b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2001 Sistina Software (UK) Limited. |
| 3 | * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. |
| 4 | * |
| 5 | * This file is released under the GPL. |
| 6 | */ |
| 7 | |
| 8 | #include "dm-core.h" |
| 9 | |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/vmalloc.h> |
| 12 | #include <linux/blkdev.h> |
| 13 | #include <linux/namei.h> |
| 14 | #include <linux/ctype.h> |
| 15 | #include <linux/string.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/mutex.h> |
| 19 | #include <linux/delay.h> |
| 20 | #include <linux/atomic.h> |
| 21 | #include <linux/blk-mq.h> |
| 22 | #include <linux/mount.h> |
| 23 | #include <linux/dax.h> |
| 24 | |
| 25 | #define DM_MSG_PREFIX "table" |
| 26 | |
| 27 | #define MAX_DEPTH 16 |
| 28 | #define NODE_SIZE L1_CACHE_BYTES |
| 29 | #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) |
| 30 | #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) |
| 31 | |
| 32 | struct dm_table { |
| 33 | struct mapped_device *md; |
| 34 | enum dm_queue_mode type; |
| 35 | |
| 36 | /* btree table */ |
| 37 | unsigned int depth; |
| 38 | unsigned int counts[MAX_DEPTH]; /* in nodes */ |
| 39 | sector_t *index[MAX_DEPTH]; |
| 40 | |
| 41 | unsigned int num_targets; |
| 42 | unsigned int num_allocated; |
| 43 | sector_t *highs; |
| 44 | struct dm_target *targets; |
| 45 | |
| 46 | struct target_type *immutable_target_type; |
| 47 | |
| 48 | bool integrity_supported:1; |
| 49 | bool singleton:1; |
| 50 | unsigned integrity_added:1; |
| 51 | |
| 52 | /* |
| 53 | * Indicates the rw permissions for the new logical |
| 54 | * device. This should be a combination of FMODE_READ |
| 55 | * and FMODE_WRITE. |
| 56 | */ |
| 57 | fmode_t mode; |
| 58 | |
| 59 | /* a list of devices used by this table */ |
| 60 | struct list_head devices; |
| 61 | |
| 62 | /* events get handed up using this callback */ |
| 63 | void (*event_fn)(void *); |
| 64 | void *event_context; |
| 65 | |
| 66 | struct dm_md_mempools *mempools; |
| 67 | |
| 68 | struct list_head target_callbacks; |
| 69 | |
| 70 | #ifdef CONFIG_BLK_INLINE_ENCRYPTION |
| 71 | struct blk_keyslot_manager *ksm; |
| 72 | #endif |
| 73 | }; |
| 74 | |
| 75 | /* |
| 76 | * Similar to ceiling(log_size(n)) |
| 77 | */ |
| 78 | static unsigned int int_log(unsigned int n, unsigned int base) |
| 79 | { |
| 80 | int result = 0; |
| 81 | |
| 82 | while (n > 1) { |
| 83 | n = dm_div_up(n, base); |
| 84 | result++; |
| 85 | } |
| 86 | |
| 87 | return result; |
| 88 | } |
| 89 | |
| 90 | /* |
| 91 | * Calculate the index of the child node of the n'th node k'th key. |
| 92 | */ |
| 93 | static inline unsigned int get_child(unsigned int n, unsigned int k) |
| 94 | { |
| 95 | return (n * CHILDREN_PER_NODE) + k; |
| 96 | } |
| 97 | |
| 98 | /* |
| 99 | * Return the n'th node of level l from table t. |
| 100 | */ |
| 101 | static inline sector_t *get_node(struct dm_table *t, |
| 102 | unsigned int l, unsigned int n) |
| 103 | { |
| 104 | return t->index[l] + (n * KEYS_PER_NODE); |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | * Return the highest key that you could lookup from the n'th |
| 109 | * node on level l of the btree. |
| 110 | */ |
| 111 | static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) |
| 112 | { |
| 113 | for (; l < t->depth - 1; l++) |
| 114 | n = get_child(n, CHILDREN_PER_NODE - 1); |
| 115 | |
| 116 | if (n >= t->counts[l]) |
| 117 | return (sector_t) - 1; |
| 118 | |
| 119 | return get_node(t, l, n)[KEYS_PER_NODE - 1]; |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * Fills in a level of the btree based on the highs of the level |
| 124 | * below it. |
| 125 | */ |
| 126 | static int setup_btree_index(unsigned int l, struct dm_table *t) |
| 127 | { |
| 128 | unsigned int n, k; |
| 129 | sector_t *node; |
| 130 | |
| 131 | for (n = 0U; n < t->counts[l]; n++) { |
| 132 | node = get_node(t, l, n); |
| 133 | |
| 134 | for (k = 0U; k < KEYS_PER_NODE; k++) |
| 135 | node[k] = high(t, l + 1, get_child(n, k)); |
| 136 | } |
| 137 | |
| 138 | return 0; |
| 139 | } |
| 140 | |
| 141 | void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) |
| 142 | { |
| 143 | unsigned long size; |
| 144 | void *addr; |
| 145 | |
| 146 | /* |
| 147 | * Check that we're not going to overflow. |
| 148 | */ |
| 149 | if (nmemb > (ULONG_MAX / elem_size)) |
| 150 | return NULL; |
| 151 | |
| 152 | size = nmemb * elem_size; |
| 153 | addr = vzalloc(size); |
| 154 | |
| 155 | return addr; |
| 156 | } |
| 157 | EXPORT_SYMBOL(dm_vcalloc); |
| 158 | |
| 159 | /* |
| 160 | * highs, and targets are managed as dynamic arrays during a |
| 161 | * table load. |
| 162 | */ |
| 163 | static int alloc_targets(struct dm_table *t, unsigned int num) |
| 164 | { |
| 165 | sector_t *n_highs; |
| 166 | struct dm_target *n_targets; |
| 167 | |
| 168 | /* |
| 169 | * Allocate both the target array and offset array at once. |
| 170 | */ |
| 171 | n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + |
| 172 | sizeof(sector_t)); |
| 173 | if (!n_highs) |
| 174 | return -ENOMEM; |
| 175 | |
| 176 | n_targets = (struct dm_target *) (n_highs + num); |
| 177 | |
| 178 | memset(n_highs, -1, sizeof(*n_highs) * num); |
| 179 | vfree(t->highs); |
| 180 | |
| 181 | t->num_allocated = num; |
| 182 | t->highs = n_highs; |
| 183 | t->targets = n_targets; |
| 184 | |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | int dm_table_create(struct dm_table **result, fmode_t mode, |
| 189 | unsigned num_targets, struct mapped_device *md) |
| 190 | { |
| 191 | struct dm_table *t; |
| 192 | |
| 193 | if (num_targets > DM_MAX_TARGETS) |
| 194 | return -EOVERFLOW; |
| 195 | |
| 196 | t = kzalloc(sizeof(*t), GFP_KERNEL); |
| 197 | |
| 198 | if (!t) |
| 199 | return -ENOMEM; |
| 200 | |
| 201 | INIT_LIST_HEAD(&t->devices); |
| 202 | INIT_LIST_HEAD(&t->target_callbacks); |
| 203 | |
| 204 | if (!num_targets) |
| 205 | num_targets = KEYS_PER_NODE; |
| 206 | |
| 207 | num_targets = dm_round_up(num_targets, KEYS_PER_NODE); |
| 208 | |
| 209 | if (!num_targets) { |
| 210 | kfree(t); |
| 211 | return -EOVERFLOW; |
| 212 | } |
| 213 | |
| 214 | if (alloc_targets(t, num_targets)) { |
| 215 | kfree(t); |
| 216 | return -ENOMEM; |
| 217 | } |
| 218 | |
| 219 | t->type = DM_TYPE_NONE; |
| 220 | t->mode = mode; |
| 221 | t->md = md; |
| 222 | *result = t; |
| 223 | return 0; |
| 224 | } |
| 225 | |
| 226 | static void free_devices(struct list_head *devices, struct mapped_device *md) |
| 227 | { |
| 228 | struct list_head *tmp, *next; |
| 229 | |
| 230 | list_for_each_safe(tmp, next, devices) { |
| 231 | struct dm_dev_internal *dd = |
| 232 | list_entry(tmp, struct dm_dev_internal, list); |
| 233 | DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", |
| 234 | dm_device_name(md), dd->dm_dev->name); |
| 235 | dm_put_table_device(md, dd->dm_dev); |
| 236 | kfree(dd); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | static void dm_table_destroy_keyslot_manager(struct dm_table *t); |
| 241 | |
| 242 | void dm_table_destroy(struct dm_table *t) |
| 243 | { |
| 244 | unsigned int i; |
| 245 | |
| 246 | if (!t) |
| 247 | return; |
| 248 | |
| 249 | /* free the indexes */ |
| 250 | if (t->depth >= 2) |
| 251 | vfree(t->index[t->depth - 2]); |
| 252 | |
| 253 | /* free the targets */ |
| 254 | for (i = 0; i < t->num_targets; i++) { |
| 255 | struct dm_target *tgt = t->targets + i; |
| 256 | |
| 257 | if (tgt->type->dtr) |
| 258 | tgt->type->dtr(tgt); |
| 259 | |
| 260 | dm_put_target_type(tgt->type); |
| 261 | } |
| 262 | |
| 263 | vfree(t->highs); |
| 264 | |
| 265 | /* free the device list */ |
| 266 | free_devices(&t->devices, t->md); |
| 267 | |
| 268 | dm_free_md_mempools(t->mempools); |
| 269 | |
| 270 | dm_table_destroy_keyslot_manager(t); |
| 271 | |
| 272 | kfree(t); |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * See if we've already got a device in the list. |
| 277 | */ |
| 278 | static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) |
| 279 | { |
| 280 | struct dm_dev_internal *dd; |
| 281 | |
| 282 | list_for_each_entry (dd, l, list) |
| 283 | if (dd->dm_dev->bdev->bd_dev == dev) |
| 284 | return dd; |
| 285 | |
| 286 | return NULL; |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * If possible, this checks an area of a destination device is invalid. |
| 291 | */ |
| 292 | static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, |
| 293 | sector_t start, sector_t len, void *data) |
| 294 | { |
| 295 | struct request_queue *q; |
| 296 | struct queue_limits *limits = data; |
| 297 | struct block_device *bdev = dev->bdev; |
| 298 | sector_t dev_size = |
| 299 | i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; |
| 300 | unsigned short logical_block_size_sectors = |
| 301 | limits->logical_block_size >> SECTOR_SHIFT; |
| 302 | char b[BDEVNAME_SIZE]; |
| 303 | |
| 304 | /* |
| 305 | * Some devices exist without request functions, |
| 306 | * such as loop devices not yet bound to backing files. |
| 307 | * Forbid the use of such devices. |
| 308 | */ |
| 309 | q = bdev_get_queue(bdev); |
| 310 | if (!q || !q->make_request_fn) { |
| 311 | DMWARN("%s: %s is not yet initialised: " |
| 312 | "start=%llu, len=%llu, dev_size=%llu", |
| 313 | dm_device_name(ti->table->md), bdevname(bdev, b), |
| 314 | (unsigned long long)start, |
| 315 | (unsigned long long)len, |
| 316 | (unsigned long long)dev_size); |
| 317 | return 1; |
| 318 | } |
| 319 | |
| 320 | if (!dev_size) |
| 321 | return 0; |
| 322 | |
| 323 | if ((start >= dev_size) || (start + len > dev_size)) { |
| 324 | DMWARN("%s: %s too small for target: " |
| 325 | "start=%llu, len=%llu, dev_size=%llu", |
| 326 | dm_device_name(ti->table->md), bdevname(bdev, b), |
| 327 | (unsigned long long)start, |
| 328 | (unsigned long long)len, |
| 329 | (unsigned long long)dev_size); |
| 330 | return 1; |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * If the target is mapped to zoned block device(s), check |
| 335 | * that the zones are not partially mapped. |
| 336 | */ |
| 337 | if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { |
| 338 | unsigned int zone_sectors = bdev_zone_sectors(bdev); |
| 339 | |
| 340 | if (start & (zone_sectors - 1)) { |
| 341 | DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", |
| 342 | dm_device_name(ti->table->md), |
| 343 | (unsigned long long)start, |
| 344 | zone_sectors, bdevname(bdev, b)); |
| 345 | return 1; |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Note: The last zone of a zoned block device may be smaller |
| 350 | * than other zones. So for a target mapping the end of a |
| 351 | * zoned block device with such a zone, len would not be zone |
| 352 | * aligned. We do not allow such last smaller zone to be part |
| 353 | * of the mapping here to ensure that mappings with multiple |
| 354 | * devices do not end up with a smaller zone in the middle of |
| 355 | * the sector range. |
| 356 | */ |
| 357 | if (len & (zone_sectors - 1)) { |
| 358 | DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", |
| 359 | dm_device_name(ti->table->md), |
| 360 | (unsigned long long)len, |
| 361 | zone_sectors, bdevname(bdev, b)); |
| 362 | return 1; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | if (logical_block_size_sectors <= 1) |
| 367 | return 0; |
| 368 | |
| 369 | if (start & (logical_block_size_sectors - 1)) { |
| 370 | DMWARN("%s: start=%llu not aligned to h/w " |
| 371 | "logical block size %u of %s", |
| 372 | dm_device_name(ti->table->md), |
| 373 | (unsigned long long)start, |
| 374 | limits->logical_block_size, bdevname(bdev, b)); |
| 375 | return 1; |
| 376 | } |
| 377 | |
| 378 | if (len & (logical_block_size_sectors - 1)) { |
| 379 | DMWARN("%s: len=%llu not aligned to h/w " |
| 380 | "logical block size %u of %s", |
| 381 | dm_device_name(ti->table->md), |
| 382 | (unsigned long long)len, |
| 383 | limits->logical_block_size, bdevname(bdev, b)); |
| 384 | return 1; |
| 385 | } |
| 386 | |
| 387 | return 0; |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * This upgrades the mode on an already open dm_dev, being |
| 392 | * careful to leave things as they were if we fail to reopen the |
| 393 | * device and not to touch the existing bdev field in case |
| 394 | * it is accessed concurrently inside dm_table_any_congested(). |
| 395 | */ |
| 396 | static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, |
| 397 | struct mapped_device *md) |
| 398 | { |
| 399 | int r; |
| 400 | struct dm_dev *old_dev, *new_dev; |
| 401 | |
| 402 | old_dev = dd->dm_dev; |
| 403 | |
| 404 | r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, |
| 405 | dd->dm_dev->mode | new_mode, &new_dev); |
| 406 | if (r) |
| 407 | return r; |
| 408 | |
| 409 | dd->dm_dev = new_dev; |
| 410 | dm_put_table_device(md, old_dev); |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | * Convert the path to a device |
| 417 | */ |
| 418 | dev_t dm_get_dev_t(const char *path) |
| 419 | { |
| 420 | dev_t dev; |
| 421 | struct block_device *bdev; |
| 422 | |
| 423 | bdev = lookup_bdev(path); |
| 424 | if (IS_ERR(bdev)) |
| 425 | dev = name_to_dev_t(path); |
| 426 | else { |
| 427 | dev = bdev->bd_dev; |
| 428 | bdput(bdev); |
| 429 | } |
| 430 | |
| 431 | return dev; |
| 432 | } |
| 433 | EXPORT_SYMBOL_GPL(dm_get_dev_t); |
| 434 | |
| 435 | /* |
| 436 | * Add a device to the list, or just increment the usage count if |
| 437 | * it's already present. |
| 438 | */ |
| 439 | int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, |
| 440 | struct dm_dev **result) |
| 441 | { |
| 442 | int r; |
| 443 | dev_t dev; |
| 444 | unsigned int major, minor; |
| 445 | char dummy; |
| 446 | struct dm_dev_internal *dd; |
| 447 | struct dm_table *t = ti->table; |
| 448 | |
| 449 | BUG_ON(!t); |
| 450 | |
| 451 | if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { |
| 452 | /* Extract the major/minor numbers */ |
| 453 | dev = MKDEV(major, minor); |
| 454 | if (MAJOR(dev) != major || MINOR(dev) != minor) |
| 455 | return -EOVERFLOW; |
| 456 | } else { |
| 457 | dev = dm_get_dev_t(path); |
| 458 | if (!dev) |
| 459 | return -ENODEV; |
| 460 | } |
| 461 | |
| 462 | dd = find_device(&t->devices, dev); |
| 463 | if (!dd) { |
| 464 | dd = kmalloc(sizeof(*dd), GFP_KERNEL); |
| 465 | if (!dd) |
| 466 | return -ENOMEM; |
| 467 | |
| 468 | if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { |
| 469 | kfree(dd); |
| 470 | return r; |
| 471 | } |
| 472 | |
| 473 | refcount_set(&dd->count, 1); |
| 474 | list_add(&dd->list, &t->devices); |
| 475 | goto out; |
| 476 | |
| 477 | } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { |
| 478 | r = upgrade_mode(dd, mode, t->md); |
| 479 | if (r) |
| 480 | return r; |
| 481 | } |
| 482 | refcount_inc(&dd->count); |
| 483 | out: |
| 484 | *result = dd->dm_dev; |
| 485 | return 0; |
| 486 | } |
| 487 | EXPORT_SYMBOL(dm_get_device); |
| 488 | |
| 489 | static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, |
| 490 | sector_t start, sector_t len, void *data) |
| 491 | { |
| 492 | struct queue_limits *limits = data; |
| 493 | struct block_device *bdev = dev->bdev; |
| 494 | struct request_queue *q = bdev_get_queue(bdev); |
| 495 | char b[BDEVNAME_SIZE]; |
| 496 | |
| 497 | if (unlikely(!q)) { |
| 498 | DMWARN("%s: Cannot set limits for nonexistent device %s", |
| 499 | dm_device_name(ti->table->md), bdevname(bdev, b)); |
| 500 | return 0; |
| 501 | } |
| 502 | |
| 503 | if (bdev_stack_limits(limits, bdev, start) < 0) |
| 504 | DMWARN("%s: adding target device %s caused an alignment inconsistency: " |
| 505 | "physical_block_size=%u, logical_block_size=%u, " |
| 506 | "alignment_offset=%u, start=%llu", |
| 507 | dm_device_name(ti->table->md), bdevname(bdev, b), |
| 508 | q->limits.physical_block_size, |
| 509 | q->limits.logical_block_size, |
| 510 | q->limits.alignment_offset, |
| 511 | (unsigned long long) start << SECTOR_SHIFT); |
| 512 | |
| 513 | limits->zoned = blk_queue_zoned_model(q); |
| 514 | |
| 515 | return 0; |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * Decrement a device's use count and remove it if necessary. |
| 520 | */ |
| 521 | void dm_put_device(struct dm_target *ti, struct dm_dev *d) |
| 522 | { |
| 523 | int found = 0; |
| 524 | struct list_head *devices = &ti->table->devices; |
| 525 | struct dm_dev_internal *dd; |
| 526 | |
| 527 | list_for_each_entry(dd, devices, list) { |
| 528 | if (dd->dm_dev == d) { |
| 529 | found = 1; |
| 530 | break; |
| 531 | } |
| 532 | } |
| 533 | if (!found) { |
| 534 | DMWARN("%s: device %s not in table devices list", |
| 535 | dm_device_name(ti->table->md), d->name); |
| 536 | return; |
| 537 | } |
| 538 | if (refcount_dec_and_test(&dd->count)) { |
| 539 | dm_put_table_device(ti->table->md, d); |
| 540 | list_del(&dd->list); |
| 541 | kfree(dd); |
| 542 | } |
| 543 | } |
| 544 | EXPORT_SYMBOL(dm_put_device); |
| 545 | |
| 546 | /* |
| 547 | * Checks to see if the target joins onto the end of the table. |
| 548 | */ |
| 549 | static int adjoin(struct dm_table *table, struct dm_target *ti) |
| 550 | { |
| 551 | struct dm_target *prev; |
| 552 | |
| 553 | if (!table->num_targets) |
| 554 | return !ti->begin; |
| 555 | |
| 556 | prev = &table->targets[table->num_targets - 1]; |
| 557 | return (ti->begin == (prev->begin + prev->len)); |
| 558 | } |
| 559 | |
| 560 | /* |
| 561 | * Used to dynamically allocate the arg array. |
| 562 | * |
| 563 | * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must |
| 564 | * process messages even if some device is suspended. These messages have a |
| 565 | * small fixed number of arguments. |
| 566 | * |
| 567 | * On the other hand, dm-switch needs to process bulk data using messages and |
| 568 | * excessive use of GFP_NOIO could cause trouble. |
| 569 | */ |
| 570 | static char **realloc_argv(unsigned *size, char **old_argv) |
| 571 | { |
| 572 | char **argv; |
| 573 | unsigned new_size; |
| 574 | gfp_t gfp; |
| 575 | |
| 576 | if (*size) { |
| 577 | new_size = *size * 2; |
| 578 | gfp = GFP_KERNEL; |
| 579 | } else { |
| 580 | new_size = 8; |
| 581 | gfp = GFP_NOIO; |
| 582 | } |
| 583 | argv = kmalloc_array(new_size, sizeof(*argv), gfp); |
| 584 | if (argv && old_argv) { |
| 585 | memcpy(argv, old_argv, *size * sizeof(*argv)); |
| 586 | *size = new_size; |
| 587 | } |
| 588 | |
| 589 | kfree(old_argv); |
| 590 | return argv; |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * Destructively splits up the argument list to pass to ctr. |
| 595 | */ |
| 596 | int dm_split_args(int *argc, char ***argvp, char *input) |
| 597 | { |
| 598 | char *start, *end = input, *out, **argv = NULL; |
| 599 | unsigned array_size = 0; |
| 600 | |
| 601 | *argc = 0; |
| 602 | |
| 603 | if (!input) { |
| 604 | *argvp = NULL; |
| 605 | return 0; |
| 606 | } |
| 607 | |
| 608 | argv = realloc_argv(&array_size, argv); |
| 609 | if (!argv) |
| 610 | return -ENOMEM; |
| 611 | |
| 612 | while (1) { |
| 613 | /* Skip whitespace */ |
| 614 | start = skip_spaces(end); |
| 615 | |
| 616 | if (!*start) |
| 617 | break; /* success, we hit the end */ |
| 618 | |
| 619 | /* 'out' is used to remove any back-quotes */ |
| 620 | end = out = start; |
| 621 | while (*end) { |
| 622 | /* Everything apart from '\0' can be quoted */ |
| 623 | if (*end == '\\' && *(end + 1)) { |
| 624 | *out++ = *(end + 1); |
| 625 | end += 2; |
| 626 | continue; |
| 627 | } |
| 628 | |
| 629 | if (isspace(*end)) |
| 630 | break; /* end of token */ |
| 631 | |
| 632 | *out++ = *end++; |
| 633 | } |
| 634 | |
| 635 | /* have we already filled the array ? */ |
| 636 | if ((*argc + 1) > array_size) { |
| 637 | argv = realloc_argv(&array_size, argv); |
| 638 | if (!argv) |
| 639 | return -ENOMEM; |
| 640 | } |
| 641 | |
| 642 | /* we know this is whitespace */ |
| 643 | if (*end) |
| 644 | end++; |
| 645 | |
| 646 | /* terminate the string and put it in the array */ |
| 647 | *out = '\0'; |
| 648 | argv[*argc] = start; |
| 649 | (*argc)++; |
| 650 | } |
| 651 | |
| 652 | *argvp = argv; |
| 653 | return 0; |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * Impose necessary and sufficient conditions on a devices's table such |
| 658 | * that any incoming bio which respects its logical_block_size can be |
| 659 | * processed successfully. If it falls across the boundary between |
| 660 | * two or more targets, the size of each piece it gets split into must |
| 661 | * be compatible with the logical_block_size of the target processing it. |
| 662 | */ |
| 663 | static int validate_hardware_logical_block_alignment(struct dm_table *table, |
| 664 | struct queue_limits *limits) |
| 665 | { |
| 666 | /* |
| 667 | * This function uses arithmetic modulo the logical_block_size |
| 668 | * (in units of 512-byte sectors). |
| 669 | */ |
| 670 | unsigned short device_logical_block_size_sects = |
| 671 | limits->logical_block_size >> SECTOR_SHIFT; |
| 672 | |
| 673 | /* |
| 674 | * Offset of the start of the next table entry, mod logical_block_size. |
| 675 | */ |
| 676 | unsigned short next_target_start = 0; |
| 677 | |
| 678 | /* |
| 679 | * Given an aligned bio that extends beyond the end of a |
| 680 | * target, how many sectors must the next target handle? |
| 681 | */ |
| 682 | unsigned short remaining = 0; |
| 683 | |
| 684 | struct dm_target *ti; |
| 685 | struct queue_limits ti_limits; |
| 686 | unsigned i; |
| 687 | |
| 688 | /* |
| 689 | * Check each entry in the table in turn. |
| 690 | */ |
| 691 | for (i = 0; i < dm_table_get_num_targets(table); i++) { |
| 692 | ti = dm_table_get_target(table, i); |
| 693 | |
| 694 | blk_set_stacking_limits(&ti_limits); |
| 695 | |
| 696 | /* combine all target devices' limits */ |
| 697 | if (ti->type->iterate_devices) |
| 698 | ti->type->iterate_devices(ti, dm_set_device_limits, |
| 699 | &ti_limits); |
| 700 | |
| 701 | /* |
| 702 | * If the remaining sectors fall entirely within this |
| 703 | * table entry are they compatible with its logical_block_size? |
| 704 | */ |
| 705 | if (remaining < ti->len && |
| 706 | remaining & ((ti_limits.logical_block_size >> |
| 707 | SECTOR_SHIFT) - 1)) |
| 708 | break; /* Error */ |
| 709 | |
| 710 | next_target_start = |
| 711 | (unsigned short) ((next_target_start + ti->len) & |
| 712 | (device_logical_block_size_sects - 1)); |
| 713 | remaining = next_target_start ? |
| 714 | device_logical_block_size_sects - next_target_start : 0; |
| 715 | } |
| 716 | |
| 717 | if (remaining) { |
| 718 | DMWARN("%s: table line %u (start sect %llu len %llu) " |
| 719 | "not aligned to h/w logical block size %u", |
| 720 | dm_device_name(table->md), i, |
| 721 | (unsigned long long) ti->begin, |
| 722 | (unsigned long long) ti->len, |
| 723 | limits->logical_block_size); |
| 724 | return -EINVAL; |
| 725 | } |
| 726 | |
| 727 | return 0; |
| 728 | } |
| 729 | |
| 730 | int dm_table_add_target(struct dm_table *t, const char *type, |
| 731 | sector_t start, sector_t len, char *params) |
| 732 | { |
| 733 | int r = -EINVAL, argc; |
| 734 | char **argv; |
| 735 | struct dm_target *tgt; |
| 736 | |
| 737 | if (t->singleton) { |
| 738 | DMERR("%s: target type %s must appear alone in table", |
| 739 | dm_device_name(t->md), t->targets->type->name); |
| 740 | return -EINVAL; |
| 741 | } |
| 742 | |
| 743 | BUG_ON(t->num_targets >= t->num_allocated); |
| 744 | |
| 745 | tgt = t->targets + t->num_targets; |
| 746 | memset(tgt, 0, sizeof(*tgt)); |
| 747 | |
| 748 | if (!len) { |
| 749 | DMERR("%s: zero-length target", dm_device_name(t->md)); |
| 750 | return -EINVAL; |
| 751 | } |
| 752 | |
| 753 | tgt->type = dm_get_target_type(type); |
| 754 | if (!tgt->type) { |
| 755 | DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); |
| 756 | return -EINVAL; |
| 757 | } |
| 758 | |
| 759 | if (dm_target_needs_singleton(tgt->type)) { |
| 760 | if (t->num_targets) { |
| 761 | tgt->error = "singleton target type must appear alone in table"; |
| 762 | goto bad; |
| 763 | } |
| 764 | t->singleton = true; |
| 765 | } |
| 766 | |
| 767 | if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { |
| 768 | tgt->error = "target type may not be included in a read-only table"; |
| 769 | goto bad; |
| 770 | } |
| 771 | |
| 772 | if (t->immutable_target_type) { |
| 773 | if (t->immutable_target_type != tgt->type) { |
| 774 | tgt->error = "immutable target type cannot be mixed with other target types"; |
| 775 | goto bad; |
| 776 | } |
| 777 | } else if (dm_target_is_immutable(tgt->type)) { |
| 778 | if (t->num_targets) { |
| 779 | tgt->error = "immutable target type cannot be mixed with other target types"; |
| 780 | goto bad; |
| 781 | } |
| 782 | t->immutable_target_type = tgt->type; |
| 783 | } |
| 784 | |
| 785 | if (dm_target_has_integrity(tgt->type)) |
| 786 | t->integrity_added = 1; |
| 787 | |
| 788 | tgt->table = t; |
| 789 | tgt->begin = start; |
| 790 | tgt->len = len; |
| 791 | tgt->error = "Unknown error"; |
| 792 | |
| 793 | /* |
| 794 | * Does this target adjoin the previous one ? |
| 795 | */ |
| 796 | if (!adjoin(t, tgt)) { |
| 797 | tgt->error = "Gap in table"; |
| 798 | goto bad; |
| 799 | } |
| 800 | |
| 801 | r = dm_split_args(&argc, &argv, params); |
| 802 | if (r) { |
| 803 | tgt->error = "couldn't split parameters (insufficient memory)"; |
| 804 | goto bad; |
| 805 | } |
| 806 | |
| 807 | r = tgt->type->ctr(tgt, argc, argv); |
| 808 | kfree(argv); |
| 809 | if (r) |
| 810 | goto bad; |
| 811 | |
| 812 | t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; |
| 813 | |
| 814 | if (!tgt->num_discard_bios && tgt->discards_supported) |
| 815 | DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", |
| 816 | dm_device_name(t->md), type); |
| 817 | |
| 818 | return 0; |
| 819 | |
| 820 | bad: |
| 821 | DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); |
| 822 | dm_put_target_type(tgt->type); |
| 823 | return r; |
| 824 | } |
| 825 | |
| 826 | /* |
| 827 | * Target argument parsing helpers. |
| 828 | */ |
| 829 | static int validate_next_arg(const struct dm_arg *arg, |
| 830 | struct dm_arg_set *arg_set, |
| 831 | unsigned *value, char **error, unsigned grouped) |
| 832 | { |
| 833 | const char *arg_str = dm_shift_arg(arg_set); |
| 834 | char dummy; |
| 835 | |
| 836 | if (!arg_str || |
| 837 | (sscanf(arg_str, "%u%c", value, &dummy) != 1) || |
| 838 | (*value < arg->min) || |
| 839 | (*value > arg->max) || |
| 840 | (grouped && arg_set->argc < *value)) { |
| 841 | *error = arg->error; |
| 842 | return -EINVAL; |
| 843 | } |
| 844 | |
| 845 | return 0; |
| 846 | } |
| 847 | |
| 848 | int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, |
| 849 | unsigned *value, char **error) |
| 850 | { |
| 851 | return validate_next_arg(arg, arg_set, value, error, 0); |
| 852 | } |
| 853 | EXPORT_SYMBOL(dm_read_arg); |
| 854 | |
| 855 | int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, |
| 856 | unsigned *value, char **error) |
| 857 | { |
| 858 | return validate_next_arg(arg, arg_set, value, error, 1); |
| 859 | } |
| 860 | EXPORT_SYMBOL(dm_read_arg_group); |
| 861 | |
| 862 | const char *dm_shift_arg(struct dm_arg_set *as) |
| 863 | { |
| 864 | char *r; |
| 865 | |
| 866 | if (as->argc) { |
| 867 | as->argc--; |
| 868 | r = *as->argv; |
| 869 | as->argv++; |
| 870 | return r; |
| 871 | } |
| 872 | |
| 873 | return NULL; |
| 874 | } |
| 875 | EXPORT_SYMBOL(dm_shift_arg); |
| 876 | |
| 877 | void dm_consume_args(struct dm_arg_set *as, unsigned num_args) |
| 878 | { |
| 879 | BUG_ON(as->argc < num_args); |
| 880 | as->argc -= num_args; |
| 881 | as->argv += num_args; |
| 882 | } |
| 883 | EXPORT_SYMBOL(dm_consume_args); |
| 884 | |
| 885 | static bool __table_type_bio_based(enum dm_queue_mode table_type) |
| 886 | { |
| 887 | return (table_type == DM_TYPE_BIO_BASED || |
| 888 | table_type == DM_TYPE_DAX_BIO_BASED); |
| 889 | } |
| 890 | |
| 891 | static bool __table_type_request_based(enum dm_queue_mode table_type) |
| 892 | { |
| 893 | return table_type == DM_TYPE_REQUEST_BASED; |
| 894 | } |
| 895 | |
| 896 | void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) |
| 897 | { |
| 898 | t->type = type; |
| 899 | } |
| 900 | EXPORT_SYMBOL_GPL(dm_table_set_type); |
| 901 | |
| 902 | /* validate the dax capability of the target device span */ |
| 903 | int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, |
| 904 | sector_t start, sector_t len, void *data) |
| 905 | { |
| 906 | int blocksize = *(int *) data, id; |
| 907 | bool rc; |
| 908 | |
| 909 | id = dax_read_lock(); |
| 910 | rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len); |
| 911 | dax_read_unlock(id); |
| 912 | |
| 913 | return rc; |
| 914 | } |
| 915 | |
| 916 | /* Check devices support synchronous DAX */ |
| 917 | static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, |
| 918 | sector_t start, sector_t len, void *data) |
| 919 | { |
| 920 | return !dev->dax_dev || !dax_synchronous(dev->dax_dev); |
| 921 | } |
| 922 | |
| 923 | bool dm_table_supports_dax(struct dm_table *t, |
| 924 | iterate_devices_callout_fn iterate_fn, int *blocksize) |
| 925 | { |
| 926 | struct dm_target *ti; |
| 927 | unsigned i; |
| 928 | |
| 929 | /* Ensure that all targets support DAX. */ |
| 930 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 931 | ti = dm_table_get_target(t, i); |
| 932 | |
| 933 | if (!ti->type->direct_access) |
| 934 | return false; |
| 935 | |
| 936 | if (!ti->type->iterate_devices || |
| 937 | ti->type->iterate_devices(ti, iterate_fn, blocksize)) |
| 938 | return false; |
| 939 | } |
| 940 | |
| 941 | return true; |
| 942 | } |
| 943 | |
| 944 | static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, |
| 945 | sector_t start, sector_t len, void *data) |
| 946 | { |
| 947 | struct block_device *bdev = dev->bdev; |
| 948 | struct request_queue *q = bdev_get_queue(bdev); |
| 949 | |
| 950 | /* request-based cannot stack on partitions! */ |
| 951 | if (bdev != bdev->bd_contains) |
| 952 | return false; |
| 953 | |
| 954 | return queue_is_mq(q); |
| 955 | } |
| 956 | |
| 957 | static int dm_table_determine_type(struct dm_table *t) |
| 958 | { |
| 959 | unsigned i; |
| 960 | unsigned bio_based = 0, request_based = 0, hybrid = 0; |
| 961 | struct dm_target *tgt; |
| 962 | struct list_head *devices = dm_table_get_devices(t); |
| 963 | enum dm_queue_mode live_md_type = dm_get_md_type(t->md); |
| 964 | int page_size = PAGE_SIZE; |
| 965 | |
| 966 | if (t->type != DM_TYPE_NONE) { |
| 967 | /* target already set the table's type */ |
| 968 | if (t->type == DM_TYPE_BIO_BASED) { |
| 969 | /* possibly upgrade to a variant of bio-based */ |
| 970 | goto verify_bio_based; |
| 971 | } |
| 972 | BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); |
| 973 | goto verify_rq_based; |
| 974 | } |
| 975 | |
| 976 | for (i = 0; i < t->num_targets; i++) { |
| 977 | tgt = t->targets + i; |
| 978 | if (dm_target_hybrid(tgt)) |
| 979 | hybrid = 1; |
| 980 | else if (dm_target_request_based(tgt)) |
| 981 | request_based = 1; |
| 982 | else |
| 983 | bio_based = 1; |
| 984 | |
| 985 | if (bio_based && request_based) { |
| 986 | DMERR("Inconsistent table: different target types" |
| 987 | " can't be mixed up"); |
| 988 | return -EINVAL; |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | if (hybrid && !bio_based && !request_based) { |
| 993 | /* |
| 994 | * The targets can work either way. |
| 995 | * Determine the type from the live device. |
| 996 | * Default to bio-based if device is new. |
| 997 | */ |
| 998 | if (__table_type_request_based(live_md_type)) |
| 999 | request_based = 1; |
| 1000 | else |
| 1001 | bio_based = 1; |
| 1002 | } |
| 1003 | |
| 1004 | if (bio_based) { |
| 1005 | verify_bio_based: |
| 1006 | /* We must use this table as bio-based */ |
| 1007 | t->type = DM_TYPE_BIO_BASED; |
| 1008 | if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) || |
| 1009 | (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { |
| 1010 | t->type = DM_TYPE_DAX_BIO_BASED; |
| 1011 | } |
| 1012 | return 0; |
| 1013 | } |
| 1014 | |
| 1015 | BUG_ON(!request_based); /* No targets in this table */ |
| 1016 | |
| 1017 | t->type = DM_TYPE_REQUEST_BASED; |
| 1018 | |
| 1019 | verify_rq_based: |
| 1020 | /* |
| 1021 | * Request-based dm supports only tables that have a single target now. |
| 1022 | * To support multiple targets, request splitting support is needed, |
| 1023 | * and that needs lots of changes in the block-layer. |
| 1024 | * (e.g. request completion process for partial completion.) |
| 1025 | */ |
| 1026 | if (t->num_targets > 1) { |
| 1027 | DMERR("request-based DM doesn't support multiple targets"); |
| 1028 | return -EINVAL; |
| 1029 | } |
| 1030 | |
| 1031 | if (list_empty(devices)) { |
| 1032 | int srcu_idx; |
| 1033 | struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); |
| 1034 | |
| 1035 | /* inherit live table's type */ |
| 1036 | if (live_table) |
| 1037 | t->type = live_table->type; |
| 1038 | dm_put_live_table(t->md, srcu_idx); |
| 1039 | return 0; |
| 1040 | } |
| 1041 | |
| 1042 | tgt = dm_table_get_immutable_target(t); |
| 1043 | if (!tgt) { |
| 1044 | DMERR("table load rejected: immutable target is required"); |
| 1045 | return -EINVAL; |
| 1046 | } else if (tgt->max_io_len) { |
| 1047 | DMERR("table load rejected: immutable target that splits IO is not supported"); |
| 1048 | return -EINVAL; |
| 1049 | } |
| 1050 | |
| 1051 | /* Non-request-stackable devices can't be used for request-based dm */ |
| 1052 | if (!tgt->type->iterate_devices || |
| 1053 | !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { |
| 1054 | DMERR("table load rejected: including non-request-stackable devices"); |
| 1055 | return -EINVAL; |
| 1056 | } |
| 1057 | |
| 1058 | return 0; |
| 1059 | } |
| 1060 | |
| 1061 | enum dm_queue_mode dm_table_get_type(struct dm_table *t) |
| 1062 | { |
| 1063 | return t->type; |
| 1064 | } |
| 1065 | |
| 1066 | struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) |
| 1067 | { |
| 1068 | return t->immutable_target_type; |
| 1069 | } |
| 1070 | |
| 1071 | struct dm_target *dm_table_get_immutable_target(struct dm_table *t) |
| 1072 | { |
| 1073 | /* Immutable target is implicitly a singleton */ |
| 1074 | if (t->num_targets > 1 || |
| 1075 | !dm_target_is_immutable(t->targets[0].type)) |
| 1076 | return NULL; |
| 1077 | |
| 1078 | return t->targets; |
| 1079 | } |
| 1080 | |
| 1081 | struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) |
| 1082 | { |
| 1083 | struct dm_target *ti; |
| 1084 | unsigned i; |
| 1085 | |
| 1086 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 1087 | ti = dm_table_get_target(t, i); |
| 1088 | if (dm_target_is_wildcard(ti->type)) |
| 1089 | return ti; |
| 1090 | } |
| 1091 | |
| 1092 | return NULL; |
| 1093 | } |
| 1094 | |
| 1095 | bool dm_table_bio_based(struct dm_table *t) |
| 1096 | { |
| 1097 | return __table_type_bio_based(dm_table_get_type(t)); |
| 1098 | } |
| 1099 | |
| 1100 | bool dm_table_request_based(struct dm_table *t) |
| 1101 | { |
| 1102 | return __table_type_request_based(dm_table_get_type(t)); |
| 1103 | } |
| 1104 | |
| 1105 | static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) |
| 1106 | { |
| 1107 | enum dm_queue_mode type = dm_table_get_type(t); |
| 1108 | unsigned per_io_data_size = 0; |
| 1109 | unsigned min_pool_size = 0; |
| 1110 | struct dm_target *ti; |
| 1111 | unsigned i; |
| 1112 | |
| 1113 | if (unlikely(type == DM_TYPE_NONE)) { |
| 1114 | DMWARN("no table type is set, can't allocate mempools"); |
| 1115 | return -EINVAL; |
| 1116 | } |
| 1117 | |
| 1118 | if (__table_type_bio_based(type)) |
| 1119 | for (i = 0; i < t->num_targets; i++) { |
| 1120 | ti = t->targets + i; |
| 1121 | per_io_data_size = max(per_io_data_size, ti->per_io_data_size); |
| 1122 | min_pool_size = max(min_pool_size, ti->num_flush_bios); |
| 1123 | } |
| 1124 | |
| 1125 | t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, |
| 1126 | per_io_data_size, min_pool_size); |
| 1127 | if (!t->mempools) |
| 1128 | return -ENOMEM; |
| 1129 | |
| 1130 | return 0; |
| 1131 | } |
| 1132 | |
| 1133 | void dm_table_free_md_mempools(struct dm_table *t) |
| 1134 | { |
| 1135 | dm_free_md_mempools(t->mempools); |
| 1136 | t->mempools = NULL; |
| 1137 | } |
| 1138 | |
| 1139 | struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) |
| 1140 | { |
| 1141 | return t->mempools; |
| 1142 | } |
| 1143 | |
| 1144 | static int setup_indexes(struct dm_table *t) |
| 1145 | { |
| 1146 | int i; |
| 1147 | unsigned int total = 0; |
| 1148 | sector_t *indexes; |
| 1149 | |
| 1150 | /* allocate the space for *all* the indexes */ |
| 1151 | for (i = t->depth - 2; i >= 0; i--) { |
| 1152 | t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); |
| 1153 | total += t->counts[i]; |
| 1154 | } |
| 1155 | |
| 1156 | indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); |
| 1157 | if (!indexes) |
| 1158 | return -ENOMEM; |
| 1159 | |
| 1160 | /* set up internal nodes, bottom-up */ |
| 1161 | for (i = t->depth - 2; i >= 0; i--) { |
| 1162 | t->index[i] = indexes; |
| 1163 | indexes += (KEYS_PER_NODE * t->counts[i]); |
| 1164 | setup_btree_index(i, t); |
| 1165 | } |
| 1166 | |
| 1167 | return 0; |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | * Builds the btree to index the map. |
| 1172 | */ |
| 1173 | static int dm_table_build_index(struct dm_table *t) |
| 1174 | { |
| 1175 | int r = 0; |
| 1176 | unsigned int leaf_nodes; |
| 1177 | |
| 1178 | /* how many indexes will the btree have ? */ |
| 1179 | leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); |
| 1180 | t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); |
| 1181 | |
| 1182 | /* leaf layer has already been set up */ |
| 1183 | t->counts[t->depth - 1] = leaf_nodes; |
| 1184 | t->index[t->depth - 1] = t->highs; |
| 1185 | |
| 1186 | if (t->depth >= 2) |
| 1187 | r = setup_indexes(t); |
| 1188 | |
| 1189 | return r; |
| 1190 | } |
| 1191 | |
| 1192 | static bool integrity_profile_exists(struct gendisk *disk) |
| 1193 | { |
| 1194 | return !!blk_get_integrity(disk); |
| 1195 | } |
| 1196 | |
| 1197 | /* |
| 1198 | * Get a disk whose integrity profile reflects the table's profile. |
| 1199 | * Returns NULL if integrity support was inconsistent or unavailable. |
| 1200 | */ |
| 1201 | static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) |
| 1202 | { |
| 1203 | struct list_head *devices = dm_table_get_devices(t); |
| 1204 | struct dm_dev_internal *dd = NULL; |
| 1205 | struct gendisk *prev_disk = NULL, *template_disk = NULL; |
| 1206 | unsigned i; |
| 1207 | |
| 1208 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 1209 | struct dm_target *ti = dm_table_get_target(t, i); |
| 1210 | if (!dm_target_passes_integrity(ti->type)) |
| 1211 | goto no_integrity; |
| 1212 | } |
| 1213 | |
| 1214 | list_for_each_entry(dd, devices, list) { |
| 1215 | template_disk = dd->dm_dev->bdev->bd_disk; |
| 1216 | if (!integrity_profile_exists(template_disk)) |
| 1217 | goto no_integrity; |
| 1218 | else if (prev_disk && |
| 1219 | blk_integrity_compare(prev_disk, template_disk) < 0) |
| 1220 | goto no_integrity; |
| 1221 | prev_disk = template_disk; |
| 1222 | } |
| 1223 | |
| 1224 | return template_disk; |
| 1225 | |
| 1226 | no_integrity: |
| 1227 | if (prev_disk) |
| 1228 | DMWARN("%s: integrity not set: %s and %s profile mismatch", |
| 1229 | dm_device_name(t->md), |
| 1230 | prev_disk->disk_name, |
| 1231 | template_disk->disk_name); |
| 1232 | return NULL; |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * Register the mapped device for blk_integrity support if the |
| 1237 | * underlying devices have an integrity profile. But all devices may |
| 1238 | * not have matching profiles (checking all devices isn't reliable |
| 1239 | * during table load because this table may use other DM device(s) which |
| 1240 | * must be resumed before they will have an initialized integity |
| 1241 | * profile). Consequently, stacked DM devices force a 2 stage integrity |
| 1242 | * profile validation: First pass during table load, final pass during |
| 1243 | * resume. |
| 1244 | */ |
| 1245 | static int dm_table_register_integrity(struct dm_table *t) |
| 1246 | { |
| 1247 | struct mapped_device *md = t->md; |
| 1248 | struct gendisk *template_disk = NULL; |
| 1249 | |
| 1250 | /* If target handles integrity itself do not register it here. */ |
| 1251 | if (t->integrity_added) |
| 1252 | return 0; |
| 1253 | |
| 1254 | template_disk = dm_table_get_integrity_disk(t); |
| 1255 | if (!template_disk) |
| 1256 | return 0; |
| 1257 | |
| 1258 | if (!integrity_profile_exists(dm_disk(md))) { |
| 1259 | t->integrity_supported = true; |
| 1260 | /* |
| 1261 | * Register integrity profile during table load; we can do |
| 1262 | * this because the final profile must match during resume. |
| 1263 | */ |
| 1264 | blk_integrity_register(dm_disk(md), |
| 1265 | blk_get_integrity(template_disk)); |
| 1266 | return 0; |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | * If DM device already has an initialized integrity |
| 1271 | * profile the new profile should not conflict. |
| 1272 | */ |
| 1273 | if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { |
| 1274 | DMWARN("%s: conflict with existing integrity profile: " |
| 1275 | "%s profile mismatch", |
| 1276 | dm_device_name(t->md), |
| 1277 | template_disk->disk_name); |
| 1278 | return 1; |
| 1279 | } |
| 1280 | |
| 1281 | /* Preserve existing integrity profile */ |
| 1282 | t->integrity_supported = true; |
| 1283 | return 0; |
| 1284 | } |
| 1285 | |
| 1286 | #ifdef CONFIG_BLK_INLINE_ENCRYPTION |
| 1287 | |
| 1288 | struct dm_keyslot_manager { |
| 1289 | struct blk_keyslot_manager ksm; |
| 1290 | struct mapped_device *md; |
| 1291 | }; |
| 1292 | |
| 1293 | static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, |
| 1294 | sector_t start, sector_t len, void *data) |
| 1295 | { |
| 1296 | const struct blk_crypto_key *key = data; |
| 1297 | |
| 1298 | blk_crypto_evict_key(bdev_get_queue(dev->bdev), key); |
| 1299 | return 0; |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * When an inline encryption key is evicted from a device-mapper device, evict |
| 1304 | * it from all the underlying devices. |
| 1305 | */ |
| 1306 | static int dm_keyslot_evict(struct blk_keyslot_manager *ksm, |
| 1307 | const struct blk_crypto_key *key, unsigned int slot) |
| 1308 | { |
| 1309 | struct dm_keyslot_manager *dksm = container_of(ksm, |
| 1310 | struct dm_keyslot_manager, |
| 1311 | ksm); |
| 1312 | struct mapped_device *md = dksm->md; |
| 1313 | struct dm_table *t; |
| 1314 | int srcu_idx; |
| 1315 | int i; |
| 1316 | struct dm_target *ti; |
| 1317 | |
| 1318 | t = dm_get_live_table(md, &srcu_idx); |
| 1319 | if (!t) |
| 1320 | return 0; |
| 1321 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 1322 | ti = dm_table_get_target(t, i); |
| 1323 | if (!ti->type->iterate_devices) |
| 1324 | continue; |
| 1325 | ti->type->iterate_devices(ti, dm_keyslot_evict_callback, |
| 1326 | (void *)key); |
| 1327 | } |
| 1328 | dm_put_live_table(md, srcu_idx); |
| 1329 | return 0; |
| 1330 | } |
| 1331 | |
| 1332 | struct dm_derive_raw_secret_args { |
| 1333 | const u8 *wrapped_key; |
| 1334 | unsigned int wrapped_key_size; |
| 1335 | u8 *secret; |
| 1336 | unsigned int secret_size; |
| 1337 | int err; |
| 1338 | }; |
| 1339 | |
| 1340 | static int dm_derive_raw_secret_callback(struct dm_target *ti, |
| 1341 | struct dm_dev *dev, sector_t start, |
| 1342 | sector_t len, void *data) |
| 1343 | { |
| 1344 | struct dm_derive_raw_secret_args *args = data; |
| 1345 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 1346 | |
| 1347 | if (!args->err) |
| 1348 | return 0; |
| 1349 | |
| 1350 | if (!q->ksm) { |
| 1351 | args->err = -EOPNOTSUPP; |
| 1352 | return 0; |
| 1353 | } |
| 1354 | |
| 1355 | args->err = blk_ksm_derive_raw_secret(q->ksm, args->wrapped_key, |
| 1356 | args->wrapped_key_size, |
| 1357 | args->secret, |
| 1358 | args->secret_size); |
| 1359 | /* Try another device in case this fails. */ |
| 1360 | return 0; |
| 1361 | } |
| 1362 | |
| 1363 | /* |
| 1364 | * Retrieve the raw_secret from the underlying device. Given that only one |
| 1365 | * raw_secret can exist for a particular wrappedkey, retrieve it only from the |
| 1366 | * first device that supports derive_raw_secret(). |
| 1367 | */ |
| 1368 | static int dm_derive_raw_secret(struct blk_keyslot_manager *ksm, |
| 1369 | const u8 *wrapped_key, |
| 1370 | unsigned int wrapped_key_size, |
| 1371 | u8 *secret, unsigned int secret_size) |
| 1372 | { |
| 1373 | struct dm_keyslot_manager *dksm = container_of(ksm, |
| 1374 | struct dm_keyslot_manager, |
| 1375 | ksm); |
| 1376 | struct mapped_device *md = dksm->md; |
| 1377 | struct dm_derive_raw_secret_args args = { |
| 1378 | .wrapped_key = wrapped_key, |
| 1379 | .wrapped_key_size = wrapped_key_size, |
| 1380 | .secret = secret, |
| 1381 | .secret_size = secret_size, |
| 1382 | .err = -EOPNOTSUPP, |
| 1383 | }; |
| 1384 | struct dm_table *t; |
| 1385 | int srcu_idx; |
| 1386 | int i; |
| 1387 | struct dm_target *ti; |
| 1388 | |
| 1389 | t = dm_get_live_table(md, &srcu_idx); |
| 1390 | if (!t) |
| 1391 | return -EOPNOTSUPP; |
| 1392 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 1393 | ti = dm_table_get_target(t, i); |
| 1394 | if (!ti->type->iterate_devices) |
| 1395 | continue; |
| 1396 | ti->type->iterate_devices(ti, dm_derive_raw_secret_callback, |
| 1397 | &args); |
| 1398 | if (!args.err) |
| 1399 | break; |
| 1400 | } |
| 1401 | dm_put_live_table(md, srcu_idx); |
| 1402 | return args.err; |
| 1403 | } |
| 1404 | |
| 1405 | |
| 1406 | static struct blk_ksm_ll_ops dm_ksm_ll_ops = { |
| 1407 | .keyslot_evict = dm_keyslot_evict, |
| 1408 | .derive_raw_secret = dm_derive_raw_secret, |
| 1409 | }; |
| 1410 | |
| 1411 | static int device_intersect_crypto_modes(struct dm_target *ti, |
| 1412 | struct dm_dev *dev, sector_t start, |
| 1413 | sector_t len, void *data) |
| 1414 | { |
| 1415 | struct blk_keyslot_manager *parent = data; |
| 1416 | struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm; |
| 1417 | |
| 1418 | blk_ksm_intersect_modes(parent, child); |
| 1419 | return 0; |
| 1420 | } |
| 1421 | |
| 1422 | void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm) |
| 1423 | { |
| 1424 | struct dm_keyslot_manager *dksm = container_of(ksm, |
| 1425 | struct dm_keyslot_manager, |
| 1426 | ksm); |
| 1427 | |
| 1428 | if (!ksm) |
| 1429 | return; |
| 1430 | |
| 1431 | blk_ksm_destroy(ksm); |
| 1432 | kfree(dksm); |
| 1433 | } |
| 1434 | |
| 1435 | static void dm_table_destroy_keyslot_manager(struct dm_table *t) |
| 1436 | { |
| 1437 | dm_destroy_keyslot_manager(t->ksm); |
| 1438 | t->ksm = NULL; |
| 1439 | } |
| 1440 | |
| 1441 | /* |
| 1442 | * Constructs and initializes t->ksm with a keyslot manager that |
| 1443 | * represents the common set of crypto capabilities of the devices |
| 1444 | * described by the dm_table. However, if the constructed keyslot |
| 1445 | * manager does not support a superset of the crypto capabilities |
| 1446 | * supported by the current keyslot manager of the mapped_device, |
| 1447 | * it returns an error instead, since we don't support restricting |
| 1448 | * crypto capabilities on table changes. Finally, if the constructed |
| 1449 | * keyslot manager doesn't actually support any crypto modes at all, |
| 1450 | * it just returns NULL. |
| 1451 | */ |
| 1452 | static int dm_table_construct_keyslot_manager(struct dm_table *t) |
| 1453 | { |
| 1454 | struct dm_keyslot_manager *dksm; |
| 1455 | struct blk_keyslot_manager *ksm; |
| 1456 | struct dm_target *ti; |
| 1457 | unsigned int i; |
| 1458 | bool ksm_is_empty = true; |
| 1459 | |
| 1460 | dksm = kmalloc(sizeof(*dksm), GFP_KERNEL); |
| 1461 | if (!dksm) |
| 1462 | return -ENOMEM; |
| 1463 | dksm->md = t->md; |
| 1464 | |
| 1465 | ksm = &dksm->ksm; |
| 1466 | blk_ksm_init_passthrough(ksm); |
| 1467 | ksm->ksm_ll_ops = dm_ksm_ll_ops; |
| 1468 | ksm->max_dun_bytes_supported = UINT_MAX; |
| 1469 | memset(ksm->crypto_modes_supported, 0xFF, |
| 1470 | sizeof(ksm->crypto_modes_supported)); |
| 1471 | ksm->features = BLK_CRYPTO_FEATURE_STANDARD_KEYS | |
| 1472 | BLK_CRYPTO_FEATURE_WRAPPED_KEYS; |
| 1473 | |
| 1474 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 1475 | ti = dm_table_get_target(t, i); |
| 1476 | |
| 1477 | if (!dm_target_passes_crypto(ti->type)) { |
| 1478 | blk_ksm_intersect_modes(ksm, NULL); |
| 1479 | break; |
| 1480 | } |
| 1481 | if (!ti->type->iterate_devices) |
| 1482 | continue; |
| 1483 | ti->type->iterate_devices(ti, device_intersect_crypto_modes, |
| 1484 | ksm); |
| 1485 | } |
| 1486 | |
| 1487 | if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) { |
| 1488 | DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); |
| 1489 | dm_destroy_keyslot_manager(ksm); |
| 1490 | return -EINVAL; |
| 1491 | } |
| 1492 | |
| 1493 | /* |
| 1494 | * If the new KSM doesn't actually support any crypto modes, we may as |
| 1495 | * well represent it with a NULL ksm. |
| 1496 | */ |
| 1497 | ksm_is_empty = true; |
| 1498 | for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) { |
| 1499 | if (ksm->crypto_modes_supported[i]) { |
| 1500 | ksm_is_empty = false; |
| 1501 | break; |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | if (ksm_is_empty) { |
| 1506 | dm_destroy_keyslot_manager(ksm); |
| 1507 | ksm = NULL; |
| 1508 | } |
| 1509 | |
| 1510 | /* |
| 1511 | * t->ksm is only set temporarily while the table is being set |
| 1512 | * up, and it gets set to NULL after the capabilities have |
| 1513 | * been transferred to the request_queue. |
| 1514 | */ |
| 1515 | t->ksm = ksm; |
| 1516 | |
| 1517 | return 0; |
| 1518 | } |
| 1519 | |
| 1520 | static void dm_update_keyslot_manager(struct request_queue *q, |
| 1521 | struct dm_table *t) |
| 1522 | { |
| 1523 | if (!t->ksm) |
| 1524 | return; |
| 1525 | |
| 1526 | /* Make the ksm less restrictive */ |
| 1527 | if (!q->ksm) { |
| 1528 | blk_ksm_register(t->ksm, q); |
| 1529 | } else { |
| 1530 | blk_ksm_update_capabilities(q->ksm, t->ksm); |
| 1531 | dm_destroy_keyslot_manager(t->ksm); |
| 1532 | } |
| 1533 | t->ksm = NULL; |
| 1534 | } |
| 1535 | |
| 1536 | #else /* CONFIG_BLK_INLINE_ENCRYPTION */ |
| 1537 | |
| 1538 | static int dm_table_construct_keyslot_manager(struct dm_table *t) |
| 1539 | { |
| 1540 | return 0; |
| 1541 | } |
| 1542 | |
| 1543 | void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm) |
| 1544 | { |
| 1545 | } |
| 1546 | |
| 1547 | static void dm_table_destroy_keyslot_manager(struct dm_table *t) |
| 1548 | { |
| 1549 | } |
| 1550 | |
| 1551 | static void dm_update_keyslot_manager(struct request_queue *q, |
| 1552 | struct dm_table *t) |
| 1553 | { |
| 1554 | } |
| 1555 | |
| 1556 | #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ |
| 1557 | |
| 1558 | /* |
| 1559 | * Prepares the table for use by building the indices, |
| 1560 | * setting the type, and allocating mempools. |
| 1561 | */ |
| 1562 | int dm_table_complete(struct dm_table *t) |
| 1563 | { |
| 1564 | int r; |
| 1565 | |
| 1566 | r = dm_table_determine_type(t); |
| 1567 | if (r) { |
| 1568 | DMERR("unable to determine table type"); |
| 1569 | return r; |
| 1570 | } |
| 1571 | |
| 1572 | r = dm_table_build_index(t); |
| 1573 | if (r) { |
| 1574 | DMERR("unable to build btrees"); |
| 1575 | return r; |
| 1576 | } |
| 1577 | |
| 1578 | r = dm_table_register_integrity(t); |
| 1579 | if (r) { |
| 1580 | DMERR("could not register integrity profile."); |
| 1581 | return r; |
| 1582 | } |
| 1583 | |
| 1584 | r = dm_table_construct_keyslot_manager(t); |
| 1585 | if (r) { |
| 1586 | DMERR("could not construct keyslot manager."); |
| 1587 | return r; |
| 1588 | } |
| 1589 | |
| 1590 | r = dm_table_alloc_md_mempools(t, t->md); |
| 1591 | if (r) |
| 1592 | DMERR("unable to allocate mempools"); |
| 1593 | |
| 1594 | return r; |
| 1595 | } |
| 1596 | |
| 1597 | static DEFINE_MUTEX(_event_lock); |
| 1598 | void dm_table_event_callback(struct dm_table *t, |
| 1599 | void (*fn)(void *), void *context) |
| 1600 | { |
| 1601 | mutex_lock(&_event_lock); |
| 1602 | t->event_fn = fn; |
| 1603 | t->event_context = context; |
| 1604 | mutex_unlock(&_event_lock); |
| 1605 | } |
| 1606 | |
| 1607 | void dm_table_event(struct dm_table *t) |
| 1608 | { |
| 1609 | mutex_lock(&_event_lock); |
| 1610 | if (t->event_fn) |
| 1611 | t->event_fn(t->event_context); |
| 1612 | mutex_unlock(&_event_lock); |
| 1613 | } |
| 1614 | EXPORT_SYMBOL(dm_table_event); |
| 1615 | |
| 1616 | inline sector_t dm_table_get_size(struct dm_table *t) |
| 1617 | { |
| 1618 | return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; |
| 1619 | } |
| 1620 | EXPORT_SYMBOL(dm_table_get_size); |
| 1621 | |
| 1622 | struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) |
| 1623 | { |
| 1624 | if (index >= t->num_targets) |
| 1625 | return NULL; |
| 1626 | |
| 1627 | return t->targets + index; |
| 1628 | } |
| 1629 | |
| 1630 | /* |
| 1631 | * Search the btree for the correct target. |
| 1632 | * |
| 1633 | * Caller should check returned pointer for NULL |
| 1634 | * to trap I/O beyond end of device. |
| 1635 | */ |
| 1636 | struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) |
| 1637 | { |
| 1638 | unsigned int l, n = 0, k = 0; |
| 1639 | sector_t *node; |
| 1640 | |
| 1641 | if (unlikely(sector >= dm_table_get_size(t))) |
| 1642 | return NULL; |
| 1643 | |
| 1644 | for (l = 0; l < t->depth; l++) { |
| 1645 | n = get_child(n, k); |
| 1646 | node = get_node(t, l, n); |
| 1647 | |
| 1648 | for (k = 0; k < KEYS_PER_NODE; k++) |
| 1649 | if (node[k] >= sector) |
| 1650 | break; |
| 1651 | } |
| 1652 | |
| 1653 | return &t->targets[(KEYS_PER_NODE * n) + k]; |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * type->iterate_devices() should be called when the sanity check needs to |
| 1658 | * iterate and check all underlying data devices. iterate_devices() will |
| 1659 | * iterate all underlying data devices until it encounters a non-zero return |
| 1660 | * code, returned by whether the input iterate_devices_callout_fn, or |
| 1661 | * iterate_devices() itself internally. |
| 1662 | * |
| 1663 | * For some target type (e.g. dm-stripe), one call of iterate_devices() may |
| 1664 | * iterate multiple underlying devices internally, in which case a non-zero |
| 1665 | * return code returned by iterate_devices_callout_fn will stop the iteration |
| 1666 | * in advance. |
| 1667 | * |
| 1668 | * Cases requiring _any_ underlying device supporting some kind of attribute, |
| 1669 | * should use the iteration structure like dm_table_any_dev_attr(), or call |
| 1670 | * it directly. @func should handle semantics of positive examples, e.g. |
| 1671 | * capable of something. |
| 1672 | * |
| 1673 | * Cases requiring _all_ underlying devices supporting some kind of attribute, |
| 1674 | * should use the iteration structure like dm_table_supports_nowait() or |
| 1675 | * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that |
| 1676 | * uses an @anti_func that handle semantics of counter examples, e.g. not |
| 1677 | * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); |
| 1678 | */ |
| 1679 | static bool dm_table_any_dev_attr(struct dm_table *t, |
| 1680 | iterate_devices_callout_fn func, void *data) |
| 1681 | { |
| 1682 | struct dm_target *ti; |
| 1683 | unsigned int i; |
| 1684 | |
| 1685 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 1686 | ti = dm_table_get_target(t, i); |
| 1687 | |
| 1688 | if (ti->type->iterate_devices && |
| 1689 | ti->type->iterate_devices(ti, func, data)) |
| 1690 | return true; |
| 1691 | } |
| 1692 | |
| 1693 | return false; |
| 1694 | } |
| 1695 | |
| 1696 | static int count_device(struct dm_target *ti, struct dm_dev *dev, |
| 1697 | sector_t start, sector_t len, void *data) |
| 1698 | { |
| 1699 | unsigned *num_devices = data; |
| 1700 | |
| 1701 | (*num_devices)++; |
| 1702 | |
| 1703 | return 0; |
| 1704 | } |
| 1705 | |
| 1706 | /* |
| 1707 | * Check whether a table has no data devices attached using each |
| 1708 | * target's iterate_devices method. |
| 1709 | * Returns false if the result is unknown because a target doesn't |
| 1710 | * support iterate_devices. |
| 1711 | */ |
| 1712 | bool dm_table_has_no_data_devices(struct dm_table *table) |
| 1713 | { |
| 1714 | struct dm_target *ti; |
| 1715 | unsigned i, num_devices; |
| 1716 | |
| 1717 | for (i = 0; i < dm_table_get_num_targets(table); i++) { |
| 1718 | ti = dm_table_get_target(table, i); |
| 1719 | |
| 1720 | if (!ti->type->iterate_devices) |
| 1721 | return false; |
| 1722 | |
| 1723 | num_devices = 0; |
| 1724 | ti->type->iterate_devices(ti, count_device, &num_devices); |
| 1725 | if (num_devices) |
| 1726 | return false; |
| 1727 | } |
| 1728 | |
| 1729 | return true; |
| 1730 | } |
| 1731 | |
| 1732 | static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, |
| 1733 | sector_t start, sector_t len, void *data) |
| 1734 | { |
| 1735 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 1736 | enum blk_zoned_model *zoned_model = data; |
| 1737 | |
| 1738 | return !q || blk_queue_zoned_model(q) != *zoned_model; |
| 1739 | } |
| 1740 | |
| 1741 | static bool dm_table_supports_zoned_model(struct dm_table *t, |
| 1742 | enum blk_zoned_model zoned_model) |
| 1743 | { |
| 1744 | struct dm_target *ti; |
| 1745 | unsigned i; |
| 1746 | |
| 1747 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 1748 | ti = dm_table_get_target(t, i); |
| 1749 | |
| 1750 | if (zoned_model == BLK_ZONED_HM && |
| 1751 | !dm_target_supports_zoned_hm(ti->type)) |
| 1752 | return false; |
| 1753 | |
| 1754 | if (!ti->type->iterate_devices || |
| 1755 | ti->type->iterate_devices(ti, device_not_zoned_model, &zoned_model)) |
| 1756 | return false; |
| 1757 | } |
| 1758 | |
| 1759 | return true; |
| 1760 | } |
| 1761 | |
| 1762 | static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, |
| 1763 | sector_t start, sector_t len, void *data) |
| 1764 | { |
| 1765 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 1766 | unsigned int *zone_sectors = data; |
| 1767 | |
| 1768 | return !q || blk_queue_zone_sectors(q) != *zone_sectors; |
| 1769 | } |
| 1770 | |
| 1771 | static int validate_hardware_zoned_model(struct dm_table *table, |
| 1772 | enum blk_zoned_model zoned_model, |
| 1773 | unsigned int zone_sectors) |
| 1774 | { |
| 1775 | if (zoned_model == BLK_ZONED_NONE) |
| 1776 | return 0; |
| 1777 | |
| 1778 | if (!dm_table_supports_zoned_model(table, zoned_model)) { |
| 1779 | DMERR("%s: zoned model is not consistent across all devices", |
| 1780 | dm_device_name(table->md)); |
| 1781 | return -EINVAL; |
| 1782 | } |
| 1783 | |
| 1784 | /* Check zone size validity and compatibility */ |
| 1785 | if (!zone_sectors || !is_power_of_2(zone_sectors)) |
| 1786 | return -EINVAL; |
| 1787 | |
| 1788 | if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { |
| 1789 | DMERR("%s: zone sectors is not consistent across all devices", |
| 1790 | dm_device_name(table->md)); |
| 1791 | return -EINVAL; |
| 1792 | } |
| 1793 | |
| 1794 | return 0; |
| 1795 | } |
| 1796 | |
| 1797 | /* |
| 1798 | * Establish the new table's queue_limits and validate them. |
| 1799 | */ |
| 1800 | int dm_calculate_queue_limits(struct dm_table *table, |
| 1801 | struct queue_limits *limits) |
| 1802 | { |
| 1803 | struct dm_target *ti; |
| 1804 | struct queue_limits ti_limits; |
| 1805 | unsigned i; |
| 1806 | enum blk_zoned_model zoned_model = BLK_ZONED_NONE; |
| 1807 | unsigned int zone_sectors = 0; |
| 1808 | |
| 1809 | blk_set_stacking_limits(limits); |
| 1810 | |
| 1811 | for (i = 0; i < dm_table_get_num_targets(table); i++) { |
| 1812 | blk_set_stacking_limits(&ti_limits); |
| 1813 | |
| 1814 | ti = dm_table_get_target(table, i); |
| 1815 | |
| 1816 | if (!ti->type->iterate_devices) |
| 1817 | goto combine_limits; |
| 1818 | |
| 1819 | /* |
| 1820 | * Combine queue limits of all the devices this target uses. |
| 1821 | */ |
| 1822 | ti->type->iterate_devices(ti, dm_set_device_limits, |
| 1823 | &ti_limits); |
| 1824 | |
| 1825 | if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { |
| 1826 | /* |
| 1827 | * After stacking all limits, validate all devices |
| 1828 | * in table support this zoned model and zone sectors. |
| 1829 | */ |
| 1830 | zoned_model = ti_limits.zoned; |
| 1831 | zone_sectors = ti_limits.chunk_sectors; |
| 1832 | } |
| 1833 | |
| 1834 | /* Set I/O hints portion of queue limits */ |
| 1835 | if (ti->type->io_hints) |
| 1836 | ti->type->io_hints(ti, &ti_limits); |
| 1837 | |
| 1838 | /* |
| 1839 | * Check each device area is consistent with the target's |
| 1840 | * overall queue limits. |
| 1841 | */ |
| 1842 | if (ti->type->iterate_devices(ti, device_area_is_invalid, |
| 1843 | &ti_limits)) |
| 1844 | return -EINVAL; |
| 1845 | |
| 1846 | combine_limits: |
| 1847 | /* |
| 1848 | * Merge this target's queue limits into the overall limits |
| 1849 | * for the table. |
| 1850 | */ |
| 1851 | if (blk_stack_limits(limits, &ti_limits, 0) < 0) |
| 1852 | DMWARN("%s: adding target device " |
| 1853 | "(start sect %llu len %llu) " |
| 1854 | "caused an alignment inconsistency", |
| 1855 | dm_device_name(table->md), |
| 1856 | (unsigned long long) ti->begin, |
| 1857 | (unsigned long long) ti->len); |
| 1858 | |
| 1859 | /* |
| 1860 | * FIXME: this should likely be moved to blk_stack_limits(), would |
| 1861 | * also eliminate limits->zoned stacking hack in dm_set_device_limits() |
| 1862 | */ |
| 1863 | if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { |
| 1864 | /* |
| 1865 | * By default, the stacked limits zoned model is set to |
| 1866 | * BLK_ZONED_NONE in blk_set_stacking_limits(). Update |
| 1867 | * this model using the first target model reported |
| 1868 | * that is not BLK_ZONED_NONE. This will be either the |
| 1869 | * first target device zoned model or the model reported |
| 1870 | * by the target .io_hints. |
| 1871 | */ |
| 1872 | limits->zoned = ti_limits.zoned; |
| 1873 | } |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * Verify that the zoned model and zone sectors, as determined before |
| 1878 | * any .io_hints override, are the same across all devices in the table. |
| 1879 | * - this is especially relevant if .io_hints is emulating a disk-managed |
| 1880 | * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. |
| 1881 | * BUT... |
| 1882 | */ |
| 1883 | if (limits->zoned != BLK_ZONED_NONE) { |
| 1884 | /* |
| 1885 | * ...IF the above limits stacking determined a zoned model |
| 1886 | * validate that all of the table's devices conform to it. |
| 1887 | */ |
| 1888 | zoned_model = limits->zoned; |
| 1889 | zone_sectors = limits->chunk_sectors; |
| 1890 | } |
| 1891 | if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) |
| 1892 | return -EINVAL; |
| 1893 | |
| 1894 | return validate_hardware_logical_block_alignment(table, limits); |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * Verify that all devices have an integrity profile that matches the |
| 1899 | * DM device's registered integrity profile. If the profiles don't |
| 1900 | * match then unregister the DM device's integrity profile. |
| 1901 | */ |
| 1902 | static void dm_table_verify_integrity(struct dm_table *t) |
| 1903 | { |
| 1904 | struct gendisk *template_disk = NULL; |
| 1905 | |
| 1906 | if (t->integrity_added) |
| 1907 | return; |
| 1908 | |
| 1909 | if (t->integrity_supported) { |
| 1910 | /* |
| 1911 | * Verify that the original integrity profile |
| 1912 | * matches all the devices in this table. |
| 1913 | */ |
| 1914 | template_disk = dm_table_get_integrity_disk(t); |
| 1915 | if (template_disk && |
| 1916 | blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) |
| 1917 | return; |
| 1918 | } |
| 1919 | |
| 1920 | if (integrity_profile_exists(dm_disk(t->md))) { |
| 1921 | DMWARN("%s: unable to establish an integrity profile", |
| 1922 | dm_device_name(t->md)); |
| 1923 | blk_integrity_unregister(dm_disk(t->md)); |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, |
| 1928 | sector_t start, sector_t len, void *data) |
| 1929 | { |
| 1930 | unsigned long flush = (unsigned long) data; |
| 1931 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 1932 | |
| 1933 | return q && (q->queue_flags & flush); |
| 1934 | } |
| 1935 | |
| 1936 | static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) |
| 1937 | { |
| 1938 | struct dm_target *ti; |
| 1939 | unsigned i; |
| 1940 | |
| 1941 | /* |
| 1942 | * Require at least one underlying device to support flushes. |
| 1943 | * t->devices includes internal dm devices such as mirror logs |
| 1944 | * so we need to use iterate_devices here, which targets |
| 1945 | * supporting flushes must provide. |
| 1946 | */ |
| 1947 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 1948 | ti = dm_table_get_target(t, i); |
| 1949 | |
| 1950 | if (!ti->num_flush_bios) |
| 1951 | continue; |
| 1952 | |
| 1953 | if (ti->flush_supported) |
| 1954 | return true; |
| 1955 | |
| 1956 | if (ti->type->iterate_devices && |
| 1957 | ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) |
| 1958 | return true; |
| 1959 | } |
| 1960 | |
| 1961 | return false; |
| 1962 | } |
| 1963 | |
| 1964 | static int device_dax_write_cache_enabled(struct dm_target *ti, |
| 1965 | struct dm_dev *dev, sector_t start, |
| 1966 | sector_t len, void *data) |
| 1967 | { |
| 1968 | struct dax_device *dax_dev = dev->dax_dev; |
| 1969 | |
| 1970 | if (!dax_dev) |
| 1971 | return false; |
| 1972 | |
| 1973 | if (dax_write_cache_enabled(dax_dev)) |
| 1974 | return true; |
| 1975 | return false; |
| 1976 | } |
| 1977 | |
| 1978 | static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, |
| 1979 | sector_t start, sector_t len, void *data) |
| 1980 | { |
| 1981 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 1982 | |
| 1983 | return q && !blk_queue_nonrot(q); |
| 1984 | } |
| 1985 | |
| 1986 | static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, |
| 1987 | sector_t start, sector_t len, void *data) |
| 1988 | { |
| 1989 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 1990 | |
| 1991 | return q && !blk_queue_add_random(q); |
| 1992 | } |
| 1993 | |
| 1994 | static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, |
| 1995 | sector_t start, sector_t len, void *data) |
| 1996 | { |
| 1997 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 1998 | |
| 1999 | return q && !q->limits.max_write_same_sectors; |
| 2000 | } |
| 2001 | |
| 2002 | static bool dm_table_supports_write_same(struct dm_table *t) |
| 2003 | { |
| 2004 | struct dm_target *ti; |
| 2005 | unsigned i; |
| 2006 | |
| 2007 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 2008 | ti = dm_table_get_target(t, i); |
| 2009 | |
| 2010 | if (!ti->num_write_same_bios) |
| 2011 | return false; |
| 2012 | |
| 2013 | if (!ti->type->iterate_devices || |
| 2014 | ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) |
| 2015 | return false; |
| 2016 | } |
| 2017 | |
| 2018 | return true; |
| 2019 | } |
| 2020 | |
| 2021 | static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, |
| 2022 | sector_t start, sector_t len, void *data) |
| 2023 | { |
| 2024 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 2025 | |
| 2026 | return q && !q->limits.max_write_zeroes_sectors; |
| 2027 | } |
| 2028 | |
| 2029 | static bool dm_table_supports_write_zeroes(struct dm_table *t) |
| 2030 | { |
| 2031 | struct dm_target *ti; |
| 2032 | unsigned i = 0; |
| 2033 | |
| 2034 | while (i < dm_table_get_num_targets(t)) { |
| 2035 | ti = dm_table_get_target(t, i++); |
| 2036 | |
| 2037 | if (!ti->num_write_zeroes_bios) |
| 2038 | return false; |
| 2039 | |
| 2040 | if (!ti->type->iterate_devices || |
| 2041 | ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) |
| 2042 | return false; |
| 2043 | } |
| 2044 | |
| 2045 | return true; |
| 2046 | } |
| 2047 | |
| 2048 | static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, |
| 2049 | sector_t start, sector_t len, void *data) |
| 2050 | { |
| 2051 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 2052 | |
| 2053 | return q && !blk_queue_discard(q); |
| 2054 | } |
| 2055 | |
| 2056 | static bool dm_table_supports_discards(struct dm_table *t) |
| 2057 | { |
| 2058 | struct dm_target *ti; |
| 2059 | unsigned i; |
| 2060 | |
| 2061 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 2062 | ti = dm_table_get_target(t, i); |
| 2063 | |
| 2064 | if (!ti->num_discard_bios) |
| 2065 | return false; |
| 2066 | |
| 2067 | /* |
| 2068 | * Either the target provides discard support (as implied by setting |
| 2069 | * 'discards_supported') or it relies on _all_ data devices having |
| 2070 | * discard support. |
| 2071 | */ |
| 2072 | if (!ti->discards_supported && |
| 2073 | (!ti->type->iterate_devices || |
| 2074 | ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) |
| 2075 | return false; |
| 2076 | } |
| 2077 | |
| 2078 | return true; |
| 2079 | } |
| 2080 | |
| 2081 | static int device_not_secure_erase_capable(struct dm_target *ti, |
| 2082 | struct dm_dev *dev, sector_t start, |
| 2083 | sector_t len, void *data) |
| 2084 | { |
| 2085 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 2086 | |
| 2087 | return q && !blk_queue_secure_erase(q); |
| 2088 | } |
| 2089 | |
| 2090 | static bool dm_table_supports_secure_erase(struct dm_table *t) |
| 2091 | { |
| 2092 | struct dm_target *ti; |
| 2093 | unsigned int i; |
| 2094 | |
| 2095 | for (i = 0; i < dm_table_get_num_targets(t); i++) { |
| 2096 | ti = dm_table_get_target(t, i); |
| 2097 | |
| 2098 | if (!ti->num_secure_erase_bios) |
| 2099 | return false; |
| 2100 | |
| 2101 | if (!ti->type->iterate_devices || |
| 2102 | ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) |
| 2103 | return false; |
| 2104 | } |
| 2105 | |
| 2106 | return true; |
| 2107 | } |
| 2108 | |
| 2109 | static int device_requires_stable_pages(struct dm_target *ti, |
| 2110 | struct dm_dev *dev, sector_t start, |
| 2111 | sector_t len, void *data) |
| 2112 | { |
| 2113 | struct request_queue *q = bdev_get_queue(dev->bdev); |
| 2114 | |
| 2115 | return q && bdi_cap_stable_pages_required(q->backing_dev_info); |
| 2116 | } |
| 2117 | |
| 2118 | void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, |
| 2119 | struct queue_limits *limits) |
| 2120 | { |
| 2121 | bool wc = false, fua = false; |
| 2122 | int page_size = PAGE_SIZE; |
| 2123 | |
| 2124 | /* |
| 2125 | * Copy table's limits to the DM device's request_queue |
| 2126 | */ |
| 2127 | q->limits = *limits; |
| 2128 | |
| 2129 | if (!dm_table_supports_discards(t)) { |
| 2130 | blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); |
| 2131 | /* Must also clear discard limits... */ |
| 2132 | q->limits.max_discard_sectors = 0; |
| 2133 | q->limits.max_hw_discard_sectors = 0; |
| 2134 | q->limits.discard_granularity = 0; |
| 2135 | q->limits.discard_alignment = 0; |
| 2136 | q->limits.discard_misaligned = 0; |
| 2137 | } else |
| 2138 | blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); |
| 2139 | |
| 2140 | if (dm_table_supports_secure_erase(t)) |
| 2141 | blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); |
| 2142 | |
| 2143 | if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { |
| 2144 | wc = true; |
| 2145 | if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) |
| 2146 | fua = true; |
| 2147 | } |
| 2148 | blk_queue_write_cache(q, wc, fua); |
| 2149 | |
| 2150 | if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) { |
| 2151 | blk_queue_flag_set(QUEUE_FLAG_DAX, q); |
| 2152 | if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL)) |
| 2153 | set_dax_synchronous(t->md->dax_dev); |
| 2154 | } |
| 2155 | else |
| 2156 | blk_queue_flag_clear(QUEUE_FLAG_DAX, q); |
| 2157 | |
| 2158 | if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) |
| 2159 | dax_write_cache(t->md->dax_dev, true); |
| 2160 | |
| 2161 | /* Ensure that all underlying devices are non-rotational. */ |
| 2162 | if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) |
| 2163 | blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); |
| 2164 | else |
| 2165 | blk_queue_flag_set(QUEUE_FLAG_NONROT, q); |
| 2166 | |
| 2167 | if (!dm_table_supports_write_same(t)) |
| 2168 | q->limits.max_write_same_sectors = 0; |
| 2169 | if (!dm_table_supports_write_zeroes(t)) |
| 2170 | q->limits.max_write_zeroes_sectors = 0; |
| 2171 | |
| 2172 | dm_table_verify_integrity(t); |
| 2173 | |
| 2174 | /* |
| 2175 | * Some devices don't use blk_integrity but still want stable pages |
| 2176 | * because they do their own checksumming. |
| 2177 | * If any underlying device requires stable pages, a table must require |
| 2178 | * them as well. Only targets that support iterate_devices are considered: |
| 2179 | * don't want error, zero, etc to require stable pages. |
| 2180 | */ |
| 2181 | if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) |
| 2182 | q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; |
| 2183 | else |
| 2184 | q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES; |
| 2185 | |
| 2186 | /* |
| 2187 | * Determine whether or not this queue's I/O timings contribute |
| 2188 | * to the entropy pool, Only request-based targets use this. |
| 2189 | * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not |
| 2190 | * have it set. |
| 2191 | */ |
| 2192 | if (blk_queue_add_random(q) && |
| 2193 | dm_table_any_dev_attr(t, device_is_not_random, NULL)) |
| 2194 | blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); |
| 2195 | |
| 2196 | /* |
| 2197 | * For a zoned target, the number of zones should be updated for the |
| 2198 | * correct value to be exposed in sysfs queue/nr_zones. For a BIO based |
| 2199 | * target, this is all that is needed. |
| 2200 | */ |
| 2201 | #ifdef CONFIG_BLK_DEV_ZONED |
| 2202 | if (blk_queue_is_zoned(q)) { |
| 2203 | WARN_ON_ONCE(queue_is_mq(q)); |
| 2204 | q->nr_zones = blkdev_nr_zones(t->md->disk); |
| 2205 | } |
| 2206 | #endif |
| 2207 | |
| 2208 | dm_update_keyslot_manager(q, t); |
| 2209 | |
| 2210 | /* Allow reads to exceed readahead limits */ |
| 2211 | q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9); |
| 2212 | } |
| 2213 | |
| 2214 | unsigned int dm_table_get_num_targets(struct dm_table *t) |
| 2215 | { |
| 2216 | return t->num_targets; |
| 2217 | } |
| 2218 | |
| 2219 | struct list_head *dm_table_get_devices(struct dm_table *t) |
| 2220 | { |
| 2221 | return &t->devices; |
| 2222 | } |
| 2223 | |
| 2224 | fmode_t dm_table_get_mode(struct dm_table *t) |
| 2225 | { |
| 2226 | return t->mode; |
| 2227 | } |
| 2228 | EXPORT_SYMBOL(dm_table_get_mode); |
| 2229 | |
| 2230 | enum suspend_mode { |
| 2231 | PRESUSPEND, |
| 2232 | PRESUSPEND_UNDO, |
| 2233 | POSTSUSPEND, |
| 2234 | }; |
| 2235 | |
| 2236 | static void suspend_targets(struct dm_table *t, enum suspend_mode mode) |
| 2237 | { |
| 2238 | int i = t->num_targets; |
| 2239 | struct dm_target *ti = t->targets; |
| 2240 | |
| 2241 | lockdep_assert_held(&t->md->suspend_lock); |
| 2242 | |
| 2243 | while (i--) { |
| 2244 | switch (mode) { |
| 2245 | case PRESUSPEND: |
| 2246 | if (ti->type->presuspend) |
| 2247 | ti->type->presuspend(ti); |
| 2248 | break; |
| 2249 | case PRESUSPEND_UNDO: |
| 2250 | if (ti->type->presuspend_undo) |
| 2251 | ti->type->presuspend_undo(ti); |
| 2252 | break; |
| 2253 | case POSTSUSPEND: |
| 2254 | if (ti->type->postsuspend) |
| 2255 | ti->type->postsuspend(ti); |
| 2256 | break; |
| 2257 | } |
| 2258 | ti++; |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | void dm_table_presuspend_targets(struct dm_table *t) |
| 2263 | { |
| 2264 | if (!t) |
| 2265 | return; |
| 2266 | |
| 2267 | suspend_targets(t, PRESUSPEND); |
| 2268 | } |
| 2269 | |
| 2270 | void dm_table_presuspend_undo_targets(struct dm_table *t) |
| 2271 | { |
| 2272 | if (!t) |
| 2273 | return; |
| 2274 | |
| 2275 | suspend_targets(t, PRESUSPEND_UNDO); |
| 2276 | } |
| 2277 | |
| 2278 | void dm_table_postsuspend_targets(struct dm_table *t) |
| 2279 | { |
| 2280 | if (!t) |
| 2281 | return; |
| 2282 | |
| 2283 | suspend_targets(t, POSTSUSPEND); |
| 2284 | } |
| 2285 | |
| 2286 | int dm_table_resume_targets(struct dm_table *t) |
| 2287 | { |
| 2288 | int i, r = 0; |
| 2289 | |
| 2290 | lockdep_assert_held(&t->md->suspend_lock); |
| 2291 | |
| 2292 | for (i = 0; i < t->num_targets; i++) { |
| 2293 | struct dm_target *ti = t->targets + i; |
| 2294 | |
| 2295 | if (!ti->type->preresume) |
| 2296 | continue; |
| 2297 | |
| 2298 | r = ti->type->preresume(ti); |
| 2299 | if (r) { |
| 2300 | DMERR("%s: %s: preresume failed, error = %d", |
| 2301 | dm_device_name(t->md), ti->type->name, r); |
| 2302 | return r; |
| 2303 | } |
| 2304 | } |
| 2305 | |
| 2306 | for (i = 0; i < t->num_targets; i++) { |
| 2307 | struct dm_target *ti = t->targets + i; |
| 2308 | |
| 2309 | if (ti->type->resume) |
| 2310 | ti->type->resume(ti); |
| 2311 | } |
| 2312 | |
| 2313 | return 0; |
| 2314 | } |
| 2315 | |
| 2316 | void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) |
| 2317 | { |
| 2318 | list_add(&cb->list, &t->target_callbacks); |
| 2319 | } |
| 2320 | EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); |
| 2321 | |
| 2322 | int dm_table_any_congested(struct dm_table *t, int bdi_bits) |
| 2323 | { |
| 2324 | struct dm_dev_internal *dd; |
| 2325 | struct list_head *devices = dm_table_get_devices(t); |
| 2326 | struct dm_target_callbacks *cb; |
| 2327 | int r = 0; |
| 2328 | |
| 2329 | list_for_each_entry(dd, devices, list) { |
| 2330 | struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); |
| 2331 | char b[BDEVNAME_SIZE]; |
| 2332 | |
| 2333 | if (likely(q)) |
| 2334 | r |= bdi_congested(q->backing_dev_info, bdi_bits); |
| 2335 | else |
| 2336 | DMWARN_LIMIT("%s: any_congested: nonexistent device %s", |
| 2337 | dm_device_name(t->md), |
| 2338 | bdevname(dd->dm_dev->bdev, b)); |
| 2339 | } |
| 2340 | |
| 2341 | list_for_each_entry(cb, &t->target_callbacks, list) |
| 2342 | if (cb->congested_fn) |
| 2343 | r |= cb->congested_fn(cb, bdi_bits); |
| 2344 | |
| 2345 | return r; |
| 2346 | } |
| 2347 | |
| 2348 | struct mapped_device *dm_table_get_md(struct dm_table *t) |
| 2349 | { |
| 2350 | return t->md; |
| 2351 | } |
| 2352 | EXPORT_SYMBOL(dm_table_get_md); |
| 2353 | |
| 2354 | const char *dm_table_device_name(struct dm_table *t) |
| 2355 | { |
| 2356 | return dm_device_name(t->md); |
| 2357 | } |
| 2358 | EXPORT_SYMBOL_GPL(dm_table_device_name); |
| 2359 | |
| 2360 | void dm_table_run_md_queue_async(struct dm_table *t) |
| 2361 | { |
| 2362 | struct mapped_device *md; |
| 2363 | struct request_queue *queue; |
| 2364 | |
| 2365 | if (!dm_table_request_based(t)) |
| 2366 | return; |
| 2367 | |
| 2368 | md = dm_table_get_md(t); |
| 2369 | queue = dm_get_md_queue(md); |
| 2370 | if (queue) |
| 2371 | blk_mq_run_hw_queues(queue, true); |
| 2372 | } |
| 2373 | EXPORT_SYMBOL(dm_table_run_md_queue_async); |
| 2374 | |