blob: 25eecb92f5f38921be959532e2b522003c9d8667 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include <linux/slab.h>
9#include <linux/module.h>
10
11#include "md.h"
12#include "raid1.h"
13#include "raid5.h"
14#include "raid10.h"
15#include "md-bitmap.h"
16
17#include <linux/device-mapper.h>
18
19#define DM_MSG_PREFIX "raid"
20#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
21
22/*
23 * Minimum sectors of free reshape space per raid device
24 */
25#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
26
27/*
28 * Minimum journal space 4 MiB in sectors.
29 */
30#define MIN_RAID456_JOURNAL_SPACE (4*2048)
31
32static bool devices_handle_discard_safely = false;
33
34/*
35 * The following flags are used by dm-raid.c to set up the array state.
36 * They must be cleared before md_run is called.
37 */
38#define FirstUse 10 /* rdev flag */
39
40struct raid_dev {
41 /*
42 * Two DM devices, one to hold metadata and one to hold the
43 * actual data/parity. The reason for this is to not confuse
44 * ti->len and give more flexibility in altering size and
45 * characteristics.
46 *
47 * While it is possible for this device to be associated
48 * with a different physical device than the data_dev, it
49 * is intended for it to be the same.
50 * |--------- Physical Device ---------|
51 * |- meta_dev -|------ data_dev ------|
52 */
53 struct dm_dev *meta_dev;
54 struct dm_dev *data_dev;
55 struct md_rdev rdev;
56};
57
58/*
59 * Bits for establishing rs->ctr_flags
60 *
61 * 1 = no flag value
62 * 2 = flag with value
63 */
64#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
65#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
66#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
67#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
68#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
69#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
70#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
71#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
72#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
73#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
74#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
75#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
76/* New for v1.9.0 */
77#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
78#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
79#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
80
81/* New for v1.10.0 */
82#define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
83
84/* New for v1.11.1 */
85#define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
86
87/*
88 * Flags for rs->ctr_flags field.
89 */
90#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
91#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
92#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
93#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
94#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
95#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
96#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
97#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
98#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
99#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
100#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
101#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
102#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
103#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
104#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
105#define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
106#define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
107
108/*
109 * Definitions of various constructor flags to
110 * be used in checks of valid / invalid flags
111 * per raid level.
112 */
113/* Define all any sync flags */
114#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
115
116/* Define flags for options without argument (e.g. 'nosync') */
117#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
118 CTR_FLAG_RAID10_USE_NEAR_SETS)
119
120/* Define flags for options with one argument (e.g. 'delta_disks +2') */
121#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
122 CTR_FLAG_WRITE_MOSTLY | \
123 CTR_FLAG_DAEMON_SLEEP | \
124 CTR_FLAG_MIN_RECOVERY_RATE | \
125 CTR_FLAG_MAX_RECOVERY_RATE | \
126 CTR_FLAG_MAX_WRITE_BEHIND | \
127 CTR_FLAG_STRIPE_CACHE | \
128 CTR_FLAG_REGION_SIZE | \
129 CTR_FLAG_RAID10_COPIES | \
130 CTR_FLAG_RAID10_FORMAT | \
131 CTR_FLAG_DELTA_DISKS | \
132 CTR_FLAG_DATA_OFFSET)
133
134/* Valid options definitions per raid level... */
135
136/* "raid0" does only accept data offset */
137#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
138
139/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
140#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
141 CTR_FLAG_REBUILD | \
142 CTR_FLAG_WRITE_MOSTLY | \
143 CTR_FLAG_DAEMON_SLEEP | \
144 CTR_FLAG_MIN_RECOVERY_RATE | \
145 CTR_FLAG_MAX_RECOVERY_RATE | \
146 CTR_FLAG_MAX_WRITE_BEHIND | \
147 CTR_FLAG_REGION_SIZE | \
148 CTR_FLAG_DELTA_DISKS | \
149 CTR_FLAG_DATA_OFFSET)
150
151/* "raid10" does not accept any raid1 or stripe cache options */
152#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
153 CTR_FLAG_REBUILD | \
154 CTR_FLAG_DAEMON_SLEEP | \
155 CTR_FLAG_MIN_RECOVERY_RATE | \
156 CTR_FLAG_MAX_RECOVERY_RATE | \
157 CTR_FLAG_REGION_SIZE | \
158 CTR_FLAG_RAID10_COPIES | \
159 CTR_FLAG_RAID10_FORMAT | \
160 CTR_FLAG_DELTA_DISKS | \
161 CTR_FLAG_DATA_OFFSET | \
162 CTR_FLAG_RAID10_USE_NEAR_SETS)
163
164/*
165 * "raid4/5/6" do not accept any raid1 or raid10 specific options
166 *
167 * "raid6" does not accept "nosync", because it is not guaranteed
168 * that both parity and q-syndrome are being written properly with
169 * any writes
170 */
171#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
172 CTR_FLAG_REBUILD | \
173 CTR_FLAG_DAEMON_SLEEP | \
174 CTR_FLAG_MIN_RECOVERY_RATE | \
175 CTR_FLAG_MAX_RECOVERY_RATE | \
176 CTR_FLAG_STRIPE_CACHE | \
177 CTR_FLAG_REGION_SIZE | \
178 CTR_FLAG_DELTA_DISKS | \
179 CTR_FLAG_DATA_OFFSET | \
180 CTR_FLAG_JOURNAL_DEV | \
181 CTR_FLAG_JOURNAL_MODE)
182
183#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
184 CTR_FLAG_REBUILD | \
185 CTR_FLAG_DAEMON_SLEEP | \
186 CTR_FLAG_MIN_RECOVERY_RATE | \
187 CTR_FLAG_MAX_RECOVERY_RATE | \
188 CTR_FLAG_STRIPE_CACHE | \
189 CTR_FLAG_REGION_SIZE | \
190 CTR_FLAG_DELTA_DISKS | \
191 CTR_FLAG_DATA_OFFSET | \
192 CTR_FLAG_JOURNAL_DEV | \
193 CTR_FLAG_JOURNAL_MODE)
194/* ...valid options definitions per raid level */
195
196/*
197 * Flags for rs->runtime_flags field
198 * (RT_FLAG prefix meaning "runtime flag")
199 *
200 * These are all internal and used to define runtime state,
201 * e.g. to prevent another resume from preresume processing
202 * the raid set all over again.
203 */
204#define RT_FLAG_RS_PRERESUMED 0
205#define RT_FLAG_RS_RESUMED 1
206#define RT_FLAG_RS_BITMAP_LOADED 2
207#define RT_FLAG_UPDATE_SBS 3
208#define RT_FLAG_RESHAPE_RS 4
209#define RT_FLAG_RS_SUSPENDED 5
210#define RT_FLAG_RS_IN_SYNC 6
211#define RT_FLAG_RS_RESYNCING 7
212
213/* Array elements of 64 bit needed for rebuild/failed disk bits */
214#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
215
216/*
217 * raid set level, layout and chunk sectors backup/restore
218 */
219struct rs_layout {
220 int new_level;
221 int new_layout;
222 int new_chunk_sectors;
223};
224
225struct raid_set {
226 struct dm_target *ti;
227
228 uint32_t stripe_cache_entries;
229 unsigned long ctr_flags;
230 unsigned long runtime_flags;
231
232 uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
233
234 int raid_disks;
235 int delta_disks;
236 int data_offset;
237 int raid10_copies;
238 int requested_bitmap_chunk_sectors;
239
240 struct mddev md;
241 struct raid_type *raid_type;
242 struct dm_target_callbacks callbacks;
243
244 /* Optional raid4/5/6 journal device */
245 struct journal_dev {
246 struct dm_dev *dev;
247 struct md_rdev rdev;
248 int mode;
249 } journal_dev;
250
251 struct raid_dev dev[0];
252};
253
254static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
255{
256 struct mddev *mddev = &rs->md;
257
258 l->new_level = mddev->new_level;
259 l->new_layout = mddev->new_layout;
260 l->new_chunk_sectors = mddev->new_chunk_sectors;
261}
262
263static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
264{
265 struct mddev *mddev = &rs->md;
266
267 mddev->new_level = l->new_level;
268 mddev->new_layout = l->new_layout;
269 mddev->new_chunk_sectors = l->new_chunk_sectors;
270}
271
272/* raid10 algorithms (i.e. formats) */
273#define ALGORITHM_RAID10_DEFAULT 0
274#define ALGORITHM_RAID10_NEAR 1
275#define ALGORITHM_RAID10_OFFSET 2
276#define ALGORITHM_RAID10_FAR 3
277
278/* Supported raid types and properties. */
279static struct raid_type {
280 const char *name; /* RAID algorithm. */
281 const char *descr; /* Descriptor text for logging. */
282 const unsigned int parity_devs; /* # of parity devices. */
283 const unsigned int minimal_devs;/* minimal # of devices in set. */
284 const unsigned int level; /* RAID level. */
285 const unsigned int algorithm; /* RAID algorithm. */
286} raid_types[] = {
287 {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
288 {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
289 {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
290 {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
291 {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
292 {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
293 {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
294 {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
295 {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
296 {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
297 {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
298 {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
299 {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
300 {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
301 {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
302 {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
303 {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
304 {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
305 {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
306 {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
307};
308
309/* True, if @v is in inclusive range [@min, @max] */
310static bool __within_range(long v, long min, long max)
311{
312 return v >= min && v <= max;
313}
314
315/* All table line arguments are defined here */
316static struct arg_name_flag {
317 const unsigned long flag;
318 const char *name;
319} __arg_name_flags[] = {
320 { CTR_FLAG_SYNC, "sync"},
321 { CTR_FLAG_NOSYNC, "nosync"},
322 { CTR_FLAG_REBUILD, "rebuild"},
323 { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
324 { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
325 { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
326 { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
327 { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
328 { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
329 { CTR_FLAG_REGION_SIZE, "region_size"},
330 { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
331 { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
332 { CTR_FLAG_DATA_OFFSET, "data_offset"},
333 { CTR_FLAG_DELTA_DISKS, "delta_disks"},
334 { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
335 { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
336 { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
337};
338
339/* Return argument name string for given @flag */
340static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
341{
342 if (hweight32(flag) == 1) {
343 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
344
345 while (anf-- > __arg_name_flags)
346 if (flag & anf->flag)
347 return anf->name;
348
349 } else
350 DMERR("%s called with more than one flag!", __func__);
351
352 return NULL;
353}
354
355/* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
356static struct {
357 const int mode;
358 const char *param;
359} _raid456_journal_mode[] = {
360 { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
361 { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" }
362};
363
364/* Return MD raid4/5/6 journal mode for dm @journal_mode one */
365static int dm_raid_journal_mode_to_md(const char *mode)
366{
367 int m = ARRAY_SIZE(_raid456_journal_mode);
368
369 while (m--)
370 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
371 return _raid456_journal_mode[m].mode;
372
373 return -EINVAL;
374}
375
376/* Return dm-raid raid4/5/6 journal mode string for @mode */
377static const char *md_journal_mode_to_dm_raid(const int mode)
378{
379 int m = ARRAY_SIZE(_raid456_journal_mode);
380
381 while (m--)
382 if (mode == _raid456_journal_mode[m].mode)
383 return _raid456_journal_mode[m].param;
384
385 return "unknown";
386}
387
388/*
389 * Bool helpers to test for various raid levels of a raid set.
390 * It's level as reported by the superblock rather than
391 * the requested raid_type passed to the constructor.
392 */
393/* Return true, if raid set in @rs is raid0 */
394static bool rs_is_raid0(struct raid_set *rs)
395{
396 return !rs->md.level;
397}
398
399/* Return true, if raid set in @rs is raid1 */
400static bool rs_is_raid1(struct raid_set *rs)
401{
402 return rs->md.level == 1;
403}
404
405/* Return true, if raid set in @rs is raid10 */
406static bool rs_is_raid10(struct raid_set *rs)
407{
408 return rs->md.level == 10;
409}
410
411/* Return true, if raid set in @rs is level 6 */
412static bool rs_is_raid6(struct raid_set *rs)
413{
414 return rs->md.level == 6;
415}
416
417/* Return true, if raid set in @rs is level 4, 5 or 6 */
418static bool rs_is_raid456(struct raid_set *rs)
419{
420 return __within_range(rs->md.level, 4, 6);
421}
422
423/* Return true, if raid set in @rs is reshapable */
424static bool __is_raid10_far(int layout);
425static bool rs_is_reshapable(struct raid_set *rs)
426{
427 return rs_is_raid456(rs) ||
428 (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
429}
430
431/* Return true, if raid set in @rs is recovering */
432static bool rs_is_recovering(struct raid_set *rs)
433{
434 return rs->md.recovery_cp < rs->md.dev_sectors;
435}
436
437/* Return true, if raid set in @rs is reshaping */
438static bool rs_is_reshaping(struct raid_set *rs)
439{
440 return rs->md.reshape_position != MaxSector;
441}
442
443/*
444 * bool helpers to test for various raid levels of a raid type @rt
445 */
446
447/* Return true, if raid type in @rt is raid0 */
448static bool rt_is_raid0(struct raid_type *rt)
449{
450 return !rt->level;
451}
452
453/* Return true, if raid type in @rt is raid1 */
454static bool rt_is_raid1(struct raid_type *rt)
455{
456 return rt->level == 1;
457}
458
459/* Return true, if raid type in @rt is raid10 */
460static bool rt_is_raid10(struct raid_type *rt)
461{
462 return rt->level == 10;
463}
464
465/* Return true, if raid type in @rt is raid4/5 */
466static bool rt_is_raid45(struct raid_type *rt)
467{
468 return __within_range(rt->level, 4, 5);
469}
470
471/* Return true, if raid type in @rt is raid6 */
472static bool rt_is_raid6(struct raid_type *rt)
473{
474 return rt->level == 6;
475}
476
477/* Return true, if raid type in @rt is raid4/5/6 */
478static bool rt_is_raid456(struct raid_type *rt)
479{
480 return __within_range(rt->level, 4, 6);
481}
482/* END: raid level bools */
483
484/* Return valid ctr flags for the raid level of @rs */
485static unsigned long __valid_flags(struct raid_set *rs)
486{
487 if (rt_is_raid0(rs->raid_type))
488 return RAID0_VALID_FLAGS;
489 else if (rt_is_raid1(rs->raid_type))
490 return RAID1_VALID_FLAGS;
491 else if (rt_is_raid10(rs->raid_type))
492 return RAID10_VALID_FLAGS;
493 else if (rt_is_raid45(rs->raid_type))
494 return RAID45_VALID_FLAGS;
495 else if (rt_is_raid6(rs->raid_type))
496 return RAID6_VALID_FLAGS;
497
498 return 0;
499}
500
501/*
502 * Check for valid flags set on @rs
503 *
504 * Has to be called after parsing of the ctr flags!
505 */
506static int rs_check_for_valid_flags(struct raid_set *rs)
507{
508 if (rs->ctr_flags & ~__valid_flags(rs)) {
509 rs->ti->error = "Invalid flags combination";
510 return -EINVAL;
511 }
512
513 return 0;
514}
515
516/* MD raid10 bit definitions and helpers */
517#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
518#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
519#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
520#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
521
522/* Return md raid10 near copies for @layout */
523static unsigned int __raid10_near_copies(int layout)
524{
525 return layout & 0xFF;
526}
527
528/* Return md raid10 far copies for @layout */
529static unsigned int __raid10_far_copies(int layout)
530{
531 return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
532}
533
534/* Return true if md raid10 offset for @layout */
535static bool __is_raid10_offset(int layout)
536{
537 return !!(layout & RAID10_OFFSET);
538}
539
540/* Return true if md raid10 near for @layout */
541static bool __is_raid10_near(int layout)
542{
543 return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
544}
545
546/* Return true if md raid10 far for @layout */
547static bool __is_raid10_far(int layout)
548{
549 return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
550}
551
552/* Return md raid10 layout string for @layout */
553static const char *raid10_md_layout_to_format(int layout)
554{
555 /*
556 * Bit 16 stands for "offset"
557 * (i.e. adjacent stripes hold copies)
558 *
559 * Refer to MD's raid10.c for details
560 */
561 if (__is_raid10_offset(layout))
562 return "offset";
563
564 if (__raid10_near_copies(layout) > 1)
565 return "near";
566
567 if (__raid10_far_copies(layout) > 1)
568 return "far";
569
570 return "unknown";
571}
572
573/* Return md raid10 algorithm for @name */
574static int raid10_name_to_format(const char *name)
575{
576 if (!strcasecmp(name, "near"))
577 return ALGORITHM_RAID10_NEAR;
578 else if (!strcasecmp(name, "offset"))
579 return ALGORITHM_RAID10_OFFSET;
580 else if (!strcasecmp(name, "far"))
581 return ALGORITHM_RAID10_FAR;
582
583 return -EINVAL;
584}
585
586/* Return md raid10 copies for @layout */
587static unsigned int raid10_md_layout_to_copies(int layout)
588{
589 return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
590}
591
592/* Return md raid10 format id for @format string */
593static int raid10_format_to_md_layout(struct raid_set *rs,
594 unsigned int algorithm,
595 unsigned int copies)
596{
597 unsigned int n = 1, f = 1, r = 0;
598
599 /*
600 * MD resilienece flaw:
601 *
602 * enabling use_far_sets for far/offset formats causes copies
603 * to be colocated on the same devs together with their origins!
604 *
605 * -> disable it for now in the definition above
606 */
607 if (algorithm == ALGORITHM_RAID10_DEFAULT ||
608 algorithm == ALGORITHM_RAID10_NEAR)
609 n = copies;
610
611 else if (algorithm == ALGORITHM_RAID10_OFFSET) {
612 f = copies;
613 r = RAID10_OFFSET;
614 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
615 r |= RAID10_USE_FAR_SETS;
616
617 } else if (algorithm == ALGORITHM_RAID10_FAR) {
618 f = copies;
619 r = !RAID10_OFFSET;
620 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
621 r |= RAID10_USE_FAR_SETS;
622
623 } else
624 return -EINVAL;
625
626 return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
627}
628/* END: MD raid10 bit definitions and helpers */
629
630/* Check for any of the raid10 algorithms */
631static bool __got_raid10(struct raid_type *rtp, const int layout)
632{
633 if (rtp->level == 10) {
634 switch (rtp->algorithm) {
635 case ALGORITHM_RAID10_DEFAULT:
636 case ALGORITHM_RAID10_NEAR:
637 return __is_raid10_near(layout);
638 case ALGORITHM_RAID10_OFFSET:
639 return __is_raid10_offset(layout);
640 case ALGORITHM_RAID10_FAR:
641 return __is_raid10_far(layout);
642 default:
643 break;
644 }
645 }
646
647 return false;
648}
649
650/* Return raid_type for @name */
651static struct raid_type *get_raid_type(const char *name)
652{
653 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
654
655 while (rtp-- > raid_types)
656 if (!strcasecmp(rtp->name, name))
657 return rtp;
658
659 return NULL;
660}
661
662/* Return raid_type for @name based derived from @level and @layout */
663static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
664{
665 struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
666
667 while (rtp-- > raid_types) {
668 /* RAID10 special checks based on @layout flags/properties */
669 if (rtp->level == level &&
670 (__got_raid10(rtp, layout) || rtp->algorithm == layout))
671 return rtp;
672 }
673
674 return NULL;
675}
676
677/* Adjust rdev sectors */
678static void rs_set_rdev_sectors(struct raid_set *rs)
679{
680 struct mddev *mddev = &rs->md;
681 struct md_rdev *rdev;
682
683 /*
684 * raid10 sets rdev->sector to the device size, which
685 * is unintended in case of out-of-place reshaping
686 */
687 rdev_for_each(rdev, mddev)
688 if (!test_bit(Journal, &rdev->flags))
689 rdev->sectors = mddev->dev_sectors;
690}
691
692/*
693 * Change bdev capacity of @rs in case of a disk add/remove reshape
694 */
695static void rs_set_capacity(struct raid_set *rs)
696{
697 struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
698
699 set_capacity(gendisk, rs->md.array_sectors);
700 revalidate_disk(gendisk);
701}
702
703/*
704 * Set the mddev properties in @rs to the current
705 * ones retrieved from the freshest superblock
706 */
707static void rs_set_cur(struct raid_set *rs)
708{
709 struct mddev *mddev = &rs->md;
710
711 mddev->new_level = mddev->level;
712 mddev->new_layout = mddev->layout;
713 mddev->new_chunk_sectors = mddev->chunk_sectors;
714}
715
716/*
717 * Set the mddev properties in @rs to the new
718 * ones requested by the ctr
719 */
720static void rs_set_new(struct raid_set *rs)
721{
722 struct mddev *mddev = &rs->md;
723
724 mddev->level = mddev->new_level;
725 mddev->layout = mddev->new_layout;
726 mddev->chunk_sectors = mddev->new_chunk_sectors;
727 mddev->raid_disks = rs->raid_disks;
728 mddev->delta_disks = 0;
729}
730
731static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
732 unsigned int raid_devs)
733{
734 unsigned int i;
735 struct raid_set *rs;
736
737 if (raid_devs <= raid_type->parity_devs) {
738 ti->error = "Insufficient number of devices";
739 return ERR_PTR(-EINVAL);
740 }
741
742 rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
743 if (!rs) {
744 ti->error = "Cannot allocate raid context";
745 return ERR_PTR(-ENOMEM);
746 }
747
748 mddev_init(&rs->md);
749
750 rs->raid_disks = raid_devs;
751 rs->delta_disks = 0;
752
753 rs->ti = ti;
754 rs->raid_type = raid_type;
755 rs->stripe_cache_entries = 256;
756 rs->md.raid_disks = raid_devs;
757 rs->md.level = raid_type->level;
758 rs->md.new_level = rs->md.level;
759 rs->md.layout = raid_type->algorithm;
760 rs->md.new_layout = rs->md.layout;
761 rs->md.delta_disks = 0;
762 rs->md.recovery_cp = MaxSector;
763
764 for (i = 0; i < raid_devs; i++)
765 md_rdev_init(&rs->dev[i].rdev);
766
767 /*
768 * Remaining items to be initialized by further RAID params:
769 * rs->md.persistent
770 * rs->md.external
771 * rs->md.chunk_sectors
772 * rs->md.new_chunk_sectors
773 * rs->md.dev_sectors
774 */
775
776 return rs;
777}
778
779/* Free all @rs allocations */
780static void raid_set_free(struct raid_set *rs)
781{
782 int i;
783
784 if (rs->journal_dev.dev) {
785 md_rdev_clear(&rs->journal_dev.rdev);
786 dm_put_device(rs->ti, rs->journal_dev.dev);
787 }
788
789 for (i = 0; i < rs->raid_disks; i++) {
790 if (rs->dev[i].meta_dev)
791 dm_put_device(rs->ti, rs->dev[i].meta_dev);
792 md_rdev_clear(&rs->dev[i].rdev);
793 if (rs->dev[i].data_dev)
794 dm_put_device(rs->ti, rs->dev[i].data_dev);
795 }
796
797 kfree(rs);
798}
799
800/*
801 * For every device we have two words
802 * <meta_dev>: meta device name or '-' if missing
803 * <data_dev>: data device name or '-' if missing
804 *
805 * The following are permitted:
806 * - -
807 * - <data_dev>
808 * <meta_dev> <data_dev>
809 *
810 * The following is not allowed:
811 * <meta_dev> -
812 *
813 * This code parses those words. If there is a failure,
814 * the caller must use raid_set_free() to unwind the operations.
815 */
816static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
817{
818 int i;
819 int rebuild = 0;
820 int metadata_available = 0;
821 int r = 0;
822 const char *arg;
823
824 /* Put off the number of raid devices argument to get to dev pairs */
825 arg = dm_shift_arg(as);
826 if (!arg)
827 return -EINVAL;
828
829 for (i = 0; i < rs->raid_disks; i++) {
830 rs->dev[i].rdev.raid_disk = i;
831
832 rs->dev[i].meta_dev = NULL;
833 rs->dev[i].data_dev = NULL;
834
835 /*
836 * There are no offsets initially.
837 * Out of place reshape will set them accordingly.
838 */
839 rs->dev[i].rdev.data_offset = 0;
840 rs->dev[i].rdev.new_data_offset = 0;
841 rs->dev[i].rdev.mddev = &rs->md;
842
843 arg = dm_shift_arg(as);
844 if (!arg)
845 return -EINVAL;
846
847 if (strcmp(arg, "-")) {
848 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
849 &rs->dev[i].meta_dev);
850 if (r) {
851 rs->ti->error = "RAID metadata device lookup failure";
852 return r;
853 }
854
855 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
856 if (!rs->dev[i].rdev.sb_page) {
857 rs->ti->error = "Failed to allocate superblock page";
858 return -ENOMEM;
859 }
860 }
861
862 arg = dm_shift_arg(as);
863 if (!arg)
864 return -EINVAL;
865
866 if (!strcmp(arg, "-")) {
867 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
868 (!rs->dev[i].rdev.recovery_offset)) {
869 rs->ti->error = "Drive designated for rebuild not specified";
870 return -EINVAL;
871 }
872
873 if (rs->dev[i].meta_dev) {
874 rs->ti->error = "No data device supplied with metadata device";
875 return -EINVAL;
876 }
877
878 continue;
879 }
880
881 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
882 &rs->dev[i].data_dev);
883 if (r) {
884 rs->ti->error = "RAID device lookup failure";
885 return r;
886 }
887
888 if (rs->dev[i].meta_dev) {
889 metadata_available = 1;
890 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
891 }
892 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
893 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
894 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
895 rebuild++;
896 }
897
898 if (rs->journal_dev.dev)
899 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
900
901 if (metadata_available) {
902 rs->md.external = 0;
903 rs->md.persistent = 1;
904 rs->md.major_version = 2;
905 } else if (rebuild && !rs->md.recovery_cp) {
906 /*
907 * Without metadata, we will not be able to tell if the array
908 * is in-sync or not - we must assume it is not. Therefore,
909 * it is impossible to rebuild a drive.
910 *
911 * Even if there is metadata, the on-disk information may
912 * indicate that the array is not in-sync and it will then
913 * fail at that time.
914 *
915 * User could specify 'nosync' option if desperate.
916 */
917 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
918 return -EINVAL;
919 }
920
921 return 0;
922}
923
924/*
925 * validate_region_size
926 * @rs
927 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
928 *
929 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
930 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
931 *
932 * Returns: 0 on success, -EINVAL on failure.
933 */
934static int validate_region_size(struct raid_set *rs, unsigned long region_size)
935{
936 unsigned long min_region_size = rs->ti->len / (1 << 21);
937
938 if (rs_is_raid0(rs))
939 return 0;
940
941 if (!region_size) {
942 /*
943 * Choose a reasonable default. All figures in sectors.
944 */
945 if (min_region_size > (1 << 13)) {
946 /* If not a power of 2, make it the next power of 2 */
947 region_size = roundup_pow_of_two(min_region_size);
948 DMINFO("Choosing default region size of %lu sectors",
949 region_size);
950 } else {
951 DMINFO("Choosing default region size of 4MiB");
952 region_size = 1 << 13; /* sectors */
953 }
954 } else {
955 /*
956 * Validate user-supplied value.
957 */
958 if (region_size > rs->ti->len) {
959 rs->ti->error = "Supplied region size is too large";
960 return -EINVAL;
961 }
962
963 if (region_size < min_region_size) {
964 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
965 region_size, min_region_size);
966 rs->ti->error = "Supplied region size is too small";
967 return -EINVAL;
968 }
969
970 if (!is_power_of_2(region_size)) {
971 rs->ti->error = "Region size is not a power of 2";
972 return -EINVAL;
973 }
974
975 if (region_size < rs->md.chunk_sectors) {
976 rs->ti->error = "Region size is smaller than the chunk size";
977 return -EINVAL;
978 }
979 }
980
981 /*
982 * Convert sectors to bytes.
983 */
984 rs->md.bitmap_info.chunksize = to_bytes(region_size);
985
986 return 0;
987}
988
989/*
990 * validate_raid_redundancy
991 * @rs
992 *
993 * Determine if there are enough devices in the array that haven't
994 * failed (or are being rebuilt) to form a usable array.
995 *
996 * Returns: 0 on success, -EINVAL on failure.
997 */
998static int validate_raid_redundancy(struct raid_set *rs)
999{
1000 unsigned int i, rebuild_cnt = 0;
1001 unsigned int rebuilds_per_group = 0, copies, raid_disks;
1002 unsigned int group_size, last_group_start;
1003
1004 for (i = 0; i < rs->raid_disks; i++)
1005 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1006 ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1007 !rs->dev[i].rdev.sb_page)))
1008 rebuild_cnt++;
1009
1010 switch (rs->md.level) {
1011 case 0:
1012 break;
1013 case 1:
1014 if (rebuild_cnt >= rs->md.raid_disks)
1015 goto too_many;
1016 break;
1017 case 4:
1018 case 5:
1019 case 6:
1020 if (rebuild_cnt > rs->raid_type->parity_devs)
1021 goto too_many;
1022 break;
1023 case 10:
1024 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1025 if (copies < 2) {
1026 DMERR("Bogus raid10 data copies < 2!");
1027 return -EINVAL;
1028 }
1029
1030 if (rebuild_cnt < copies)
1031 break;
1032
1033 /*
1034 * It is possible to have a higher rebuild count for RAID10,
1035 * as long as the failed devices occur in different mirror
1036 * groups (i.e. different stripes).
1037 *
1038 * When checking "near" format, make sure no adjacent devices
1039 * have failed beyond what can be handled. In addition to the
1040 * simple case where the number of devices is a multiple of the
1041 * number of copies, we must also handle cases where the number
1042 * of devices is not a multiple of the number of copies.
1043 * E.g. dev1 dev2 dev3 dev4 dev5
1044 * A A B B C
1045 * C D D E E
1046 */
1047 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1048 if (__is_raid10_near(rs->md.new_layout)) {
1049 for (i = 0; i < raid_disks; i++) {
1050 if (!(i % copies))
1051 rebuilds_per_group = 0;
1052 if ((!rs->dev[i].rdev.sb_page ||
1053 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1054 (++rebuilds_per_group >= copies))
1055 goto too_many;
1056 }
1057 break;
1058 }
1059
1060 /*
1061 * When checking "far" and "offset" formats, we need to ensure
1062 * that the device that holds its copy is not also dead or
1063 * being rebuilt. (Note that "far" and "offset" formats only
1064 * support two copies right now. These formats also only ever
1065 * use the 'use_far_sets' variant.)
1066 *
1067 * This check is somewhat complicated by the need to account
1068 * for arrays that are not a multiple of (far) copies. This
1069 * results in the need to treat the last (potentially larger)
1070 * set differently.
1071 */
1072 group_size = (raid_disks / copies);
1073 last_group_start = (raid_disks / group_size) - 1;
1074 last_group_start *= group_size;
1075 for (i = 0; i < raid_disks; i++) {
1076 if (!(i % copies) && !(i > last_group_start))
1077 rebuilds_per_group = 0;
1078 if ((!rs->dev[i].rdev.sb_page ||
1079 !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1080 (++rebuilds_per_group >= copies))
1081 goto too_many;
1082 }
1083 break;
1084 default:
1085 if (rebuild_cnt)
1086 return -EINVAL;
1087 }
1088
1089 return 0;
1090
1091too_many:
1092 return -EINVAL;
1093}
1094
1095/*
1096 * Possible arguments are...
1097 * <chunk_size> [optional_args]
1098 *
1099 * Argument definitions
1100 * <chunk_size> The number of sectors per disk that
1101 * will form the "stripe"
1102 * [[no]sync] Force or prevent recovery of the
1103 * entire array
1104 * [rebuild <idx>] Rebuild the drive indicated by the index
1105 * [daemon_sleep <ms>] Time between bitmap daemon work to
1106 * clear bits
1107 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1108 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1109 * [write_mostly <idx>] Indicate a write mostly drive via index
1110 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
1111 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
1112 * [region_size <sectors>] Defines granularity of bitmap
1113 * [journal_dev <dev>] raid4/5/6 journaling deviice
1114 * (i.e. write hole closing log)
1115 *
1116 * RAID10-only options:
1117 * [raid10_copies <# copies>] Number of copies. (Default: 2)
1118 * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
1119 */
1120static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1121 unsigned int num_raid_params)
1122{
1123 int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1124 unsigned int raid10_copies = 2;
1125 unsigned int i, write_mostly = 0;
1126 unsigned int region_size = 0;
1127 sector_t max_io_len;
1128 const char *arg, *key;
1129 struct raid_dev *rd;
1130 struct raid_type *rt = rs->raid_type;
1131
1132 arg = dm_shift_arg(as);
1133 num_raid_params--; /* Account for chunk_size argument */
1134
1135 if (kstrtoint(arg, 10, &value) < 0) {
1136 rs->ti->error = "Bad numerical argument given for chunk_size";
1137 return -EINVAL;
1138 }
1139
1140 /*
1141 * First, parse the in-order required arguments
1142 * "chunk_size" is the only argument of this type.
1143 */
1144 if (rt_is_raid1(rt)) {
1145 if (value)
1146 DMERR("Ignoring chunk size parameter for RAID 1");
1147 value = 0;
1148 } else if (!is_power_of_2(value)) {
1149 rs->ti->error = "Chunk size must be a power of 2";
1150 return -EINVAL;
1151 } else if (value < 8) {
1152 rs->ti->error = "Chunk size value is too small";
1153 return -EINVAL;
1154 }
1155
1156 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1157
1158 /*
1159 * We set each individual device as In_sync with a completed
1160 * 'recovery_offset'. If there has been a device failure or
1161 * replacement then one of the following cases applies:
1162 *
1163 * 1) User specifies 'rebuild'.
1164 * - Device is reset when param is read.
1165 * 2) A new device is supplied.
1166 * - No matching superblock found, resets device.
1167 * 3) Device failure was transient and returns on reload.
1168 * - Failure noticed, resets device for bitmap replay.
1169 * 4) Device hadn't completed recovery after previous failure.
1170 * - Superblock is read and overrides recovery_offset.
1171 *
1172 * What is found in the superblocks of the devices is always
1173 * authoritative, unless 'rebuild' or '[no]sync' was specified.
1174 */
1175 for (i = 0; i < rs->raid_disks; i++) {
1176 set_bit(In_sync, &rs->dev[i].rdev.flags);
1177 rs->dev[i].rdev.recovery_offset = MaxSector;
1178 }
1179
1180 /*
1181 * Second, parse the unordered optional arguments
1182 */
1183 for (i = 0; i < num_raid_params; i++) {
1184 key = dm_shift_arg(as);
1185 if (!key) {
1186 rs->ti->error = "Not enough raid parameters given";
1187 return -EINVAL;
1188 }
1189
1190 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1191 if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1192 rs->ti->error = "Only one 'nosync' argument allowed";
1193 return -EINVAL;
1194 }
1195 continue;
1196 }
1197 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1198 if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1199 rs->ti->error = "Only one 'sync' argument allowed";
1200 return -EINVAL;
1201 }
1202 continue;
1203 }
1204 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1205 if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1206 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1207 return -EINVAL;
1208 }
1209 continue;
1210 }
1211
1212 arg = dm_shift_arg(as);
1213 i++; /* Account for the argument pairs */
1214 if (!arg) {
1215 rs->ti->error = "Wrong number of raid parameters given";
1216 return -EINVAL;
1217 }
1218
1219 /*
1220 * Parameters that take a string value are checked here.
1221 */
1222 /* "raid10_format {near|offset|far} */
1223 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1224 if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1225 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1226 return -EINVAL;
1227 }
1228 if (!rt_is_raid10(rt)) {
1229 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1230 return -EINVAL;
1231 }
1232 raid10_format = raid10_name_to_format(arg);
1233 if (raid10_format < 0) {
1234 rs->ti->error = "Invalid 'raid10_format' value given";
1235 return raid10_format;
1236 }
1237 continue;
1238 }
1239
1240 /* "journal_dev <dev>" */
1241 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1242 int r;
1243 struct md_rdev *jdev;
1244
1245 if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1246 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1247 return -EINVAL;
1248 }
1249 if (!rt_is_raid456(rt)) {
1250 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1251 return -EINVAL;
1252 }
1253 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1254 &rs->journal_dev.dev);
1255 if (r) {
1256 rs->ti->error = "raid4/5/6 journal device lookup failure";
1257 return r;
1258 }
1259 jdev = &rs->journal_dev.rdev;
1260 md_rdev_init(jdev);
1261 jdev->mddev = &rs->md;
1262 jdev->bdev = rs->journal_dev.dev->bdev;
1263 jdev->sectors = to_sector(i_size_read(jdev->bdev->bd_inode));
1264 if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1265 rs->ti->error = "No space for raid4/5/6 journal";
1266 return -ENOSPC;
1267 }
1268 rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1269 set_bit(Journal, &jdev->flags);
1270 continue;
1271 }
1272
1273 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1274 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1275 int r;
1276
1277 if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1278 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1279 return -EINVAL;
1280 }
1281 if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1282 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1283 return -EINVAL;
1284 }
1285 r = dm_raid_journal_mode_to_md(arg);
1286 if (r < 0) {
1287 rs->ti->error = "Invalid 'journal_mode' argument";
1288 return r;
1289 }
1290 rs->journal_dev.mode = r;
1291 continue;
1292 }
1293
1294 /*
1295 * Parameters with number values from here on.
1296 */
1297 if (kstrtoint(arg, 10, &value) < 0) {
1298 rs->ti->error = "Bad numerical argument given in raid params";
1299 return -EINVAL;
1300 }
1301
1302 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1303 /*
1304 * "rebuild" is being passed in by userspace to provide
1305 * indexes of replaced devices and to set up additional
1306 * devices on raid level takeover.
1307 */
1308 if (!__within_range(value, 0, rs->raid_disks - 1)) {
1309 rs->ti->error = "Invalid rebuild index given";
1310 return -EINVAL;
1311 }
1312
1313 if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1314 rs->ti->error = "rebuild for this index already given";
1315 return -EINVAL;
1316 }
1317
1318 rd = rs->dev + value;
1319 clear_bit(In_sync, &rd->rdev.flags);
1320 clear_bit(Faulty, &rd->rdev.flags);
1321 rd->rdev.recovery_offset = 0;
1322 set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1323 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1324 if (!rt_is_raid1(rt)) {
1325 rs->ti->error = "write_mostly option is only valid for RAID1";
1326 return -EINVAL;
1327 }
1328
1329 if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1330 rs->ti->error = "Invalid write_mostly index given";
1331 return -EINVAL;
1332 }
1333
1334 write_mostly++;
1335 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1336 set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1337 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1338 if (!rt_is_raid1(rt)) {
1339 rs->ti->error = "max_write_behind option is only valid for RAID1";
1340 return -EINVAL;
1341 }
1342
1343 if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1344 rs->ti->error = "Only one max_write_behind argument pair allowed";
1345 return -EINVAL;
1346 }
1347
1348 /*
1349 * In device-mapper, we specify things in sectors, but
1350 * MD records this value in kB
1351 */
1352 if (value < 0 || value / 2 > COUNTER_MAX) {
1353 rs->ti->error = "Max write-behind limit out of range";
1354 return -EINVAL;
1355 }
1356
1357 rs->md.bitmap_info.max_write_behind = value / 2;
1358 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1359 if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1360 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1361 return -EINVAL;
1362 }
1363 if (value < 0) {
1364 rs->ti->error = "daemon sleep period out of range";
1365 return -EINVAL;
1366 }
1367 rs->md.bitmap_info.daemon_sleep = value;
1368 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1369 /* Userspace passes new data_offset after having extended the the data image LV */
1370 if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1371 rs->ti->error = "Only one data_offset argument pair allowed";
1372 return -EINVAL;
1373 }
1374 /* Ensure sensible data offset */
1375 if (value < 0 ||
1376 (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1377 rs->ti->error = "Bogus data_offset value";
1378 return -EINVAL;
1379 }
1380 rs->data_offset = value;
1381 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1382 /* Define the +/-# of disks to add to/remove from the given raid set */
1383 if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1384 rs->ti->error = "Only one delta_disks argument pair allowed";
1385 return -EINVAL;
1386 }
1387 /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1388 if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1389 rs->ti->error = "Too many delta_disk requested";
1390 return -EINVAL;
1391 }
1392
1393 rs->delta_disks = value;
1394 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1395 if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1396 rs->ti->error = "Only one stripe_cache argument pair allowed";
1397 return -EINVAL;
1398 }
1399
1400 if (!rt_is_raid456(rt)) {
1401 rs->ti->error = "Inappropriate argument: stripe_cache";
1402 return -EINVAL;
1403 }
1404
1405 if (value < 0) {
1406 rs->ti->error = "Bogus stripe cache entries value";
1407 return -EINVAL;
1408 }
1409 rs->stripe_cache_entries = value;
1410 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1411 if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1412 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1413 return -EINVAL;
1414 }
1415
1416 if (value < 0) {
1417 rs->ti->error = "min_recovery_rate out of range";
1418 return -EINVAL;
1419 }
1420 rs->md.sync_speed_min = value;
1421 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1422 if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1423 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1424 return -EINVAL;
1425 }
1426
1427 if (value < 0) {
1428 rs->ti->error = "max_recovery_rate out of range";
1429 return -EINVAL;
1430 }
1431 rs->md.sync_speed_max = value;
1432 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1433 if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1434 rs->ti->error = "Only one region_size argument pair allowed";
1435 return -EINVAL;
1436 }
1437
1438 region_size = value;
1439 rs->requested_bitmap_chunk_sectors = value;
1440 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1441 if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1442 rs->ti->error = "Only one raid10_copies argument pair allowed";
1443 return -EINVAL;
1444 }
1445
1446 if (!__within_range(value, 2, rs->md.raid_disks)) {
1447 rs->ti->error = "Bad value for 'raid10_copies'";
1448 return -EINVAL;
1449 }
1450
1451 raid10_copies = value;
1452 } else {
1453 DMERR("Unable to parse RAID parameter: %s", key);
1454 rs->ti->error = "Unable to parse RAID parameter";
1455 return -EINVAL;
1456 }
1457 }
1458
1459 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1460 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1461 rs->ti->error = "sync and nosync are mutually exclusive";
1462 return -EINVAL;
1463 }
1464
1465 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1466 (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1467 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1468 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1469 return -EINVAL;
1470 }
1471
1472 if (write_mostly >= rs->md.raid_disks) {
1473 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1474 return -EINVAL;
1475 }
1476
1477 if (rs->md.sync_speed_max &&
1478 rs->md.sync_speed_min > rs->md.sync_speed_max) {
1479 rs->ti->error = "Bogus recovery rates";
1480 return -EINVAL;
1481 }
1482
1483 if (validate_region_size(rs, region_size))
1484 return -EINVAL;
1485
1486 if (rs->md.chunk_sectors)
1487 max_io_len = rs->md.chunk_sectors;
1488 else
1489 max_io_len = region_size;
1490
1491 if (dm_set_target_max_io_len(rs->ti, max_io_len))
1492 return -EINVAL;
1493
1494 if (rt_is_raid10(rt)) {
1495 if (raid10_copies > rs->md.raid_disks) {
1496 rs->ti->error = "Not enough devices to satisfy specification";
1497 return -EINVAL;
1498 }
1499
1500 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1501 if (rs->md.new_layout < 0) {
1502 rs->ti->error = "Error getting raid10 format";
1503 return rs->md.new_layout;
1504 }
1505
1506 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1507 if (!rt) {
1508 rs->ti->error = "Failed to recognize new raid10 layout";
1509 return -EINVAL;
1510 }
1511
1512 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1513 rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1514 test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1515 rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1516 return -EINVAL;
1517 }
1518 }
1519
1520 rs->raid10_copies = raid10_copies;
1521
1522 /* Assume there are no metadata devices until the drives are parsed */
1523 rs->md.persistent = 0;
1524 rs->md.external = 1;
1525
1526 /* Check, if any invalid ctr arguments have been passed in for the raid level */
1527 return rs_check_for_valid_flags(rs);
1528}
1529
1530/* Set raid4/5/6 cache size */
1531static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1532{
1533 int r;
1534 struct r5conf *conf;
1535 struct mddev *mddev = &rs->md;
1536 uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1537 uint32_t nr_stripes = rs->stripe_cache_entries;
1538
1539 if (!rt_is_raid456(rs->raid_type)) {
1540 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1541 return -EINVAL;
1542 }
1543
1544 if (nr_stripes < min_stripes) {
1545 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1546 nr_stripes, min_stripes);
1547 nr_stripes = min_stripes;
1548 }
1549
1550 conf = mddev->private;
1551 if (!conf) {
1552 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1553 return -EINVAL;
1554 }
1555
1556 /* Try setting number of stripes in raid456 stripe cache */
1557 if (conf->min_nr_stripes != nr_stripes) {
1558 r = raid5_set_cache_size(mddev, nr_stripes);
1559 if (r) {
1560 rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1561 return r;
1562 }
1563
1564 DMINFO("%u stripe cache entries", nr_stripes);
1565 }
1566
1567 return 0;
1568}
1569
1570/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1571static unsigned int mddev_data_stripes(struct raid_set *rs)
1572{
1573 return rs->md.raid_disks - rs->raid_type->parity_devs;
1574}
1575
1576/* Return # of data stripes of @rs (i.e. as of ctr) */
1577static unsigned int rs_data_stripes(struct raid_set *rs)
1578{
1579 return rs->raid_disks - rs->raid_type->parity_devs;
1580}
1581
1582/*
1583 * Retrieve rdev->sectors from any valid raid device of @rs
1584 * to allow userpace to pass in arbitray "- -" device tupples.
1585 */
1586static sector_t __rdev_sectors(struct raid_set *rs)
1587{
1588 int i;
1589
1590 for (i = 0; i < rs->raid_disks; i++) {
1591 struct md_rdev *rdev = &rs->dev[i].rdev;
1592
1593 if (!test_bit(Journal, &rdev->flags) &&
1594 rdev->bdev && rdev->sectors)
1595 return rdev->sectors;
1596 }
1597
1598 return 0;
1599}
1600
1601/* Check that calculated dev_sectors fits all component devices. */
1602static int _check_data_dev_sectors(struct raid_set *rs)
1603{
1604 sector_t ds = ~0;
1605 struct md_rdev *rdev;
1606
1607 rdev_for_each(rdev, &rs->md)
1608 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1609 ds = min(ds, to_sector(i_size_read(rdev->bdev->bd_inode)));
1610 if (ds < rs->md.dev_sectors) {
1611 rs->ti->error = "Component device(s) too small";
1612 return -EINVAL;
1613 }
1614 }
1615
1616 return 0;
1617}
1618
1619/* Calculate the sectors per device and per array used for @rs */
1620static int rs_set_dev_and_array_sectors(struct raid_set *rs, bool use_mddev)
1621{
1622 int delta_disks;
1623 unsigned int data_stripes;
1624 struct mddev *mddev = &rs->md;
1625 struct md_rdev *rdev;
1626 sector_t array_sectors = rs->ti->len, dev_sectors = rs->ti->len;
1627
1628 if (use_mddev) {
1629 delta_disks = mddev->delta_disks;
1630 data_stripes = mddev_data_stripes(rs);
1631 } else {
1632 delta_disks = rs->delta_disks;
1633 data_stripes = rs_data_stripes(rs);
1634 }
1635
1636 /* Special raid1 case w/o delta_disks support (yet) */
1637 if (rt_is_raid1(rs->raid_type))
1638 ;
1639 else if (rt_is_raid10(rs->raid_type)) {
1640 if (rs->raid10_copies < 2 ||
1641 delta_disks < 0) {
1642 rs->ti->error = "Bogus raid10 data copies or delta disks";
1643 return -EINVAL;
1644 }
1645
1646 dev_sectors *= rs->raid10_copies;
1647 if (sector_div(dev_sectors, data_stripes))
1648 goto bad;
1649
1650 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1651 if (sector_div(array_sectors, rs->raid10_copies))
1652 goto bad;
1653
1654 } else if (sector_div(dev_sectors, data_stripes))
1655 goto bad;
1656
1657 else
1658 /* Striped layouts */
1659 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1660
1661 rdev_for_each(rdev, mddev)
1662 if (!test_bit(Journal, &rdev->flags))
1663 rdev->sectors = dev_sectors;
1664
1665 mddev->array_sectors = array_sectors;
1666 mddev->dev_sectors = dev_sectors;
1667
1668 return _check_data_dev_sectors(rs);
1669bad:
1670 rs->ti->error = "Target length not divisible by number of data devices";
1671 return -EINVAL;
1672}
1673
1674/* Setup recovery on @rs */
1675static void __rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1676{
1677 /* raid0 does not recover */
1678 if (rs_is_raid0(rs))
1679 rs->md.recovery_cp = MaxSector;
1680 /*
1681 * A raid6 set has to be recovered either
1682 * completely or for the grown part to
1683 * ensure proper parity and Q-Syndrome
1684 */
1685 else if (rs_is_raid6(rs))
1686 rs->md.recovery_cp = dev_sectors;
1687 /*
1688 * Other raid set types may skip recovery
1689 * depending on the 'nosync' flag.
1690 */
1691 else
1692 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1693 ? MaxSector : dev_sectors;
1694}
1695
1696/* Setup recovery on @rs based on raid type, device size and 'nosync' flag */
1697static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1698{
1699 if (!dev_sectors)
1700 /* New raid set or 'sync' flag provided */
1701 __rs_setup_recovery(rs, 0);
1702 else if (dev_sectors == MaxSector)
1703 /* Prevent recovery */
1704 __rs_setup_recovery(rs, MaxSector);
1705 else if (__rdev_sectors(rs) < dev_sectors)
1706 /* Grown raid set */
1707 __rs_setup_recovery(rs, __rdev_sectors(rs));
1708 else
1709 __rs_setup_recovery(rs, MaxSector);
1710}
1711
1712static void do_table_event(struct work_struct *ws)
1713{
1714 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1715
1716 smp_rmb(); /* Make sure we access most actual mddev properties */
1717 if (!rs_is_reshaping(rs)) {
1718 if (rs_is_raid10(rs))
1719 rs_set_rdev_sectors(rs);
1720 rs_set_capacity(rs);
1721 }
1722 dm_table_event(rs->ti->table);
1723}
1724
1725static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
1726{
1727 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
1728
1729 return mddev_congested(&rs->md, bits);
1730}
1731
1732/*
1733 * Make sure a valid takover (level switch) is being requested on @rs
1734 *
1735 * Conversions of raid sets from one MD personality to another
1736 * have to conform to restrictions which are enforced here.
1737 */
1738static int rs_check_takeover(struct raid_set *rs)
1739{
1740 struct mddev *mddev = &rs->md;
1741 unsigned int near_copies;
1742
1743 if (rs->md.degraded) {
1744 rs->ti->error = "Can't takeover degraded raid set";
1745 return -EPERM;
1746 }
1747
1748 if (rs_is_reshaping(rs)) {
1749 rs->ti->error = "Can't takeover reshaping raid set";
1750 return -EPERM;
1751 }
1752
1753 switch (mddev->level) {
1754 case 0:
1755 /* raid0 -> raid1/5 with one disk */
1756 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1757 mddev->raid_disks == 1)
1758 return 0;
1759
1760 /* raid0 -> raid10 */
1761 if (mddev->new_level == 10 &&
1762 !(rs->raid_disks % mddev->raid_disks))
1763 return 0;
1764
1765 /* raid0 with multiple disks -> raid4/5/6 */
1766 if (__within_range(mddev->new_level, 4, 6) &&
1767 mddev->new_layout == ALGORITHM_PARITY_N &&
1768 mddev->raid_disks > 1)
1769 return 0;
1770
1771 break;
1772
1773 case 10:
1774 /* Can't takeover raid10_offset! */
1775 if (__is_raid10_offset(mddev->layout))
1776 break;
1777
1778 near_copies = __raid10_near_copies(mddev->layout);
1779
1780 /* raid10* -> raid0 */
1781 if (mddev->new_level == 0) {
1782 /* Can takeover raid10_near with raid disks divisable by data copies! */
1783 if (near_copies > 1 &&
1784 !(mddev->raid_disks % near_copies)) {
1785 mddev->raid_disks /= near_copies;
1786 mddev->delta_disks = mddev->raid_disks;
1787 return 0;
1788 }
1789
1790 /* Can takeover raid10_far */
1791 if (near_copies == 1 &&
1792 __raid10_far_copies(mddev->layout) > 1)
1793 return 0;
1794
1795 break;
1796 }
1797
1798 /* raid10_{near,far} -> raid1 */
1799 if (mddev->new_level == 1 &&
1800 max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1801 return 0;
1802
1803 /* raid10_{near,far} with 2 disks -> raid4/5 */
1804 if (__within_range(mddev->new_level, 4, 5) &&
1805 mddev->raid_disks == 2)
1806 return 0;
1807 break;
1808
1809 case 1:
1810 /* raid1 with 2 disks -> raid4/5 */
1811 if (__within_range(mddev->new_level, 4, 5) &&
1812 mddev->raid_disks == 2) {
1813 mddev->degraded = 1;
1814 return 0;
1815 }
1816
1817 /* raid1 -> raid0 */
1818 if (mddev->new_level == 0 &&
1819 mddev->raid_disks == 1)
1820 return 0;
1821
1822 /* raid1 -> raid10 */
1823 if (mddev->new_level == 10)
1824 return 0;
1825 break;
1826
1827 case 4:
1828 /* raid4 -> raid0 */
1829 if (mddev->new_level == 0)
1830 return 0;
1831
1832 /* raid4 -> raid1/5 with 2 disks */
1833 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1834 mddev->raid_disks == 2)
1835 return 0;
1836
1837 /* raid4 -> raid5/6 with parity N */
1838 if (__within_range(mddev->new_level, 5, 6) &&
1839 mddev->layout == ALGORITHM_PARITY_N)
1840 return 0;
1841 break;
1842
1843 case 5:
1844 /* raid5 with parity N -> raid0 */
1845 if (mddev->new_level == 0 &&
1846 mddev->layout == ALGORITHM_PARITY_N)
1847 return 0;
1848
1849 /* raid5 with parity N -> raid4 */
1850 if (mddev->new_level == 4 &&
1851 mddev->layout == ALGORITHM_PARITY_N)
1852 return 0;
1853
1854 /* raid5 with 2 disks -> raid1/4/10 */
1855 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1856 mddev->raid_disks == 2)
1857 return 0;
1858
1859 /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1860 if (mddev->new_level == 6 &&
1861 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1862 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1863 return 0;
1864 break;
1865
1866 case 6:
1867 /* raid6 with parity N -> raid0 */
1868 if (mddev->new_level == 0 &&
1869 mddev->layout == ALGORITHM_PARITY_N)
1870 return 0;
1871
1872 /* raid6 with parity N -> raid4 */
1873 if (mddev->new_level == 4 &&
1874 mddev->layout == ALGORITHM_PARITY_N)
1875 return 0;
1876
1877 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1878 if (mddev->new_level == 5 &&
1879 ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1880 __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1881 return 0;
1882
1883 default:
1884 break;
1885 }
1886
1887 rs->ti->error = "takeover not possible";
1888 return -EINVAL;
1889}
1890
1891/* True if @rs requested to be taken over */
1892static bool rs_takeover_requested(struct raid_set *rs)
1893{
1894 return rs->md.new_level != rs->md.level;
1895}
1896
1897/* True if layout is set to reshape. */
1898static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1899{
1900 return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1901 rs->md.new_layout != rs->md.layout ||
1902 rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1903}
1904
1905/* True if @rs is requested to reshape by ctr */
1906static bool rs_reshape_requested(struct raid_set *rs)
1907{
1908 bool change;
1909 struct mddev *mddev = &rs->md;
1910
1911 if (rs_takeover_requested(rs))
1912 return false;
1913
1914 if (rs_is_raid0(rs))
1915 return false;
1916
1917 change = rs_is_layout_change(rs, false);
1918
1919 /* Historical case to support raid1 reshape without delta disks */
1920 if (rs_is_raid1(rs)) {
1921 if (rs->delta_disks)
1922 return !!rs->delta_disks;
1923
1924 return !change &&
1925 mddev->raid_disks != rs->raid_disks;
1926 }
1927
1928 if (rs_is_raid10(rs))
1929 return change &&
1930 !__is_raid10_far(mddev->new_layout) &&
1931 rs->delta_disks >= 0;
1932
1933 return change;
1934}
1935
1936/* Features */
1937#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
1938
1939/* State flags for sb->flags */
1940#define SB_FLAG_RESHAPE_ACTIVE 0x1
1941#define SB_FLAG_RESHAPE_BACKWARDS 0x2
1942
1943/*
1944 * This structure is never routinely used by userspace, unlike md superblocks.
1945 * Devices with this superblock should only ever be accessed via device-mapper.
1946 */
1947#define DM_RAID_MAGIC 0x64526D44
1948struct dm_raid_superblock {
1949 __le32 magic; /* "DmRd" */
1950 __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1951
1952 __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
1953 __le32 array_position; /* The position of this drive in the raid set */
1954
1955 __le64 events; /* Incremented by md when superblock updated */
1956 __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
1957 /* indicate failures (see extension below) */
1958
1959 /*
1960 * This offset tracks the progress of the repair or replacement of
1961 * an individual drive.
1962 */
1963 __le64 disk_recovery_offset;
1964
1965 /*
1966 * This offset tracks the progress of the initial raid set
1967 * synchronisation/parity calculation.
1968 */
1969 __le64 array_resync_offset;
1970
1971 /*
1972 * raid characteristics
1973 */
1974 __le32 level;
1975 __le32 layout;
1976 __le32 stripe_sectors;
1977
1978 /********************************************************************
1979 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1980 *
1981 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1982 */
1983
1984 __le32 flags; /* Flags defining array states for reshaping */
1985
1986 /*
1987 * This offset tracks the progress of a raid
1988 * set reshape in order to be able to restart it
1989 */
1990 __le64 reshape_position;
1991
1992 /*
1993 * These define the properties of the array in case of an interrupted reshape
1994 */
1995 __le32 new_level;
1996 __le32 new_layout;
1997 __le32 new_stripe_sectors;
1998 __le32 delta_disks;
1999
2000 __le64 array_sectors; /* Array size in sectors */
2001
2002 /*
2003 * Sector offsets to data on devices (reshaping).
2004 * Needed to support out of place reshaping, thus
2005 * not writing over any stripes whilst converting
2006 * them from old to new layout
2007 */
2008 __le64 data_offset;
2009 __le64 new_data_offset;
2010
2011 __le64 sectors; /* Used device size in sectors */
2012
2013 /*
2014 * Additonal Bit field of devices indicating failures to support
2015 * up to 256 devices with the 1.9.0 on-disk metadata format
2016 */
2017 __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2018
2019 __le32 incompat_features; /* Used to indicate any incompatible features */
2020
2021 /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2022} __packed;
2023
2024/*
2025 * Check for reshape constraints on raid set @rs:
2026 *
2027 * - reshape function non-existent
2028 * - degraded set
2029 * - ongoing recovery
2030 * - ongoing reshape
2031 *
2032 * Returns 0 if none or -EPERM if given constraint
2033 * and error message reference in @errmsg
2034 */
2035static int rs_check_reshape(struct raid_set *rs)
2036{
2037 struct mddev *mddev = &rs->md;
2038
2039 if (!mddev->pers || !mddev->pers->check_reshape)
2040 rs->ti->error = "Reshape not supported";
2041 else if (mddev->degraded)
2042 rs->ti->error = "Can't reshape degraded raid set";
2043 else if (rs_is_recovering(rs))
2044 rs->ti->error = "Convert request on recovering raid set prohibited";
2045 else if (rs_is_reshaping(rs))
2046 rs->ti->error = "raid set already reshaping!";
2047 else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2048 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2049 else
2050 return 0;
2051
2052 return -EPERM;
2053}
2054
2055static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2056{
2057 BUG_ON(!rdev->sb_page);
2058
2059 if (rdev->sb_loaded && !force_reload)
2060 return 0;
2061
2062 rdev->sb_loaded = 0;
2063
2064 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) {
2065 DMERR("Failed to read superblock of device at position %d",
2066 rdev->raid_disk);
2067 md_error(rdev->mddev, rdev);
2068 set_bit(Faulty, &rdev->flags);
2069 return -EIO;
2070 }
2071
2072 rdev->sb_loaded = 1;
2073
2074 return 0;
2075}
2076
2077static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2078{
2079 failed_devices[0] = le64_to_cpu(sb->failed_devices);
2080 memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2081
2082 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2083 int i = ARRAY_SIZE(sb->extended_failed_devices);
2084
2085 while (i--)
2086 failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2087 }
2088}
2089
2090static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2091{
2092 int i = ARRAY_SIZE(sb->extended_failed_devices);
2093
2094 sb->failed_devices = cpu_to_le64(failed_devices[0]);
2095 while (i--)
2096 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2097}
2098
2099/*
2100 * Synchronize the superblock members with the raid set properties
2101 *
2102 * All superblock data is little endian.
2103 */
2104static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2105{
2106 bool update_failed_devices = false;
2107 unsigned int i;
2108 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2109 struct dm_raid_superblock *sb;
2110 struct raid_set *rs = container_of(mddev, struct raid_set, md);
2111
2112 /* No metadata device, no superblock */
2113 if (!rdev->meta_bdev)
2114 return;
2115
2116 BUG_ON(!rdev->sb_page);
2117
2118 sb = page_address(rdev->sb_page);
2119
2120 sb_retrieve_failed_devices(sb, failed_devices);
2121
2122 for (i = 0; i < rs->raid_disks; i++)
2123 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2124 update_failed_devices = true;
2125 set_bit(i, (void *) failed_devices);
2126 }
2127
2128 if (update_failed_devices)
2129 sb_update_failed_devices(sb, failed_devices);
2130
2131 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2132 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2133
2134 sb->num_devices = cpu_to_le32(mddev->raid_disks);
2135 sb->array_position = cpu_to_le32(rdev->raid_disk);
2136
2137 sb->events = cpu_to_le64(mddev->events);
2138
2139 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2140 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2141
2142 sb->level = cpu_to_le32(mddev->level);
2143 sb->layout = cpu_to_le32(mddev->layout);
2144 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2145
2146 /********************************************************************
2147 * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2148 *
2149 * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2150 */
2151 sb->new_level = cpu_to_le32(mddev->new_level);
2152 sb->new_layout = cpu_to_le32(mddev->new_layout);
2153 sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2154
2155 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2156
2157 smp_rmb(); /* Make sure we access most recent reshape position */
2158 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2159 if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2160 /* Flag ongoing reshape */
2161 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2162
2163 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2164 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2165 } else {
2166 /* Clear reshape flags */
2167 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2168 }
2169
2170 sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2171 sb->data_offset = cpu_to_le64(rdev->data_offset);
2172 sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2173 sb->sectors = cpu_to_le64(rdev->sectors);
2174 sb->incompat_features = cpu_to_le32(0);
2175
2176 /* Zero out the rest of the payload after the size of the superblock */
2177 memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2178}
2179
2180/*
2181 * super_load
2182 *
2183 * This function creates a superblock if one is not found on the device
2184 * and will decide which superblock to use if there's a choice.
2185 *
2186 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2187 */
2188static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2189{
2190 int r;
2191 struct dm_raid_superblock *sb;
2192 struct dm_raid_superblock *refsb;
2193 uint64_t events_sb, events_refsb;
2194
2195 r = read_disk_sb(rdev, rdev->sb_size, false);
2196 if (r)
2197 return r;
2198
2199 sb = page_address(rdev->sb_page);
2200
2201 /*
2202 * Two cases that we want to write new superblocks and rebuild:
2203 * 1) New device (no matching magic number)
2204 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2205 */
2206 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2207 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2208 super_sync(rdev->mddev, rdev);
2209
2210 set_bit(FirstUse, &rdev->flags);
2211 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2212
2213 /* Force writing of superblocks to disk */
2214 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2215
2216 /* Any superblock is better than none, choose that if given */
2217 return refdev ? 0 : 1;
2218 }
2219
2220 if (!refdev)
2221 return 1;
2222
2223 events_sb = le64_to_cpu(sb->events);
2224
2225 refsb = page_address(refdev->sb_page);
2226 events_refsb = le64_to_cpu(refsb->events);
2227
2228 return (events_sb > events_refsb) ? 1 : 0;
2229}
2230
2231static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2232{
2233 int role;
2234 unsigned int d;
2235 struct mddev *mddev = &rs->md;
2236 uint64_t events_sb;
2237 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2238 struct dm_raid_superblock *sb;
2239 uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2240 struct md_rdev *r;
2241 struct dm_raid_superblock *sb2;
2242
2243 sb = page_address(rdev->sb_page);
2244 events_sb = le64_to_cpu(sb->events);
2245
2246 /*
2247 * Initialise to 1 if this is a new superblock.
2248 */
2249 mddev->events = events_sb ? : 1;
2250
2251 mddev->reshape_position = MaxSector;
2252
2253 mddev->raid_disks = le32_to_cpu(sb->num_devices);
2254 mddev->level = le32_to_cpu(sb->level);
2255 mddev->layout = le32_to_cpu(sb->layout);
2256 mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2257
2258 /*
2259 * Reshaping is supported, e.g. reshape_position is valid
2260 * in superblock and superblock content is authoritative.
2261 */
2262 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2263 /* Superblock is authoritative wrt given raid set layout! */
2264 mddev->new_level = le32_to_cpu(sb->new_level);
2265 mddev->new_layout = le32_to_cpu(sb->new_layout);
2266 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2267 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2268 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2269
2270 /* raid was reshaping and got interrupted */
2271 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2272 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2273 DMERR("Reshape requested but raid set is still reshaping");
2274 return -EINVAL;
2275 }
2276
2277 if (mddev->delta_disks < 0 ||
2278 (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2279 mddev->reshape_backwards = 1;
2280 else
2281 mddev->reshape_backwards = 0;
2282
2283 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2284 rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2285 }
2286
2287 } else {
2288 /*
2289 * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2290 */
2291 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2292 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2293
2294 if (rs_takeover_requested(rs)) {
2295 if (rt_cur && rt_new)
2296 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2297 rt_cur->name, rt_new->name);
2298 else
2299 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2300 return -EINVAL;
2301 } else if (rs_reshape_requested(rs)) {
2302 DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2303 if (mddev->layout != mddev->new_layout) {
2304 if (rt_cur && rt_new)
2305 DMERR(" current layout %s vs new layout %s",
2306 rt_cur->name, rt_new->name);
2307 else
2308 DMERR(" current layout 0x%X vs new layout 0x%X",
2309 le32_to_cpu(sb->layout), mddev->new_layout);
2310 }
2311 if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2312 DMERR(" current stripe sectors %u vs new stripe sectors %u",
2313 mddev->chunk_sectors, mddev->new_chunk_sectors);
2314 if (rs->delta_disks)
2315 DMERR(" current %u disks vs new %u disks",
2316 mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2317 if (rs_is_raid10(rs)) {
2318 DMERR(" Old layout: %s w/ %u copies",
2319 raid10_md_layout_to_format(mddev->layout),
2320 raid10_md_layout_to_copies(mddev->layout));
2321 DMERR(" New layout: %s w/ %u copies",
2322 raid10_md_layout_to_format(mddev->new_layout),
2323 raid10_md_layout_to_copies(mddev->new_layout));
2324 }
2325 return -EINVAL;
2326 }
2327
2328 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2329 }
2330
2331 if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2332 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2333
2334 /*
2335 * During load, we set FirstUse if a new superblock was written.
2336 * There are two reasons we might not have a superblock:
2337 * 1) The raid set is brand new - in which case, all of the
2338 * devices must have their In_sync bit set. Also,
2339 * recovery_cp must be 0, unless forced.
2340 * 2) This is a new device being added to an old raid set
2341 * and the new device needs to be rebuilt - in which
2342 * case the In_sync bit will /not/ be set and
2343 * recovery_cp must be MaxSector.
2344 * 3) This is/are a new device(s) being added to an old
2345 * raid set during takeover to a higher raid level
2346 * to provide capacity for redundancy or during reshape
2347 * to add capacity to grow the raid set.
2348 */
2349 d = 0;
2350 rdev_for_each(r, mddev) {
2351 if (test_bit(Journal, &rdev->flags))
2352 continue;
2353
2354 if (test_bit(FirstUse, &r->flags))
2355 new_devs++;
2356
2357 if (!test_bit(In_sync, &r->flags)) {
2358 DMINFO("Device %d specified for rebuild; clearing superblock",
2359 r->raid_disk);
2360 rebuilds++;
2361
2362 if (test_bit(FirstUse, &r->flags))
2363 rebuild_and_new++;
2364 }
2365
2366 d++;
2367 }
2368
2369 if (new_devs == rs->raid_disks || !rebuilds) {
2370 /* Replace a broken device */
2371 if (new_devs == 1 && !rs->delta_disks)
2372 ;
2373 if (new_devs == rs->raid_disks) {
2374 DMINFO("Superblocks created for new raid set");
2375 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2376 } else if (new_devs != rebuilds &&
2377 new_devs != rs->delta_disks) {
2378 DMERR("New device injected into existing raid set without "
2379 "'delta_disks' or 'rebuild' parameter specified");
2380 return -EINVAL;
2381 }
2382 } else if (new_devs && new_devs != rebuilds) {
2383 DMERR("%u 'rebuild' devices cannot be injected into"
2384 " a raid set with %u other first-time devices",
2385 rebuilds, new_devs);
2386 return -EINVAL;
2387 } else if (rebuilds) {
2388 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2389 DMERR("new device%s provided without 'rebuild'",
2390 new_devs > 1 ? "s" : "");
2391 return -EINVAL;
2392 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2393 DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2394 (unsigned long long) mddev->recovery_cp);
2395 return -EINVAL;
2396 } else if (rs_is_reshaping(rs)) {
2397 DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2398 (unsigned long long) mddev->reshape_position);
2399 return -EINVAL;
2400 }
2401 }
2402
2403 /*
2404 * Now we set the Faulty bit for those devices that are
2405 * recorded in the superblock as failed.
2406 */
2407 sb_retrieve_failed_devices(sb, failed_devices);
2408 rdev_for_each(r, mddev) {
2409 if (test_bit(Journal, &rdev->flags) ||
2410 !r->sb_page)
2411 continue;
2412 sb2 = page_address(r->sb_page);
2413 sb2->failed_devices = 0;
2414 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2415
2416 /*
2417 * Check for any device re-ordering.
2418 */
2419 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2420 role = le32_to_cpu(sb2->array_position);
2421 if (role < 0)
2422 continue;
2423
2424 if (role != r->raid_disk) {
2425 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2426 if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2427 rs->raid_disks % rs->raid10_copies) {
2428 rs->ti->error =
2429 "Cannot change raid10 near set to odd # of devices!";
2430 return -EINVAL;
2431 }
2432
2433 sb2->array_position = cpu_to_le32(r->raid_disk);
2434
2435 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2436 !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2437 !rt_is_raid1(rs->raid_type)) {
2438 rs->ti->error = "Cannot change device positions in raid set";
2439 return -EINVAL;
2440 }
2441
2442 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2443 }
2444
2445 /*
2446 * Partial recovery is performed on
2447 * returning failed devices.
2448 */
2449 if (test_bit(role, (void *) failed_devices))
2450 set_bit(Faulty, &r->flags);
2451 }
2452 }
2453
2454 return 0;
2455}
2456
2457static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2458{
2459 struct mddev *mddev = &rs->md;
2460 struct dm_raid_superblock *sb;
2461
2462 if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2463 return 0;
2464
2465 sb = page_address(rdev->sb_page);
2466
2467 /*
2468 * If mddev->events is not set, we know we have not yet initialized
2469 * the array.
2470 */
2471 if (!mddev->events && super_init_validation(rs, rdev))
2472 return -EINVAL;
2473
2474 if (le32_to_cpu(sb->compat_features) &&
2475 le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2476 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2477 return -EINVAL;
2478 }
2479
2480 if (sb->incompat_features) {
2481 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2482 return -EINVAL;
2483 }
2484
2485 /* Enable bitmap creation for RAID levels != 0 */
2486 mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2487 mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2488
2489 if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2490 /*
2491 * Retrieve rdev size stored in superblock to be prepared for shrink.
2492 * Check extended superblock members are present otherwise the size
2493 * will not be set!
2494 */
2495 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2496 rdev->sectors = le64_to_cpu(sb->sectors);
2497
2498 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2499 if (rdev->recovery_offset == MaxSector)
2500 set_bit(In_sync, &rdev->flags);
2501 /*
2502 * If no reshape in progress -> we're recovering single
2503 * disk(s) and have to set the device(s) to out-of-sync
2504 */
2505 else if (!rs_is_reshaping(rs))
2506 clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2507 }
2508
2509 /*
2510 * If a device comes back, set it as not In_sync and no longer faulty.
2511 */
2512 if (test_and_clear_bit(Faulty, &rdev->flags)) {
2513 rdev->recovery_offset = 0;
2514 clear_bit(In_sync, &rdev->flags);
2515 rdev->saved_raid_disk = rdev->raid_disk;
2516 }
2517
2518 /* Reshape support -> restore repective data offsets */
2519 rdev->data_offset = le64_to_cpu(sb->data_offset);
2520 rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2521
2522 return 0;
2523}
2524
2525/*
2526 * Analyse superblocks and select the freshest.
2527 */
2528static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2529{
2530 int r;
2531 struct md_rdev *rdev, *freshest;
2532 struct mddev *mddev = &rs->md;
2533
2534 freshest = NULL;
2535 rdev_for_each(rdev, mddev) {
2536 if (test_bit(Journal, &rdev->flags))
2537 continue;
2538
2539 if (!rdev->meta_bdev)
2540 continue;
2541
2542 /* Set superblock offset/size for metadata device. */
2543 rdev->sb_start = 0;
2544 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2545 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2546 DMERR("superblock size of a logical block is no longer valid");
2547 return -EINVAL;
2548 }
2549
2550 /*
2551 * Skipping super_load due to CTR_FLAG_SYNC will cause
2552 * the array to undergo initialization again as
2553 * though it were new. This is the intended effect
2554 * of the "sync" directive.
2555 *
2556 * With reshaping capability added, we must ensure that
2557 * that the "sync" directive is disallowed during the reshape.
2558 */
2559 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2560 continue;
2561
2562 r = super_load(rdev, freshest);
2563
2564 switch (r) {
2565 case 1:
2566 freshest = rdev;
2567 break;
2568 case 0:
2569 break;
2570 default:
2571 /* This is a failure to read the superblock from the metadata device. */
2572 /*
2573 * We have to keep any raid0 data/metadata device pairs or
2574 * the MD raid0 personality will fail to start the array.
2575 */
2576 if (rs_is_raid0(rs))
2577 continue;
2578
2579 /*
2580 * We keep the dm_devs to be able to emit the device tuple
2581 * properly on the table line in raid_status() (rather than
2582 * mistakenly acting as if '- -' got passed into the constructor).
2583 *
2584 * The rdev has to stay on the same_set list to allow for
2585 * the attempt to restore faulty devices on second resume.
2586 */
2587 rdev->raid_disk = rdev->saved_raid_disk = -1;
2588 break;
2589 }
2590 }
2591
2592 if (!freshest)
2593 return 0;
2594
2595 /*
2596 * Validation of the freshest device provides the source of
2597 * validation for the remaining devices.
2598 */
2599 rs->ti->error = "Unable to assemble array: Invalid superblocks";
2600 if (super_validate(rs, freshest))
2601 return -EINVAL;
2602
2603 if (validate_raid_redundancy(rs)) {
2604 rs->ti->error = "Insufficient redundancy to activate array";
2605 return -EINVAL;
2606 }
2607
2608 rdev_for_each(rdev, mddev)
2609 if (!test_bit(Journal, &rdev->flags) &&
2610 rdev != freshest &&
2611 super_validate(rs, rdev))
2612 return -EINVAL;
2613 return 0;
2614}
2615
2616/*
2617 * Adjust data_offset and new_data_offset on all disk members of @rs
2618 * for out of place reshaping if requested by contructor
2619 *
2620 * We need free space at the beginning of each raid disk for forward
2621 * and at the end for backward reshapes which userspace has to provide
2622 * via remapping/reordering of space.
2623 */
2624static int rs_adjust_data_offsets(struct raid_set *rs)
2625{
2626 sector_t data_offset = 0, new_data_offset = 0;
2627 struct md_rdev *rdev;
2628
2629 /* Constructor did not request data offset change */
2630 if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2631 if (!rs_is_reshapable(rs))
2632 goto out;
2633
2634 return 0;
2635 }
2636
2637 /* HM FIXME: get In_Sync raid_dev? */
2638 rdev = &rs->dev[0].rdev;
2639
2640 if (rs->delta_disks < 0) {
2641 /*
2642 * Removing disks (reshaping backwards):
2643 *
2644 * - before reshape: data is at offset 0 and free space
2645 * is at end of each component LV
2646 *
2647 * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2648 */
2649 data_offset = 0;
2650 new_data_offset = rs->data_offset;
2651
2652 } else if (rs->delta_disks > 0) {
2653 /*
2654 * Adding disks (reshaping forwards):
2655 *
2656 * - before reshape: data is at offset rs->data_offset != 0 and
2657 * free space is at begin of each component LV
2658 *
2659 * - after reshape: data is at offset 0 on each component LV
2660 */
2661 data_offset = rs->data_offset;
2662 new_data_offset = 0;
2663
2664 } else {
2665 /*
2666 * User space passes in 0 for data offset after having removed reshape space
2667 *
2668 * - or - (data offset != 0)
2669 *
2670 * Changing RAID layout or chunk size -> toggle offsets
2671 *
2672 * - before reshape: data is at offset rs->data_offset 0 and
2673 * free space is at end of each component LV
2674 * -or-
2675 * data is at offset rs->data_offset != 0 and
2676 * free space is at begin of each component LV
2677 *
2678 * - after reshape: data is at offset 0 if it was at offset != 0
2679 * or at offset != 0 if it was at offset 0
2680 * on each component LV
2681 *
2682 */
2683 data_offset = rs->data_offset ? rdev->data_offset : 0;
2684 new_data_offset = data_offset ? 0 : rs->data_offset;
2685 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2686 }
2687
2688 /*
2689 * Make sure we got a minimum amount of free sectors per device
2690 */
2691 if (rs->data_offset &&
2692 to_sector(i_size_read(rdev->bdev->bd_inode)) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2693 rs->ti->error = data_offset ? "No space for forward reshape" :
2694 "No space for backward reshape";
2695 return -ENOSPC;
2696 }
2697out:
2698 /*
2699 * Raise recovery_cp in case data_offset != 0 to
2700 * avoid false recovery positives in the constructor.
2701 */
2702 if (rs->md.recovery_cp < rs->md.dev_sectors)
2703 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2704
2705 /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2706 rdev_for_each(rdev, &rs->md) {
2707 if (!test_bit(Journal, &rdev->flags)) {
2708 rdev->data_offset = data_offset;
2709 rdev->new_data_offset = new_data_offset;
2710 }
2711 }
2712
2713 return 0;
2714}
2715
2716/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2717static void __reorder_raid_disk_indexes(struct raid_set *rs)
2718{
2719 int i = 0;
2720 struct md_rdev *rdev;
2721
2722 rdev_for_each(rdev, &rs->md) {
2723 if (!test_bit(Journal, &rdev->flags)) {
2724 rdev->raid_disk = i++;
2725 rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2726 }
2727 }
2728}
2729
2730/*
2731 * Setup @rs for takeover by a different raid level
2732 */
2733static int rs_setup_takeover(struct raid_set *rs)
2734{
2735 struct mddev *mddev = &rs->md;
2736 struct md_rdev *rdev;
2737 unsigned int d = mddev->raid_disks = rs->raid_disks;
2738 sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2739
2740 if (rt_is_raid10(rs->raid_type)) {
2741 if (rs_is_raid0(rs)) {
2742 /* Userpace reordered disks -> adjust raid_disk indexes */
2743 __reorder_raid_disk_indexes(rs);
2744
2745 /* raid0 -> raid10_far layout */
2746 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2747 rs->raid10_copies);
2748 } else if (rs_is_raid1(rs))
2749 /* raid1 -> raid10_near layout */
2750 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2751 rs->raid_disks);
2752 else
2753 return -EINVAL;
2754
2755 }
2756
2757 clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2758 mddev->recovery_cp = MaxSector;
2759
2760 while (d--) {
2761 rdev = &rs->dev[d].rdev;
2762
2763 if (test_bit(d, (void *) rs->rebuild_disks)) {
2764 clear_bit(In_sync, &rdev->flags);
2765 clear_bit(Faulty, &rdev->flags);
2766 mddev->recovery_cp = rdev->recovery_offset = 0;
2767 /* Bitmap has to be created when we do an "up" takeover */
2768 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2769 }
2770
2771 rdev->new_data_offset = new_data_offset;
2772 }
2773
2774 return 0;
2775}
2776
2777/* Prepare @rs for reshape */
2778static int rs_prepare_reshape(struct raid_set *rs)
2779{
2780 bool reshape;
2781 struct mddev *mddev = &rs->md;
2782
2783 if (rs_is_raid10(rs)) {
2784 if (rs->raid_disks != mddev->raid_disks &&
2785 __is_raid10_near(mddev->layout) &&
2786 rs->raid10_copies &&
2787 rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2788 /*
2789 * raid disk have to be multiple of data copies to allow this conversion,
2790 *
2791 * This is actually not a reshape it is a
2792 * rebuild of any additional mirrors per group
2793 */
2794 if (rs->raid_disks % rs->raid10_copies) {
2795 rs->ti->error = "Can't reshape raid10 mirror groups";
2796 return -EINVAL;
2797 }
2798
2799 /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2800 __reorder_raid_disk_indexes(rs);
2801 mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2802 rs->raid10_copies);
2803 mddev->new_layout = mddev->layout;
2804 reshape = false;
2805 } else
2806 reshape = true;
2807
2808 } else if (rs_is_raid456(rs))
2809 reshape = true;
2810
2811 else if (rs_is_raid1(rs)) {
2812 if (rs->delta_disks) {
2813 /* Process raid1 via delta_disks */
2814 mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2815 reshape = true;
2816 } else {
2817 /* Process raid1 without delta_disks */
2818 mddev->raid_disks = rs->raid_disks;
2819 reshape = false;
2820 }
2821 } else {
2822 rs->ti->error = "Called with bogus raid type";
2823 return -EINVAL;
2824 }
2825
2826 if (reshape) {
2827 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2828 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2829 } else if (mddev->raid_disks < rs->raid_disks)
2830 /* Create new superblocks and bitmaps, if any new disks */
2831 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2832
2833 return 0;
2834}
2835
2836/* Get reshape sectors from data_offsets or raid set */
2837static sector_t _get_reshape_sectors(struct raid_set *rs)
2838{
2839 struct md_rdev *rdev;
2840 sector_t reshape_sectors = 0;
2841
2842 rdev_for_each(rdev, &rs->md)
2843 if (!test_bit(Journal, &rdev->flags)) {
2844 reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2845 rdev->data_offset - rdev->new_data_offset :
2846 rdev->new_data_offset - rdev->data_offset;
2847 break;
2848 }
2849
2850 return max(reshape_sectors, (sector_t) rs->data_offset);
2851}
2852
2853/*
2854 * Reshape:
2855 * - change raid layout
2856 * - change chunk size
2857 * - add disks
2858 * - remove disks
2859 */
2860static int rs_setup_reshape(struct raid_set *rs)
2861{
2862 int r = 0;
2863 unsigned int cur_raid_devs, d;
2864 sector_t reshape_sectors = _get_reshape_sectors(rs);
2865 struct mddev *mddev = &rs->md;
2866 struct md_rdev *rdev;
2867
2868 mddev->delta_disks = rs->delta_disks;
2869 cur_raid_devs = mddev->raid_disks;
2870
2871 /* Ignore impossible layout change whilst adding/removing disks */
2872 if (mddev->delta_disks &&
2873 mddev->layout != mddev->new_layout) {
2874 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2875 mddev->new_layout = mddev->layout;
2876 }
2877
2878 /*
2879 * Adjust array size:
2880 *
2881 * - in case of adding disk(s), array size has
2882 * to grow after the disk adding reshape,
2883 * which'll hapen in the event handler;
2884 * reshape will happen forward, so space has to
2885 * be available at the beginning of each disk
2886 *
2887 * - in case of removing disk(s), array size
2888 * has to shrink before starting the reshape,
2889 * which'll happen here;
2890 * reshape will happen backward, so space has to
2891 * be available at the end of each disk
2892 *
2893 * - data_offset and new_data_offset are
2894 * adjusted for aforementioned out of place
2895 * reshaping based on userspace passing in
2896 * the "data_offset <sectors>" key/value
2897 * pair via the constructor
2898 */
2899
2900 /* Add disk(s) */
2901 if (rs->delta_disks > 0) {
2902 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2903 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2904 rdev = &rs->dev[d].rdev;
2905 clear_bit(In_sync, &rdev->flags);
2906
2907 /*
2908 * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2909 * by md, which'll store that erroneously in the superblock on reshape
2910 */
2911 rdev->saved_raid_disk = -1;
2912 rdev->raid_disk = d;
2913
2914 rdev->sectors = mddev->dev_sectors;
2915 rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2916 }
2917
2918 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2919
2920 /* Remove disk(s) */
2921 } else if (rs->delta_disks < 0) {
2922 r = rs_set_dev_and_array_sectors(rs, true);
2923 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2924
2925 /* Change layout and/or chunk size */
2926 } else {
2927 /*
2928 * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2929 *
2930 * keeping number of disks and do layout change ->
2931 *
2932 * toggle reshape_backward depending on data_offset:
2933 *
2934 * - free space upfront -> reshape forward
2935 *
2936 * - free space at the end -> reshape backward
2937 *
2938 *
2939 * This utilizes free reshape space avoiding the need
2940 * for userspace to move (parts of) LV segments in
2941 * case of layout/chunksize change (for disk
2942 * adding/removing reshape space has to be at
2943 * the proper address (see above with delta_disks):
2944 *
2945 * add disk(s) -> begin
2946 * remove disk(s)-> end
2947 */
2948 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2949 }
2950
2951 /*
2952 * Adjust device size for forward reshape
2953 * because md_finish_reshape() reduces it.
2954 */
2955 if (!mddev->reshape_backwards)
2956 rdev_for_each(rdev, &rs->md)
2957 if (!test_bit(Journal, &rdev->flags))
2958 rdev->sectors += reshape_sectors;
2959
2960 return r;
2961}
2962
2963/*
2964 * If the md resync thread has updated superblock with max reshape position
2965 * at the end of a reshape but not (yet) reset the layout configuration
2966 * changes -> reset the latter.
2967 */
2968static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2969{
2970 if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2971 rs_set_cur(rs);
2972 rs->md.delta_disks = 0;
2973 rs->md.reshape_backwards = 0;
2974 }
2975}
2976
2977/*
2978 * Enable/disable discard support on RAID set depending on
2979 * RAID level and discard properties of underlying RAID members.
2980 */
2981static void configure_discard_support(struct raid_set *rs)
2982{
2983 int i;
2984 bool raid456;
2985 struct dm_target *ti = rs->ti;
2986
2987 /*
2988 * XXX: RAID level 4,5,6 require zeroing for safety.
2989 */
2990 raid456 = rs_is_raid456(rs);
2991
2992 for (i = 0; i < rs->raid_disks; i++) {
2993 struct request_queue *q;
2994
2995 if (!rs->dev[i].rdev.bdev)
2996 continue;
2997
2998 q = bdev_get_queue(rs->dev[i].rdev.bdev);
2999 if (!q || !blk_queue_discard(q))
3000 return;
3001
3002 if (raid456) {
3003 if (!devices_handle_discard_safely) {
3004 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
3005 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
3006 return;
3007 }
3008 }
3009 }
3010
3011 ti->num_discard_bios = 1;
3012}
3013
3014/*
3015 * Construct a RAID0/1/10/4/5/6 mapping:
3016 * Args:
3017 * <raid_type> <#raid_params> <raid_params>{0,} \
3018 * <#raid_devs> [<meta_dev1> <dev1>]{1,}
3019 *
3020 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
3021 * details on possible <raid_params>.
3022 *
3023 * Userspace is free to initialize the metadata devices, hence the superblocks to
3024 * enforce recreation based on the passed in table parameters.
3025 *
3026 */
3027static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3028{
3029 int r;
3030 bool resize = false;
3031 struct raid_type *rt;
3032 unsigned int num_raid_params, num_raid_devs;
3033 sector_t calculated_dev_sectors, rdev_sectors, reshape_sectors;
3034 struct raid_set *rs = NULL;
3035 const char *arg;
3036 struct rs_layout rs_layout;
3037 struct dm_arg_set as = { argc, argv }, as_nrd;
3038 struct dm_arg _args[] = {
3039 { 0, as.argc, "Cannot understand number of raid parameters" },
3040 { 1, 254, "Cannot understand number of raid devices parameters" }
3041 };
3042
3043 /* Must have <raid_type> */
3044 arg = dm_shift_arg(&as);
3045 if (!arg) {
3046 ti->error = "No arguments";
3047 return -EINVAL;
3048 }
3049
3050 rt = get_raid_type(arg);
3051 if (!rt) {
3052 ti->error = "Unrecognised raid_type";
3053 return -EINVAL;
3054 }
3055
3056 /* Must have <#raid_params> */
3057 if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3058 return -EINVAL;
3059
3060 /* number of raid device tupples <meta_dev data_dev> */
3061 as_nrd = as;
3062 dm_consume_args(&as_nrd, num_raid_params);
3063 _args[1].max = (as_nrd.argc - 1) / 2;
3064 if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3065 return -EINVAL;
3066
3067 if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3068 ti->error = "Invalid number of supplied raid devices";
3069 return -EINVAL;
3070 }
3071
3072 rs = raid_set_alloc(ti, rt, num_raid_devs);
3073 if (IS_ERR(rs))
3074 return PTR_ERR(rs);
3075
3076 r = parse_raid_params(rs, &as, num_raid_params);
3077 if (r)
3078 goto bad;
3079
3080 r = parse_dev_params(rs, &as);
3081 if (r)
3082 goto bad;
3083
3084 rs->md.sync_super = super_sync;
3085
3086 /*
3087 * Calculate ctr requested array and device sizes to allow
3088 * for superblock analysis needing device sizes defined.
3089 *
3090 * Any existing superblock will overwrite the array and device sizes
3091 */
3092 r = rs_set_dev_and_array_sectors(rs, false);
3093 if (r)
3094 goto bad;
3095
3096 calculated_dev_sectors = rs->md.dev_sectors;
3097
3098 /*
3099 * Backup any new raid set level, layout, ...
3100 * requested to be able to compare to superblock
3101 * members for conversion decisions.
3102 */
3103 rs_config_backup(rs, &rs_layout);
3104
3105 r = analyse_superblocks(ti, rs);
3106 if (r)
3107 goto bad;
3108
3109 rdev_sectors = __rdev_sectors(rs);
3110 if (!rdev_sectors) {
3111 ti->error = "Invalid rdev size";
3112 r = -EINVAL;
3113 goto bad;
3114 }
3115
3116
3117 reshape_sectors = _get_reshape_sectors(rs);
3118 if (calculated_dev_sectors != rdev_sectors)
3119 resize = calculated_dev_sectors != (reshape_sectors ? rdev_sectors - reshape_sectors : rdev_sectors);
3120
3121 INIT_WORK(&rs->md.event_work, do_table_event);
3122 ti->private = rs;
3123 ti->num_flush_bios = 1;
3124
3125 /* Restore any requested new layout for conversion decision */
3126 rs_config_restore(rs, &rs_layout);
3127
3128 /*
3129 * Now that we have any superblock metadata available,
3130 * check for new, recovering, reshaping, to be taken over,
3131 * to be reshaped or an existing, unchanged raid set to
3132 * run in sequence.
3133 */
3134 if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3135 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3136 if (rs_is_raid6(rs) &&
3137 test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3138 ti->error = "'nosync' not allowed for new raid6 set";
3139 r = -EINVAL;
3140 goto bad;
3141 }
3142 rs_setup_recovery(rs, 0);
3143 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3144 rs_set_new(rs);
3145 } else if (rs_is_recovering(rs)) {
3146 /* Rebuild particular devices */
3147 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3148 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3149 rs_setup_recovery(rs, MaxSector);
3150 }
3151 /* A recovering raid set may be resized */
3152 ; /* skip setup rs */
3153 } else if (rs_is_reshaping(rs)) {
3154 /* Have to reject size change request during reshape */
3155 if (resize) {
3156 ti->error = "Can't resize a reshaping raid set";
3157 r = -EPERM;
3158 goto bad;
3159 }
3160 /* skip setup rs */
3161 } else if (rs_takeover_requested(rs)) {
3162 if (rs_is_reshaping(rs)) {
3163 ti->error = "Can't takeover a reshaping raid set";
3164 r = -EPERM;
3165 goto bad;
3166 }
3167
3168 /* We can't takeover a journaled raid4/5/6 */
3169 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3170 ti->error = "Can't takeover a journaled raid4/5/6 set";
3171 r = -EPERM;
3172 goto bad;
3173 }
3174
3175 /*
3176 * If a takeover is needed, userspace sets any additional
3177 * devices to rebuild and we can check for a valid request here.
3178 *
3179 * If acceptible, set the level to the new requested
3180 * one, prohibit requesting recovery, allow the raid
3181 * set to run and store superblocks during resume.
3182 */
3183 r = rs_check_takeover(rs);
3184 if (r)
3185 goto bad;
3186
3187 r = rs_setup_takeover(rs);
3188 if (r)
3189 goto bad;
3190
3191 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3192 /* Takeover ain't recovery, so disable recovery */
3193 rs_setup_recovery(rs, MaxSector);
3194 rs_set_new(rs);
3195 } else if (rs_reshape_requested(rs)) {
3196 /*
3197 * No need to check for 'ongoing' takeover here, because takeover
3198 * is an instant operation as oposed to an ongoing reshape.
3199 */
3200
3201 /* We can't reshape a journaled raid4/5/6 */
3202 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3203 ti->error = "Can't reshape a journaled raid4/5/6 set";
3204 r = -EPERM;
3205 goto bad;
3206 }
3207
3208 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3209 if (reshape_sectors || rs_is_raid1(rs)) {
3210 /*
3211 * We can only prepare for a reshape here, because the
3212 * raid set needs to run to provide the repective reshape
3213 * check functions via its MD personality instance.
3214 *
3215 * So do the reshape check after md_run() succeeded.
3216 */
3217 r = rs_prepare_reshape(rs);
3218 if (r)
3219 goto bad;
3220
3221 /* Reshaping ain't recovery, so disable recovery */
3222 rs_setup_recovery(rs, MaxSector);
3223 }
3224 rs_set_cur(rs);
3225 } else {
3226 /* May not set recovery when a device rebuild is requested */
3227 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3228 rs_setup_recovery(rs, MaxSector);
3229 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3230 } else
3231 rs_setup_recovery(rs, test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ?
3232 0 : (resize ? calculated_dev_sectors : MaxSector));
3233 rs_set_cur(rs);
3234 }
3235
3236 /* If constructor requested it, change data and new_data offsets */
3237 r = rs_adjust_data_offsets(rs);
3238 if (r)
3239 goto bad;
3240
3241 /* Catch any inconclusive reshape superblock content. */
3242 rs_reset_inconclusive_reshape(rs);
3243
3244 /* Start raid set read-only and assumed clean to change in raid_resume() */
3245 rs->md.ro = 1;
3246 rs->md.in_sync = 1;
3247
3248 /* Keep array frozen until resume. */
3249 set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3250
3251 /* Has to be held on running the array */
3252 mddev_lock_nointr(&rs->md);
3253 r = md_run(&rs->md);
3254 rs->md.in_sync = 0; /* Assume already marked dirty */
3255 if (r) {
3256 ti->error = "Failed to run raid array";
3257 mddev_unlock(&rs->md);
3258 goto bad;
3259 }
3260
3261 r = md_start(&rs->md);
3262 if (r) {
3263 ti->error = "Failed to start raid array";
3264 mddev_unlock(&rs->md);
3265 goto bad_md_start;
3266 }
3267
3268 rs->callbacks.congested_fn = raid_is_congested;
3269 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
3270
3271 /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3272 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3273 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3274 if (r) {
3275 ti->error = "Failed to set raid4/5/6 journal mode";
3276 mddev_unlock(&rs->md);
3277 goto bad_journal_mode_set;
3278 }
3279 }
3280
3281 mddev_suspend(&rs->md);
3282 set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3283
3284 /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3285 if (rs_is_raid456(rs)) {
3286 r = rs_set_raid456_stripe_cache(rs);
3287 if (r) {
3288 mddev_unlock(&rs->md);
3289 goto bad_stripe_cache;
3290 }
3291 }
3292
3293 /* Now do an early reshape check */
3294 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3295 r = rs_check_reshape(rs);
3296 if (r) {
3297 mddev_unlock(&rs->md);
3298 goto bad_check_reshape;
3299 }
3300
3301 /* Restore new, ctr requested layout to perform check */
3302 rs_config_restore(rs, &rs_layout);
3303
3304 if (rs->md.pers->start_reshape) {
3305 r = rs->md.pers->check_reshape(&rs->md);
3306 if (r) {
3307 ti->error = "Reshape check failed";
3308 mddev_unlock(&rs->md);
3309 goto bad_check_reshape;
3310 }
3311 }
3312 }
3313
3314 /* Disable/enable discard support on raid set. */
3315 configure_discard_support(rs);
3316
3317 mddev_unlock(&rs->md);
3318 return 0;
3319
3320bad_md_start:
3321bad_journal_mode_set:
3322bad_stripe_cache:
3323bad_check_reshape:
3324 md_stop(&rs->md);
3325bad:
3326 raid_set_free(rs);
3327
3328 return r;
3329}
3330
3331static void raid_dtr(struct dm_target *ti)
3332{
3333 struct raid_set *rs = ti->private;
3334
3335 list_del_init(&rs->callbacks.list);
3336 md_stop(&rs->md);
3337 raid_set_free(rs);
3338}
3339
3340static int raid_map(struct dm_target *ti, struct bio *bio)
3341{
3342 struct raid_set *rs = ti->private;
3343 struct mddev *mddev = &rs->md;
3344
3345 /*
3346 * If we're reshaping to add disk(s), ti->len and
3347 * mddev->array_sectors will differ during the process
3348 * (ti->len > mddev->array_sectors), so we have to requeue
3349 * bios with addresses > mddev->array_sectors here or
3350 * there will occur accesses past EOD of the component
3351 * data images thus erroring the raid set.
3352 */
3353 if (unlikely(bio_has_data(bio) && bio_end_sector(bio) > mddev->array_sectors))
3354 return DM_MAPIO_REQUEUE;
3355
3356 md_handle_request(mddev, bio);
3357
3358 return DM_MAPIO_SUBMITTED;
3359}
3360
3361/* Return sync state string for @state */
3362enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3363static const char *sync_str(enum sync_state state)
3364{
3365 /* Has to be in above sync_state order! */
3366 static const char *sync_strs[] = {
3367 "frozen",
3368 "reshape",
3369 "resync",
3370 "check",
3371 "repair",
3372 "recover",
3373 "idle"
3374 };
3375
3376 return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3377};
3378
3379/* Return enum sync_state for @mddev derived from @recovery flags */
3380static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3381{
3382 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3383 return st_frozen;
3384
3385 /* The MD sync thread can be done with io or be interrupted but still be running */
3386 if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3387 (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3388 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3389 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3390 return st_reshape;
3391
3392 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3393 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3394 return st_resync;
3395 if (test_bit(MD_RECOVERY_CHECK, &recovery))
3396 return st_check;
3397 return st_repair;
3398 }
3399
3400 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3401 return st_recover;
3402
3403 if (mddev->reshape_position != MaxSector)
3404 return st_reshape;
3405 }
3406
3407 return st_idle;
3408}
3409
3410/*
3411 * Return status string for @rdev
3412 *
3413 * Status characters:
3414 *
3415 * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
3416 * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3417 * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3418 * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3419 */
3420static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3421{
3422 if (!rdev->bdev)
3423 return "-";
3424 else if (test_bit(Faulty, &rdev->flags))
3425 return "D";
3426 else if (test_bit(Journal, &rdev->flags))
3427 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3428 else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3429 (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3430 !test_bit(In_sync, &rdev->flags)))
3431 return "a";
3432 else
3433 return "A";
3434}
3435
3436/* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3437static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3438 sector_t resync_max_sectors)
3439{
3440 sector_t r;
3441 enum sync_state state;
3442 struct mddev *mddev = &rs->md;
3443
3444 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3445 clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3446
3447 if (rs_is_raid0(rs)) {
3448 r = resync_max_sectors;
3449 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3450
3451 } else {
3452 state = decipher_sync_action(mddev, recovery);
3453
3454 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3455 r = mddev->recovery_cp;
3456 else
3457 r = mddev->curr_resync_completed;
3458
3459 if (state == st_idle && r >= resync_max_sectors) {
3460 /*
3461 * Sync complete.
3462 */
3463 /* In case we have finished recovering, the array is in sync. */
3464 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3465 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3466
3467 } else if (state == st_recover)
3468 /*
3469 * In case we are recovering, the array is not in sync
3470 * and health chars should show the recovering legs.
3471 */
3472 ;
3473 else if (state == st_resync)
3474 /*
3475 * If "resync" is occurring, the raid set
3476 * is or may be out of sync hence the health
3477 * characters shall be 'a'.
3478 */
3479 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3480 else if (state == st_reshape)
3481 /*
3482 * If "reshape" is occurring, the raid set
3483 * is or may be out of sync hence the health
3484 * characters shall be 'a'.
3485 */
3486 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3487
3488 else if (state == st_check || state == st_repair)
3489 /*
3490 * If "check" or "repair" is occurring, the raid set has
3491 * undergone an initial sync and the health characters
3492 * should not be 'a' anymore.
3493 */
3494 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3495
3496 else {
3497 struct md_rdev *rdev;
3498
3499 /*
3500 * We are idle and recovery is needed, prevent 'A' chars race
3501 * caused by components still set to in-sync by constructor.
3502 */
3503 if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3504 set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3505
3506 /*
3507 * The raid set may be doing an initial sync, or it may
3508 * be rebuilding individual components. If all the
3509 * devices are In_sync, then it is the raid set that is
3510 * being initialized.
3511 */
3512 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3513 rdev_for_each(rdev, mddev)
3514 if (!test_bit(Journal, &rdev->flags) &&
3515 !test_bit(In_sync, &rdev->flags)) {
3516 clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3517 break;
3518 }
3519 }
3520 }
3521
3522 return min(r, resync_max_sectors);
3523}
3524
3525/* Helper to return @dev name or "-" if !@dev */
3526static const char *__get_dev_name(struct dm_dev *dev)
3527{
3528 return dev ? dev->name : "-";
3529}
3530
3531static void raid_status(struct dm_target *ti, status_type_t type,
3532 unsigned int status_flags, char *result, unsigned int maxlen)
3533{
3534 struct raid_set *rs = ti->private;
3535 struct mddev *mddev = &rs->md;
3536 struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3537 int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3538 unsigned long recovery;
3539 unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3540 unsigned int sz = 0;
3541 unsigned int rebuild_disks;
3542 unsigned int write_mostly_params = 0;
3543 sector_t progress, resync_max_sectors, resync_mismatches;
3544 const char *sync_action;
3545 struct raid_type *rt;
3546
3547 switch (type) {
3548 case STATUSTYPE_INFO:
3549 /* *Should* always succeed */
3550 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3551 if (!rt)
3552 return;
3553
3554 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3555
3556 /* Access most recent mddev properties for status output */
3557 smp_rmb();
3558 recovery = rs->md.recovery;
3559 /* Get sensible max sectors even if raid set not yet started */
3560 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3561 mddev->resync_max_sectors : mddev->dev_sectors;
3562 progress = rs_get_progress(rs, recovery, resync_max_sectors);
3563 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3564 atomic64_read(&mddev->resync_mismatches) : 0;
3565 sync_action = sync_str(decipher_sync_action(&rs->md, recovery));
3566
3567 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3568 for (i = 0; i < rs->raid_disks; i++)
3569 DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3570
3571 /*
3572 * In-sync/Reshape ratio:
3573 * The in-sync ratio shows the progress of:
3574 * - Initializing the raid set
3575 * - Rebuilding a subset of devices of the raid set
3576 * The user can distinguish between the two by referring
3577 * to the status characters.
3578 *
3579 * The reshape ratio shows the progress of
3580 * changing the raid layout or the number of
3581 * disks of a raid set
3582 */
3583 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3584 (unsigned long long) resync_max_sectors);
3585
3586 /*
3587 * v1.5.0+:
3588 *
3589 * Sync action:
3590 * See Documentation/admin-guide/device-mapper/dm-raid.rst for
3591 * information on each of these states.
3592 */
3593 DMEMIT(" %s", sync_action);
3594
3595 /*
3596 * v1.5.0+:
3597 *
3598 * resync_mismatches/mismatch_cnt
3599 * This field shows the number of discrepancies found when
3600 * performing a "check" of the raid set.
3601 */
3602 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3603
3604 /*
3605 * v1.9.0+:
3606 *
3607 * data_offset (needed for out of space reshaping)
3608 * This field shows the data offset into the data
3609 * image LV where the first stripes data starts.
3610 *
3611 * We keep data_offset equal on all raid disks of the set,
3612 * so retrieving it from the first raid disk is sufficient.
3613 */
3614 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3615
3616 /*
3617 * v1.10.0+:
3618 */
3619 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3620 __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3621 break;
3622
3623 case STATUSTYPE_TABLE:
3624 /* Report the table line string you would use to construct this raid set */
3625
3626 /* Calculate raid parameter count */
3627 for (i = 0; i < rs->raid_disks; i++)
3628 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3629 write_mostly_params += 2;
3630 rebuild_disks = memweight(rs->rebuild_disks, DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks));
3631 raid_param_cnt += rebuild_disks * 2 +
3632 write_mostly_params +
3633 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3634 hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2 +
3635 (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ? 2 : 0) +
3636 (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags) ? 2 : 0);
3637
3638 /* Emit table line */
3639 /* This has to be in the documented order for userspace! */
3640 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3641 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3642 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3643 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3644 DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3645 if (rebuild_disks)
3646 for (i = 0; i < rs->raid_disks; i++)
3647 if (test_bit(rs->dev[i].rdev.raid_disk, (void *) rs->rebuild_disks))
3648 DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD),
3649 rs->dev[i].rdev.raid_disk);
3650 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3651 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3652 mddev->bitmap_info.daemon_sleep);
3653 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3654 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3655 mddev->sync_speed_min);
3656 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3657 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3658 mddev->sync_speed_max);
3659 if (write_mostly_params)
3660 for (i = 0; i < rs->raid_disks; i++)
3661 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3662 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3663 rs->dev[i].rdev.raid_disk);
3664 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3665 DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3666 mddev->bitmap_info.max_write_behind);
3667 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3668 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3669 max_nr_stripes);
3670 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3671 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3672 (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3673 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3674 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3675 raid10_md_layout_to_copies(mddev->layout));
3676 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3677 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3678 raid10_md_layout_to_format(mddev->layout));
3679 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3680 DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3681 max(rs->delta_disks, mddev->delta_disks));
3682 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3683 DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3684 (unsigned long long) rs->data_offset);
3685 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3686 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3687 __get_dev_name(rs->journal_dev.dev));
3688 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3689 DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3690 md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3691 DMEMIT(" %d", rs->raid_disks);
3692 for (i = 0; i < rs->raid_disks; i++)
3693 DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3694 __get_dev_name(rs->dev[i].data_dev));
3695 }
3696}
3697
3698static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3699 char *result, unsigned maxlen)
3700{
3701 struct raid_set *rs = ti->private;
3702 struct mddev *mddev = &rs->md;
3703
3704 if (!mddev->pers || !mddev->pers->sync_request)
3705 return -EINVAL;
3706
3707 if (!strcasecmp(argv[0], "frozen"))
3708 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3709 else
3710 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3711
3712 if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3713 if (mddev->sync_thread) {
3714 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3715 md_reap_sync_thread(mddev);
3716 }
3717 } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3718 return -EBUSY;
3719 else if (!strcasecmp(argv[0], "resync"))
3720 ; /* MD_RECOVERY_NEEDED set below */
3721 else if (!strcasecmp(argv[0], "recover"))
3722 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3723 else {
3724 if (!strcasecmp(argv[0], "check")) {
3725 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3726 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3727 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3728 } else if (!strcasecmp(argv[0], "repair")) {
3729 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3730 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3731 } else
3732 return -EINVAL;
3733 }
3734 if (mddev->ro == 2) {
3735 /* A write to sync_action is enough to justify
3736 * canceling read-auto mode
3737 */
3738 mddev->ro = 0;
3739 if (!mddev->suspended && mddev->sync_thread)
3740 md_wakeup_thread(mddev->sync_thread);
3741 }
3742 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3743 if (!mddev->suspended && mddev->thread)
3744 md_wakeup_thread(mddev->thread);
3745
3746 return 0;
3747}
3748
3749static int raid_iterate_devices(struct dm_target *ti,
3750 iterate_devices_callout_fn fn, void *data)
3751{
3752 struct raid_set *rs = ti->private;
3753 unsigned int i;
3754 int r = 0;
3755
3756 for (i = 0; !r && i < rs->raid_disks; i++) {
3757 if (rs->dev[i].data_dev) {
3758 r = fn(ti, rs->dev[i].data_dev,
3759 0, /* No offset on data devs */
3760 rs->md.dev_sectors, data);
3761 }
3762 }
3763
3764 return r;
3765}
3766
3767static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3768{
3769 struct raid_set *rs = ti->private;
3770 unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3771
3772 blk_limits_io_min(limits, chunk_size_bytes);
3773 blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3774
3775 /*
3776 * RAID0 and RAID10 personalities require bio splitting,
3777 * RAID1/4/5/6 don't and process large discard bios properly.
3778 */
3779 if (rs_is_raid0(rs) || rs_is_raid10(rs)) {
3780 limits->discard_granularity = chunk_size_bytes;
3781 limits->max_discard_sectors = rs->md.chunk_sectors;
3782 }
3783}
3784
3785static void raid_postsuspend(struct dm_target *ti)
3786{
3787 struct raid_set *rs = ti->private;
3788
3789 if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3790 /* Writes have to be stopped before suspending to avoid deadlocks. */
3791 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3792 md_stop_writes(&rs->md);
3793
3794 mddev_lock_nointr(&rs->md);
3795 mddev_suspend(&rs->md);
3796 mddev_unlock(&rs->md);
3797 }
3798}
3799
3800static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3801{
3802 int i;
3803 uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3804 unsigned long flags;
3805 bool cleared = false;
3806 struct dm_raid_superblock *sb;
3807 struct mddev *mddev = &rs->md;
3808 struct md_rdev *r;
3809
3810 /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3811 if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3812 return;
3813
3814 memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3815
3816 for (i = 0; i < rs->raid_disks; i++) {
3817 r = &rs->dev[i].rdev;
3818 /* HM FIXME: enhance journal device recovery processing */
3819 if (test_bit(Journal, &r->flags))
3820 continue;
3821
3822 if (test_bit(Faulty, &r->flags) &&
3823 r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3824 DMINFO("Faulty %s device #%d has readable super block."
3825 " Attempting to revive it.",
3826 rs->raid_type->name, i);
3827
3828 /*
3829 * Faulty bit may be set, but sometimes the array can
3830 * be suspended before the personalities can respond
3831 * by removing the device from the array (i.e. calling
3832 * 'hot_remove_disk'). If they haven't yet removed
3833 * the failed device, its 'raid_disk' number will be
3834 * '>= 0' - meaning we must call this function
3835 * ourselves.
3836 */
3837 flags = r->flags;
3838 clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3839 if (r->raid_disk >= 0) {
3840 if (mddev->pers->hot_remove_disk(mddev, r)) {
3841 /* Failed to revive this device, try next */
3842 r->flags = flags;
3843 continue;
3844 }
3845 } else
3846 r->raid_disk = r->saved_raid_disk = i;
3847
3848 clear_bit(Faulty, &r->flags);
3849 clear_bit(WriteErrorSeen, &r->flags);
3850
3851 if (mddev->pers->hot_add_disk(mddev, r)) {
3852 /* Failed to revive this device, try next */
3853 r->raid_disk = r->saved_raid_disk = -1;
3854 r->flags = flags;
3855 } else {
3856 clear_bit(In_sync, &r->flags);
3857 r->recovery_offset = 0;
3858 set_bit(i, (void *) cleared_failed_devices);
3859 cleared = true;
3860 }
3861 }
3862 }
3863
3864 /* If any failed devices could be cleared, update all sbs failed_devices bits */
3865 if (cleared) {
3866 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3867
3868 rdev_for_each(r, &rs->md) {
3869 if (test_bit(Journal, &r->flags))
3870 continue;
3871
3872 sb = page_address(r->sb_page);
3873 sb_retrieve_failed_devices(sb, failed_devices);
3874
3875 for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3876 failed_devices[i] &= ~cleared_failed_devices[i];
3877
3878 sb_update_failed_devices(sb, failed_devices);
3879 }
3880 }
3881}
3882
3883static int __load_dirty_region_bitmap(struct raid_set *rs)
3884{
3885 int r = 0;
3886
3887 /* Try loading the bitmap unless "raid0", which does not have one */
3888 if (!rs_is_raid0(rs) &&
3889 !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3890 r = md_bitmap_load(&rs->md);
3891 if (r)
3892 DMERR("Failed to load bitmap");
3893 }
3894
3895 return r;
3896}
3897
3898/* Enforce updating all superblocks */
3899static void rs_update_sbs(struct raid_set *rs)
3900{
3901 struct mddev *mddev = &rs->md;
3902 int ro = mddev->ro;
3903
3904 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3905 mddev->ro = 0;
3906 md_update_sb(mddev, 1);
3907 mddev->ro = ro;
3908}
3909
3910/*
3911 * Reshape changes raid algorithm of @rs to new one within personality
3912 * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3913 * disks from a raid set thus growing/shrinking it or resizes the set
3914 *
3915 * Call mddev_lock_nointr() before!
3916 */
3917static int rs_start_reshape(struct raid_set *rs)
3918{
3919 int r;
3920 struct mddev *mddev = &rs->md;
3921 struct md_personality *pers = mddev->pers;
3922
3923 /* Don't allow the sync thread to work until the table gets reloaded. */
3924 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3925
3926 r = rs_setup_reshape(rs);
3927 if (r)
3928 return r;
3929
3930 /*
3931 * Check any reshape constraints enforced by the personalility
3932 *
3933 * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3934 */
3935 r = pers->check_reshape(mddev);
3936 if (r) {
3937 rs->ti->error = "pers->check_reshape() failed";
3938 return r;
3939 }
3940
3941 /*
3942 * Personality may not provide start reshape method in which
3943 * case check_reshape above has already covered everything
3944 */
3945 if (pers->start_reshape) {
3946 r = pers->start_reshape(mddev);
3947 if (r) {
3948 rs->ti->error = "pers->start_reshape() failed";
3949 return r;
3950 }
3951 }
3952
3953 /*
3954 * Now reshape got set up, update superblocks to
3955 * reflect the fact so that a table reload will
3956 * access proper superblock content in the ctr.
3957 */
3958 rs_update_sbs(rs);
3959
3960 return 0;
3961}
3962
3963static int raid_preresume(struct dm_target *ti)
3964{
3965 int r;
3966 struct raid_set *rs = ti->private;
3967 struct mddev *mddev = &rs->md;
3968
3969 /* This is a resume after a suspend of the set -> it's already started. */
3970 if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3971 return 0;
3972
3973 /*
3974 * The superblocks need to be updated on disk if the
3975 * array is new or new devices got added (thus zeroed
3976 * out by userspace) or __load_dirty_region_bitmap
3977 * will overwrite them in core with old data or fail.
3978 */
3979 if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3980 rs_update_sbs(rs);
3981
3982 /* Load the bitmap from disk unless raid0 */
3983 r = __load_dirty_region_bitmap(rs);
3984 if (r)
3985 return r;
3986
3987 /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) */
3988 if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
3989 mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)) {
3990 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors,
3991 to_bytes(rs->requested_bitmap_chunk_sectors), 0);
3992 if (r)
3993 DMERR("Failed to resize bitmap");
3994 }
3995
3996 /* Check for any resize/reshape on @rs and adjust/initiate */
3997 /* Be prepared for mddev_resume() in raid_resume() */
3998 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3999 if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4000 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4001 mddev->resync_min = mddev->recovery_cp;
4002 }
4003
4004 /* Check for any reshape request unless new raid set */
4005 if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4006 /* Initiate a reshape. */
4007 rs_set_rdev_sectors(rs);
4008 mddev_lock_nointr(mddev);
4009 r = rs_start_reshape(rs);
4010 mddev_unlock(mddev);
4011 if (r)
4012 DMWARN("Failed to check/start reshape, continuing without change");
4013 r = 0;
4014 }
4015
4016 return r;
4017}
4018
4019static void raid_resume(struct dm_target *ti)
4020{
4021 struct raid_set *rs = ti->private;
4022 struct mddev *mddev = &rs->md;
4023
4024 if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4025 /*
4026 * A secondary resume while the device is active.
4027 * Take this opportunity to check whether any failed
4028 * devices are reachable again.
4029 */
4030 mddev_lock_nointr(mddev);
4031 attempt_restore_of_faulty_devices(rs);
4032 mddev_unlock(mddev);
4033 }
4034
4035 if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4036 /* Only reduce raid set size before running a disk removing reshape. */
4037 if (mddev->delta_disks < 0)
4038 rs_set_capacity(rs);
4039
4040 mddev_lock_nointr(mddev);
4041 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4042 mddev->ro = 0;
4043 mddev->in_sync = 0;
4044 mddev_resume(mddev);
4045 mddev_unlock(mddev);
4046 }
4047}
4048
4049static struct target_type raid_target = {
4050 .name = "raid",
4051 .version = {1, 14, 0},
4052 .module = THIS_MODULE,
4053 .ctr = raid_ctr,
4054 .dtr = raid_dtr,
4055 .map = raid_map,
4056 .status = raid_status,
4057 .message = raid_message,
4058 .iterate_devices = raid_iterate_devices,
4059 .io_hints = raid_io_hints,
4060 .postsuspend = raid_postsuspend,
4061 .preresume = raid_preresume,
4062 .resume = raid_resume,
4063};
4064
4065static int __init dm_raid_init(void)
4066{
4067 DMINFO("Loading target version %u.%u.%u",
4068 raid_target.version[0],
4069 raid_target.version[1],
4070 raid_target.version[2]);
4071 return dm_register_target(&raid_target);
4072}
4073
4074static void __exit dm_raid_exit(void)
4075{
4076 dm_unregister_target(&raid_target);
4077}
4078
4079module_init(dm_raid_init);
4080module_exit(dm_raid_exit);
4081
4082module_param(devices_handle_discard_safely, bool, 0644);
4083MODULE_PARM_DESC(devices_handle_discard_safely,
4084 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4085
4086MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4087MODULE_ALIAS("dm-raid0");
4088MODULE_ALIAS("dm-raid1");
4089MODULE_ALIAS("dm-raid10");
4090MODULE_ALIAS("dm-raid4");
4091MODULE_ALIAS("dm-raid5");
4092MODULE_ALIAS("dm-raid6");
4093MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4094MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4095MODULE_LICENSE("GPL");