blob: 9e4332233531e6fc9b63a8bea41b75dbab8bae4c [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison-v1.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/log2.h>
16#include <linux/list.h>
17#include <linux/rculist.h>
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/sort.h>
23#include <linux/rbtree.h>
24
25#define DM_MSG_PREFIX "thin"
26
27/*
28 * Tunable constants
29 */
30#define ENDIO_HOOK_POOL_SIZE 1024
31#define MAPPING_POOL_SIZE 1024
32#define COMMIT_PERIOD HZ
33#define NO_SPACE_TIMEOUT_SECS 60
34
35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40/*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47/*
48 * Device id is restricted to 24 bits.
49 */
50#define MAX_DEV_ID ((1 << 24) - 1)
51
52/*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110/*----------------------------------------------------------------*/
111
112/*
113 * Key building.
114 */
115enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118};
119
120static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122{
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127}
128
129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131{
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133}
134
135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137{
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139}
140
141/*----------------------------------------------------------------*/
142
143#define THROTTLE_THRESHOLD (1 * HZ)
144
145struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149};
150
151static void throttle_init(struct throttle *t)
152{
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155}
156
157static void throttle_work_start(struct throttle *t)
158{
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160}
161
162static void throttle_work_update(struct throttle *t)
163{
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168}
169
170static void throttle_work_complete(struct throttle *t)
171{
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176}
177
178static void throttle_lock(struct throttle *t)
179{
180 down_read(&t->lock);
181}
182
183static void throttle_unlock(struct throttle *t)
184{
185 up_read(&t->lock);
186}
187
188/*----------------------------------------------------------------*/
189
190/*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195struct dm_thin_new_mapping;
196
197/*
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
199 */
200enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203
204 /*
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 */
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
209
210 PM_FAIL, /* all I/O fails */
211};
212
213struct pool_features {
214 enum pool_mode mode;
215
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
220};
221
222struct thin_c;
223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227#define CELL_SORT_ARRAY_SIZE 8192
228
229struct pool {
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
232
233 struct mapped_device *pool_md;
234 struct block_device *data_dev;
235 struct block_device *md_dev;
236 struct dm_pool_metadata *pmd;
237
238 dm_block_t low_water_blocks;
239 uint32_t sectors_per_block;
240 int sectors_per_block_shift;
241
242 struct pool_features pf;
243 bool low_water_triggered:1; /* A dm event has been sent */
244 bool suspended:1;
245 bool out_of_data_space:1;
246
247 struct dm_bio_prison *prison;
248 struct dm_kcopyd_client *copier;
249
250 struct work_struct worker;
251 struct workqueue_struct *wq;
252 struct throttle throttle;
253 struct delayed_work waker;
254 struct delayed_work no_space_timeout;
255
256 unsigned long last_commit_jiffies;
257 unsigned ref_count;
258
259 spinlock_t lock;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_flush_completions;
262 struct list_head prepared_mappings;
263 struct list_head prepared_discards;
264 struct list_head prepared_discards_pt2;
265 struct list_head active_thins;
266
267 struct dm_deferred_set *shared_read_ds;
268 struct dm_deferred_set *all_io_ds;
269
270 struct dm_thin_new_mapping *next_mapping;
271
272 process_bio_fn process_bio;
273 process_bio_fn process_discard;
274
275 process_cell_fn process_cell;
276 process_cell_fn process_discard_cell;
277
278 process_mapping_fn process_prepared_mapping;
279 process_mapping_fn process_prepared_discard;
280 process_mapping_fn process_prepared_discard_pt2;
281
282 struct dm_bio_prison_cell **cell_sort_array;
283
284 mempool_t mapping_pool;
285};
286
287static void metadata_operation_failed(struct pool *pool, const char *op, int r);
288
289static enum pool_mode get_pool_mode(struct pool *pool)
290{
291 return pool->pf.mode;
292}
293
294static void notify_of_pool_mode_change(struct pool *pool)
295{
296 const char *descs[] = {
297 "write",
298 "out-of-data-space",
299 "read-only",
300 "read-only",
301 "fail"
302 };
303 const char *extra_desc = NULL;
304 enum pool_mode mode = get_pool_mode(pool);
305
306 if (mode == PM_OUT_OF_DATA_SPACE) {
307 if (!pool->pf.error_if_no_space)
308 extra_desc = " (queue IO)";
309 else
310 extra_desc = " (error IO)";
311 }
312
313 dm_table_event(pool->ti->table);
314 DMINFO("%s: switching pool to %s%s mode",
315 dm_device_name(pool->pool_md),
316 descs[(int)mode], extra_desc ? : "");
317}
318
319/*
320 * Target context for a pool.
321 */
322struct pool_c {
323 struct dm_target *ti;
324 struct pool *pool;
325 struct dm_dev *data_dev;
326 struct dm_dev *metadata_dev;
327 struct dm_target_callbacks callbacks;
328
329 dm_block_t low_water_blocks;
330 struct pool_features requested_pf; /* Features requested during table load */
331 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
332 struct bio flush_bio;
333};
334
335/*
336 * Target context for a thin.
337 */
338struct thin_c {
339 struct list_head list;
340 struct dm_dev *pool_dev;
341 struct dm_dev *origin_dev;
342 sector_t origin_size;
343 dm_thin_id dev_id;
344
345 struct pool *pool;
346 struct dm_thin_device *td;
347 struct mapped_device *thin_md;
348
349 bool requeue_mode:1;
350 spinlock_t lock;
351 struct list_head deferred_cells;
352 struct bio_list deferred_bio_list;
353 struct bio_list retry_on_resume_list;
354 struct rb_root sort_bio_list; /* sorted list of deferred bios */
355
356 /*
357 * Ensures the thin is not destroyed until the worker has finished
358 * iterating the active_thins list.
359 */
360 refcount_t refcount;
361 struct completion can_destroy;
362};
363
364/*----------------------------------------------------------------*/
365
366static bool block_size_is_power_of_two(struct pool *pool)
367{
368 return pool->sectors_per_block_shift >= 0;
369}
370
371static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
372{
373 return block_size_is_power_of_two(pool) ?
374 (b << pool->sectors_per_block_shift) :
375 (b * pool->sectors_per_block);
376}
377
378/*----------------------------------------------------------------*/
379
380struct discard_op {
381 struct thin_c *tc;
382 struct blk_plug plug;
383 struct bio *parent_bio;
384 struct bio *bio;
385};
386
387static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
388{
389 BUG_ON(!parent);
390
391 op->tc = tc;
392 blk_start_plug(&op->plug);
393 op->parent_bio = parent;
394 op->bio = NULL;
395}
396
397static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
398{
399 struct thin_c *tc = op->tc;
400 sector_t s = block_to_sectors(tc->pool, data_b);
401 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
402
403 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
404 GFP_NOWAIT, 0, &op->bio);
405}
406
407static void end_discard(struct discard_op *op, int r)
408{
409 if (op->bio) {
410 /*
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
413 */
414 bio_chain(op->bio, op->parent_bio);
415 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
416 submit_bio(op->bio);
417 }
418
419 blk_finish_plug(&op->plug);
420
421 /*
422 * Even if r is set, there could be sub discards in flight that we
423 * need to wait for.
424 */
425 if (r && !op->parent_bio->bi_status)
426 op->parent_bio->bi_status = errno_to_blk_status(r);
427 bio_endio(op->parent_bio);
428}
429
430/*----------------------------------------------------------------*/
431
432/*
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
435 */
436static void wake_worker(struct pool *pool)
437{
438 queue_work(pool->wq, &pool->worker);
439}
440
441/*----------------------------------------------------------------*/
442
443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 struct dm_bio_prison_cell **cell_result)
445{
446 int r;
447 struct dm_bio_prison_cell *cell_prealloc;
448
449 /*
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
452 */
453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 if (r)
457 /*
458 * We reused an old cell; we can get rid of
459 * the new one.
460 */
461 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462
463 return r;
464}
465
466static void cell_release(struct pool *pool,
467 struct dm_bio_prison_cell *cell,
468 struct bio_list *bios)
469{
470 dm_cell_release(pool->prison, cell, bios);
471 dm_bio_prison_free_cell(pool->prison, cell);
472}
473
474static void cell_visit_release(struct pool *pool,
475 void (*fn)(void *, struct dm_bio_prison_cell *),
476 void *context,
477 struct dm_bio_prison_cell *cell)
478{
479 dm_cell_visit_release(pool->prison, fn, context, cell);
480 dm_bio_prison_free_cell(pool->prison, cell);
481}
482
483static void cell_release_no_holder(struct pool *pool,
484 struct dm_bio_prison_cell *cell,
485 struct bio_list *bios)
486{
487 dm_cell_release_no_holder(pool->prison, cell, bios);
488 dm_bio_prison_free_cell(pool->prison, cell);
489}
490
491static void cell_error_with_code(struct pool *pool,
492 struct dm_bio_prison_cell *cell, blk_status_t error_code)
493{
494 dm_cell_error(pool->prison, cell, error_code);
495 dm_bio_prison_free_cell(pool->prison, cell);
496}
497
498static blk_status_t get_pool_io_error_code(struct pool *pool)
499{
500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501}
502
503static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504{
505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506}
507
508static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509{
510 cell_error_with_code(pool, cell, 0);
511}
512
513static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514{
515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516}
517
518/*----------------------------------------------------------------*/
519
520/*
521 * A global list of pools that uses a struct mapped_device as a key.
522 */
523static struct dm_thin_pool_table {
524 struct mutex mutex;
525 struct list_head pools;
526} dm_thin_pool_table;
527
528static void pool_table_init(void)
529{
530 mutex_init(&dm_thin_pool_table.mutex);
531 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532}
533
534static void pool_table_exit(void)
535{
536 mutex_destroy(&dm_thin_pool_table.mutex);
537}
538
539static void __pool_table_insert(struct pool *pool)
540{
541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542 list_add(&pool->list, &dm_thin_pool_table.pools);
543}
544
545static void __pool_table_remove(struct pool *pool)
546{
547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548 list_del(&pool->list);
549}
550
551static struct pool *__pool_table_lookup(struct mapped_device *md)
552{
553 struct pool *pool = NULL, *tmp;
554
555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556
557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558 if (tmp->pool_md == md) {
559 pool = tmp;
560 break;
561 }
562 }
563
564 return pool;
565}
566
567static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568{
569 struct pool *pool = NULL, *tmp;
570
571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572
573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574 if (tmp->md_dev == md_dev) {
575 pool = tmp;
576 break;
577 }
578 }
579
580 return pool;
581}
582
583/*----------------------------------------------------------------*/
584
585struct dm_thin_endio_hook {
586 struct thin_c *tc;
587 struct dm_deferred_entry *shared_read_entry;
588 struct dm_deferred_entry *all_io_entry;
589 struct dm_thin_new_mapping *overwrite_mapping;
590 struct rb_node rb_node;
591 struct dm_bio_prison_cell *cell;
592};
593
594static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595{
596 bio_list_merge(bios, master);
597 bio_list_init(master);
598}
599
600static void error_bio_list(struct bio_list *bios, blk_status_t error)
601{
602 struct bio *bio;
603
604 while ((bio = bio_list_pop(bios))) {
605 bio->bi_status = error;
606 bio_endio(bio);
607 }
608}
609
610static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611 blk_status_t error)
612{
613 struct bio_list bios;
614 unsigned long flags;
615
616 bio_list_init(&bios);
617
618 spin_lock_irqsave(&tc->lock, flags);
619 __merge_bio_list(&bios, master);
620 spin_unlock_irqrestore(&tc->lock, flags);
621
622 error_bio_list(&bios, error);
623}
624
625static void requeue_deferred_cells(struct thin_c *tc)
626{
627 struct pool *pool = tc->pool;
628 unsigned long flags;
629 struct list_head cells;
630 struct dm_bio_prison_cell *cell, *tmp;
631
632 INIT_LIST_HEAD(&cells);
633
634 spin_lock_irqsave(&tc->lock, flags);
635 list_splice_init(&tc->deferred_cells, &cells);
636 spin_unlock_irqrestore(&tc->lock, flags);
637
638 list_for_each_entry_safe(cell, tmp, &cells, user_list)
639 cell_requeue(pool, cell);
640}
641
642static void requeue_io(struct thin_c *tc)
643{
644 struct bio_list bios;
645 unsigned long flags;
646
647 bio_list_init(&bios);
648
649 spin_lock_irqsave(&tc->lock, flags);
650 __merge_bio_list(&bios, &tc->deferred_bio_list);
651 __merge_bio_list(&bios, &tc->retry_on_resume_list);
652 spin_unlock_irqrestore(&tc->lock, flags);
653
654 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
655 requeue_deferred_cells(tc);
656}
657
658static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
659{
660 struct thin_c *tc;
661
662 rcu_read_lock();
663 list_for_each_entry_rcu(tc, &pool->active_thins, list)
664 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
665 rcu_read_unlock();
666}
667
668static void error_retry_list(struct pool *pool)
669{
670 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
671}
672
673/*
674 * This section of code contains the logic for processing a thin device's IO.
675 * Much of the code depends on pool object resources (lists, workqueues, etc)
676 * but most is exclusively called from the thin target rather than the thin-pool
677 * target.
678 */
679
680static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
681{
682 struct pool *pool = tc->pool;
683 sector_t block_nr = bio->bi_iter.bi_sector;
684
685 if (block_size_is_power_of_two(pool))
686 block_nr >>= pool->sectors_per_block_shift;
687 else
688 (void) sector_div(block_nr, pool->sectors_per_block);
689
690 return block_nr;
691}
692
693/*
694 * Returns the _complete_ blocks that this bio covers.
695 */
696static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
697 dm_block_t *begin, dm_block_t *end)
698{
699 struct pool *pool = tc->pool;
700 sector_t b = bio->bi_iter.bi_sector;
701 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
702
703 b += pool->sectors_per_block - 1ull; /* so we round up */
704
705 if (block_size_is_power_of_two(pool)) {
706 b >>= pool->sectors_per_block_shift;
707 e >>= pool->sectors_per_block_shift;
708 } else {
709 (void) sector_div(b, pool->sectors_per_block);
710 (void) sector_div(e, pool->sectors_per_block);
711 }
712
713 if (e < b)
714 /* Can happen if the bio is within a single block. */
715 e = b;
716
717 *begin = b;
718 *end = e;
719}
720
721static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
722{
723 struct pool *pool = tc->pool;
724 sector_t bi_sector = bio->bi_iter.bi_sector;
725
726 bio_set_dev(bio, tc->pool_dev->bdev);
727 if (block_size_is_power_of_two(pool))
728 bio->bi_iter.bi_sector =
729 (block << pool->sectors_per_block_shift) |
730 (bi_sector & (pool->sectors_per_block - 1));
731 else
732 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
733 sector_div(bi_sector, pool->sectors_per_block);
734}
735
736static void remap_to_origin(struct thin_c *tc, struct bio *bio)
737{
738 bio_set_dev(bio, tc->origin_dev->bdev);
739}
740
741static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
742{
743 return op_is_flush(bio->bi_opf) &&
744 dm_thin_changed_this_transaction(tc->td);
745}
746
747static void inc_all_io_entry(struct pool *pool, struct bio *bio)
748{
749 struct dm_thin_endio_hook *h;
750
751 if (bio_op(bio) == REQ_OP_DISCARD)
752 return;
753
754 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
755 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
756}
757
758static void issue(struct thin_c *tc, struct bio *bio)
759{
760 struct pool *pool = tc->pool;
761 unsigned long flags;
762
763 if (!bio_triggers_commit(tc, bio)) {
764 generic_make_request(bio);
765 return;
766 }
767
768 /*
769 * Complete bio with an error if earlier I/O caused changes to
770 * the metadata that can't be committed e.g, due to I/O errors
771 * on the metadata device.
772 */
773 if (dm_thin_aborted_changes(tc->td)) {
774 bio_io_error(bio);
775 return;
776 }
777
778 /*
779 * Batch together any bios that trigger commits and then issue a
780 * single commit for them in process_deferred_bios().
781 */
782 spin_lock_irqsave(&pool->lock, flags);
783 bio_list_add(&pool->deferred_flush_bios, bio);
784 spin_unlock_irqrestore(&pool->lock, flags);
785}
786
787static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
788{
789 remap_to_origin(tc, bio);
790 issue(tc, bio);
791}
792
793static void remap_and_issue(struct thin_c *tc, struct bio *bio,
794 dm_block_t block)
795{
796 remap(tc, bio, block);
797 issue(tc, bio);
798}
799
800/*----------------------------------------------------------------*/
801
802/*
803 * Bio endio functions.
804 */
805struct dm_thin_new_mapping {
806 struct list_head list;
807
808 bool pass_discard:1;
809 bool maybe_shared:1;
810
811 /*
812 * Track quiescing, copying and zeroing preparation actions. When this
813 * counter hits zero the block is prepared and can be inserted into the
814 * btree.
815 */
816 atomic_t prepare_actions;
817
818 blk_status_t status;
819 struct thin_c *tc;
820 dm_block_t virt_begin, virt_end;
821 dm_block_t data_block;
822 struct dm_bio_prison_cell *cell;
823
824 /*
825 * If the bio covers the whole area of a block then we can avoid
826 * zeroing or copying. Instead this bio is hooked. The bio will
827 * still be in the cell, so care has to be taken to avoid issuing
828 * the bio twice.
829 */
830 struct bio *bio;
831 bio_end_io_t *saved_bi_end_io;
832};
833
834static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
835{
836 struct pool *pool = m->tc->pool;
837
838 if (atomic_dec_and_test(&m->prepare_actions)) {
839 list_add_tail(&m->list, &pool->prepared_mappings);
840 wake_worker(pool);
841 }
842}
843
844static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
845{
846 unsigned long flags;
847 struct pool *pool = m->tc->pool;
848
849 spin_lock_irqsave(&pool->lock, flags);
850 __complete_mapping_preparation(m);
851 spin_unlock_irqrestore(&pool->lock, flags);
852}
853
854static void copy_complete(int read_err, unsigned long write_err, void *context)
855{
856 struct dm_thin_new_mapping *m = context;
857
858 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
859 complete_mapping_preparation(m);
860}
861
862static void overwrite_endio(struct bio *bio)
863{
864 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
865 struct dm_thin_new_mapping *m = h->overwrite_mapping;
866
867 bio->bi_end_io = m->saved_bi_end_io;
868
869 m->status = bio->bi_status;
870 complete_mapping_preparation(m);
871}
872
873/*----------------------------------------------------------------*/
874
875/*
876 * Workqueue.
877 */
878
879/*
880 * Prepared mapping jobs.
881 */
882
883/*
884 * This sends the bios in the cell, except the original holder, back
885 * to the deferred_bios list.
886 */
887static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
888{
889 struct pool *pool = tc->pool;
890 unsigned long flags;
891
892 spin_lock_irqsave(&tc->lock, flags);
893 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
894 spin_unlock_irqrestore(&tc->lock, flags);
895
896 wake_worker(pool);
897}
898
899static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
900
901struct remap_info {
902 struct thin_c *tc;
903 struct bio_list defer_bios;
904 struct bio_list issue_bios;
905};
906
907static void __inc_remap_and_issue_cell(void *context,
908 struct dm_bio_prison_cell *cell)
909{
910 struct remap_info *info = context;
911 struct bio *bio;
912
913 while ((bio = bio_list_pop(&cell->bios))) {
914 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
915 bio_list_add(&info->defer_bios, bio);
916 else {
917 inc_all_io_entry(info->tc->pool, bio);
918
919 /*
920 * We can't issue the bios with the bio prison lock
921 * held, so we add them to a list to issue on
922 * return from this function.
923 */
924 bio_list_add(&info->issue_bios, bio);
925 }
926 }
927}
928
929static void inc_remap_and_issue_cell(struct thin_c *tc,
930 struct dm_bio_prison_cell *cell,
931 dm_block_t block)
932{
933 struct bio *bio;
934 struct remap_info info;
935
936 info.tc = tc;
937 bio_list_init(&info.defer_bios);
938 bio_list_init(&info.issue_bios);
939
940 /*
941 * We have to be careful to inc any bios we're about to issue
942 * before the cell is released, and avoid a race with new bios
943 * being added to the cell.
944 */
945 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
946 &info, cell);
947
948 while ((bio = bio_list_pop(&info.defer_bios)))
949 thin_defer_bio(tc, bio);
950
951 while ((bio = bio_list_pop(&info.issue_bios)))
952 remap_and_issue(info.tc, bio, block);
953}
954
955static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
956{
957 cell_error(m->tc->pool, m->cell);
958 list_del(&m->list);
959 mempool_free(m, &m->tc->pool->mapping_pool);
960}
961
962static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
963{
964 struct pool *pool = tc->pool;
965 unsigned long flags;
966
967 /*
968 * If the bio has the REQ_FUA flag set we must commit the metadata
969 * before signaling its completion.
970 */
971 if (!bio_triggers_commit(tc, bio)) {
972 bio_endio(bio);
973 return;
974 }
975
976 /*
977 * Complete bio with an error if earlier I/O caused changes to the
978 * metadata that can't be committed, e.g, due to I/O errors on the
979 * metadata device.
980 */
981 if (dm_thin_aborted_changes(tc->td)) {
982 bio_io_error(bio);
983 return;
984 }
985
986 /*
987 * Batch together any bios that trigger commits and then issue a
988 * single commit for them in process_deferred_bios().
989 */
990 spin_lock_irqsave(&pool->lock, flags);
991 bio_list_add(&pool->deferred_flush_completions, bio);
992 spin_unlock_irqrestore(&pool->lock, flags);
993}
994
995static void process_prepared_mapping(struct dm_thin_new_mapping *m)
996{
997 struct thin_c *tc = m->tc;
998 struct pool *pool = tc->pool;
999 struct bio *bio = m->bio;
1000 int r;
1001
1002 if (m->status) {
1003 cell_error(pool, m->cell);
1004 goto out;
1005 }
1006
1007 /*
1008 * Commit the prepared block into the mapping btree.
1009 * Any I/O for this block arriving after this point will get
1010 * remapped to it directly.
1011 */
1012 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1013 if (r) {
1014 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1015 cell_error(pool, m->cell);
1016 goto out;
1017 }
1018
1019 /*
1020 * Release any bios held while the block was being provisioned.
1021 * If we are processing a write bio that completely covers the block,
1022 * we already processed it so can ignore it now when processing
1023 * the bios in the cell.
1024 */
1025 if (bio) {
1026 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1027 complete_overwrite_bio(tc, bio);
1028 } else {
1029 inc_all_io_entry(tc->pool, m->cell->holder);
1030 remap_and_issue(tc, m->cell->holder, m->data_block);
1031 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1032 }
1033
1034out:
1035 list_del(&m->list);
1036 mempool_free(m, &pool->mapping_pool);
1037}
1038
1039/*----------------------------------------------------------------*/
1040
1041static void free_discard_mapping(struct dm_thin_new_mapping *m)
1042{
1043 struct thin_c *tc = m->tc;
1044 if (m->cell)
1045 cell_defer_no_holder(tc, m->cell);
1046 mempool_free(m, &tc->pool->mapping_pool);
1047}
1048
1049static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1050{
1051 bio_io_error(m->bio);
1052 free_discard_mapping(m);
1053}
1054
1055static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1056{
1057 bio_endio(m->bio);
1058 free_discard_mapping(m);
1059}
1060
1061static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1062{
1063 int r;
1064 struct thin_c *tc = m->tc;
1065
1066 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1067 if (r) {
1068 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1069 bio_io_error(m->bio);
1070 } else
1071 bio_endio(m->bio);
1072
1073 cell_defer_no_holder(tc, m->cell);
1074 mempool_free(m, &tc->pool->mapping_pool);
1075}
1076
1077/*----------------------------------------------------------------*/
1078
1079static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1080 struct bio *discard_parent)
1081{
1082 /*
1083 * We've already unmapped this range of blocks, but before we
1084 * passdown we have to check that these blocks are now unused.
1085 */
1086 int r = 0;
1087 bool shared = true;
1088 struct thin_c *tc = m->tc;
1089 struct pool *pool = tc->pool;
1090 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1091 struct discard_op op;
1092
1093 begin_discard(&op, tc, discard_parent);
1094 while (b != end) {
1095 /* find start of unmapped run */
1096 for (; b < end; b++) {
1097 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1098 if (r)
1099 goto out;
1100
1101 if (!shared)
1102 break;
1103 }
1104
1105 if (b == end)
1106 break;
1107
1108 /* find end of run */
1109 for (e = b + 1; e != end; e++) {
1110 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1111 if (r)
1112 goto out;
1113
1114 if (shared)
1115 break;
1116 }
1117
1118 r = issue_discard(&op, b, e);
1119 if (r)
1120 goto out;
1121
1122 b = e;
1123 }
1124out:
1125 end_discard(&op, r);
1126}
1127
1128static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1129{
1130 unsigned long flags;
1131 struct pool *pool = m->tc->pool;
1132
1133 spin_lock_irqsave(&pool->lock, flags);
1134 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1135 spin_unlock_irqrestore(&pool->lock, flags);
1136 wake_worker(pool);
1137}
1138
1139static void passdown_endio(struct bio *bio)
1140{
1141 /*
1142 * It doesn't matter if the passdown discard failed, we still want
1143 * to unmap (we ignore err).
1144 */
1145 queue_passdown_pt2(bio->bi_private);
1146 bio_put(bio);
1147}
1148
1149static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1150{
1151 int r;
1152 struct thin_c *tc = m->tc;
1153 struct pool *pool = tc->pool;
1154 struct bio *discard_parent;
1155 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1156
1157 /*
1158 * Only this thread allocates blocks, so we can be sure that the
1159 * newly unmapped blocks will not be allocated before the end of
1160 * the function.
1161 */
1162 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1163 if (r) {
1164 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1165 bio_io_error(m->bio);
1166 cell_defer_no_holder(tc, m->cell);
1167 mempool_free(m, &pool->mapping_pool);
1168 return;
1169 }
1170
1171 /*
1172 * Increment the unmapped blocks. This prevents a race between the
1173 * passdown io and reallocation of freed blocks.
1174 */
1175 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1176 if (r) {
1177 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1178 bio_io_error(m->bio);
1179 cell_defer_no_holder(tc, m->cell);
1180 mempool_free(m, &pool->mapping_pool);
1181 return;
1182 }
1183
1184 discard_parent = bio_alloc(GFP_NOIO, 1);
1185 if (!discard_parent) {
1186 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1187 dm_device_name(tc->pool->pool_md));
1188 queue_passdown_pt2(m);
1189
1190 } else {
1191 discard_parent->bi_end_io = passdown_endio;
1192 discard_parent->bi_private = m;
1193
1194 if (m->maybe_shared)
1195 passdown_double_checking_shared_status(m, discard_parent);
1196 else {
1197 struct discard_op op;
1198
1199 begin_discard(&op, tc, discard_parent);
1200 r = issue_discard(&op, m->data_block, data_end);
1201 end_discard(&op, r);
1202 }
1203 }
1204}
1205
1206static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1207{
1208 int r;
1209 struct thin_c *tc = m->tc;
1210 struct pool *pool = tc->pool;
1211
1212 /*
1213 * The passdown has completed, so now we can decrement all those
1214 * unmapped blocks.
1215 */
1216 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1217 m->data_block + (m->virt_end - m->virt_begin));
1218 if (r) {
1219 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1220 bio_io_error(m->bio);
1221 } else
1222 bio_endio(m->bio);
1223
1224 cell_defer_no_holder(tc, m->cell);
1225 mempool_free(m, &pool->mapping_pool);
1226}
1227
1228static void process_prepared(struct pool *pool, struct list_head *head,
1229 process_mapping_fn *fn)
1230{
1231 unsigned long flags;
1232 struct list_head maps;
1233 struct dm_thin_new_mapping *m, *tmp;
1234
1235 INIT_LIST_HEAD(&maps);
1236 spin_lock_irqsave(&pool->lock, flags);
1237 list_splice_init(head, &maps);
1238 spin_unlock_irqrestore(&pool->lock, flags);
1239
1240 list_for_each_entry_safe(m, tmp, &maps, list)
1241 (*fn)(m);
1242}
1243
1244/*
1245 * Deferred bio jobs.
1246 */
1247static int io_overlaps_block(struct pool *pool, struct bio *bio)
1248{
1249 return bio->bi_iter.bi_size ==
1250 (pool->sectors_per_block << SECTOR_SHIFT);
1251}
1252
1253static int io_overwrites_block(struct pool *pool, struct bio *bio)
1254{
1255 return (bio_data_dir(bio) == WRITE) &&
1256 io_overlaps_block(pool, bio);
1257}
1258
1259static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1260 bio_end_io_t *fn)
1261{
1262 *save = bio->bi_end_io;
1263 bio->bi_end_io = fn;
1264}
1265
1266static int ensure_next_mapping(struct pool *pool)
1267{
1268 if (pool->next_mapping)
1269 return 0;
1270
1271 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1272
1273 return pool->next_mapping ? 0 : -ENOMEM;
1274}
1275
1276static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1277{
1278 struct dm_thin_new_mapping *m = pool->next_mapping;
1279
1280 BUG_ON(!pool->next_mapping);
1281
1282 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1283 INIT_LIST_HEAD(&m->list);
1284 m->bio = NULL;
1285
1286 pool->next_mapping = NULL;
1287
1288 return m;
1289}
1290
1291static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1292 sector_t begin, sector_t end)
1293{
1294 struct dm_io_region to;
1295
1296 to.bdev = tc->pool_dev->bdev;
1297 to.sector = begin;
1298 to.count = end - begin;
1299
1300 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1301}
1302
1303static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1304 dm_block_t data_begin,
1305 struct dm_thin_new_mapping *m)
1306{
1307 struct pool *pool = tc->pool;
1308 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1309
1310 h->overwrite_mapping = m;
1311 m->bio = bio;
1312 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1313 inc_all_io_entry(pool, bio);
1314 remap_and_issue(tc, bio, data_begin);
1315}
1316
1317/*
1318 * A partial copy also needs to zero the uncopied region.
1319 */
1320static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1321 struct dm_dev *origin, dm_block_t data_origin,
1322 dm_block_t data_dest,
1323 struct dm_bio_prison_cell *cell, struct bio *bio,
1324 sector_t len)
1325{
1326 struct pool *pool = tc->pool;
1327 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1328
1329 m->tc = tc;
1330 m->virt_begin = virt_block;
1331 m->virt_end = virt_block + 1u;
1332 m->data_block = data_dest;
1333 m->cell = cell;
1334
1335 /*
1336 * quiesce action + copy action + an extra reference held for the
1337 * duration of this function (we may need to inc later for a
1338 * partial zero).
1339 */
1340 atomic_set(&m->prepare_actions, 3);
1341
1342 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1343 complete_mapping_preparation(m); /* already quiesced */
1344
1345 /*
1346 * IO to pool_dev remaps to the pool target's data_dev.
1347 *
1348 * If the whole block of data is being overwritten, we can issue the
1349 * bio immediately. Otherwise we use kcopyd to clone the data first.
1350 */
1351 if (io_overwrites_block(pool, bio))
1352 remap_and_issue_overwrite(tc, bio, data_dest, m);
1353 else {
1354 struct dm_io_region from, to;
1355
1356 from.bdev = origin->bdev;
1357 from.sector = data_origin * pool->sectors_per_block;
1358 from.count = len;
1359
1360 to.bdev = tc->pool_dev->bdev;
1361 to.sector = data_dest * pool->sectors_per_block;
1362 to.count = len;
1363
1364 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1365 0, copy_complete, m);
1366
1367 /*
1368 * Do we need to zero a tail region?
1369 */
1370 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1371 atomic_inc(&m->prepare_actions);
1372 ll_zero(tc, m,
1373 data_dest * pool->sectors_per_block + len,
1374 (data_dest + 1) * pool->sectors_per_block);
1375 }
1376 }
1377
1378 complete_mapping_preparation(m); /* drop our ref */
1379}
1380
1381static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1382 dm_block_t data_origin, dm_block_t data_dest,
1383 struct dm_bio_prison_cell *cell, struct bio *bio)
1384{
1385 schedule_copy(tc, virt_block, tc->pool_dev,
1386 data_origin, data_dest, cell, bio,
1387 tc->pool->sectors_per_block);
1388}
1389
1390static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1391 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1392 struct bio *bio)
1393{
1394 struct pool *pool = tc->pool;
1395 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1396
1397 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1398 m->tc = tc;
1399 m->virt_begin = virt_block;
1400 m->virt_end = virt_block + 1u;
1401 m->data_block = data_block;
1402 m->cell = cell;
1403
1404 /*
1405 * If the whole block of data is being overwritten or we are not
1406 * zeroing pre-existing data, we can issue the bio immediately.
1407 * Otherwise we use kcopyd to zero the data first.
1408 */
1409 if (pool->pf.zero_new_blocks) {
1410 if (io_overwrites_block(pool, bio))
1411 remap_and_issue_overwrite(tc, bio, data_block, m);
1412 else
1413 ll_zero(tc, m, data_block * pool->sectors_per_block,
1414 (data_block + 1) * pool->sectors_per_block);
1415 } else
1416 process_prepared_mapping(m);
1417}
1418
1419static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1420 dm_block_t data_dest,
1421 struct dm_bio_prison_cell *cell, struct bio *bio)
1422{
1423 struct pool *pool = tc->pool;
1424 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1425 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1426
1427 if (virt_block_end <= tc->origin_size)
1428 schedule_copy(tc, virt_block, tc->origin_dev,
1429 virt_block, data_dest, cell, bio,
1430 pool->sectors_per_block);
1431
1432 else if (virt_block_begin < tc->origin_size)
1433 schedule_copy(tc, virt_block, tc->origin_dev,
1434 virt_block, data_dest, cell, bio,
1435 tc->origin_size - virt_block_begin);
1436
1437 else
1438 schedule_zero(tc, virt_block, data_dest, cell, bio);
1439}
1440
1441static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1442
1443static void requeue_bios(struct pool *pool);
1444
1445static bool is_read_only_pool_mode(enum pool_mode mode)
1446{
1447 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1448}
1449
1450static bool is_read_only(struct pool *pool)
1451{
1452 return is_read_only_pool_mode(get_pool_mode(pool));
1453}
1454
1455static void check_for_metadata_space(struct pool *pool)
1456{
1457 int r;
1458 const char *ooms_reason = NULL;
1459 dm_block_t nr_free;
1460
1461 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1462 if (r)
1463 ooms_reason = "Could not get free metadata blocks";
1464 else if (!nr_free)
1465 ooms_reason = "No free metadata blocks";
1466
1467 if (ooms_reason && !is_read_only(pool)) {
1468 DMERR("%s", ooms_reason);
1469 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1470 }
1471}
1472
1473static void check_for_data_space(struct pool *pool)
1474{
1475 int r;
1476 dm_block_t nr_free;
1477
1478 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1479 return;
1480
1481 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1482 if (r)
1483 return;
1484
1485 if (nr_free) {
1486 set_pool_mode(pool, PM_WRITE);
1487 requeue_bios(pool);
1488 }
1489}
1490
1491/*
1492 * A non-zero return indicates read_only or fail_io mode.
1493 * Many callers don't care about the return value.
1494 */
1495static int commit(struct pool *pool)
1496{
1497 int r;
1498
1499 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1500 return -EINVAL;
1501
1502 r = dm_pool_commit_metadata(pool->pmd);
1503 if (r)
1504 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1505 else {
1506 check_for_metadata_space(pool);
1507 check_for_data_space(pool);
1508 }
1509
1510 return r;
1511}
1512
1513static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1514{
1515 unsigned long flags;
1516
1517 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1518 DMWARN("%s: reached low water mark for data device: sending event.",
1519 dm_device_name(pool->pool_md));
1520 spin_lock_irqsave(&pool->lock, flags);
1521 pool->low_water_triggered = true;
1522 spin_unlock_irqrestore(&pool->lock, flags);
1523 dm_table_event(pool->ti->table);
1524 }
1525}
1526
1527static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1528{
1529 int r;
1530 dm_block_t free_blocks;
1531 struct pool *pool = tc->pool;
1532
1533 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1534 return -EINVAL;
1535
1536 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1537 if (r) {
1538 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1539 return r;
1540 }
1541
1542 check_low_water_mark(pool, free_blocks);
1543
1544 if (!free_blocks) {
1545 /*
1546 * Try to commit to see if that will free up some
1547 * more space.
1548 */
1549 r = commit(pool);
1550 if (r)
1551 return r;
1552
1553 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1554 if (r) {
1555 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1556 return r;
1557 }
1558
1559 if (!free_blocks) {
1560 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1561 return -ENOSPC;
1562 }
1563 }
1564
1565 r = dm_pool_alloc_data_block(pool->pmd, result);
1566 if (r) {
1567 if (r == -ENOSPC)
1568 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1569 else
1570 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1571 return r;
1572 }
1573
1574 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1575 if (r) {
1576 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1577 return r;
1578 }
1579
1580 if (!free_blocks) {
1581 /* Let's commit before we use up the metadata reserve. */
1582 r = commit(pool);
1583 if (r)
1584 return r;
1585 }
1586
1587 return 0;
1588}
1589
1590/*
1591 * If we have run out of space, queue bios until the device is
1592 * resumed, presumably after having been reloaded with more space.
1593 */
1594static void retry_on_resume(struct bio *bio)
1595{
1596 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1597 struct thin_c *tc = h->tc;
1598 unsigned long flags;
1599
1600 spin_lock_irqsave(&tc->lock, flags);
1601 bio_list_add(&tc->retry_on_resume_list, bio);
1602 spin_unlock_irqrestore(&tc->lock, flags);
1603}
1604
1605static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1606{
1607 enum pool_mode m = get_pool_mode(pool);
1608
1609 switch (m) {
1610 case PM_WRITE:
1611 /* Shouldn't get here */
1612 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1613 return BLK_STS_IOERR;
1614
1615 case PM_OUT_OF_DATA_SPACE:
1616 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1617
1618 case PM_OUT_OF_METADATA_SPACE:
1619 case PM_READ_ONLY:
1620 case PM_FAIL:
1621 return BLK_STS_IOERR;
1622 default:
1623 /* Shouldn't get here */
1624 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1625 return BLK_STS_IOERR;
1626 }
1627}
1628
1629static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1630{
1631 blk_status_t error = should_error_unserviceable_bio(pool);
1632
1633 if (error) {
1634 bio->bi_status = error;
1635 bio_endio(bio);
1636 } else
1637 retry_on_resume(bio);
1638}
1639
1640static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1641{
1642 struct bio *bio;
1643 struct bio_list bios;
1644 blk_status_t error;
1645
1646 error = should_error_unserviceable_bio(pool);
1647 if (error) {
1648 cell_error_with_code(pool, cell, error);
1649 return;
1650 }
1651
1652 bio_list_init(&bios);
1653 cell_release(pool, cell, &bios);
1654
1655 while ((bio = bio_list_pop(&bios)))
1656 retry_on_resume(bio);
1657}
1658
1659static void process_discard_cell_no_passdown(struct thin_c *tc,
1660 struct dm_bio_prison_cell *virt_cell)
1661{
1662 struct pool *pool = tc->pool;
1663 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1664
1665 /*
1666 * We don't need to lock the data blocks, since there's no
1667 * passdown. We only lock data blocks for allocation and breaking sharing.
1668 */
1669 m->tc = tc;
1670 m->virt_begin = virt_cell->key.block_begin;
1671 m->virt_end = virt_cell->key.block_end;
1672 m->cell = virt_cell;
1673 m->bio = virt_cell->holder;
1674
1675 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1676 pool->process_prepared_discard(m);
1677}
1678
1679static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1680 struct bio *bio)
1681{
1682 struct pool *pool = tc->pool;
1683
1684 int r;
1685 bool maybe_shared;
1686 struct dm_cell_key data_key;
1687 struct dm_bio_prison_cell *data_cell;
1688 struct dm_thin_new_mapping *m;
1689 dm_block_t virt_begin, virt_end, data_begin;
1690
1691 while (begin != end) {
1692 r = ensure_next_mapping(pool);
1693 if (r)
1694 /* we did our best */
1695 return;
1696
1697 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1698 &data_begin, &maybe_shared);
1699 if (r)
1700 /*
1701 * Silently fail, letting any mappings we've
1702 * created complete.
1703 */
1704 break;
1705
1706 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1707 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1708 /* contention, we'll give up with this range */
1709 begin = virt_end;
1710 continue;
1711 }
1712
1713 /*
1714 * IO may still be going to the destination block. We must
1715 * quiesce before we can do the removal.
1716 */
1717 m = get_next_mapping(pool);
1718 m->tc = tc;
1719 m->maybe_shared = maybe_shared;
1720 m->virt_begin = virt_begin;
1721 m->virt_end = virt_end;
1722 m->data_block = data_begin;
1723 m->cell = data_cell;
1724 m->bio = bio;
1725
1726 /*
1727 * The parent bio must not complete before sub discard bios are
1728 * chained to it (see end_discard's bio_chain)!
1729 *
1730 * This per-mapping bi_remaining increment is paired with
1731 * the implicit decrement that occurs via bio_endio() in
1732 * end_discard().
1733 */
1734 bio_inc_remaining(bio);
1735 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1736 pool->process_prepared_discard(m);
1737
1738 begin = virt_end;
1739 }
1740}
1741
1742static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1743{
1744 struct bio *bio = virt_cell->holder;
1745 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1746
1747 /*
1748 * The virt_cell will only get freed once the origin bio completes.
1749 * This means it will remain locked while all the individual
1750 * passdown bios are in flight.
1751 */
1752 h->cell = virt_cell;
1753 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1754
1755 /*
1756 * We complete the bio now, knowing that the bi_remaining field
1757 * will prevent completion until the sub range discards have
1758 * completed.
1759 */
1760 bio_endio(bio);
1761}
1762
1763static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1764{
1765 dm_block_t begin, end;
1766 struct dm_cell_key virt_key;
1767 struct dm_bio_prison_cell *virt_cell;
1768
1769 get_bio_block_range(tc, bio, &begin, &end);
1770 if (begin == end) {
1771 /*
1772 * The discard covers less than a block.
1773 */
1774 bio_endio(bio);
1775 return;
1776 }
1777
1778 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1779 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1780 /*
1781 * Potential starvation issue: We're relying on the
1782 * fs/application being well behaved, and not trying to
1783 * send IO to a region at the same time as discarding it.
1784 * If they do this persistently then it's possible this
1785 * cell will never be granted.
1786 */
1787 return;
1788
1789 tc->pool->process_discard_cell(tc, virt_cell);
1790}
1791
1792static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1793 struct dm_cell_key *key,
1794 struct dm_thin_lookup_result *lookup_result,
1795 struct dm_bio_prison_cell *cell)
1796{
1797 int r;
1798 dm_block_t data_block;
1799 struct pool *pool = tc->pool;
1800
1801 r = alloc_data_block(tc, &data_block);
1802 switch (r) {
1803 case 0:
1804 schedule_internal_copy(tc, block, lookup_result->block,
1805 data_block, cell, bio);
1806 break;
1807
1808 case -ENOSPC:
1809 retry_bios_on_resume(pool, cell);
1810 break;
1811
1812 default:
1813 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1814 __func__, r);
1815 cell_error(pool, cell);
1816 break;
1817 }
1818}
1819
1820static void __remap_and_issue_shared_cell(void *context,
1821 struct dm_bio_prison_cell *cell)
1822{
1823 struct remap_info *info = context;
1824 struct bio *bio;
1825
1826 while ((bio = bio_list_pop(&cell->bios))) {
1827 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1828 bio_op(bio) == REQ_OP_DISCARD)
1829 bio_list_add(&info->defer_bios, bio);
1830 else {
1831 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1832
1833 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1834 inc_all_io_entry(info->tc->pool, bio);
1835 bio_list_add(&info->issue_bios, bio);
1836 }
1837 }
1838}
1839
1840static void remap_and_issue_shared_cell(struct thin_c *tc,
1841 struct dm_bio_prison_cell *cell,
1842 dm_block_t block)
1843{
1844 struct bio *bio;
1845 struct remap_info info;
1846
1847 info.tc = tc;
1848 bio_list_init(&info.defer_bios);
1849 bio_list_init(&info.issue_bios);
1850
1851 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1852 &info, cell);
1853
1854 while ((bio = bio_list_pop(&info.defer_bios)))
1855 thin_defer_bio(tc, bio);
1856
1857 while ((bio = bio_list_pop(&info.issue_bios)))
1858 remap_and_issue(tc, bio, block);
1859}
1860
1861static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1862 dm_block_t block,
1863 struct dm_thin_lookup_result *lookup_result,
1864 struct dm_bio_prison_cell *virt_cell)
1865{
1866 struct dm_bio_prison_cell *data_cell;
1867 struct pool *pool = tc->pool;
1868 struct dm_cell_key key;
1869
1870 /*
1871 * If cell is already occupied, then sharing is already in the process
1872 * of being broken so we have nothing further to do here.
1873 */
1874 build_data_key(tc->td, lookup_result->block, &key);
1875 if (bio_detain(pool, &key, bio, &data_cell)) {
1876 cell_defer_no_holder(tc, virt_cell);
1877 return;
1878 }
1879
1880 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1881 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1882 cell_defer_no_holder(tc, virt_cell);
1883 } else {
1884 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1885
1886 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1887 inc_all_io_entry(pool, bio);
1888 remap_and_issue(tc, bio, lookup_result->block);
1889
1890 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1891 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1892 }
1893}
1894
1895static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1896 struct dm_bio_prison_cell *cell)
1897{
1898 int r;
1899 dm_block_t data_block;
1900 struct pool *pool = tc->pool;
1901
1902 /*
1903 * Remap empty bios (flushes) immediately, without provisioning.
1904 */
1905 if (!bio->bi_iter.bi_size) {
1906 inc_all_io_entry(pool, bio);
1907 cell_defer_no_holder(tc, cell);
1908
1909 remap_and_issue(tc, bio, 0);
1910 return;
1911 }
1912
1913 /*
1914 * Fill read bios with zeroes and complete them immediately.
1915 */
1916 if (bio_data_dir(bio) == READ) {
1917 zero_fill_bio(bio);
1918 cell_defer_no_holder(tc, cell);
1919 bio_endio(bio);
1920 return;
1921 }
1922
1923 r = alloc_data_block(tc, &data_block);
1924 switch (r) {
1925 case 0:
1926 if (tc->origin_dev)
1927 schedule_external_copy(tc, block, data_block, cell, bio);
1928 else
1929 schedule_zero(tc, block, data_block, cell, bio);
1930 break;
1931
1932 case -ENOSPC:
1933 retry_bios_on_resume(pool, cell);
1934 break;
1935
1936 default:
1937 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1938 __func__, r);
1939 cell_error(pool, cell);
1940 break;
1941 }
1942}
1943
1944static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1945{
1946 int r;
1947 struct pool *pool = tc->pool;
1948 struct bio *bio = cell->holder;
1949 dm_block_t block = get_bio_block(tc, bio);
1950 struct dm_thin_lookup_result lookup_result;
1951
1952 if (tc->requeue_mode) {
1953 cell_requeue(pool, cell);
1954 return;
1955 }
1956
1957 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1958 switch (r) {
1959 case 0:
1960 if (lookup_result.shared)
1961 process_shared_bio(tc, bio, block, &lookup_result, cell);
1962 else {
1963 inc_all_io_entry(pool, bio);
1964 remap_and_issue(tc, bio, lookup_result.block);
1965 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1966 }
1967 break;
1968
1969 case -ENODATA:
1970 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1971 inc_all_io_entry(pool, bio);
1972 cell_defer_no_holder(tc, cell);
1973
1974 if (bio_end_sector(bio) <= tc->origin_size)
1975 remap_to_origin_and_issue(tc, bio);
1976
1977 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1978 zero_fill_bio(bio);
1979 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1980 remap_to_origin_and_issue(tc, bio);
1981
1982 } else {
1983 zero_fill_bio(bio);
1984 bio_endio(bio);
1985 }
1986 } else
1987 provision_block(tc, bio, block, cell);
1988 break;
1989
1990 default:
1991 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1992 __func__, r);
1993 cell_defer_no_holder(tc, cell);
1994 bio_io_error(bio);
1995 break;
1996 }
1997}
1998
1999static void process_bio(struct thin_c *tc, struct bio *bio)
2000{
2001 struct pool *pool = tc->pool;
2002 dm_block_t block = get_bio_block(tc, bio);
2003 struct dm_bio_prison_cell *cell;
2004 struct dm_cell_key key;
2005
2006 /*
2007 * If cell is already occupied, then the block is already
2008 * being provisioned so we have nothing further to do here.
2009 */
2010 build_virtual_key(tc->td, block, &key);
2011 if (bio_detain(pool, &key, bio, &cell))
2012 return;
2013
2014 process_cell(tc, cell);
2015}
2016
2017static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2018 struct dm_bio_prison_cell *cell)
2019{
2020 int r;
2021 int rw = bio_data_dir(bio);
2022 dm_block_t block = get_bio_block(tc, bio);
2023 struct dm_thin_lookup_result lookup_result;
2024
2025 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2026 switch (r) {
2027 case 0:
2028 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2029 handle_unserviceable_bio(tc->pool, bio);
2030 if (cell)
2031 cell_defer_no_holder(tc, cell);
2032 } else {
2033 inc_all_io_entry(tc->pool, bio);
2034 remap_and_issue(tc, bio, lookup_result.block);
2035 if (cell)
2036 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2037 }
2038 break;
2039
2040 case -ENODATA:
2041 if (cell)
2042 cell_defer_no_holder(tc, cell);
2043 if (rw != READ) {
2044 handle_unserviceable_bio(tc->pool, bio);
2045 break;
2046 }
2047
2048 if (tc->origin_dev) {
2049 inc_all_io_entry(tc->pool, bio);
2050 remap_to_origin_and_issue(tc, bio);
2051 break;
2052 }
2053
2054 zero_fill_bio(bio);
2055 bio_endio(bio);
2056 break;
2057
2058 default:
2059 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2060 __func__, r);
2061 if (cell)
2062 cell_defer_no_holder(tc, cell);
2063 bio_io_error(bio);
2064 break;
2065 }
2066}
2067
2068static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2069{
2070 __process_bio_read_only(tc, bio, NULL);
2071}
2072
2073static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2074{
2075 __process_bio_read_only(tc, cell->holder, cell);
2076}
2077
2078static void process_bio_success(struct thin_c *tc, struct bio *bio)
2079{
2080 bio_endio(bio);
2081}
2082
2083static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2084{
2085 bio_io_error(bio);
2086}
2087
2088static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2089{
2090 cell_success(tc->pool, cell);
2091}
2092
2093static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2094{
2095 cell_error(tc->pool, cell);
2096}
2097
2098/*
2099 * FIXME: should we also commit due to size of transaction, measured in
2100 * metadata blocks?
2101 */
2102static int need_commit_due_to_time(struct pool *pool)
2103{
2104 return !time_in_range(jiffies, pool->last_commit_jiffies,
2105 pool->last_commit_jiffies + COMMIT_PERIOD);
2106}
2107
2108#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2109#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2110
2111static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2112{
2113 struct rb_node **rbp, *parent;
2114 struct dm_thin_endio_hook *pbd;
2115 sector_t bi_sector = bio->bi_iter.bi_sector;
2116
2117 rbp = &tc->sort_bio_list.rb_node;
2118 parent = NULL;
2119 while (*rbp) {
2120 parent = *rbp;
2121 pbd = thin_pbd(parent);
2122
2123 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2124 rbp = &(*rbp)->rb_left;
2125 else
2126 rbp = &(*rbp)->rb_right;
2127 }
2128
2129 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2130 rb_link_node(&pbd->rb_node, parent, rbp);
2131 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2132}
2133
2134static void __extract_sorted_bios(struct thin_c *tc)
2135{
2136 struct rb_node *node;
2137 struct dm_thin_endio_hook *pbd;
2138 struct bio *bio;
2139
2140 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2141 pbd = thin_pbd(node);
2142 bio = thin_bio(pbd);
2143
2144 bio_list_add(&tc->deferred_bio_list, bio);
2145 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2146 }
2147
2148 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2149}
2150
2151static void __sort_thin_deferred_bios(struct thin_c *tc)
2152{
2153 struct bio *bio;
2154 struct bio_list bios;
2155
2156 bio_list_init(&bios);
2157 bio_list_merge(&bios, &tc->deferred_bio_list);
2158 bio_list_init(&tc->deferred_bio_list);
2159
2160 /* Sort deferred_bio_list using rb-tree */
2161 while ((bio = bio_list_pop(&bios)))
2162 __thin_bio_rb_add(tc, bio);
2163
2164 /*
2165 * Transfer the sorted bios in sort_bio_list back to
2166 * deferred_bio_list to allow lockless submission of
2167 * all bios.
2168 */
2169 __extract_sorted_bios(tc);
2170}
2171
2172static void process_thin_deferred_bios(struct thin_c *tc)
2173{
2174 struct pool *pool = tc->pool;
2175 unsigned long flags;
2176 struct bio *bio;
2177 struct bio_list bios;
2178 struct blk_plug plug;
2179 unsigned count = 0;
2180
2181 if (tc->requeue_mode) {
2182 error_thin_bio_list(tc, &tc->deferred_bio_list,
2183 BLK_STS_DM_REQUEUE);
2184 return;
2185 }
2186
2187 bio_list_init(&bios);
2188
2189 spin_lock_irqsave(&tc->lock, flags);
2190
2191 if (bio_list_empty(&tc->deferred_bio_list)) {
2192 spin_unlock_irqrestore(&tc->lock, flags);
2193 return;
2194 }
2195
2196 __sort_thin_deferred_bios(tc);
2197
2198 bio_list_merge(&bios, &tc->deferred_bio_list);
2199 bio_list_init(&tc->deferred_bio_list);
2200
2201 spin_unlock_irqrestore(&tc->lock, flags);
2202
2203 blk_start_plug(&plug);
2204 while ((bio = bio_list_pop(&bios))) {
2205 /*
2206 * If we've got no free new_mapping structs, and processing
2207 * this bio might require one, we pause until there are some
2208 * prepared mappings to process.
2209 */
2210 if (ensure_next_mapping(pool)) {
2211 spin_lock_irqsave(&tc->lock, flags);
2212 bio_list_add(&tc->deferred_bio_list, bio);
2213 bio_list_merge(&tc->deferred_bio_list, &bios);
2214 spin_unlock_irqrestore(&tc->lock, flags);
2215 break;
2216 }
2217
2218 if (bio_op(bio) == REQ_OP_DISCARD)
2219 pool->process_discard(tc, bio);
2220 else
2221 pool->process_bio(tc, bio);
2222
2223 if ((count++ & 127) == 0) {
2224 throttle_work_update(&pool->throttle);
2225 dm_pool_issue_prefetches(pool->pmd);
2226 }
2227 cond_resched();
2228 }
2229 blk_finish_plug(&plug);
2230}
2231
2232static int cmp_cells(const void *lhs, const void *rhs)
2233{
2234 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2235 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2236
2237 BUG_ON(!lhs_cell->holder);
2238 BUG_ON(!rhs_cell->holder);
2239
2240 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2241 return -1;
2242
2243 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2244 return 1;
2245
2246 return 0;
2247}
2248
2249static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2250{
2251 unsigned count = 0;
2252 struct dm_bio_prison_cell *cell, *tmp;
2253
2254 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2255 if (count >= CELL_SORT_ARRAY_SIZE)
2256 break;
2257
2258 pool->cell_sort_array[count++] = cell;
2259 list_del(&cell->user_list);
2260 }
2261
2262 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2263
2264 return count;
2265}
2266
2267static void process_thin_deferred_cells(struct thin_c *tc)
2268{
2269 struct pool *pool = tc->pool;
2270 unsigned long flags;
2271 struct list_head cells;
2272 struct dm_bio_prison_cell *cell;
2273 unsigned i, j, count;
2274
2275 INIT_LIST_HEAD(&cells);
2276
2277 spin_lock_irqsave(&tc->lock, flags);
2278 list_splice_init(&tc->deferred_cells, &cells);
2279 spin_unlock_irqrestore(&tc->lock, flags);
2280
2281 if (list_empty(&cells))
2282 return;
2283
2284 do {
2285 count = sort_cells(tc->pool, &cells);
2286
2287 for (i = 0; i < count; i++) {
2288 cell = pool->cell_sort_array[i];
2289 BUG_ON(!cell->holder);
2290
2291 /*
2292 * If we've got no free new_mapping structs, and processing
2293 * this bio might require one, we pause until there are some
2294 * prepared mappings to process.
2295 */
2296 if (ensure_next_mapping(pool)) {
2297 for (j = i; j < count; j++)
2298 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2299
2300 spin_lock_irqsave(&tc->lock, flags);
2301 list_splice(&cells, &tc->deferred_cells);
2302 spin_unlock_irqrestore(&tc->lock, flags);
2303 return;
2304 }
2305
2306 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2307 pool->process_discard_cell(tc, cell);
2308 else
2309 pool->process_cell(tc, cell);
2310 }
2311 cond_resched();
2312 } while (!list_empty(&cells));
2313}
2314
2315static void thin_get(struct thin_c *tc);
2316static void thin_put(struct thin_c *tc);
2317
2318/*
2319 * We can't hold rcu_read_lock() around code that can block. So we
2320 * find a thin with the rcu lock held; bump a refcount; then drop
2321 * the lock.
2322 */
2323static struct thin_c *get_first_thin(struct pool *pool)
2324{
2325 struct thin_c *tc = NULL;
2326
2327 rcu_read_lock();
2328 tc = list_first_or_null_rcu(&pool->active_thins, struct thin_c, list);
2329 if (tc)
2330 thin_get(tc);
2331 rcu_read_unlock();
2332
2333 return tc;
2334}
2335
2336static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2337{
2338 struct thin_c *old_tc = tc;
2339
2340 rcu_read_lock();
2341 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2342 thin_get(tc);
2343 thin_put(old_tc);
2344 rcu_read_unlock();
2345 return tc;
2346 }
2347 thin_put(old_tc);
2348 rcu_read_unlock();
2349
2350 return NULL;
2351}
2352
2353static void process_deferred_bios(struct pool *pool)
2354{
2355 unsigned long flags;
2356 struct bio *bio;
2357 struct bio_list bios, bio_completions;
2358 struct thin_c *tc;
2359
2360 tc = get_first_thin(pool);
2361 while (tc) {
2362 process_thin_deferred_cells(tc);
2363 process_thin_deferred_bios(tc);
2364 tc = get_next_thin(pool, tc);
2365 }
2366
2367 /*
2368 * If there are any deferred flush bios, we must commit the metadata
2369 * before issuing them or signaling their completion.
2370 */
2371 bio_list_init(&bios);
2372 bio_list_init(&bio_completions);
2373
2374 spin_lock_irqsave(&pool->lock, flags);
2375 bio_list_merge(&bios, &pool->deferred_flush_bios);
2376 bio_list_init(&pool->deferred_flush_bios);
2377
2378 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2379 bio_list_init(&pool->deferred_flush_completions);
2380 spin_unlock_irqrestore(&pool->lock, flags);
2381
2382 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2383 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2384 return;
2385
2386 if (commit(pool)) {
2387 bio_list_merge(&bios, &bio_completions);
2388
2389 while ((bio = bio_list_pop(&bios)))
2390 bio_io_error(bio);
2391 return;
2392 }
2393 pool->last_commit_jiffies = jiffies;
2394
2395 while ((bio = bio_list_pop(&bio_completions)))
2396 bio_endio(bio);
2397
2398 while ((bio = bio_list_pop(&bios))) {
2399 /*
2400 * The data device was flushed as part of metadata commit,
2401 * so complete redundant flushes immediately.
2402 */
2403 if (bio->bi_opf & REQ_PREFLUSH)
2404 bio_endio(bio);
2405 else
2406 generic_make_request(bio);
2407 }
2408}
2409
2410static void do_worker(struct work_struct *ws)
2411{
2412 struct pool *pool = container_of(ws, struct pool, worker);
2413
2414 throttle_work_start(&pool->throttle);
2415 dm_pool_issue_prefetches(pool->pmd);
2416 throttle_work_update(&pool->throttle);
2417 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2418 throttle_work_update(&pool->throttle);
2419 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2420 throttle_work_update(&pool->throttle);
2421 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2422 throttle_work_update(&pool->throttle);
2423 process_deferred_bios(pool);
2424 throttle_work_complete(&pool->throttle);
2425}
2426
2427/*
2428 * We want to commit periodically so that not too much
2429 * unwritten data builds up.
2430 */
2431static void do_waker(struct work_struct *ws)
2432{
2433 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2434 wake_worker(pool);
2435 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2436}
2437
2438/*
2439 * We're holding onto IO to allow userland time to react. After the
2440 * timeout either the pool will have been resized (and thus back in
2441 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2442 */
2443static void do_no_space_timeout(struct work_struct *ws)
2444{
2445 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2446 no_space_timeout);
2447
2448 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2449 pool->pf.error_if_no_space = true;
2450 notify_of_pool_mode_change(pool);
2451 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2452 }
2453}
2454
2455/*----------------------------------------------------------------*/
2456
2457struct pool_work {
2458 struct work_struct worker;
2459 struct completion complete;
2460};
2461
2462static struct pool_work *to_pool_work(struct work_struct *ws)
2463{
2464 return container_of(ws, struct pool_work, worker);
2465}
2466
2467static void pool_work_complete(struct pool_work *pw)
2468{
2469 complete(&pw->complete);
2470}
2471
2472static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2473 void (*fn)(struct work_struct *))
2474{
2475 INIT_WORK_ONSTACK(&pw->worker, fn);
2476 init_completion(&pw->complete);
2477 queue_work(pool->wq, &pw->worker);
2478 wait_for_completion(&pw->complete);
2479 destroy_work_on_stack(&pw->worker);
2480}
2481
2482/*----------------------------------------------------------------*/
2483
2484struct noflush_work {
2485 struct pool_work pw;
2486 struct thin_c *tc;
2487};
2488
2489static struct noflush_work *to_noflush(struct work_struct *ws)
2490{
2491 return container_of(to_pool_work(ws), struct noflush_work, pw);
2492}
2493
2494static void do_noflush_start(struct work_struct *ws)
2495{
2496 struct noflush_work *w = to_noflush(ws);
2497 w->tc->requeue_mode = true;
2498 requeue_io(w->tc);
2499 pool_work_complete(&w->pw);
2500}
2501
2502static void do_noflush_stop(struct work_struct *ws)
2503{
2504 struct noflush_work *w = to_noflush(ws);
2505 w->tc->requeue_mode = false;
2506 pool_work_complete(&w->pw);
2507}
2508
2509static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2510{
2511 struct noflush_work w;
2512
2513 w.tc = tc;
2514 pool_work_wait(&w.pw, tc->pool, fn);
2515}
2516
2517/*----------------------------------------------------------------*/
2518
2519static bool passdown_enabled(struct pool_c *pt)
2520{
2521 return pt->adjusted_pf.discard_passdown;
2522}
2523
2524static void set_discard_callbacks(struct pool *pool)
2525{
2526 struct pool_c *pt = pool->ti->private;
2527
2528 if (passdown_enabled(pt)) {
2529 pool->process_discard_cell = process_discard_cell_passdown;
2530 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2531 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2532 } else {
2533 pool->process_discard_cell = process_discard_cell_no_passdown;
2534 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2535 }
2536}
2537
2538static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2539{
2540 struct pool_c *pt = pool->ti->private;
2541 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2542 enum pool_mode old_mode = get_pool_mode(pool);
2543 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2544
2545 /*
2546 * Never allow the pool to transition to PM_WRITE mode if user
2547 * intervention is required to verify metadata and data consistency.
2548 */
2549 if (new_mode == PM_WRITE && needs_check) {
2550 DMERR("%s: unable to switch pool to write mode until repaired.",
2551 dm_device_name(pool->pool_md));
2552 if (old_mode != new_mode)
2553 new_mode = old_mode;
2554 else
2555 new_mode = PM_READ_ONLY;
2556 }
2557 /*
2558 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2559 * not going to recover without a thin_repair. So we never let the
2560 * pool move out of the old mode.
2561 */
2562 if (old_mode == PM_FAIL)
2563 new_mode = old_mode;
2564
2565 switch (new_mode) {
2566 case PM_FAIL:
2567 dm_pool_metadata_read_only(pool->pmd);
2568 pool->process_bio = process_bio_fail;
2569 pool->process_discard = process_bio_fail;
2570 pool->process_cell = process_cell_fail;
2571 pool->process_discard_cell = process_cell_fail;
2572 pool->process_prepared_mapping = process_prepared_mapping_fail;
2573 pool->process_prepared_discard = process_prepared_discard_fail;
2574
2575 error_retry_list(pool);
2576 break;
2577
2578 case PM_OUT_OF_METADATA_SPACE:
2579 case PM_READ_ONLY:
2580 dm_pool_metadata_read_only(pool->pmd);
2581 pool->process_bio = process_bio_read_only;
2582 pool->process_discard = process_bio_success;
2583 pool->process_cell = process_cell_read_only;
2584 pool->process_discard_cell = process_cell_success;
2585 pool->process_prepared_mapping = process_prepared_mapping_fail;
2586 pool->process_prepared_discard = process_prepared_discard_success;
2587
2588 error_retry_list(pool);
2589 break;
2590
2591 case PM_OUT_OF_DATA_SPACE:
2592 /*
2593 * Ideally we'd never hit this state; the low water mark
2594 * would trigger userland to extend the pool before we
2595 * completely run out of data space. However, many small
2596 * IOs to unprovisioned space can consume data space at an
2597 * alarming rate. Adjust your low water mark if you're
2598 * frequently seeing this mode.
2599 */
2600 pool->out_of_data_space = true;
2601 pool->process_bio = process_bio_read_only;
2602 pool->process_discard = process_discard_bio;
2603 pool->process_cell = process_cell_read_only;
2604 pool->process_prepared_mapping = process_prepared_mapping;
2605 set_discard_callbacks(pool);
2606
2607 if (!pool->pf.error_if_no_space && no_space_timeout)
2608 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2609 break;
2610
2611 case PM_WRITE:
2612 if (old_mode == PM_OUT_OF_DATA_SPACE)
2613 cancel_delayed_work_sync(&pool->no_space_timeout);
2614 pool->out_of_data_space = false;
2615 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2616 dm_pool_metadata_read_write(pool->pmd);
2617 pool->process_bio = process_bio;
2618 pool->process_discard = process_discard_bio;
2619 pool->process_cell = process_cell;
2620 pool->process_prepared_mapping = process_prepared_mapping;
2621 set_discard_callbacks(pool);
2622 break;
2623 }
2624
2625 pool->pf.mode = new_mode;
2626 /*
2627 * The pool mode may have changed, sync it so bind_control_target()
2628 * doesn't cause an unexpected mode transition on resume.
2629 */
2630 pt->adjusted_pf.mode = new_mode;
2631
2632 if (old_mode != new_mode)
2633 notify_of_pool_mode_change(pool);
2634}
2635
2636static void abort_transaction(struct pool *pool)
2637{
2638 const char *dev_name = dm_device_name(pool->pool_md);
2639
2640 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2641 if (dm_pool_abort_metadata(pool->pmd)) {
2642 DMERR("%s: failed to abort metadata transaction", dev_name);
2643 set_pool_mode(pool, PM_FAIL);
2644 }
2645
2646 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2647 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2648 set_pool_mode(pool, PM_FAIL);
2649 }
2650}
2651
2652static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2653{
2654 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2655 dm_device_name(pool->pool_md), op, r);
2656
2657 abort_transaction(pool);
2658 set_pool_mode(pool, PM_READ_ONLY);
2659}
2660
2661/*----------------------------------------------------------------*/
2662
2663/*
2664 * Mapping functions.
2665 */
2666
2667/*
2668 * Called only while mapping a thin bio to hand it over to the workqueue.
2669 */
2670static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2671{
2672 unsigned long flags;
2673 struct pool *pool = tc->pool;
2674
2675 spin_lock_irqsave(&tc->lock, flags);
2676 bio_list_add(&tc->deferred_bio_list, bio);
2677 spin_unlock_irqrestore(&tc->lock, flags);
2678
2679 wake_worker(pool);
2680}
2681
2682static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2683{
2684 struct pool *pool = tc->pool;
2685
2686 throttle_lock(&pool->throttle);
2687 thin_defer_bio(tc, bio);
2688 throttle_unlock(&pool->throttle);
2689}
2690
2691static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2692{
2693 unsigned long flags;
2694 struct pool *pool = tc->pool;
2695
2696 throttle_lock(&pool->throttle);
2697 spin_lock_irqsave(&tc->lock, flags);
2698 list_add_tail(&cell->user_list, &tc->deferred_cells);
2699 spin_unlock_irqrestore(&tc->lock, flags);
2700 throttle_unlock(&pool->throttle);
2701
2702 wake_worker(pool);
2703}
2704
2705static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2706{
2707 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2708
2709 h->tc = tc;
2710 h->shared_read_entry = NULL;
2711 h->all_io_entry = NULL;
2712 h->overwrite_mapping = NULL;
2713 h->cell = NULL;
2714}
2715
2716/*
2717 * Non-blocking function called from the thin target's map function.
2718 */
2719static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2720{
2721 int r;
2722 struct thin_c *tc = ti->private;
2723 dm_block_t block = get_bio_block(tc, bio);
2724 struct dm_thin_device *td = tc->td;
2725 struct dm_thin_lookup_result result;
2726 struct dm_bio_prison_cell *virt_cell, *data_cell;
2727 struct dm_cell_key key;
2728
2729 thin_hook_bio(tc, bio);
2730
2731 if (tc->requeue_mode) {
2732 bio->bi_status = BLK_STS_DM_REQUEUE;
2733 bio_endio(bio);
2734 return DM_MAPIO_SUBMITTED;
2735 }
2736
2737 if (get_pool_mode(tc->pool) == PM_FAIL) {
2738 bio_io_error(bio);
2739 return DM_MAPIO_SUBMITTED;
2740 }
2741
2742 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2743 thin_defer_bio_with_throttle(tc, bio);
2744 return DM_MAPIO_SUBMITTED;
2745 }
2746
2747 /*
2748 * We must hold the virtual cell before doing the lookup, otherwise
2749 * there's a race with discard.
2750 */
2751 build_virtual_key(tc->td, block, &key);
2752 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2753 return DM_MAPIO_SUBMITTED;
2754
2755 r = dm_thin_find_block(td, block, 0, &result);
2756
2757 /*
2758 * Note that we defer readahead too.
2759 */
2760 switch (r) {
2761 case 0:
2762 if (unlikely(result.shared)) {
2763 /*
2764 * We have a race condition here between the
2765 * result.shared value returned by the lookup and
2766 * snapshot creation, which may cause new
2767 * sharing.
2768 *
2769 * To avoid this always quiesce the origin before
2770 * taking the snap. You want to do this anyway to
2771 * ensure a consistent application view
2772 * (i.e. lockfs).
2773 *
2774 * More distant ancestors are irrelevant. The
2775 * shared flag will be set in their case.
2776 */
2777 thin_defer_cell(tc, virt_cell);
2778 return DM_MAPIO_SUBMITTED;
2779 }
2780
2781 build_data_key(tc->td, result.block, &key);
2782 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2783 cell_defer_no_holder(tc, virt_cell);
2784 return DM_MAPIO_SUBMITTED;
2785 }
2786
2787 inc_all_io_entry(tc->pool, bio);
2788 cell_defer_no_holder(tc, data_cell);
2789 cell_defer_no_holder(tc, virt_cell);
2790
2791 remap(tc, bio, result.block);
2792 return DM_MAPIO_REMAPPED;
2793
2794 case -ENODATA:
2795 case -EWOULDBLOCK:
2796 thin_defer_cell(tc, virt_cell);
2797 return DM_MAPIO_SUBMITTED;
2798
2799 default:
2800 /*
2801 * Must always call bio_io_error on failure.
2802 * dm_thin_find_block can fail with -EINVAL if the
2803 * pool is switched to fail-io mode.
2804 */
2805 bio_io_error(bio);
2806 cell_defer_no_holder(tc, virt_cell);
2807 return DM_MAPIO_SUBMITTED;
2808 }
2809}
2810
2811static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2812{
2813 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2814 struct request_queue *q;
2815
2816 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2817 return 1;
2818
2819 q = bdev_get_queue(pt->data_dev->bdev);
2820 return bdi_congested(q->backing_dev_info, bdi_bits);
2821}
2822
2823static void requeue_bios(struct pool *pool)
2824{
2825 unsigned long flags;
2826 struct thin_c *tc;
2827
2828 rcu_read_lock();
2829 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2830 spin_lock_irqsave(&tc->lock, flags);
2831 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2832 bio_list_init(&tc->retry_on_resume_list);
2833 spin_unlock_irqrestore(&tc->lock, flags);
2834 }
2835 rcu_read_unlock();
2836}
2837
2838/*----------------------------------------------------------------
2839 * Binding of control targets to a pool object
2840 *--------------------------------------------------------------*/
2841static bool data_dev_supports_discard(struct pool_c *pt)
2842{
2843 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2844
2845 return q && blk_queue_discard(q);
2846}
2847
2848static bool is_factor(sector_t block_size, uint32_t n)
2849{
2850 return !sector_div(block_size, n);
2851}
2852
2853/*
2854 * If discard_passdown was enabled verify that the data device
2855 * supports discards. Disable discard_passdown if not.
2856 */
2857static void disable_passdown_if_not_supported(struct pool_c *pt)
2858{
2859 struct pool *pool = pt->pool;
2860 struct block_device *data_bdev = pt->data_dev->bdev;
2861 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2862 const char *reason = NULL;
2863 char buf[BDEVNAME_SIZE];
2864
2865 if (!pt->adjusted_pf.discard_passdown)
2866 return;
2867
2868 if (!data_dev_supports_discard(pt))
2869 reason = "discard unsupported";
2870
2871 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2872 reason = "max discard sectors smaller than a block";
2873
2874 if (reason) {
2875 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2876 pt->adjusted_pf.discard_passdown = false;
2877 }
2878}
2879
2880static int bind_control_target(struct pool *pool, struct dm_target *ti)
2881{
2882 struct pool_c *pt = ti->private;
2883
2884 /*
2885 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2886 */
2887 enum pool_mode old_mode = get_pool_mode(pool);
2888 enum pool_mode new_mode = pt->adjusted_pf.mode;
2889
2890 /*
2891 * Don't change the pool's mode until set_pool_mode() below.
2892 * Otherwise the pool's process_* function pointers may
2893 * not match the desired pool mode.
2894 */
2895 pt->adjusted_pf.mode = old_mode;
2896
2897 pool->ti = ti;
2898 pool->pf = pt->adjusted_pf;
2899 pool->low_water_blocks = pt->low_water_blocks;
2900
2901 set_pool_mode(pool, new_mode);
2902
2903 return 0;
2904}
2905
2906static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2907{
2908 if (pool->ti == ti)
2909 pool->ti = NULL;
2910}
2911
2912/*----------------------------------------------------------------
2913 * Pool creation
2914 *--------------------------------------------------------------*/
2915/* Initialize pool features. */
2916static void pool_features_init(struct pool_features *pf)
2917{
2918 pf->mode = PM_WRITE;
2919 pf->zero_new_blocks = true;
2920 pf->discard_enabled = true;
2921 pf->discard_passdown = true;
2922 pf->error_if_no_space = false;
2923}
2924
2925static void __pool_destroy(struct pool *pool)
2926{
2927 __pool_table_remove(pool);
2928
2929 vfree(pool->cell_sort_array);
2930 if (dm_pool_metadata_close(pool->pmd) < 0)
2931 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2932
2933 dm_bio_prison_destroy(pool->prison);
2934 dm_kcopyd_client_destroy(pool->copier);
2935
2936 cancel_delayed_work_sync(&pool->waker);
2937 cancel_delayed_work_sync(&pool->no_space_timeout);
2938 if (pool->wq)
2939 destroy_workqueue(pool->wq);
2940
2941 if (pool->next_mapping)
2942 mempool_free(pool->next_mapping, &pool->mapping_pool);
2943 mempool_exit(&pool->mapping_pool);
2944 dm_deferred_set_destroy(pool->shared_read_ds);
2945 dm_deferred_set_destroy(pool->all_io_ds);
2946 kfree(pool);
2947}
2948
2949static struct kmem_cache *_new_mapping_cache;
2950
2951static struct pool *pool_create(struct mapped_device *pool_md,
2952 struct block_device *metadata_dev,
2953 struct block_device *data_dev,
2954 unsigned long block_size,
2955 int read_only, char **error)
2956{
2957 int r;
2958 void *err_p;
2959 struct pool *pool;
2960 struct dm_pool_metadata *pmd;
2961 bool format_device = read_only ? false : true;
2962
2963 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2964 if (IS_ERR(pmd)) {
2965 *error = "Error creating metadata object";
2966 return (struct pool *)pmd;
2967 }
2968
2969 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2970 if (!pool) {
2971 *error = "Error allocating memory for pool";
2972 err_p = ERR_PTR(-ENOMEM);
2973 goto bad_pool;
2974 }
2975
2976 pool->pmd = pmd;
2977 pool->sectors_per_block = block_size;
2978 if (block_size & (block_size - 1))
2979 pool->sectors_per_block_shift = -1;
2980 else
2981 pool->sectors_per_block_shift = __ffs(block_size);
2982 pool->low_water_blocks = 0;
2983 pool_features_init(&pool->pf);
2984 pool->prison = dm_bio_prison_create();
2985 if (!pool->prison) {
2986 *error = "Error creating pool's bio prison";
2987 err_p = ERR_PTR(-ENOMEM);
2988 goto bad_prison;
2989 }
2990
2991 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2992 if (IS_ERR(pool->copier)) {
2993 r = PTR_ERR(pool->copier);
2994 *error = "Error creating pool's kcopyd client";
2995 err_p = ERR_PTR(r);
2996 goto bad_kcopyd_client;
2997 }
2998
2999 /*
3000 * Create singlethreaded workqueue that will service all devices
3001 * that use this metadata.
3002 */
3003 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
3004 if (!pool->wq) {
3005 *error = "Error creating pool's workqueue";
3006 err_p = ERR_PTR(-ENOMEM);
3007 goto bad_wq;
3008 }
3009
3010 throttle_init(&pool->throttle);
3011 INIT_WORK(&pool->worker, do_worker);
3012 INIT_DELAYED_WORK(&pool->waker, do_waker);
3013 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3014 spin_lock_init(&pool->lock);
3015 bio_list_init(&pool->deferred_flush_bios);
3016 bio_list_init(&pool->deferred_flush_completions);
3017 INIT_LIST_HEAD(&pool->prepared_mappings);
3018 INIT_LIST_HEAD(&pool->prepared_discards);
3019 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3020 INIT_LIST_HEAD(&pool->active_thins);
3021 pool->low_water_triggered = false;
3022 pool->suspended = true;
3023 pool->out_of_data_space = false;
3024
3025 pool->shared_read_ds = dm_deferred_set_create();
3026 if (!pool->shared_read_ds) {
3027 *error = "Error creating pool's shared read deferred set";
3028 err_p = ERR_PTR(-ENOMEM);
3029 goto bad_shared_read_ds;
3030 }
3031
3032 pool->all_io_ds = dm_deferred_set_create();
3033 if (!pool->all_io_ds) {
3034 *error = "Error creating pool's all io deferred set";
3035 err_p = ERR_PTR(-ENOMEM);
3036 goto bad_all_io_ds;
3037 }
3038
3039 pool->next_mapping = NULL;
3040 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3041 _new_mapping_cache);
3042 if (r) {
3043 *error = "Error creating pool's mapping mempool";
3044 err_p = ERR_PTR(r);
3045 goto bad_mapping_pool;
3046 }
3047
3048 pool->cell_sort_array =
3049 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3050 sizeof(*pool->cell_sort_array)));
3051 if (!pool->cell_sort_array) {
3052 *error = "Error allocating cell sort array";
3053 err_p = ERR_PTR(-ENOMEM);
3054 goto bad_sort_array;
3055 }
3056
3057 pool->ref_count = 1;
3058 pool->last_commit_jiffies = jiffies;
3059 pool->pool_md = pool_md;
3060 pool->md_dev = metadata_dev;
3061 pool->data_dev = data_dev;
3062 __pool_table_insert(pool);
3063
3064 return pool;
3065
3066bad_sort_array:
3067 mempool_exit(&pool->mapping_pool);
3068bad_mapping_pool:
3069 dm_deferred_set_destroy(pool->all_io_ds);
3070bad_all_io_ds:
3071 dm_deferred_set_destroy(pool->shared_read_ds);
3072bad_shared_read_ds:
3073 destroy_workqueue(pool->wq);
3074bad_wq:
3075 dm_kcopyd_client_destroy(pool->copier);
3076bad_kcopyd_client:
3077 dm_bio_prison_destroy(pool->prison);
3078bad_prison:
3079 kfree(pool);
3080bad_pool:
3081 if (dm_pool_metadata_close(pmd))
3082 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3083
3084 return err_p;
3085}
3086
3087static void __pool_inc(struct pool *pool)
3088{
3089 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3090 pool->ref_count++;
3091}
3092
3093static void __pool_dec(struct pool *pool)
3094{
3095 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3096 BUG_ON(!pool->ref_count);
3097 if (!--pool->ref_count)
3098 __pool_destroy(pool);
3099}
3100
3101static struct pool *__pool_find(struct mapped_device *pool_md,
3102 struct block_device *metadata_dev,
3103 struct block_device *data_dev,
3104 unsigned long block_size, int read_only,
3105 char **error, int *created)
3106{
3107 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3108
3109 if (pool) {
3110 if (pool->pool_md != pool_md) {
3111 *error = "metadata device already in use by a pool";
3112 return ERR_PTR(-EBUSY);
3113 }
3114 if (pool->data_dev != data_dev) {
3115 *error = "data device already in use by a pool";
3116 return ERR_PTR(-EBUSY);
3117 }
3118 __pool_inc(pool);
3119
3120 } else {
3121 pool = __pool_table_lookup(pool_md);
3122 if (pool) {
3123 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3124 *error = "different pool cannot replace a pool";
3125 return ERR_PTR(-EINVAL);
3126 }
3127 __pool_inc(pool);
3128
3129 } else {
3130 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3131 *created = 1;
3132 }
3133 }
3134
3135 return pool;
3136}
3137
3138/*----------------------------------------------------------------
3139 * Pool target methods
3140 *--------------------------------------------------------------*/
3141static void pool_dtr(struct dm_target *ti)
3142{
3143 struct pool_c *pt = ti->private;
3144
3145 mutex_lock(&dm_thin_pool_table.mutex);
3146
3147 unbind_control_target(pt->pool, ti);
3148 __pool_dec(pt->pool);
3149 dm_put_device(ti, pt->metadata_dev);
3150 dm_put_device(ti, pt->data_dev);
3151 bio_uninit(&pt->flush_bio);
3152 kfree(pt);
3153
3154 mutex_unlock(&dm_thin_pool_table.mutex);
3155}
3156
3157static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3158 struct dm_target *ti)
3159{
3160 int r;
3161 unsigned argc;
3162 const char *arg_name;
3163
3164 static const struct dm_arg _args[] = {
3165 {0, 4, "Invalid number of pool feature arguments"},
3166 };
3167
3168 /*
3169 * No feature arguments supplied.
3170 */
3171 if (!as->argc)
3172 return 0;
3173
3174 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3175 if (r)
3176 return -EINVAL;
3177
3178 while (argc && !r) {
3179 arg_name = dm_shift_arg(as);
3180 argc--;
3181
3182 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3183 pf->zero_new_blocks = false;
3184
3185 else if (!strcasecmp(arg_name, "ignore_discard"))
3186 pf->discard_enabled = false;
3187
3188 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3189 pf->discard_passdown = false;
3190
3191 else if (!strcasecmp(arg_name, "read_only"))
3192 pf->mode = PM_READ_ONLY;
3193
3194 else if (!strcasecmp(arg_name, "error_if_no_space"))
3195 pf->error_if_no_space = true;
3196
3197 else {
3198 ti->error = "Unrecognised pool feature requested";
3199 r = -EINVAL;
3200 break;
3201 }
3202 }
3203
3204 return r;
3205}
3206
3207static void metadata_low_callback(void *context)
3208{
3209 struct pool *pool = context;
3210
3211 DMWARN("%s: reached low water mark for metadata device: sending event.",
3212 dm_device_name(pool->pool_md));
3213
3214 dm_table_event(pool->ti->table);
3215}
3216
3217/*
3218 * We need to flush the data device **before** committing the metadata.
3219 *
3220 * This ensures that the data blocks of any newly inserted mappings are
3221 * properly written to non-volatile storage and won't be lost in case of a
3222 * crash.
3223 *
3224 * Failure to do so can result in data corruption in the case of internal or
3225 * external snapshots and in the case of newly provisioned blocks, when block
3226 * zeroing is enabled.
3227 */
3228static int metadata_pre_commit_callback(void *context)
3229{
3230 struct pool_c *pt = context;
3231 struct bio *flush_bio = &pt->flush_bio;
3232
3233 bio_reset(flush_bio);
3234 bio_set_dev(flush_bio, pt->data_dev->bdev);
3235 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3236
3237 return submit_bio_wait(flush_bio);
3238}
3239
3240static sector_t get_dev_size(struct block_device *bdev)
3241{
3242 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3243}
3244
3245static void warn_if_metadata_device_too_big(struct block_device *bdev)
3246{
3247 sector_t metadata_dev_size = get_dev_size(bdev);
3248 char buffer[BDEVNAME_SIZE];
3249
3250 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3251 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3252 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3253}
3254
3255static sector_t get_metadata_dev_size(struct block_device *bdev)
3256{
3257 sector_t metadata_dev_size = get_dev_size(bdev);
3258
3259 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3260 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3261
3262 return metadata_dev_size;
3263}
3264
3265static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3266{
3267 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3268
3269 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3270
3271 return metadata_dev_size;
3272}
3273
3274/*
3275 * When a metadata threshold is crossed a dm event is triggered, and
3276 * userland should respond by growing the metadata device. We could let
3277 * userland set the threshold, like we do with the data threshold, but I'm
3278 * not sure they know enough to do this well.
3279 */
3280static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3281{
3282 /*
3283 * 4M is ample for all ops with the possible exception of thin
3284 * device deletion which is harmless if it fails (just retry the
3285 * delete after you've grown the device).
3286 */
3287 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3288 return min((dm_block_t)1024ULL /* 4M */, quarter);
3289}
3290
3291/*
3292 * thin-pool <metadata dev> <data dev>
3293 * <data block size (sectors)>
3294 * <low water mark (blocks)>
3295 * [<#feature args> [<arg>]*]
3296 *
3297 * Optional feature arguments are:
3298 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3299 * ignore_discard: disable discard
3300 * no_discard_passdown: don't pass discards down to the data device
3301 * read_only: Don't allow any changes to be made to the pool metadata.
3302 * error_if_no_space: error IOs, instead of queueing, if no space.
3303 */
3304static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3305{
3306 int r, pool_created = 0;
3307 struct pool_c *pt;
3308 struct pool *pool;
3309 struct pool_features pf;
3310 struct dm_arg_set as;
3311 struct dm_dev *data_dev;
3312 unsigned long block_size;
3313 dm_block_t low_water_blocks;
3314 struct dm_dev *metadata_dev;
3315 fmode_t metadata_mode;
3316
3317 /*
3318 * FIXME Remove validation from scope of lock.
3319 */
3320 mutex_lock(&dm_thin_pool_table.mutex);
3321
3322 if (argc < 4) {
3323 ti->error = "Invalid argument count";
3324 r = -EINVAL;
3325 goto out_unlock;
3326 }
3327
3328 as.argc = argc;
3329 as.argv = argv;
3330
3331 /* make sure metadata and data are different devices */
3332 if (!strcmp(argv[0], argv[1])) {
3333 ti->error = "Error setting metadata or data device";
3334 r = -EINVAL;
3335 goto out_unlock;
3336 }
3337
3338 /*
3339 * Set default pool features.
3340 */
3341 pool_features_init(&pf);
3342
3343 dm_consume_args(&as, 4);
3344 r = parse_pool_features(&as, &pf, ti);
3345 if (r)
3346 goto out_unlock;
3347
3348 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3349 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3350 if (r) {
3351 ti->error = "Error opening metadata block device";
3352 goto out_unlock;
3353 }
3354 warn_if_metadata_device_too_big(metadata_dev->bdev);
3355
3356 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3357 if (r) {
3358 ti->error = "Error getting data device";
3359 goto out_metadata;
3360 }
3361
3362 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3363 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3364 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3365 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3366 ti->error = "Invalid block size";
3367 r = -EINVAL;
3368 goto out;
3369 }
3370
3371 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3372 ti->error = "Invalid low water mark";
3373 r = -EINVAL;
3374 goto out;
3375 }
3376
3377 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3378 if (!pt) {
3379 r = -ENOMEM;
3380 goto out;
3381 }
3382
3383 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3384 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3385 if (IS_ERR(pool)) {
3386 r = PTR_ERR(pool);
3387 goto out_free_pt;
3388 }
3389
3390 /*
3391 * 'pool_created' reflects whether this is the first table load.
3392 * Top level discard support is not allowed to be changed after
3393 * initial load. This would require a pool reload to trigger thin
3394 * device changes.
3395 */
3396 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3397 ti->error = "Discard support cannot be disabled once enabled";
3398 r = -EINVAL;
3399 goto out_flags_changed;
3400 }
3401
3402 pt->pool = pool;
3403 pt->ti = ti;
3404 pt->metadata_dev = metadata_dev;
3405 pt->data_dev = data_dev;
3406 pt->low_water_blocks = low_water_blocks;
3407 pt->adjusted_pf = pt->requested_pf = pf;
3408 bio_init(&pt->flush_bio, NULL, 0);
3409 ti->num_flush_bios = 1;
3410 ti->limit_swap_bios = true;
3411
3412 /*
3413 * Only need to enable discards if the pool should pass
3414 * them down to the data device. The thin device's discard
3415 * processing will cause mappings to be removed from the btree.
3416 */
3417 if (pf.discard_enabled && pf.discard_passdown) {
3418 ti->num_discard_bios = 1;
3419
3420 /*
3421 * Setting 'discards_supported' circumvents the normal
3422 * stacking of discard limits (this keeps the pool and
3423 * thin devices' discard limits consistent).
3424 */
3425 ti->discards_supported = true;
3426 }
3427 ti->private = pt;
3428
3429 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3430 calc_metadata_threshold(pt),
3431 metadata_low_callback,
3432 pool);
3433 if (r) {
3434 ti->error = "Error registering metadata threshold";
3435 goto out_flags_changed;
3436 }
3437
3438 pt->callbacks.congested_fn = pool_is_congested;
3439 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3440
3441 mutex_unlock(&dm_thin_pool_table.mutex);
3442
3443 return 0;
3444
3445out_flags_changed:
3446 __pool_dec(pool);
3447out_free_pt:
3448 kfree(pt);
3449out:
3450 dm_put_device(ti, data_dev);
3451out_metadata:
3452 dm_put_device(ti, metadata_dev);
3453out_unlock:
3454 mutex_unlock(&dm_thin_pool_table.mutex);
3455
3456 return r;
3457}
3458
3459static int pool_map(struct dm_target *ti, struct bio *bio)
3460{
3461 int r;
3462 struct pool_c *pt = ti->private;
3463 struct pool *pool = pt->pool;
3464 unsigned long flags;
3465
3466 /*
3467 * As this is a singleton target, ti->begin is always zero.
3468 */
3469 spin_lock_irqsave(&pool->lock, flags);
3470 bio_set_dev(bio, pt->data_dev->bdev);
3471 r = DM_MAPIO_REMAPPED;
3472 spin_unlock_irqrestore(&pool->lock, flags);
3473
3474 return r;
3475}
3476
3477static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3478{
3479 int r;
3480 struct pool_c *pt = ti->private;
3481 struct pool *pool = pt->pool;
3482 sector_t data_size = ti->len;
3483 dm_block_t sb_data_size;
3484
3485 *need_commit = false;
3486
3487 (void) sector_div(data_size, pool->sectors_per_block);
3488
3489 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3490 if (r) {
3491 DMERR("%s: failed to retrieve data device size",
3492 dm_device_name(pool->pool_md));
3493 return r;
3494 }
3495
3496 if (data_size < sb_data_size) {
3497 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3498 dm_device_name(pool->pool_md),
3499 (unsigned long long)data_size, sb_data_size);
3500 return -EINVAL;
3501
3502 } else if (data_size > sb_data_size) {
3503 if (dm_pool_metadata_needs_check(pool->pmd)) {
3504 DMERR("%s: unable to grow the data device until repaired.",
3505 dm_device_name(pool->pool_md));
3506 return 0;
3507 }
3508
3509 if (sb_data_size)
3510 DMINFO("%s: growing the data device from %llu to %llu blocks",
3511 dm_device_name(pool->pool_md),
3512 sb_data_size, (unsigned long long)data_size);
3513 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3514 if (r) {
3515 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3516 return r;
3517 }
3518
3519 *need_commit = true;
3520 }
3521
3522 return 0;
3523}
3524
3525static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3526{
3527 int r;
3528 struct pool_c *pt = ti->private;
3529 struct pool *pool = pt->pool;
3530 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3531
3532 *need_commit = false;
3533
3534 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3535
3536 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3537 if (r) {
3538 DMERR("%s: failed to retrieve metadata device size",
3539 dm_device_name(pool->pool_md));
3540 return r;
3541 }
3542
3543 if (metadata_dev_size < sb_metadata_dev_size) {
3544 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3545 dm_device_name(pool->pool_md),
3546 metadata_dev_size, sb_metadata_dev_size);
3547 return -EINVAL;
3548
3549 } else if (metadata_dev_size > sb_metadata_dev_size) {
3550 if (dm_pool_metadata_needs_check(pool->pmd)) {
3551 DMERR("%s: unable to grow the metadata device until repaired.",
3552 dm_device_name(pool->pool_md));
3553 return 0;
3554 }
3555
3556 warn_if_metadata_device_too_big(pool->md_dev);
3557 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3558 dm_device_name(pool->pool_md),
3559 sb_metadata_dev_size, metadata_dev_size);
3560
3561 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3562 set_pool_mode(pool, PM_WRITE);
3563
3564 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3565 if (r) {
3566 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3567 return r;
3568 }
3569
3570 *need_commit = true;
3571 }
3572
3573 return 0;
3574}
3575
3576/*
3577 * Retrieves the number of blocks of the data device from
3578 * the superblock and compares it to the actual device size,
3579 * thus resizing the data device in case it has grown.
3580 *
3581 * This both copes with opening preallocated data devices in the ctr
3582 * being followed by a resume
3583 * -and-
3584 * calling the resume method individually after userspace has
3585 * grown the data device in reaction to a table event.
3586 */
3587static int pool_preresume(struct dm_target *ti)
3588{
3589 int r;
3590 bool need_commit1, need_commit2;
3591 struct pool_c *pt = ti->private;
3592 struct pool *pool = pt->pool;
3593
3594 /*
3595 * Take control of the pool object.
3596 */
3597 r = bind_control_target(pool, ti);
3598 if (r)
3599 goto out;
3600
3601 dm_pool_register_pre_commit_callback(pool->pmd,
3602 metadata_pre_commit_callback, pt);
3603
3604 r = maybe_resize_data_dev(ti, &need_commit1);
3605 if (r)
3606 goto out;
3607
3608 r = maybe_resize_metadata_dev(ti, &need_commit2);
3609 if (r)
3610 goto out;
3611
3612 if (need_commit1 || need_commit2)
3613 (void) commit(pool);
3614out:
3615 /*
3616 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3617 * bio is in deferred list. Therefore need to return 0
3618 * to allow pool_resume() to flush IO.
3619 */
3620 if (r && get_pool_mode(pool) == PM_FAIL)
3621 r = 0;
3622
3623 return r;
3624}
3625
3626static void pool_suspend_active_thins(struct pool *pool)
3627{
3628 struct thin_c *tc;
3629
3630 /* Suspend all active thin devices */
3631 tc = get_first_thin(pool);
3632 while (tc) {
3633 dm_internal_suspend_noflush(tc->thin_md);
3634 tc = get_next_thin(pool, tc);
3635 }
3636}
3637
3638static void pool_resume_active_thins(struct pool *pool)
3639{
3640 struct thin_c *tc;
3641
3642 /* Resume all active thin devices */
3643 tc = get_first_thin(pool);
3644 while (tc) {
3645 dm_internal_resume(tc->thin_md);
3646 tc = get_next_thin(pool, tc);
3647 }
3648}
3649
3650static void pool_resume(struct dm_target *ti)
3651{
3652 struct pool_c *pt = ti->private;
3653 struct pool *pool = pt->pool;
3654 unsigned long flags;
3655
3656 /*
3657 * Must requeue active_thins' bios and then resume
3658 * active_thins _before_ clearing 'suspend' flag.
3659 */
3660 requeue_bios(pool);
3661 pool_resume_active_thins(pool);
3662
3663 spin_lock_irqsave(&pool->lock, flags);
3664 pool->low_water_triggered = false;
3665 pool->suspended = false;
3666 spin_unlock_irqrestore(&pool->lock, flags);
3667
3668 do_waker(&pool->waker.work);
3669}
3670
3671static void pool_presuspend(struct dm_target *ti)
3672{
3673 struct pool_c *pt = ti->private;
3674 struct pool *pool = pt->pool;
3675 unsigned long flags;
3676
3677 spin_lock_irqsave(&pool->lock, flags);
3678 pool->suspended = true;
3679 spin_unlock_irqrestore(&pool->lock, flags);
3680
3681 pool_suspend_active_thins(pool);
3682}
3683
3684static void pool_presuspend_undo(struct dm_target *ti)
3685{
3686 struct pool_c *pt = ti->private;
3687 struct pool *pool = pt->pool;
3688 unsigned long flags;
3689
3690 pool_resume_active_thins(pool);
3691
3692 spin_lock_irqsave(&pool->lock, flags);
3693 pool->suspended = false;
3694 spin_unlock_irqrestore(&pool->lock, flags);
3695}
3696
3697static void pool_postsuspend(struct dm_target *ti)
3698{
3699 struct pool_c *pt = ti->private;
3700 struct pool *pool = pt->pool;
3701
3702 cancel_delayed_work_sync(&pool->waker);
3703 cancel_delayed_work_sync(&pool->no_space_timeout);
3704 flush_workqueue(pool->wq);
3705 (void) commit(pool);
3706}
3707
3708static int check_arg_count(unsigned argc, unsigned args_required)
3709{
3710 if (argc != args_required) {
3711 DMWARN("Message received with %u arguments instead of %u.",
3712 argc, args_required);
3713 return -EINVAL;
3714 }
3715
3716 return 0;
3717}
3718
3719static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3720{
3721 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3722 *dev_id <= MAX_DEV_ID)
3723 return 0;
3724
3725 if (warning)
3726 DMWARN("Message received with invalid device id: %s", arg);
3727
3728 return -EINVAL;
3729}
3730
3731static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3732{
3733 dm_thin_id dev_id;
3734 int r;
3735
3736 r = check_arg_count(argc, 2);
3737 if (r)
3738 return r;
3739
3740 r = read_dev_id(argv[1], &dev_id, 1);
3741 if (r)
3742 return r;
3743
3744 r = dm_pool_create_thin(pool->pmd, dev_id);
3745 if (r) {
3746 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3747 argv[1]);
3748 return r;
3749 }
3750
3751 return 0;
3752}
3753
3754static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3755{
3756 dm_thin_id dev_id;
3757 dm_thin_id origin_dev_id;
3758 int r;
3759
3760 r = check_arg_count(argc, 3);
3761 if (r)
3762 return r;
3763
3764 r = read_dev_id(argv[1], &dev_id, 1);
3765 if (r)
3766 return r;
3767
3768 r = read_dev_id(argv[2], &origin_dev_id, 1);
3769 if (r)
3770 return r;
3771
3772 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3773 if (r) {
3774 DMWARN("Creation of new snapshot %s of device %s failed.",
3775 argv[1], argv[2]);
3776 return r;
3777 }
3778
3779 return 0;
3780}
3781
3782static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3783{
3784 dm_thin_id dev_id;
3785 int r;
3786
3787 r = check_arg_count(argc, 2);
3788 if (r)
3789 return r;
3790
3791 r = read_dev_id(argv[1], &dev_id, 1);
3792 if (r)
3793 return r;
3794
3795 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3796 if (r)
3797 DMWARN("Deletion of thin device %s failed.", argv[1]);
3798
3799 return r;
3800}
3801
3802static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3803{
3804 dm_thin_id old_id, new_id;
3805 int r;
3806
3807 r = check_arg_count(argc, 3);
3808 if (r)
3809 return r;
3810
3811 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3812 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3813 return -EINVAL;
3814 }
3815
3816 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3817 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3818 return -EINVAL;
3819 }
3820
3821 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3822 if (r) {
3823 DMWARN("Failed to change transaction id from %s to %s.",
3824 argv[1], argv[2]);
3825 return r;
3826 }
3827
3828 return 0;
3829}
3830
3831static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3832{
3833 int r;
3834
3835 r = check_arg_count(argc, 1);
3836 if (r)
3837 return r;
3838
3839 (void) commit(pool);
3840
3841 r = dm_pool_reserve_metadata_snap(pool->pmd);
3842 if (r)
3843 DMWARN("reserve_metadata_snap message failed.");
3844
3845 return r;
3846}
3847
3848static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3849{
3850 int r;
3851
3852 r = check_arg_count(argc, 1);
3853 if (r)
3854 return r;
3855
3856 r = dm_pool_release_metadata_snap(pool->pmd);
3857 if (r)
3858 DMWARN("release_metadata_snap message failed.");
3859
3860 return r;
3861}
3862
3863/*
3864 * Messages supported:
3865 * create_thin <dev_id>
3866 * create_snap <dev_id> <origin_id>
3867 * delete <dev_id>
3868 * set_transaction_id <current_trans_id> <new_trans_id>
3869 * reserve_metadata_snap
3870 * release_metadata_snap
3871 */
3872static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3873 char *result, unsigned maxlen)
3874{
3875 int r = -EINVAL;
3876 struct pool_c *pt = ti->private;
3877 struct pool *pool = pt->pool;
3878
3879 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3880 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3881 dm_device_name(pool->pool_md));
3882 return -EOPNOTSUPP;
3883 }
3884
3885 if (!strcasecmp(argv[0], "create_thin"))
3886 r = process_create_thin_mesg(argc, argv, pool);
3887
3888 else if (!strcasecmp(argv[0], "create_snap"))
3889 r = process_create_snap_mesg(argc, argv, pool);
3890
3891 else if (!strcasecmp(argv[0], "delete"))
3892 r = process_delete_mesg(argc, argv, pool);
3893
3894 else if (!strcasecmp(argv[0], "set_transaction_id"))
3895 r = process_set_transaction_id_mesg(argc, argv, pool);
3896
3897 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3898 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3899
3900 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3901 r = process_release_metadata_snap_mesg(argc, argv, pool);
3902
3903 else
3904 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3905
3906 if (!r)
3907 (void) commit(pool);
3908
3909 return r;
3910}
3911
3912static void emit_flags(struct pool_features *pf, char *result,
3913 unsigned sz, unsigned maxlen)
3914{
3915 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3916 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3917 pf->error_if_no_space;
3918 DMEMIT("%u ", count);
3919
3920 if (!pf->zero_new_blocks)
3921 DMEMIT("skip_block_zeroing ");
3922
3923 if (!pf->discard_enabled)
3924 DMEMIT("ignore_discard ");
3925
3926 if (!pf->discard_passdown)
3927 DMEMIT("no_discard_passdown ");
3928
3929 if (pf->mode == PM_READ_ONLY)
3930 DMEMIT("read_only ");
3931
3932 if (pf->error_if_no_space)
3933 DMEMIT("error_if_no_space ");
3934}
3935
3936/*
3937 * Status line is:
3938 * <transaction id> <used metadata sectors>/<total metadata sectors>
3939 * <used data sectors>/<total data sectors> <held metadata root>
3940 * <pool mode> <discard config> <no space config> <needs_check>
3941 */
3942static void pool_status(struct dm_target *ti, status_type_t type,
3943 unsigned status_flags, char *result, unsigned maxlen)
3944{
3945 int r;
3946 unsigned sz = 0;
3947 uint64_t transaction_id;
3948 dm_block_t nr_free_blocks_data;
3949 dm_block_t nr_free_blocks_metadata;
3950 dm_block_t nr_blocks_data;
3951 dm_block_t nr_blocks_metadata;
3952 dm_block_t held_root;
3953 enum pool_mode mode;
3954 char buf[BDEVNAME_SIZE];
3955 char buf2[BDEVNAME_SIZE];
3956 struct pool_c *pt = ti->private;
3957 struct pool *pool = pt->pool;
3958
3959 switch (type) {
3960 case STATUSTYPE_INFO:
3961 if (get_pool_mode(pool) == PM_FAIL) {
3962 DMEMIT("Fail");
3963 break;
3964 }
3965
3966 /* Commit to ensure statistics aren't out-of-date */
3967 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3968 (void) commit(pool);
3969
3970 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3971 if (r) {
3972 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3973 dm_device_name(pool->pool_md), r);
3974 goto err;
3975 }
3976
3977 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3978 if (r) {
3979 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3980 dm_device_name(pool->pool_md), r);
3981 goto err;
3982 }
3983
3984 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3985 if (r) {
3986 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3987 dm_device_name(pool->pool_md), r);
3988 goto err;
3989 }
3990
3991 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3992 if (r) {
3993 DMERR("%s: dm_pool_get_free_block_count returned %d",
3994 dm_device_name(pool->pool_md), r);
3995 goto err;
3996 }
3997
3998 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3999 if (r) {
4000 DMERR("%s: dm_pool_get_data_dev_size returned %d",
4001 dm_device_name(pool->pool_md), r);
4002 goto err;
4003 }
4004
4005 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
4006 if (r) {
4007 DMERR("%s: dm_pool_get_metadata_snap returned %d",
4008 dm_device_name(pool->pool_md), r);
4009 goto err;
4010 }
4011
4012 DMEMIT("%llu %llu/%llu %llu/%llu ",
4013 (unsigned long long)transaction_id,
4014 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
4015 (unsigned long long)nr_blocks_metadata,
4016 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
4017 (unsigned long long)nr_blocks_data);
4018
4019 if (held_root)
4020 DMEMIT("%llu ", held_root);
4021 else
4022 DMEMIT("- ");
4023
4024 mode = get_pool_mode(pool);
4025 if (mode == PM_OUT_OF_DATA_SPACE)
4026 DMEMIT("out_of_data_space ");
4027 else if (is_read_only_pool_mode(mode))
4028 DMEMIT("ro ");
4029 else
4030 DMEMIT("rw ");
4031
4032 if (!pool->pf.discard_enabled)
4033 DMEMIT("ignore_discard ");
4034 else if (pool->pf.discard_passdown)
4035 DMEMIT("discard_passdown ");
4036 else
4037 DMEMIT("no_discard_passdown ");
4038
4039 if (pool->pf.error_if_no_space)
4040 DMEMIT("error_if_no_space ");
4041 else
4042 DMEMIT("queue_if_no_space ");
4043
4044 if (dm_pool_metadata_needs_check(pool->pmd))
4045 DMEMIT("needs_check ");
4046 else
4047 DMEMIT("- ");
4048
4049 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4050
4051 break;
4052
4053 case STATUSTYPE_TABLE:
4054 DMEMIT("%s %s %lu %llu ",
4055 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4056 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4057 (unsigned long)pool->sectors_per_block,
4058 (unsigned long long)pt->low_water_blocks);
4059 emit_flags(&pt->requested_pf, result, sz, maxlen);
4060 break;
4061 }
4062 return;
4063
4064err:
4065 DMEMIT("Error");
4066}
4067
4068static int pool_iterate_devices(struct dm_target *ti,
4069 iterate_devices_callout_fn fn, void *data)
4070{
4071 struct pool_c *pt = ti->private;
4072
4073 return fn(ti, pt->data_dev, 0, ti->len, data);
4074}
4075
4076static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4077{
4078 struct pool_c *pt = ti->private;
4079 struct pool *pool = pt->pool;
4080 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4081
4082 /*
4083 * If max_sectors is smaller than pool->sectors_per_block adjust it
4084 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4085 * This is especially beneficial when the pool's data device is a RAID
4086 * device that has a full stripe width that matches pool->sectors_per_block
4087 * -- because even though partial RAID stripe-sized IOs will be issued to a
4088 * single RAID stripe; when aggregated they will end on a full RAID stripe
4089 * boundary.. which avoids additional partial RAID stripe writes cascading
4090 */
4091 if (limits->max_sectors < pool->sectors_per_block) {
4092 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4093 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4094 limits->max_sectors--;
4095 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4096 }
4097 }
4098
4099 /*
4100 * If the system-determined stacked limits are compatible with the
4101 * pool's blocksize (io_opt is a factor) do not override them.
4102 */
4103 if (io_opt_sectors < pool->sectors_per_block ||
4104 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4105 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4106 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4107 else
4108 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4109 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4110 }
4111
4112 /*
4113 * pt->adjusted_pf is a staging area for the actual features to use.
4114 * They get transferred to the live pool in bind_control_target()
4115 * called from pool_preresume().
4116 */
4117 if (!pt->adjusted_pf.discard_enabled) {
4118 /*
4119 * Must explicitly disallow stacking discard limits otherwise the
4120 * block layer will stack them if pool's data device has support.
4121 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4122 * user to see that, so make sure to set all discard limits to 0.
4123 */
4124 limits->discard_granularity = 0;
4125 return;
4126 }
4127
4128 disable_passdown_if_not_supported(pt);
4129
4130 /*
4131 * The pool uses the same discard limits as the underlying data
4132 * device. DM core has already set this up.
4133 */
4134}
4135
4136static struct target_type pool_target = {
4137 .name = "thin-pool",
4138 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4139 DM_TARGET_IMMUTABLE,
4140 .version = {1, 22, 0},
4141 .module = THIS_MODULE,
4142 .ctr = pool_ctr,
4143 .dtr = pool_dtr,
4144 .map = pool_map,
4145 .presuspend = pool_presuspend,
4146 .presuspend_undo = pool_presuspend_undo,
4147 .postsuspend = pool_postsuspend,
4148 .preresume = pool_preresume,
4149 .resume = pool_resume,
4150 .message = pool_message,
4151 .status = pool_status,
4152 .iterate_devices = pool_iterate_devices,
4153 .io_hints = pool_io_hints,
4154};
4155
4156/*----------------------------------------------------------------
4157 * Thin target methods
4158 *--------------------------------------------------------------*/
4159static void thin_get(struct thin_c *tc)
4160{
4161 refcount_inc(&tc->refcount);
4162}
4163
4164static void thin_put(struct thin_c *tc)
4165{
4166 if (refcount_dec_and_test(&tc->refcount))
4167 complete(&tc->can_destroy);
4168}
4169
4170static void thin_dtr(struct dm_target *ti)
4171{
4172 struct thin_c *tc = ti->private;
4173 unsigned long flags;
4174
4175 spin_lock_irqsave(&tc->pool->lock, flags);
4176 list_del_rcu(&tc->list);
4177 spin_unlock_irqrestore(&tc->pool->lock, flags);
4178 synchronize_rcu();
4179
4180 thin_put(tc);
4181 wait_for_completion(&tc->can_destroy);
4182
4183 mutex_lock(&dm_thin_pool_table.mutex);
4184
4185 __pool_dec(tc->pool);
4186 dm_pool_close_thin_device(tc->td);
4187 dm_put_device(ti, tc->pool_dev);
4188 if (tc->origin_dev)
4189 dm_put_device(ti, tc->origin_dev);
4190 kfree(tc);
4191
4192 mutex_unlock(&dm_thin_pool_table.mutex);
4193}
4194
4195/*
4196 * Thin target parameters:
4197 *
4198 * <pool_dev> <dev_id> [origin_dev]
4199 *
4200 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4201 * dev_id: the internal device identifier
4202 * origin_dev: a device external to the pool that should act as the origin
4203 *
4204 * If the pool device has discards disabled, they get disabled for the thin
4205 * device as well.
4206 */
4207static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4208{
4209 int r;
4210 struct thin_c *tc;
4211 struct dm_dev *pool_dev, *origin_dev;
4212 struct mapped_device *pool_md;
4213 unsigned long flags;
4214
4215 mutex_lock(&dm_thin_pool_table.mutex);
4216
4217 if (argc != 2 && argc != 3) {
4218 ti->error = "Invalid argument count";
4219 r = -EINVAL;
4220 goto out_unlock;
4221 }
4222
4223 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4224 if (!tc) {
4225 ti->error = "Out of memory";
4226 r = -ENOMEM;
4227 goto out_unlock;
4228 }
4229 tc->thin_md = dm_table_get_md(ti->table);
4230 spin_lock_init(&tc->lock);
4231 INIT_LIST_HEAD(&tc->deferred_cells);
4232 bio_list_init(&tc->deferred_bio_list);
4233 bio_list_init(&tc->retry_on_resume_list);
4234 tc->sort_bio_list = RB_ROOT;
4235
4236 if (argc == 3) {
4237 if (!strcmp(argv[0], argv[2])) {
4238 ti->error = "Error setting origin device";
4239 r = -EINVAL;
4240 goto bad_origin_dev;
4241 }
4242
4243 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4244 if (r) {
4245 ti->error = "Error opening origin device";
4246 goto bad_origin_dev;
4247 }
4248 tc->origin_dev = origin_dev;
4249 }
4250
4251 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4252 if (r) {
4253 ti->error = "Error opening pool device";
4254 goto bad_pool_dev;
4255 }
4256 tc->pool_dev = pool_dev;
4257
4258 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4259 ti->error = "Invalid device id";
4260 r = -EINVAL;
4261 goto bad_common;
4262 }
4263
4264 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4265 if (!pool_md) {
4266 ti->error = "Couldn't get pool mapped device";
4267 r = -EINVAL;
4268 goto bad_common;
4269 }
4270
4271 tc->pool = __pool_table_lookup(pool_md);
4272 if (!tc->pool) {
4273 ti->error = "Couldn't find pool object";
4274 r = -EINVAL;
4275 goto bad_pool_lookup;
4276 }
4277 __pool_inc(tc->pool);
4278
4279 if (get_pool_mode(tc->pool) == PM_FAIL) {
4280 ti->error = "Couldn't open thin device, Pool is in fail mode";
4281 r = -EINVAL;
4282 goto bad_pool;
4283 }
4284
4285 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4286 if (r) {
4287 ti->error = "Couldn't open thin internal device";
4288 goto bad_pool;
4289 }
4290
4291 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4292 if (r)
4293 goto bad;
4294
4295 ti->num_flush_bios = 1;
4296 ti->limit_swap_bios = true;
4297 ti->flush_supported = true;
4298 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4299
4300 /* In case the pool supports discards, pass them on. */
4301 if (tc->pool->pf.discard_enabled) {
4302 ti->discards_supported = true;
4303 ti->num_discard_bios = 1;
4304 }
4305
4306 mutex_unlock(&dm_thin_pool_table.mutex);
4307
4308 spin_lock_irqsave(&tc->pool->lock, flags);
4309 if (tc->pool->suspended) {
4310 spin_unlock_irqrestore(&tc->pool->lock, flags);
4311 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4312 ti->error = "Unable to activate thin device while pool is suspended";
4313 r = -EINVAL;
4314 goto bad;
4315 }
4316 refcount_set(&tc->refcount, 1);
4317 init_completion(&tc->can_destroy);
4318 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4319 spin_unlock_irqrestore(&tc->pool->lock, flags);
4320 /*
4321 * This synchronize_rcu() call is needed here otherwise we risk a
4322 * wake_worker() call finding no bios to process (because the newly
4323 * added tc isn't yet visible). So this reduces latency since we
4324 * aren't then dependent on the periodic commit to wake_worker().
4325 */
4326 synchronize_rcu();
4327
4328 dm_put(pool_md);
4329
4330 return 0;
4331
4332bad:
4333 dm_pool_close_thin_device(tc->td);
4334bad_pool:
4335 __pool_dec(tc->pool);
4336bad_pool_lookup:
4337 dm_put(pool_md);
4338bad_common:
4339 dm_put_device(ti, tc->pool_dev);
4340bad_pool_dev:
4341 if (tc->origin_dev)
4342 dm_put_device(ti, tc->origin_dev);
4343bad_origin_dev:
4344 kfree(tc);
4345out_unlock:
4346 mutex_unlock(&dm_thin_pool_table.mutex);
4347
4348 return r;
4349}
4350
4351static int thin_map(struct dm_target *ti, struct bio *bio)
4352{
4353 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4354
4355 return thin_bio_map(ti, bio);
4356}
4357
4358static int thin_endio(struct dm_target *ti, struct bio *bio,
4359 blk_status_t *err)
4360{
4361 unsigned long flags;
4362 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4363 struct list_head work;
4364 struct dm_thin_new_mapping *m, *tmp;
4365 struct pool *pool = h->tc->pool;
4366
4367 if (h->shared_read_entry) {
4368 INIT_LIST_HEAD(&work);
4369 dm_deferred_entry_dec(h->shared_read_entry, &work);
4370
4371 spin_lock_irqsave(&pool->lock, flags);
4372 list_for_each_entry_safe(m, tmp, &work, list) {
4373 list_del(&m->list);
4374 __complete_mapping_preparation(m);
4375 }
4376 spin_unlock_irqrestore(&pool->lock, flags);
4377 }
4378
4379 if (h->all_io_entry) {
4380 INIT_LIST_HEAD(&work);
4381 dm_deferred_entry_dec(h->all_io_entry, &work);
4382 if (!list_empty(&work)) {
4383 spin_lock_irqsave(&pool->lock, flags);
4384 list_for_each_entry_safe(m, tmp, &work, list)
4385 list_add_tail(&m->list, &pool->prepared_discards);
4386 spin_unlock_irqrestore(&pool->lock, flags);
4387 wake_worker(pool);
4388 }
4389 }
4390
4391 if (h->cell)
4392 cell_defer_no_holder(h->tc, h->cell);
4393
4394 return DM_ENDIO_DONE;
4395}
4396
4397static void thin_presuspend(struct dm_target *ti)
4398{
4399 struct thin_c *tc = ti->private;
4400
4401 if (dm_noflush_suspending(ti))
4402 noflush_work(tc, do_noflush_start);
4403}
4404
4405static void thin_postsuspend(struct dm_target *ti)
4406{
4407 struct thin_c *tc = ti->private;
4408
4409 /*
4410 * The dm_noflush_suspending flag has been cleared by now, so
4411 * unfortunately we must always run this.
4412 */
4413 noflush_work(tc, do_noflush_stop);
4414}
4415
4416static int thin_preresume(struct dm_target *ti)
4417{
4418 struct thin_c *tc = ti->private;
4419
4420 if (tc->origin_dev)
4421 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4422
4423 return 0;
4424}
4425
4426/*
4427 * <nr mapped sectors> <highest mapped sector>
4428 */
4429static void thin_status(struct dm_target *ti, status_type_t type,
4430 unsigned status_flags, char *result, unsigned maxlen)
4431{
4432 int r;
4433 ssize_t sz = 0;
4434 dm_block_t mapped, highest;
4435 char buf[BDEVNAME_SIZE];
4436 struct thin_c *tc = ti->private;
4437
4438 if (get_pool_mode(tc->pool) == PM_FAIL) {
4439 DMEMIT("Fail");
4440 return;
4441 }
4442
4443 if (!tc->td)
4444 DMEMIT("-");
4445 else {
4446 switch (type) {
4447 case STATUSTYPE_INFO:
4448 r = dm_thin_get_mapped_count(tc->td, &mapped);
4449 if (r) {
4450 DMERR("dm_thin_get_mapped_count returned %d", r);
4451 goto err;
4452 }
4453
4454 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4455 if (r < 0) {
4456 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4457 goto err;
4458 }
4459
4460 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4461 if (r)
4462 DMEMIT("%llu", ((highest + 1) *
4463 tc->pool->sectors_per_block) - 1);
4464 else
4465 DMEMIT("-");
4466 break;
4467
4468 case STATUSTYPE_TABLE:
4469 DMEMIT("%s %lu",
4470 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4471 (unsigned long) tc->dev_id);
4472 if (tc->origin_dev)
4473 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4474 break;
4475 }
4476 }
4477
4478 return;
4479
4480err:
4481 DMEMIT("Error");
4482}
4483
4484static int thin_iterate_devices(struct dm_target *ti,
4485 iterate_devices_callout_fn fn, void *data)
4486{
4487 sector_t blocks;
4488 struct thin_c *tc = ti->private;
4489 struct pool *pool = tc->pool;
4490
4491 /*
4492 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4493 * we follow a more convoluted path through to the pool's target.
4494 */
4495 if (!pool->ti)
4496 return 0; /* nothing is bound */
4497
4498 blocks = pool->ti->len;
4499 (void) sector_div(blocks, pool->sectors_per_block);
4500 if (blocks)
4501 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4502
4503 return 0;
4504}
4505
4506static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4507{
4508 struct thin_c *tc = ti->private;
4509 struct pool *pool = tc->pool;
4510
4511 if (!pool->pf.discard_enabled)
4512 return;
4513
4514 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4515 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4516}
4517
4518static struct target_type thin_target = {
4519 .name = "thin",
4520 .version = {1, 22, 0},
4521 .module = THIS_MODULE,
4522 .ctr = thin_ctr,
4523 .dtr = thin_dtr,
4524 .map = thin_map,
4525 .end_io = thin_endio,
4526 .preresume = thin_preresume,
4527 .presuspend = thin_presuspend,
4528 .postsuspend = thin_postsuspend,
4529 .status = thin_status,
4530 .iterate_devices = thin_iterate_devices,
4531 .io_hints = thin_io_hints,
4532};
4533
4534/*----------------------------------------------------------------*/
4535
4536static int __init dm_thin_init(void)
4537{
4538 int r = -ENOMEM;
4539
4540 pool_table_init();
4541
4542 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4543 if (!_new_mapping_cache)
4544 return r;
4545
4546 r = dm_register_target(&thin_target);
4547 if (r)
4548 goto bad_new_mapping_cache;
4549
4550 r = dm_register_target(&pool_target);
4551 if (r)
4552 goto bad_thin_target;
4553
4554 return 0;
4555
4556bad_thin_target:
4557 dm_unregister_target(&thin_target);
4558bad_new_mapping_cache:
4559 kmem_cache_destroy(_new_mapping_cache);
4560
4561 return r;
4562}
4563
4564static void dm_thin_exit(void)
4565{
4566 dm_unregister_target(&thin_target);
4567 dm_unregister_target(&pool_target);
4568
4569 kmem_cache_destroy(_new_mapping_cache);
4570
4571 pool_table_exit();
4572}
4573
4574module_init(dm_thin_init);
4575module_exit(dm_thin_exit);
4576
4577module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4578MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4579
4580MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4581MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4582MODULE_LICENSE("GPL");