ic = bbs->ic;
2525 struct bio *bio;
2526 struct bio_list bio_queue;
2527 struct bio_list waiting;
2528
2529 bio_list_init(&waiting);
2530
2531 spin_lock(&bbs->bio_queue_lock);
2532 bio_queue = bbs->bio_queue;
2533 bio_list_init(&bbs->bio_queue);
2534 spin_unlock(&bbs->bio_queue_lock);
2535
2536 while ((bio = bio_list_pop(&bio_queue))) {
2537 struct dm_integrity_io *dio;
2538
2539 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2540
2541 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2542 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2543 remove_range(ic, &dio->range);
2544 INIT_WORK(&dio->work, integrity_bio_wait);
2545 queue_work(ic->offload_wq, &dio->work);
2546 } else {
2547 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2548 dio->range.n_sectors, BITMAP_OP_SET);
2549 bio_list_add(&waiting, bio);
2550 }
2551 }
2552
2553 if (bio_list_empty(&waiting))
2554 return;
2555
2556 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2557 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2558 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2559
2560 while ((bio = bio_list_pop(&waiting))) {
2561 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2562
2563 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2564 dio->range.n_sectors, BITMAP_OP_SET);
2565
2566 remove_range(ic, &dio->range);
2567 INIT_WORK(&dio->work, integrity_bio_wait);
2568 queue_work(ic->offload_wq, &dio->work);
2569 }
2570
2571 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2572}
2573
2574static void bitmap_flush_work(struct work_struct *work)
2575{
2576 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2577 struct dm_integrity_range range;
2578 unsigned long limit;
2579 struct bio *bio;
2580
2581 dm_integrity_flush_buffers(ic, false);
2582
2583 range.logical_sector = 0;
2584 range.n_sectors = ic->provided_data_sectors;
2585
2586 spin_lock_irq(&ic->endio_wait.lock);
2587 add_new_range_and_wait(ic, &range);
2588 spin_unlock_irq(&ic->endio_wait.lock);
2589
2590 dm_integrity_flush_buffers(ic, true);
2591 if (ic->meta_dev)
2592 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2593
2594 limit = ic->provided_data_sectors;
2595 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2596 limit = le64_to_cpu(ic->sb->recalc_sector)
2597 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2598 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2599 }
2600 /*DEBUG_print("zeroing journal\n");*/
2601 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2602 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2603
2604 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2605 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2606
2607 spin_lock_irq(&ic->endio_wait.lock);
2608 remove_range_unlocked(ic, &range);
2609 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2610 bio_endio(bio);
2611 spin_unlock_irq(&ic->endio_wait.lock);
2612 spin_lock_irq(&ic->endio_wait.lock);
2613 }
2614 spin_unlock_irq(&ic->endio_wait.lock);
2615}
2616
2617
2618static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2619 unsigned n_sections, unsigned char commit_seq)
2620{
2621 unsigned i, j, n;
2622
2623 if (!n_sections)
2624 return;
2625
2626 for (n = 0; n < n_sections; n++) {
2627 i = start_section + n;
2628 wraparound_section(ic, &i);
2629 for (j = 0; j < ic->journal_section_sectors; j++) {
2630 struct journal_sector *js = access_journal(ic, i, j);
2631 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2632 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2633 }
2634 for (j = 0; j < ic->journal_section_entries; j++) {
2635 struct journal_entry *je = access_journal_entry(ic, i, j);
2636 journal_entry_set_unused(je);
2637 }
2638 }
2639
2640 write_journal(ic, start_section, n_sections);
2641}
2642
2643static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2644{
2645 unsigned char k;
2646 for (k = 0; k < N_COMMIT_IDS; k++) {
2647 if (dm_integrity_commit_id(ic, i, j, k) == id)
2648 return k;
2649 }
2650 dm_integrity_io_error(ic, "journal commit id", -EIO);
2651 return -EIO;
2652}
2653
2654static void replay_journal(struct dm_integrity_c *ic)
2655{
2656 unsigned i, j;
2657 bool used_commit_ids[N_COMMIT_IDS];
2658 unsigned max_commit_id_sections[N_COMMIT_IDS];
2659 unsigned write_start, write_sections;
2660 unsigned continue_section;
2661 bool journal_empty;
2662 unsigned char unused, last_used, want_commit_seq;
2663
2664 if (ic->mode == 'R')
2665 return;
2666
2667 if (ic->journal_uptodate)
2668 return;
2669
2670 last_used = 0;
2671 write_start = 0;
2672
2673 if (!ic->just_formatted) {
2674 DEBUG_print("reading journal\n");
2675 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2676 if (ic->journal_io)
2677 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2678 if (ic->journal_io) {
2679 struct journal_completion crypt_comp;
2680 crypt_comp.ic = ic;
2681 init_completion(&crypt_comp.comp);
2682 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2683 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2684 wait_for_completion(&crypt_comp.comp);
2685 }
2686 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2687 }
2688
2689 if (dm_integrity_failed(ic))
2690 goto clear_journal;
2691
2692 journal_empty = true;
2693 memset(used_commit_ids, 0, sizeof used_commit_ids);
2694 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2695 for (i = 0; i < ic->journal_sections; i++) {
2696 for (j = 0; j < ic->journal_section_sectors; j++) {
2697 int k;
2698 struct journal_sector *js = access_journal(ic, i, j);
2699 k = find_commit_seq(ic, i, j, js->commit_id);
2700 if (k < 0)
2701 goto clear_journal;
2702 used_commit_ids[k] = true;
2703 max_commit_id_sections[k] = i;
2704 }
2705 if (journal_empty) {
2706 for (j = 0; j < ic->journal_section_entries; j++) {
2707 struct journal_entry *je = access_journal_entry(ic, i, j);
2708 if (!journal_entry_is_unused(je)) {
2709 journal_empty = false;
2710 break;
2711 }
2712 }
2713 }
2714 }
2715
2716 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2717 unused = N_COMMIT_IDS - 1;
2718 while (unused && !used_commit_ids[unused - 1])
2719 unused--;
2720 } else {
2721 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2722 if (!used_commit_ids[unused])
2723 break;
2724 if (unused == N_COMMIT_IDS) {
2725 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2726 goto clear_journal;
2727 }
2728 }
2729 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2730 unused, used_commit_ids[0], used_commit_ids[1],
2731 used_commit_ids[2], used_commit_ids[3]);
2732
2733 last_used = prev_commit_seq(unused);
2734 want_commit_seq = prev_commit_seq(last_used);
2735
2736 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2737 journal_empty = true;
2738
2739 write_start = max_commit_id_sections[last_used] + 1;
2740 if (unlikely(write_start >= ic->journal_sections))
2741 want_commit_seq = next_commit_seq(want_commit_seq);
2742 wraparound_section(ic, &write_start);
2743
2744 i = write_start;
2745 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2746 for (j = 0; j < ic->journal_section_sectors; j++) {
2747 struct journal_sector *js = access_journal(ic, i, j);
2748
2749 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2750 /*
2751 * This could be caused by crash during writing.
2752 * We won't replay the inconsistent part of the
2753 * journal.
2754 */
2755 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2756 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2757 goto brk;
2758 }
2759 }
2760 i++;
2761 if (unlikely(i >= ic->journal_sections))
2762 want_commit_seq = next_commit_seq(want_commit_seq);
2763 wraparound_section(ic, &i);
2764 }
2765brk:
2766
2767 if (!journal_empty) {
2768 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2769 write_sections, write_start, want_commit_seq);
2770 do_journal_write(ic, write_start, write_sections, true);
2771 }
2772
2773 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2774 continue_section = write_start;
2775 ic->commit_seq = want_commit_seq;
2776 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2777 } else {
2778 unsigned s;
2779 unsigned char erase_seq;
2780clear_journal:
2781 DEBUG_print("clearing journal\n");
2782
2783 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2784 s = write_start;
2785 init_journal(ic, s, 1, erase_seq);
2786 s++;
2787 wraparound_section(ic, &s);
2788 if (ic->journal_sections >= 2) {
2789 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2790 s += ic->journal_sections - 2;
2791 wraparound_section(ic, &s);
2792 init_journal(ic, s, 1, erase_seq);
2793 }
2794
2795 continue_section = 0;
2796 ic->commit_seq = next_commit_seq(erase_seq);
2797 }
2798
2799 ic->committed_section = continue_section;
2800 ic->n_committed_sections = 0;
2801
2802 ic->uncommitted_section = continue_section;
2803 ic->n_uncommitted_sections = 0;
2804
2805 ic->free_section = continue_section;
2806 ic->free_section_entry = 0;
2807 ic->free_sectors = ic->journal_entries;
2808
2809 ic->journal_tree_root = RB_ROOT;
2810 for (i = 0; i < ic->journal_entries; i++)
2811 init_journal_node(&ic->journal_tree[i]);
2812}
2813
2814static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2815{
2816 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2817
2818 if (ic->mode == 'B') {
2819 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2820 ic->synchronous_mode = 1;
2821
2822 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2823 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2824 flush_workqueue(ic->commit_wq);
2825 }
2826}
2827
2828static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2829{
2830 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2831
2832 DEBUG_print("dm_integrity_reboot\n");
2833
2834 dm_integrity_enter_synchronous_mode(ic);
2835
2836 return NOTIFY_DONE;
2837}
2838
2839static void dm_integrity_postsuspend(struct dm_target *ti)
2840{
2841 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2842 int r;
2843
2844 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2845
2846 del_timer_sync(&ic->autocommit_timer);
2847
2848 if (ic->recalc_wq)
2849 drain_workqueue(ic->recalc_wq);
2850
2851 if (ic->mode == 'B')
2852 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2853
2854 queue_work(ic->commit_wq, &ic->commit_work);
2855 drain_workqueue(ic->commit_wq);
2856
2857 if (ic->mode == 'J') {
2858 queue_work(ic->writer_wq, &ic->writer_work);
2859 drain_workqueue(ic->writer_wq);
2860 dm_integrity_flush_buffers(ic, true);
2861 }
2862
2863 if (ic->mode == 'B') {
2864 dm_integrity_flush_buffers(ic, true);
2865#if 1
2866 /* set to 0 to test bitmap replay code */
2867 init_journal(ic, 0, ic->journal_sections, 0);
2868 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2869 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2870 if (unlikely(r))
2871 dm_integrity_io_error(ic, "writing superblock", r);
2872#endif
2873 }
2874
2875 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2876
2877 ic->journal_uptodate = true;
2878}
2879
2880static void dm_integrity_resume(struct dm_target *ti)
2881{
2882 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2883 int r;
2884 DEBUG_print("resume\n");
2885
2886 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2887 DEBUG_print("resume dirty_bitmap\n");
2888 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2889 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2890 if (ic->mode == 'B') {
2891 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2892 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2893 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2894 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2895 BITMAP_OP_TEST_ALL_CLEAR)) {
2896 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2897 ic->sb->recalc_sector = cpu_to_le64(0);
2898 }
2899 } else {
2900 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2901 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2902 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2903 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2904 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2905 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2906 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2907 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2908 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2909 ic->sb->recalc_sector = cpu_to_le64(0);
2910 }
2911 } else {
2912 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2913 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2914 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2915 ic->sb->recalc_sector = cpu_to_le64(0);
2916 }
2917 init_journal(ic, 0, ic->journal_sections, 0);
2918 replay_journal(ic);
2919 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2920 }
2921 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2922 if (unlikely(r))
2923 dm_integrity_io_error(ic, "writing superblock", r);
2924 } else {
2925 replay_journal(ic);
2926 if (ic->mode == 'B') {
2927 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2928 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2929 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2930 if (unlikely(r))
2931 dm_integrity_io_error(ic, "writing superblock", r);
2932
2933 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2934 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2935 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2936 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2937 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
2938 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
2939 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2940 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2941 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2942 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2943 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2944 }
2945 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2946 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2947 }
2948 }
2949
2950 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2951 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2952 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2953 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2954 if (recalc_pos < ic->provided_data_sectors) {
2955 queue_work(ic->recalc_wq, &ic->recalc_work);
2956 } else if (recalc_pos > ic->provided_data_sectors) {
2957 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2958 recalc_write_super(ic);
2959 }
2960 }
2961
2962 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2963 ic->reboot_notifier.next = NULL;
2964 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
2965 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2966
2967#if 0
2968 /* set to 1 to stress test synchronous mode */
2969 dm_integrity_enter_synchronous_mode(ic);
2970#endif
2971}
2972
2973static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2974 unsigned status_flags, char *result, unsigned maxlen)
2975{
2976 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2977 unsigned arg_count;
2978 size_t sz = 0;
2979
2980 switch (type) {
2981 case STATUSTYPE_INFO:
2982 DMEMIT("%llu %llu",
2983 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2984 (unsigned long long)ic->provided_data_sectors);
2985 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2986 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2987 else
2988 DMEMIT(" -");
2989 break;
2990
2991 case STATUSTYPE_TABLE: {
2992 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2993 watermark_percentage += ic->journal_entries / 2;
2994 do_div(watermark_percentage, ic->journal_entries);
2995 arg_count = 3;
2996 arg_count += !!ic->meta_dev;
2997 arg_count += ic->sectors_per_block != 1;
2998 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2999 arg_count += ic->mode == 'J';
3000 arg_count += ic->mode == 'J';
3001 arg_count += ic->mode == 'B';
3002 arg_count += ic->mode == 'B';
3003 arg_count += !!ic->internal_hash_alg.alg_string;
3004 arg_count += !!ic->journal_crypt_alg.alg_string;
3005 arg_count += !!ic->journal_mac_alg.alg_string;
3006 arg_count += ic->legacy_recalculate;
3007 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
3008 ic->tag_size, ic->mode, arg_count);
3009 if (ic->meta_dev)
3010 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3011 if (ic->sectors_per_block != 1)
3012 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3013 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3014 DMEMIT(" recalculate");
3015 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3016 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3017 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3018 if (ic->mode == 'J') {
3019 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3020 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3021 }
3022 if (ic->mode == 'B') {
3023 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3024 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3025 }
3026 if (ic->legacy_recalculate)
3027 DMEMIT(" legacy_recalculate");
3028
3029#define EMIT_ALG(a, n) \
3030 do { \
3031 if (ic->a.alg_string) { \
3032 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3033 if (ic->a.key_string) \
3034 DMEMIT(":%s", ic->a.key_string);\
3035 } \
3036 } while (0)
3037 EMIT_ALG(internal_hash_alg, "internal_hash");
3038 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3039 EMIT_ALG(journal_mac_alg, "journal_mac");
3040 break;
3041 }
3042 }
3043}
3044
3045static int dm_integrity_iterate_devices(struct dm_target *ti,
3046 iterate_devices_callout_fn fn, void *data)
3047{
3048 struct dm_integrity_c *ic = ti->private;
3049
3050 if (!ic->meta_dev)
3051 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3052 else
3053 return fn(ti, ic->dev, 0, ti->len, data);
3054}
3055
3056static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3057{
3058 struct dm_integrity_c *ic = ti->private;
3059
3060 if (ic->sectors_per_block > 1) {
3061 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3062 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3063 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3064 }
3065}
3066
3067static void calculate_journal_section_size(struct dm_integrity_c *ic)
3068{
3069 unsigned sector_space = JOURNAL_SECTOR_DATA;
3070
3071 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3072 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3073 JOURNAL_ENTRY_ROUNDUP);
3074
3075 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3076 sector_space -= JOURNAL_MAC_PER_SECTOR;
3077 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3078 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3079 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3080 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3081}
3082
3083static int calculate_device_limits(struct dm_integrity_c *ic)
3084{
3085 __u64 initial_sectors;
3086
3087 calculate_journal_section_size(ic);
3088 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3089 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3090 return -EINVAL;
3091 ic->initial_sectors = initial_sectors;
3092
3093 if (!ic->meta_dev) {
3094 sector_t last_sector, last_area, last_offset;
3095
3096 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3097 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
3098 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3099 ic->log2_metadata_run = __ffs(ic->metadata_run);
3100 else
3101 ic->log2_metadata_run = -1;
3102
3103 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3104 last_sector = get_data_sector(ic, last_area, last_offset);
3105 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3106 return -EINVAL;
3107 } else {
3108 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3109 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3110 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3111 meta_size <<= ic->log2_buffer_sectors;
3112 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3113 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3114 return -EINVAL;
3115 ic->metadata_run = 1;
3116 ic->log2_metadata_run = 0;
3117 }
3118
3119 return 0;
3120}
3121
3122static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3123{
3124 unsigned journal_sections;
3125 int test_bit;
3126
3127 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3128 memcpy(ic->sb->magic, SB_MAGIC, 8);
3129 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3130 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3131 if (ic->journal_mac_alg.alg_string)
3132 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3133
3134 calculate_journal_section_size(ic);
3135 journal_sections = journal_sectors / ic->journal_section_sectors;
3136 if (!journal_sections)
3137 journal_sections = 1;
3138
3139 if (!ic->meta_dev) {
3140 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3141 if (!interleave_sectors)
3142 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3143 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3144 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3145 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3146
3147 ic->provided_data_sectors = 0;
3148 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3149 __u64 prev_data_sectors = ic->provided_data_sectors;
3150
3151 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3152 if (calculate_device_limits(ic))
3153 ic->provided_data_sectors = prev_data_sectors;
3154 }
3155 if (!ic->provided_data_sectors)
3156 return -EINVAL;
3157 } else {
3158 ic->sb->log2_interleave_sectors = 0;
3159 ic->provided_data_sectors = ic->data_device_sectors;
3160 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3161
3162try_smaller_buffer:
3163 ic->sb->journal_sections = cpu_to_le32(0);
3164 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3165 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3166 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3167 if (test_journal_sections > journal_sections)
3168 continue;
3169 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3170 if (calculate_device_limits(ic))
3171 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3172
3173 }
3174 if (!le32_to_cpu(ic->sb->journal_sections)) {
3175 if (ic->log2_buffer_sectors > 3) {
3176 ic->log2_buffer_sectors--;
3177 goto try_smaller_buffer;
3178 }
3179 return -EINVAL;
3180 }
3181 }
3182
3183 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3184
3185 sb_set_version(ic);
3186
3187 return 0;
3188}
3189
3190static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3191{
3192 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3193 struct blk_integrity bi;
3194
3195 memset(&bi, 0, sizeof(bi));
3196 bi.profile = &dm_integrity_profile;
3197 bi.tuple_size = ic->tag_size;
3198 bi.tag_size = bi.tuple_size;
3199 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3200
3201 blk_integrity_register(disk, &bi);
3202 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3203}
3204
3205static void dm_integrity_free_page_list(struct page_list *pl)
3206{
3207 unsigned i;
3208
3209 if (!pl)
3210 return;
3211 for (i = 0; pl[i].page; i++)
3212 __free_page(pl[i].page);
3213 kvfree(pl);
3214}
3215
3216static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3217{
3218 struct page_list *pl;
3219 unsigned i;
3220
3221 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3222 if (!pl)
3223 return NULL;
3224
3225 for (i = 0; i < n_pages; i++) {
3226 pl[i].page = alloc_page(GFP_KERNEL);
3227 if (!pl[i].page) {
3228 dm_integrity_free_page_list(pl);
3229 return NULL;
3230 }
3231 if (i)
3232 pl[i - 1].next = &pl[i];
3233 }
3234 pl[i].page = NULL;
3235 pl[i].next = NULL;
3236
3237 return pl;
3238}
3239
3240static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3241{
3242 unsigned i;
3243 for (i = 0; i < ic->journal_sections; i++)
3244 kvfree(sl[i]);
3245 kvfree(sl);
3246}
3247
3248static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3249 struct page_list *pl)
3250{
3251 struct scatterlist **sl;
3252 unsigned i;
3253
3254 sl = kvmalloc_array(ic->journal_sections,
3255 sizeof(struct scatterlist *),
3256 GFP_KERNEL | __GFP_ZERO);
3257 if (!sl)
3258 return NULL;
3259
3260 for (i = 0; i < ic->journal_sections; i++) {
3261 struct scatterlist *s;
3262 unsigned start_index, start_offset;
3263 unsigned end_index, end_offset;
3264 unsigned n_pages;
3265 unsigned idx;
3266
3267 page_list_location(ic, i, 0, &start_index, &start_offset);
3268 page_list_location(ic, i, ic->journal_section_sectors - 1,
3269 &end_index, &end_offset);
3270
3271 n_pages = (end_index - start_index + 1);
3272
3273 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3274 GFP_KERNEL);
3275 if (!s) {
3276 dm_integrity_free_journal_scatterlist(ic, sl);
3277 return NULL;
3278 }
3279
3280 sg_init_table(s, n_pages);
3281 for (idx = start_index; idx <= end_index; idx++) {
3282 char *va = lowmem_page_address(pl[idx].page);
3283 unsigned start = 0, end = PAGE_SIZE;
3284 if (idx == start_index)
3285 start = start_offset;
3286 if (idx == end_index)
3287 end = end_offset + (1 << SECTOR_SHIFT);
3288 sg_set_buf(&s[idx - start_index], va + start, end - start);
3289 }
3290
3291 sl[i] = s;
3292 }
3293
3294 return sl;
3295}
3296
3297static void free_alg(struct alg_spec *a)
3298{
3299 kzfree(a->alg_string);
3300 kzfree(a->key);
3301 memset(a, 0, sizeof *a);
3302}
3303
3304static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3305{
3306 char *k;
3307
3308 free_alg(a);
3309
3310 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3311 if (!a->alg_string)
3312 goto nomem;
3313
3314 k = strchr(a->alg_string, ':');
3315 if (k) {
3316 *k = 0;
3317 a->key_string = k + 1;
3318 if (strlen(a->key_string) & 1)
3319 goto inval;
3320
3321 a->key_size = strlen(a->key_string) / 2;
3322 a->key = kmalloc(a->key_size, GFP_KERNEL);
3323 if (!a->key)
3324 goto nomem;
3325 if (hex2bin(a->key, a->key_string, a->key_size))
3326 goto inval;
3327 }
3328
3329 return 0;
3330inval:
3331 *error = error_inval;
3332 return -EINVAL;
3333nomem:
3334 *error = "Out of memory for an argument";
3335 return -ENOMEM;
3336}
3337
3338static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3339 char *error_alg, char *error_key)
3340{
3341 int r;
3342
3343 if (a->alg_string) {
3344 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
3345 if (IS_ERR(*hash)) {
3346 *error = error_alg;
3347 r = PTR_ERR(*hash);
3348 *hash = NULL;
3349 return r;
3350 }
3351
3352 if (a->key) {
3353 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3354 if (r) {
3355 *error = error_key;
3356 return r;
3357 }
3358 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3359 *error = error_key;
3360 return -ENOKEY;
3361 }
3362 }
3363
3364 return 0;
3365}
3366
3367static int create_journal(struct dm_integrity_c *ic, char **error)
3368{
3369 int r = 0;
3370 unsigned i;
3371 __u64 journal_pages, journal_desc_size, journal_tree_size;
3372 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3373 struct skcipher_request *req = NULL;
3374
3375 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3376 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3377 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3378 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3379
3380 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3381 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3382 journal_desc_size = journal_pages * sizeof(struct page_list);
3383 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3384 *error = "Journal doesn't fit into memory";
3385 r = -ENOMEM;
3386 goto bad;
3387 }
3388 ic->journal_pages = journal_pages;
3389
3390 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3391 if (!ic->journal) {
3392 *error = "Could not allocate memory for journal";
3393 r = -ENOMEM;
3394 goto bad;
3395 }
3396 if (ic->journal_crypt_alg.alg_string) {
3397 unsigned ivsize, blocksize;
3398 struct journal_completion comp;
3399
3400 comp.ic = ic;
3401 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3402 if (IS_ERR(ic->journal_crypt)) {
3403 *error = "Invalid journal cipher";
3404 r = PTR_ERR(ic->journal_crypt);
3405 ic->journal_crypt = NULL;
3406 goto bad;
3407 }
3408 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3409 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3410
3411 if (ic->journal_crypt_alg.key) {
3412 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3413 ic->journal_crypt_alg.key_size);
3414 if (r) {
3415 *error = "Error setting encryption key";
3416 goto bad;
3417 }
3418 }
3419 DEBUG_print("cipher %s, block size %u iv size %u\n",
3420 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3421
3422 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3423 if (!ic->journal_io) {
3424 *error = "Could not allocate memory for journal io";
3425 r = -ENOMEM;
3426 goto bad;
3427 }
3428
3429 if (blocksize == 1) {
3430 struct scatterlist *sg;
3431
3432 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3433 if (!req) {
3434 *error = "Could not allocate crypt request";
3435 r = -ENOMEM;
3436 goto bad;
3437 }
3438
3439 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3440 if (!crypt_iv) {
3441 *error = "Could not allocate iv";
3442 r = -ENOMEM;
3443 goto bad;
3444 }
3445
3446 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3447 if (!ic->journal_xor) {
3448 *error = "Could not allocate memory for journal xor";
3449 r = -ENOMEM;
3450 goto bad;
3451 }
3452
3453 sg = kvmalloc_array(ic->journal_pages + 1,
3454 sizeof(struct scatterlist),
3455 GFP_KERNEL);
3456 if (!sg) {
3457 *error = "Unable to allocate sg list";
3458 r = -ENOMEM;
3459 goto bad;
3460 }
3461 sg_init_table(sg, ic->journal_pages + 1);
3462 for (i = 0; i < ic->journal_pages; i++) {
3463 char *va = lowmem_page_address(ic->journal_xor[i].page);
3464 clear_page(va);
3465 sg_set_buf(&sg[i], va, PAGE_SIZE);
3466 }
3467 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3468
3469 skcipher_request_set_crypt(req, sg, sg,
3470 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3471 init_completion(&comp.comp);
3472 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3473 if (do_crypt(true, req, &comp))
3474 wait_for_completion(&comp.comp);
3475 kvfree(sg);
3476 r = dm_integrity_failed(ic);
3477 if (r) {
3478 *error = "Unable to encrypt journal";
3479 goto bad;
3480 }
3481 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3482
3483 crypto_free_skcipher(ic->journal_crypt);
3484 ic->journal_crypt = NULL;
3485 } else {
3486 unsigned crypt_len = roundup(ivsize, blocksize);
3487
3488 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3489 if (!req) {
3490 *error = "Could not allocate crypt request";
3491 r = -ENOMEM;
3492 goto bad;
3493 }
3494
3495 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3496 if (!crypt_iv) {
3497 *error = "Could not allocate iv";
3498 r = -ENOMEM;
3499 goto bad;
3500 }
3501
3502 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3503 if (!crypt_data) {
3504 *error = "Unable to allocate crypt data";
3505 r = -ENOMEM;
3506 goto bad;
3507 }
3508
3509 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3510 if (!ic->journal_scatterlist) {
3511 *error = "Unable to allocate sg list";
3512 r = -ENOMEM;
3513 goto bad;
3514 }
3515 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3516 if (!ic->journal_io_scatterlist) {
3517 *error = "Unable to allocate sg list";
3518 r = -ENOMEM;
3519 goto bad;
3520 }
3521 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3522 sizeof(struct skcipher_request *),
3523 GFP_KERNEL | __GFP_ZERO);
3524 if (!ic->sk_requests) {
3525 *error = "Unable to allocate sk requests";
3526 r = -ENOMEM;
3527 goto bad;
3528 }
3529 for (i = 0; i < ic->journal_sections; i++) {
3530 struct scatterlist sg;
3531 struct skcipher_request *section_req;
3532 __u32 section_le = cpu_to_le32(i);
3533
3534 memset(crypt_iv, 0x00, ivsize);
3535 memset(crypt_data, 0x00, crypt_len);
3536 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3537
3538 sg_init_one(&sg, crypt_data, crypt_len);
3539 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3540 init_completion(&comp.comp);
3541 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3542 if (do_crypt(true, req, &comp))
3543 wait_for_completion(&comp.comp);
3544
3545 r = dm_integrity_failed(ic);
3546 if (r) {
3547 *error = "Unable to generate iv";
3548 goto bad;
3549 }
3550
3551 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3552 if (!section_req) {
3553 *error = "Unable to allocate crypt request";
3554 r = -ENOMEM;
3555 goto bad;
3556 }
3557 section_req->iv = kmalloc_array(ivsize, 2,
3558 GFP_KERNEL);
3559 if (!section_req->iv) {
3560 skcipher_request_free(section_req);
3561 *error = "Unable to allocate iv";
3562 r = -ENOMEM;
3563 goto bad;
3564 }
3565 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3566 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3567 ic->sk_requests[i] = section_req;
3568 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3569 }
3570 }
3571 }
3572
3573 for (i = 0; i < N_COMMIT_IDS; i++) {
3574 unsigned j;
3575retest_commit_id:
3576 for (j = 0; j < i; j++) {
3577 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3578 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3579 goto retest_commit_id;
3580 }
3581 }
3582 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3583 }
3584
3585 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3586 if (journal_tree_size > ULONG_MAX) {
3587 *error = "Journal doesn't fit into memory";
3588 r = -ENOMEM;
3589 goto bad;
3590 }
3591 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3592 if (!ic->journal_tree) {
3593 *error = "Could not allocate memory for journal tree";
3594 r = -ENOMEM;
3595 }
3596bad:
3597 kfree(crypt_data);
3598 kfree(crypt_iv);
3599 skcipher_request_free(req);
3600
3601 return r;
3602}
3603
3604/*
3605 * Construct a integrity mapping
3606 *
3607 * Arguments:
3608 * device
3609 * offset from the start of the device
3610 * tag size
3611 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3612 * number of optional arguments
3613 * optional arguments:
3614 * journal_sectors
3615 * interleave_sectors
3616 * buffer_sectors
3617 * journal_watermark
3618 * commit_time
3619 * meta_device
3620 * block_size
3621 * sectors_per_bit
3622 * bitmap_flush_interval
3623 * internal_hash
3624 * journal_crypt
3625 * journal_mac
3626 * recalculate
3627 */
3628static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3629{
3630 struct dm_integrity_c *ic;
3631 char dummy;
3632 int r;
3633 unsigned extra_args;
3634 struct dm_arg_set as;
3635 static const struct dm_arg _args[] = {
3636 {0, 14, "Invalid number of feature args"},
3637 };
3638 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3639 bool should_write_sb;
3640 __u64 threshold;
3641 unsigned long long start;
3642 __s8 log2_sectors_per_bitmap_bit = -1;
3643 __s8 log2_blocks_per_bitmap_bit;
3644 __u64 bits_in_journal;
3645 __u64 n_bitmap_bits;
3646
3647#define DIRECT_ARGUMENTS 4
3648
3649 if (argc <= DIRECT_ARGUMENTS) {
3650 ti->error = "Invalid argument count";
3651 return -EINVAL;
3652 }
3653
3654 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3655 if (!ic) {
3656 ti->error = "Cannot allocate integrity context";
3657 return -ENOMEM;
3658 }
3659 ti->private = ic;
3660 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3661 ic->ti = ti;
3662
3663 ic->in_progress = RB_ROOT;
3664 INIT_LIST_HEAD(&ic->wait_list);
3665 init_waitqueue_head(&ic->endio_wait);
3666 bio_list_init(&ic->flush_bio_list);
3667 init_waitqueue_head(&ic->copy_to_journal_wait);
3668 init_completion(&ic->crypto_backoff);
3669 atomic64_set(&ic->number_of_mismatches, 0);
3670 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3671
3672 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3673 if (r) {
3674 ti->error = "Device lookup failed";
3675 goto bad;
3676 }
3677
3678 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3679 ti->error = "Invalid starting offset";
3680 r = -EINVAL;
3681 goto bad;
3682 }
3683 ic->start = start;
3684
3685 if (strcmp(argv[2], "-")) {
3686 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3687 ti->error = "Invalid tag size";
3688 r = -EINVAL;
3689 goto bad;
3690 }
3691 }
3692
3693 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3694 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3695 ic->mode = argv[3][0];
3696 } else {
3697 ti->error = "Invalid mode (expecting J, B, D, R)";
3698 r = -EINVAL;
3699 goto bad;
3700 }
3701
3702 journal_sectors = 0;
3703 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3704 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3705 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3706 sync_msec = DEFAULT_SYNC_MSEC;
3707 ic->sectors_per_block = 1;
3708
3709 as.argc = argc - DIRECT_ARGUMENTS;
3710 as.argv = argv + DIRECT_ARGUMENTS;
3711 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3712 if (r)
3713 goto bad;
3714
3715 while (extra_args--) {
3716 const char *opt_string;
3717 unsigned val;
3718 unsigned long long llval;
3719 opt_string = dm_shift_arg(&as);
3720 if (!opt_string) {
3721 r = -EINVAL;
3722 ti->error = "Not enough feature arguments";
3723 goto bad;
3724 }
3725 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3726 journal_sectors = val ? val : 1;
3727 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3728 interleave_sectors = val;
3729 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3730 buffer_sectors = val;
3731 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3732 journal_watermark = val;
3733 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3734 sync_msec = val;
3735 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3736 if (ic->meta_dev) {
3737 dm_put_device(ti, ic->meta_dev);
3738 ic->meta_dev = NULL;
3739 }
3740 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3741 dm_table_get_mode(ti->table), &ic->meta_dev);
3742 if (r) {
3743 ti->error = "Device lookup failed";
3744 goto bad;
3745 }
3746 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3747 if (val < 1 << SECTOR_SHIFT ||
3748 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3749 (val & (val -1))) {
3750 r = -EINVAL;
3751 ti->error = "Invalid block_size argument";
3752 goto bad;
3753 }
3754 ic->sectors_per_block = val >> SECTOR_SHIFT;
3755 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3756 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3757 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3758 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3759 r = -EINVAL;
3760 ti->error = "Invalid bitmap_flush_interval argument";
3761 goto bad;
3762 }
3763 ic->bitmap_flush_interval = msecs_to_jiffies(val);
3764 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3765 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3766 "Invalid internal_hash argument");
3767 if (r)
3768 goto bad;
3769 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3770 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3771 "Invalid journal_crypt argument");
3772 if (r)
3773 goto bad;
3774 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3775 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3776 "Invalid journal_mac argument");
3777 if (r)
3778 goto bad;
3779 } else if (!strcmp(opt_string, "recalculate")) {
3780 ic->recalculate_flag = true;
3781 } else if (!strcmp(opt_string, "legacy_recalculate")) {
3782 ic->legacy_recalculate = true;
3783 } else {
3784 r = -EINVAL;
3785 ti->error = "Invalid argument";
3786 goto bad;
3787 }
3788 }
3789
3790 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3791 if (!ic->meta_dev)
3792 ic->meta_device_sectors = ic->data_device_sectors;
3793 else
3794 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3795
3796 if (!journal_sectors) {
3797 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3798 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3799 }
3800
3801 if (!buffer_sectors)
3802 buffer_sectors = 1;
3803 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3804
3805 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3806 "Invalid internal hash", "Error setting internal hash key");
3807 if (r)
3808 goto bad;
3809
3810 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3811 "Invalid journal mac", "Error setting journal mac key");
3812 if (r)
3813 goto bad;
3814
3815 if (!ic->tag_size) {
3816 if (!ic->internal_hash) {
3817 ti->error = "Unknown tag size";
3818 r = -EINVAL;
3819 goto bad;
3820 }
3821 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3822 }
3823 if (ic->tag_size > MAX_TAG_SIZE) {
3824 ti->error = "Too big tag size";
3825 r = -EINVAL;
3826 goto bad;
3827 }
3828 if (!(ic->tag_size & (ic->tag_size - 1)))
3829 ic->log2_tag_size = __ffs(ic->tag_size);
3830 else
3831 ic->log2_tag_size = -1;
3832
3833 if (ic->mode == 'B' && !ic->internal_hash) {
3834 r = -EINVAL;
3835 ti->error = "Bitmap mode can be only used with internal hash";
3836 goto bad;
3837 }
3838
3839 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3840 ic->autocommit_msec = sync_msec;
3841 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3842
3843 ic->io = dm_io_client_create();
3844 if (IS_ERR(ic->io)) {
3845 r = PTR_ERR(ic->io);
3846 ic->io = NULL;
3847 ti->error = "Cannot allocate dm io";
3848 goto bad;
3849 }
3850
3851 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3852 if (r) {
3853 ti->error = "Cannot allocate mempool";
3854 goto bad;
3855 }
3856
3857 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3858 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3859 if (!ic->metadata_wq) {
3860 ti->error = "Cannot allocate workqueue";
3861 r = -ENOMEM;
3862 goto bad;
3863 }
3864
3865 /*
3866 * If this workqueue were percpu, it would cause bio reordering
3867 * and reduced performance.
3868 */
3869 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3870 if (!ic->wait_wq) {
3871 ti->error = "Cannot allocate workqueue";
3872 r = -ENOMEM;
3873 goto bad;
3874 }
3875
3876 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
3877 METADATA_WORKQUEUE_MAX_ACTIVE);
3878 if (!ic->offload_wq) {
3879 ti->error = "Cannot allocate workqueue";
3880 r = -ENOMEM;
3881 goto bad;
3882 }
3883
3884 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3885 if (!ic->commit_wq) {
3886 ti->error = "Cannot allocate workqueue";
3887 r = -ENOMEM;
3888 goto bad;
3889 }
3890 INIT_WORK(&ic->commit_work, integrity_commit);
3891
3892 if (ic->mode == 'J' || ic->mode == 'B') {
3893 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3894 if (!ic->writer_wq) {
3895 ti->error = "Cannot allocate workqueue";
3896 r = -ENOMEM;
3897 goto bad;
3898 }
3899 INIT_WORK(&ic->writer_work, integrity_writer);
3900 }
3901
3902 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3903 if (!ic->sb) {
3904 r = -ENOMEM;
3905 ti->error = "Cannot allocate superblock area";
3906 goto bad;
3907 }
3908
3909 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3910 if (r) {
3911 ti->error = "Error reading superblock";
3912 goto bad;
3913 }
3914 should_write_sb = false;
3915 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3916 if (ic->mode != 'R') {
3917 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3918 r = -EINVAL;
3919 ti->error = "The device is not initialized";
3920 goto bad;
3921 }
3922 }
3923
3924 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3925 if (r) {
3926 ti->error = "Could not initialize superblock";
3927 goto bad;
3928 }
3929 if (ic->mode != 'R')
3930 should_write_sb = true;
3931 }
3932
3933 if (!ic->sb->version || ic->sb->version > SB_VERSION_3) {
3934 r = -EINVAL;
3935 ti->error = "Unknown version";
3936 goto bad;
3937 }
3938 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3939 r = -EINVAL;
3940 ti->error = "Tag size doesn't match the information in superblock";
3941 goto bad;
3942 }
3943 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3944 r = -EINVAL;
3945 ti->error = "Block size doesn't match the information in superblock";
3946 goto bad;
3947 }
3948 if (!le32_to_cpu(ic->sb->journal_sections)) {
3949 r = -EINVAL;
3950 ti->error = "Corrupted superblock, journal_sections is 0";
3951 goto bad;
3952 }
3953 /* make sure that ti->max_io_len doesn't overflow */
3954 if (!ic->meta_dev) {
3955 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3956 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3957 r = -EINVAL;
3958 ti->error = "Invalid interleave_sectors in the superblock";
3959 goto bad;
3960 }
3961 } else {
3962 if (ic->sb->log2_interleave_sectors) {
3963 r = -EINVAL;
3964 ti->error = "Invalid interleave_sectors in the superblock";
3965 goto bad;
3966 }
3967 }
3968 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3969 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3970 /* test for overflow */
3971 r = -EINVAL;
3972 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3973 goto bad;
3974 }
3975 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3976 r = -EINVAL;
3977 ti->error = "Journal mac mismatch";
3978 goto bad;
3979 }
3980
3981try_smaller_buffer:
3982 r = calculate_device_limits(ic);
3983 if (r) {
3984 if (ic->meta_dev) {
3985 if (ic->log2_buffer_sectors > 3) {
3986 ic->log2_buffer_sectors--;
3987 goto try_smaller_buffer;
3988 }
3989 }
3990 ti->error = "The device is too small";
3991 goto bad;
3992 }
3993
3994 if (log2_sectors_per_bitmap_bit < 0)
3995 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3996 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3997 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3998
3999 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4000 if (bits_in_journal > UINT_MAX)
4001 bits_in_journal = UINT_MAX;
4002 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4003 log2_sectors_per_bitmap_bit++;
4004
4005 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4006 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4007 if (should_write_sb) {
4008 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4009 }
4010 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4011 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4012 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4013
4014 if (!ic->meta_dev)
4015 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4016
4017 if (ti->len > ic->provided_data_sectors) {
4018 r = -EINVAL;
4019 ti->error = "Not enough provided sectors for requested mapping size";
4020 goto bad;
4021 }
4022
4023
4024 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4025 threshold += 50;
4026 do_div(threshold, 100);
4027 ic->free_sectors_threshold = threshold;
4028
4029 DEBUG_print("initialized:\n");
4030 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4031 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4032 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4033 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4034 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4035 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4036 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4037 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4038 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4039 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4040 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4041 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4042 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
4043 (unsigned long long)ic->provided_data_sectors);
4044 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4045 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
4046
4047 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4048 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4049 ic->sb->recalc_sector = cpu_to_le64(0);
4050 }
4051
4052 if (ic->internal_hash) {
4053 size_t recalc_tags_size;
4054 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4055 if (!ic->recalc_wq ) {
4056 ti->error = "Cannot allocate workqueue";
4057 r = -ENOMEM;
4058 goto bad;
4059 }
4060 INIT_WORK(&ic->recalc_work, integrity_recalc);
4061 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4062 if (!ic->recalc_buffer) {
4063 ti->error = "Cannot allocate buffer for recalculating";
4064 r = -ENOMEM;
4065 goto bad;
4066 }
4067 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4068 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4069 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4070 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4071 if (!ic->recalc_tags) {
4072 ti->error = "Cannot allocate tags for recalculating";
4073 r = -ENOMEM;
4074 goto bad;
4075 }
4076 } else {
4077 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4078 ti->error = "Recalculate can only be specified with internal_hash";
4079 r = -EINVAL;
4080 goto bad;
4081 }
4082 }
4083
4084 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4085 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4086 dm_integrity_disable_recalculate(ic)) {
4087 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4088 r = -EOPNOTSUPP;
4089 goto bad;
4090 }
4091
4092 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4093 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4094 if (IS_ERR(ic->bufio)) {
4095 r = PTR_ERR(ic->bufio);
4096 ti->error = "Cannot initialize dm-bufio";
4097 ic->bufio = NULL;
4098 goto bad;
4099 }
4100 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4101
4102 if (ic->mode != 'R') {
4103 r = create_journal(ic, &ti->error);
4104 if (r)
4105 goto bad;
4106
4107 }
4108
4109 if (ic->mode == 'B') {
4110 unsigned i;
4111 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4112
4113 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4114 if (!ic->recalc_bitmap) {
4115 r = -ENOMEM;
4116 goto bad;
4117 }
4118 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4119 if (!ic->may_write_bitmap) {
4120 r = -ENOMEM;
4121 goto bad;
4122 }
4123 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4124 if (!ic->bbs) {
4125 r = -ENOMEM;
4126 goto bad;
4127 }
4128 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4129 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4130 struct bitmap_block_status *bbs = &ic->bbs[i];
4131 unsigned sector, pl_index, pl_offset;
4132
4133 INIT_WORK(&bbs->work, bitmap_block_work);
4134 bbs->ic = ic;
4135 bbs->idx = i;
4136 bio_list_init(&bbs->bio_queue);
4137 spin_lock_init(&bbs->bio_queue_lock);
4138
4139 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4140 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4141 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4142
4143 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4144 }
4145 }
4146
4147 if (should_write_sb) {
4148 init_journal(ic, 0, ic->journal_sections, 0);
4149 r = dm_integrity_failed(ic);
4150 if (unlikely(r)) {
4151 ti->error = "Error initializing journal";
4152 goto bad;
4153 }
4154 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4155 if (r) {
4156 ti->error = "Error initializing superblock";
4157 goto bad;
4158 }
4159 ic->just_formatted = true;
4160 }
4161
4162 if (!ic->meta_dev) {
4163 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4164 if (r)
4165 goto bad;
4166 }
4167 if (ic->mode == 'B') {
4168 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4169 if (!max_io_len)
4170 max_io_len = 1U << 31;
4171 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4172 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4173 r = dm_set_target_max_io_len(ti, max_io_len);
4174 if (r)
4175 goto bad;
4176 }
4177 }
4178
4179 if (!ic->internal_hash)
4180 dm_integrity_set(ti, ic);
4181
4182 ti->num_flush_bios = 1;
4183 ti->flush_supported = true;
4184
4185 return 0;
4186
4187bad:
4188 dm_integrity_dtr(ti);
4189 return r;
4190}
4191
4192static void dm_integrity_dtr(struct dm_target *ti)
4193{
4194 struct dm_integrity_c *ic = ti->private;
4195
4196 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4197 BUG_ON(!list_empty(&ic->wait_list));
4198
4199 if (ic->mode == 'B')
4200 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4201 if (ic->metadata_wq)
4202 destroy_workqueue(ic->metadata_wq);
4203 if (ic->wait_wq)
4204 destroy_workqueue(ic->wait_wq);
4205 if (ic->offload_wq)
4206 destroy_workqueue(ic->offload_wq);
4207 if (ic->commit_wq)
4208 destroy_workqueue(ic->commit_wq);
4209 if (ic->writer_wq)
4210 destroy_workqueue(ic->writer_wq);
4211 if (ic->recalc_wq)
4212 destroy_workqueue(ic->recalc_wq);
4213 vfree(ic->recalc_buffer);
4214 kvfree(ic->recalc_tags);
4215 kvfree(ic->bbs);
4216 if (ic->bufio)
4217 dm_bufio_client_destroy(ic->bufio);
4218 mempool_exit(&ic->journal_io_mempool);
4219 if (ic->io)
4220 dm_io_client_destroy(ic->io);
4221 if (ic->dev)
4222 dm_put_device(ti, ic->dev);
4223 if (ic->meta_dev)
4224 dm_put_device(ti, ic->meta_dev);
4225 dm_integrity_free_page_list(ic->journal);
4226 dm_integrity_free_page_list(ic->journal_io);
4227 dm_integrity_free_page_list(ic->journal_xor);
4228 dm_integrity_free_page_list(ic->recalc_bitmap);
4229 dm_integrity_free_page_list(ic->may_write_bitmap);
4230 if (ic->journal_scatterlist)
4231 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4232 if (ic->journal_io_scatterlist)
4233 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4234 if (ic->sk_requests) {
4235 unsigned i;
4236
4237 for (i = 0; i < ic->journal_sections; i++) {
4238 struct skcipher_request *req = ic->sk_requests[i];
4239 if (req) {
4240 kzfree(req->iv);
4241 skcipher_request_free(req);
4242 }
4243 }
4244 kvfree(ic->sk_requests);
4245 }
4246 kvfree(ic->journal_tree);
4247 if (ic->sb)
4248 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4249
4250 if (ic->internal_hash)
4251 crypto_free_shash(ic->internal_hash);
4252 free_alg(&ic->internal_hash_alg);
4253
4254 if (ic->journal_crypt)
4255 crypto_free_skcipher(ic->journal_crypt);
4256 free_alg(&ic->journal_crypt_alg);
4257
4258 if (ic->journal_mac)
4259 crypto_free_shash(ic->journal_mac);
4260 free_alg(&ic->journal_mac_alg);
4261
4262 kfree(ic);
4263}
4264
4265static struct target_type integrity_target = {
4266 .name = "integrity",
4267 .version = {1, 3, 0},
4268 .module = THIS_MODULE,
4269 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4270 .ctr = dm_integrity_ctr,
4271 .dtr = dm_integrity_dtr,
4272 .map = dm_integrity_map,
4273 .postsuspend = dm_integrity_postsuspend,
4274 .resume = dm_integrity_resume,
4275 .status = dm_integrity_status,
4276 .iterate_devices = dm_integrity_iterate_devices,
4277 .io_hints = dm_integrity_io_hints,
4278};
4279
4280static int __init dm_integrity_init(void)
4281{
4282 int r;
4283
4284 journal_io_cache = kmem_cache_create("integrity_journal_io",
4285 sizeof(struct journal_io), 0, 0, NULL);
4286 if (!journal_io_cache) {
4287 DMERR("can't allocate journal io cache");
4288 return -ENOMEM;
4289 }
4290
4291 r = dm_register_target(&integrity_target);
4292 if (r < 0) {
4293 DMERR("register failed %d", r);
4294 kmem_cache_destroy(journal_io_cache);
4295 return r;
4296 }
4297
4298 return 0;
4299}
4300
4301static void __exit dm_integrity_exit(void)
4302{
4303 dm_unregister_target(&integrity_target);
4304 kmem_cache_destroy(journal_io_cache);
4305}
4306
4307module_init(dm_integrity_init);
4308module_exit(dm_integrity_exit);
4309
4310MODULE_AUTHOR("Milan Broz");
4311MODULE_AUTHOR("Mikulas Patocka");
4312MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4313MODULE_LICENSE("GPL");