blob: 41556f5d4dcba9cfbdffd30cda3891359e0256ab [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
49
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64static bool devices_handle_discard_safely = false;
65module_param(devices_handle_discard_safely, bool, 0644);
66MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68static struct workqueue_struct *raid5_wq;
69
70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71{
72 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
74}
75
76static inline int stripe_hash_locks_hash(sector_t sect)
77{
78 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
79}
80
81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82{
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85}
86
87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88{
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91}
92
93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94{
95 int i;
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100}
101
102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
109}
110
111/* Find first data disk in a raid6 stripe */
112static inline int raid6_d0(struct stripe_head *sh)
113{
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122}
123static inline int raid6_next_disk(int disk, int raid_disks)
124{
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127}
128
129/* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
136{
137 int slot = *count;
138
139 if (sh->ddf_layout)
140 (*count)++;
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
145 if (!sh->ddf_layout)
146 (*count)++;
147 return slot;
148}
149
150static void print_raid5_conf (struct r5conf *conf);
151
152static int stripe_operations_active(struct stripe_head *sh)
153{
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157}
158
159static bool stripe_is_lowprio(struct stripe_head *sh)
160{
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164}
165
166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167{
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
170 int thread_cnt;
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
186 sh->group = group;
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
210}
211
212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
214{
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
225 /*
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
231 */
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
239
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 }
293 }
294 }
295}
296
297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
299{
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
302}
303
304/*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
311static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314{
315 int size;
316 bool do_wakeup = false;
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
337 do_wakeup = true;
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
351}
352
353/* should hold conf->device_lock already */
354static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
356{
357 struct stripe_head *sh, *t;
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
364 int hash;
365
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
376 count++;
377 }
378
379 return count;
380}
381
382void raid5_release_stripe(struct stripe_head *sh)
383{
384 struct r5conf *conf = sh->raid_conf;
385 unsigned long flags;
386 struct list_head list;
387 int hash;
388 bool wakeup;
389
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402slow_path:
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
410 }
411}
412
413static inline void remove_hash(struct stripe_head *sh)
414{
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
417
418 hlist_del_init(&sh->hash);
419}
420
421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422{
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
424
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
427
428 hlist_add_head(&sh->hash, hp);
429}
430
431/* find an idle stripe, make sure it is unhashed, and return it. */
432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433{
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
437 if (list_empty(conf->inactive_list + hash))
438 goto out;
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
447out:
448 return sh;
449}
450
451static void shrink_buffers(struct stripe_head *sh)
452{
453 struct page *p;
454 int i;
455 int num = sh->raid_conf->pool_size;
456
457 for (i = 0; i < num ; i++) {
458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459 p = sh->dev[i].page;
460 if (!p)
461 continue;
462 sh->dev[i].page = NULL;
463 put_page(p);
464 }
465}
466
467static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
468{
469 int i;
470 int num = sh->raid_conf->pool_size;
471
472 for (i = 0; i < num; i++) {
473 struct page *page;
474
475 if (!(page = alloc_page(gfp))) {
476 return 1;
477 }
478 sh->dev[i].page = page;
479 sh->dev[i].orig_page = page;
480 }
481
482 return 0;
483}
484
485static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 struct stripe_head *sh);
487
488static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
489{
490 struct r5conf *conf = sh->raid_conf;
491 int i, seq;
492
493 BUG_ON(atomic_read(&sh->count) != 0);
494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 BUG_ON(stripe_operations_active(sh));
496 BUG_ON(sh->batch_head);
497
498 pr_debug("init_stripe called, stripe %llu\n",
499 (unsigned long long)sector);
500retry:
501 seq = read_seqcount_begin(&conf->gen_lock);
502 sh->generation = conf->generation - previous;
503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504 sh->sector = sector;
505 stripe_set_idx(sector, conf, previous, sh);
506 sh->state = 0;
507
508 for (i = sh->disks; i--; ) {
509 struct r5dev *dev = &sh->dev[i];
510
511 if (dev->toread || dev->read || dev->towrite || dev->written ||
512 test_bit(R5_LOCKED, &dev->flags)) {
513 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 (unsigned long long)sh->sector, i, dev->toread,
515 dev->read, dev->towrite, dev->written,
516 test_bit(R5_LOCKED, &dev->flags));
517 WARN_ON(1);
518 }
519 dev->flags = 0;
520 dev->sector = raid5_compute_blocknr(sh, i, previous);
521 }
522 if (read_seqcount_retry(&conf->gen_lock, seq))
523 goto retry;
524 sh->overwrite_disks = 0;
525 insert_hash(conf, sh);
526 sh->cpu = smp_processor_id();
527 set_bit(STRIPE_BATCH_READY, &sh->state);
528}
529
530static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531 short generation)
532{
533 struct stripe_head *sh;
534
535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 if (sh->sector == sector && sh->generation == generation)
538 return sh;
539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540 return NULL;
541}
542
543/*
544 * Need to check if array has failed when deciding whether to:
545 * - start an array
546 * - remove non-faulty devices
547 * - add a spare
548 * - allow a reshape
549 * This determination is simple when no reshape is happening.
550 * However if there is a reshape, we need to carefully check
551 * both the before and after sections.
552 * This is because some failed devices may only affect one
553 * of the two sections, and some non-in_sync devices may
554 * be insync in the section most affected by failed devices.
555 */
556int raid5_calc_degraded(struct r5conf *conf)
557{
558 int degraded, degraded2;
559 int i;
560
561 rcu_read_lock();
562 degraded = 0;
563 for (i = 0; i < conf->previous_raid_disks; i++) {
564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 if (rdev && test_bit(Faulty, &rdev->flags))
566 rdev = rcu_dereference(conf->disks[i].replacement);
567 if (!rdev || test_bit(Faulty, &rdev->flags))
568 degraded++;
569 else if (test_bit(In_sync, &rdev->flags))
570 ;
571 else
572 /* not in-sync or faulty.
573 * If the reshape increases the number of devices,
574 * this is being recovered by the reshape, so
575 * this 'previous' section is not in_sync.
576 * If the number of devices is being reduced however,
577 * the device can only be part of the array if
578 * we are reverting a reshape, so this section will
579 * be in-sync.
580 */
581 if (conf->raid_disks >= conf->previous_raid_disks)
582 degraded++;
583 }
584 rcu_read_unlock();
585 if (conf->raid_disks == conf->previous_raid_disks)
586 return degraded;
587 rcu_read_lock();
588 degraded2 = 0;
589 for (i = 0; i < conf->raid_disks; i++) {
590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 if (rdev && test_bit(Faulty, &rdev->flags))
592 rdev = rcu_dereference(conf->disks[i].replacement);
593 if (!rdev || test_bit(Faulty, &rdev->flags))
594 degraded2++;
595 else if (test_bit(In_sync, &rdev->flags))
596 ;
597 else
598 /* not in-sync or faulty.
599 * If reshape increases the number of devices, this
600 * section has already been recovered, else it
601 * almost certainly hasn't.
602 */
603 if (conf->raid_disks <= conf->previous_raid_disks)
604 degraded2++;
605 }
606 rcu_read_unlock();
607 if (degraded2 > degraded)
608 return degraded2;
609 return degraded;
610}
611
612static bool has_failed(struct r5conf *conf)
613{
614 int degraded = conf->mddev->degraded;
615
616 if (test_bit(MD_BROKEN, &conf->mddev->flags))
617 return true;
618
619 if (conf->mddev->reshape_position != MaxSector)
620 degraded = raid5_calc_degraded(conf);
621
622 return degraded > conf->max_degraded;
623}
624
625struct stripe_head *
626raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 int previous, int noblock, int noquiesce)
628{
629 struct stripe_head *sh;
630 int hash = stripe_hash_locks_hash(sector);
631 int inc_empty_inactive_list_flag;
632
633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
634
635 spin_lock_irq(conf->hash_locks + hash);
636
637 do {
638 wait_event_lock_irq(conf->wait_for_quiescent,
639 conf->quiesce == 0 || noquiesce,
640 *(conf->hash_locks + hash));
641 sh = __find_stripe(conf, sector, conf->generation - previous);
642 if (!sh) {
643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 sh = get_free_stripe(conf, hash);
645 if (!sh && !test_bit(R5_DID_ALLOC,
646 &conf->cache_state))
647 set_bit(R5_ALLOC_MORE,
648 &conf->cache_state);
649 }
650 if (noblock && sh == NULL)
651 break;
652
653 r5c_check_stripe_cache_usage(conf);
654 if (!sh) {
655 set_bit(R5_INACTIVE_BLOCKED,
656 &conf->cache_state);
657 r5l_wake_reclaim(conf->log, 0);
658 wait_event_lock_irq(
659 conf->wait_for_stripe,
660 !list_empty(conf->inactive_list + hash) &&
661 (atomic_read(&conf->active_stripes)
662 < (conf->max_nr_stripes * 3 / 4)
663 || !test_bit(R5_INACTIVE_BLOCKED,
664 &conf->cache_state)),
665 *(conf->hash_locks + hash));
666 clear_bit(R5_INACTIVE_BLOCKED,
667 &conf->cache_state);
668 } else {
669 init_stripe(sh, sector, previous);
670 atomic_inc(&sh->count);
671 }
672 } else if (!atomic_inc_not_zero(&sh->count)) {
673 spin_lock(&conf->device_lock);
674 if (!atomic_read(&sh->count)) {
675 if (!test_bit(STRIPE_HANDLE, &sh->state))
676 atomic_inc(&conf->active_stripes);
677 BUG_ON(list_empty(&sh->lru) &&
678 !test_bit(STRIPE_EXPANDING, &sh->state));
679 inc_empty_inactive_list_flag = 0;
680 if (!list_empty(conf->inactive_list + hash))
681 inc_empty_inactive_list_flag = 1;
682 list_del_init(&sh->lru);
683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 atomic_inc(&conf->empty_inactive_list_nr);
685 if (sh->group) {
686 sh->group->stripes_cnt--;
687 sh->group = NULL;
688 }
689 }
690 atomic_inc(&sh->count);
691 spin_unlock(&conf->device_lock);
692 }
693 } while (sh == NULL);
694
695 spin_unlock_irq(conf->hash_locks + hash);
696 return sh;
697}
698
699static bool is_full_stripe_write(struct stripe_head *sh)
700{
701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703}
704
705static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706 __acquires(&sh1->stripe_lock)
707 __acquires(&sh2->stripe_lock)
708{
709 if (sh1 > sh2) {
710 spin_lock_irq(&sh2->stripe_lock);
711 spin_lock_nested(&sh1->stripe_lock, 1);
712 } else {
713 spin_lock_irq(&sh1->stripe_lock);
714 spin_lock_nested(&sh2->stripe_lock, 1);
715 }
716}
717
718static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 __releases(&sh1->stripe_lock)
720 __releases(&sh2->stripe_lock)
721{
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock_irq(&sh2->stripe_lock);
724}
725
726/* Only freshly new full stripe normal write stripe can be added to a batch list */
727static bool stripe_can_batch(struct stripe_head *sh)
728{
729 struct r5conf *conf = sh->raid_conf;
730
731 if (raid5_has_log(conf) || raid5_has_ppl(conf))
732 return false;
733 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 is_full_stripe_write(sh);
736}
737
738/* we only do back search */
739static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740{
741 struct stripe_head *head;
742 sector_t head_sector, tmp_sec;
743 int hash;
744 int dd_idx;
745 int inc_empty_inactive_list_flag;
746
747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 tmp_sec = sh->sector;
749 if (!sector_div(tmp_sec, conf->chunk_sectors))
750 return;
751 head_sector = sh->sector - STRIPE_SECTORS;
752
753 hash = stripe_hash_locks_hash(head_sector);
754 spin_lock_irq(conf->hash_locks + hash);
755 head = __find_stripe(conf, head_sector, conf->generation);
756 if (head && !atomic_inc_not_zero(&head->count)) {
757 spin_lock(&conf->device_lock);
758 if (!atomic_read(&head->count)) {
759 if (!test_bit(STRIPE_HANDLE, &head->state))
760 atomic_inc(&conf->active_stripes);
761 BUG_ON(list_empty(&head->lru) &&
762 !test_bit(STRIPE_EXPANDING, &head->state));
763 inc_empty_inactive_list_flag = 0;
764 if (!list_empty(conf->inactive_list + hash))
765 inc_empty_inactive_list_flag = 1;
766 list_del_init(&head->lru);
767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 atomic_inc(&conf->empty_inactive_list_nr);
769 if (head->group) {
770 head->group->stripes_cnt--;
771 head->group = NULL;
772 }
773 }
774 atomic_inc(&head->count);
775 spin_unlock(&conf->device_lock);
776 }
777 spin_unlock_irq(conf->hash_locks + hash);
778
779 if (!head)
780 return;
781 if (!stripe_can_batch(head))
782 goto out;
783
784 lock_two_stripes(head, sh);
785 /* clear_batch_ready clear the flag */
786 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 goto unlock_out;
788
789 if (sh->batch_head)
790 goto unlock_out;
791
792 dd_idx = 0;
793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 dd_idx++;
795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797 goto unlock_out;
798
799 if (head->batch_head) {
800 spin_lock(&head->batch_head->batch_lock);
801 /* This batch list is already running */
802 if (!stripe_can_batch(head)) {
803 spin_unlock(&head->batch_head->batch_lock);
804 goto unlock_out;
805 }
806 /*
807 * We must assign batch_head of this stripe within the
808 * batch_lock, otherwise clear_batch_ready of batch head
809 * stripe could clear BATCH_READY bit of this stripe and
810 * this stripe->batch_head doesn't get assigned, which
811 * could confuse clear_batch_ready for this stripe
812 */
813 sh->batch_head = head->batch_head;
814
815 /*
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
818 */
819 list_add(&sh->batch_list, &head->batch_list);
820 spin_unlock(&head->batch_head->batch_lock);
821 } else {
822 head->batch_head = head;
823 sh->batch_head = head->batch_head;
824 spin_lock(&head->batch_lock);
825 list_add_tail(&sh->batch_list, &head->batch_list);
826 spin_unlock(&head->batch_lock);
827 }
828
829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 if (atomic_dec_return(&conf->preread_active_stripes)
831 < IO_THRESHOLD)
832 md_wakeup_thread(conf->mddev->thread);
833
834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 int seq = sh->bm_seq;
836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 sh->batch_head->bm_seq > seq)
838 seq = sh->batch_head->bm_seq;
839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 sh->batch_head->bm_seq = seq;
841 }
842
843 atomic_inc(&sh->count);
844unlock_out:
845 unlock_two_stripes(head, sh);
846out:
847 raid5_release_stripe(head);
848}
849
850/* Determine if 'data_offset' or 'new_data_offset' should be used
851 * in this stripe_head.
852 */
853static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854{
855 sector_t progress = conf->reshape_progress;
856 /* Need a memory barrier to make sure we see the value
857 * of conf->generation, or ->data_offset that was set before
858 * reshape_progress was updated.
859 */
860 smp_rmb();
861 if (progress == MaxSector)
862 return 0;
863 if (sh->generation == conf->generation - 1)
864 return 0;
865 /* We are in a reshape, and this is a new-generation stripe,
866 * so use new_data_offset.
867 */
868 return 1;
869}
870
871static void dispatch_bio_list(struct bio_list *tmp)
872{
873 struct bio *bio;
874
875 while ((bio = bio_list_pop(tmp)))
876 generic_make_request(bio);
877}
878
879static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880{
881 const struct r5pending_data *da = list_entry(a,
882 struct r5pending_data, sibling);
883 const struct r5pending_data *db = list_entry(b,
884 struct r5pending_data, sibling);
885 if (da->sector > db->sector)
886 return 1;
887 if (da->sector < db->sector)
888 return -1;
889 return 0;
890}
891
892static void dispatch_defer_bios(struct r5conf *conf, int target,
893 struct bio_list *list)
894{
895 struct r5pending_data *data;
896 struct list_head *first, *next = NULL;
897 int cnt = 0;
898
899 if (conf->pending_data_cnt == 0)
900 return;
901
902 list_sort(NULL, &conf->pending_list, cmp_stripe);
903
904 first = conf->pending_list.next;
905
906 /* temporarily move the head */
907 if (conf->next_pending_data)
908 list_move_tail(&conf->pending_list,
909 &conf->next_pending_data->sibling);
910
911 while (!list_empty(&conf->pending_list)) {
912 data = list_first_entry(&conf->pending_list,
913 struct r5pending_data, sibling);
914 if (&data->sibling == first)
915 first = data->sibling.next;
916 next = data->sibling.next;
917
918 bio_list_merge(list, &data->bios);
919 list_move(&data->sibling, &conf->free_list);
920 cnt++;
921 if (cnt >= target)
922 break;
923 }
924 conf->pending_data_cnt -= cnt;
925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926
927 if (next != &conf->pending_list)
928 conf->next_pending_data = list_entry(next,
929 struct r5pending_data, sibling);
930 else
931 conf->next_pending_data = NULL;
932 /* list isn't empty */
933 if (first != &conf->pending_list)
934 list_move_tail(&conf->pending_list, first);
935}
936
937static void flush_deferred_bios(struct r5conf *conf)
938{
939 struct bio_list tmp = BIO_EMPTY_LIST;
940
941 if (conf->pending_data_cnt == 0)
942 return;
943
944 spin_lock(&conf->pending_bios_lock);
945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 BUG_ON(conf->pending_data_cnt != 0);
947 spin_unlock(&conf->pending_bios_lock);
948
949 dispatch_bio_list(&tmp);
950}
951
952static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 struct bio_list *bios)
954{
955 struct bio_list tmp = BIO_EMPTY_LIST;
956 struct r5pending_data *ent;
957
958 spin_lock(&conf->pending_bios_lock);
959 ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 sibling);
961 list_move_tail(&ent->sibling, &conf->pending_list);
962 ent->sector = sector;
963 bio_list_init(&ent->bios);
964 bio_list_merge(&ent->bios, bios);
965 conf->pending_data_cnt++;
966 if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968
969 spin_unlock(&conf->pending_bios_lock);
970
971 dispatch_bio_list(&tmp);
972}
973
974static void
975raid5_end_read_request(struct bio *bi);
976static void
977raid5_end_write_request(struct bio *bi);
978
979static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
980{
981 struct r5conf *conf = sh->raid_conf;
982 int i, disks = sh->disks;
983 struct stripe_head *head_sh = sh;
984 struct bio_list pending_bios = BIO_EMPTY_LIST;
985 bool should_defer;
986
987 might_sleep();
988
989 if (log_stripe(sh, s) == 0)
990 return;
991
992 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
993
994 for (i = disks; i--; ) {
995 int op, op_flags = 0;
996 int replace_only = 0;
997 struct bio *bi, *rbi;
998 struct md_rdev *rdev, *rrdev = NULL;
999
1000 sh = head_sh;
1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002 op = REQ_OP_WRITE;
1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004 op_flags = REQ_FUA;
1005 if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 op = REQ_OP_DISCARD;
1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008 op = REQ_OP_READ;
1009 else if (test_and_clear_bit(R5_WantReplace,
1010 &sh->dev[i].flags)) {
1011 op = REQ_OP_WRITE;
1012 replace_only = 1;
1013 } else
1014 continue;
1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 op_flags |= REQ_SYNC;
1017
1018again:
1019 bi = &sh->dev[i].req;
1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021
1022 rcu_read_lock();
1023 rrdev = rcu_dereference(conf->disks[i].replacement);
1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 rdev = rcu_dereference(conf->disks[i].rdev);
1026 if (!rdev) {
1027 rdev = rrdev;
1028 rrdev = NULL;
1029 }
1030 if (op_is_write(op)) {
1031 if (replace_only)
1032 rdev = NULL;
1033 if (rdev == rrdev)
1034 /* We raced and saw duplicates */
1035 rrdev = NULL;
1036 } else {
1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038 rdev = rrdev;
1039 rrdev = NULL;
1040 }
1041
1042 if (rdev && test_bit(Faulty, &rdev->flags))
1043 rdev = NULL;
1044 if (rdev)
1045 atomic_inc(&rdev->nr_pending);
1046 if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 rrdev = NULL;
1048 if (rrdev)
1049 atomic_inc(&rrdev->nr_pending);
1050 rcu_read_unlock();
1051
1052 /* We have already checked bad blocks for reads. Now
1053 * need to check for writes. We never accept write errors
1054 * on the replacement, so we don't to check rrdev.
1055 */
1056 while (op_is_write(op) && rdev &&
1057 test_bit(WriteErrorSeen, &rdev->flags)) {
1058 sector_t first_bad;
1059 int bad_sectors;
1060 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061 &first_bad, &bad_sectors);
1062 if (!bad)
1063 break;
1064
1065 if (bad < 0) {
1066 set_bit(BlockedBadBlocks, &rdev->flags);
1067 if (!conf->mddev->external &&
1068 conf->mddev->sb_flags) {
1069 /* It is very unlikely, but we might
1070 * still need to write out the
1071 * bad block log - better give it
1072 * a chance*/
1073 md_check_recovery(conf->mddev);
1074 }
1075 /*
1076 * Because md_wait_for_blocked_rdev
1077 * will dec nr_pending, we must
1078 * increment it first.
1079 */
1080 atomic_inc(&rdev->nr_pending);
1081 md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 } else {
1083 /* Acknowledged bad block - skip the write */
1084 rdev_dec_pending(rdev, conf->mddev);
1085 rdev = NULL;
1086 }
1087 }
1088
1089 if (rdev) {
1090 if (s->syncing || s->expanding || s->expanded
1091 || s->replacing)
1092 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093
1094 set_bit(STRIPE_IO_STARTED, &sh->state);
1095
1096 bio_set_dev(bi, rdev->bdev);
1097 bio_set_op_attrs(bi, op, op_flags);
1098 bi->bi_end_io = op_is_write(op)
1099 ? raid5_end_write_request
1100 : raid5_end_read_request;
1101 bi->bi_private = sh;
1102
1103 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 __func__, (unsigned long long)sh->sector,
1105 bi->bi_opf, i);
1106 atomic_inc(&sh->count);
1107 if (sh != head_sh)
1108 atomic_inc(&head_sh->count);
1109 if (use_new_offset(conf, sh))
1110 bi->bi_iter.bi_sector = (sh->sector
1111 + rdev->new_data_offset);
1112 else
1113 bi->bi_iter.bi_sector = (sh->sector
1114 + rdev->data_offset);
1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 bi->bi_opf |= REQ_NOMERGE;
1117
1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120
1121 if (!op_is_write(op) &&
1122 test_bit(R5_InJournal, &sh->dev[i].flags))
1123 /*
1124 * issuing read for a page in journal, this
1125 * must be preparing for prexor in rmw; read
1126 * the data into orig_page
1127 */
1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 else
1130 sh->dev[i].vec.bv_page = sh->dev[i].page;
1131 bi->bi_vcnt = 1;
1132 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133 bi->bi_io_vec[0].bv_offset = 0;
1134 bi->bi_iter.bi_size = STRIPE_SIZE;
1135 bi->bi_write_hint = sh->dev[i].write_hint;
1136 if (!rrdev)
1137 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1138 /*
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1141 */
1142 if (op == REQ_OP_DISCARD)
1143 bi->bi_vcnt = 0;
1144 if (rrdev)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146
1147 if (conf->mddev->gendisk)
1148 trace_block_bio_remap(bi->bi_disk->queue,
1149 bi, disk_devt(conf->mddev->gendisk),
1150 sh->dev[i].sector);
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1153 else
1154 generic_make_request(bi);
1155 }
1156 if (rrdev) {
1157 if (s->syncing || s->expanding || s->expanded
1158 || s->replacing)
1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1162
1163 bio_set_dev(rbi, rrdev->bdev);
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1168
1169 pr_debug("%s: for %llu schedule op %d on "
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1172 rbi->bi_opf, i);
1173 atomic_inc(&sh->count);
1174 if (sh != head_sh)
1175 atomic_inc(&head_sh->count);
1176 if (use_new_offset(conf, sh))
1177 rbi->bi_iter.bi_sector = (sh->sector
1178 + rrdev->new_data_offset);
1179 else
1180 rbi->bi_iter.bi_sector = (sh->sector
1181 + rrdev->data_offset);
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 rbi->bi_vcnt = 1;
1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 rbi->bi_io_vec[0].bv_offset = 0;
1188 rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 rbi->bi_write_hint = sh->dev[i].write_hint;
1190 sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1191 /*
1192 * If this is discard request, set bi_vcnt 0. We don't
1193 * want to confuse SCSI because SCSI will replace payload
1194 */
1195 if (op == REQ_OP_DISCARD)
1196 rbi->bi_vcnt = 0;
1197 if (conf->mddev->gendisk)
1198 trace_block_bio_remap(rbi->bi_disk->queue,
1199 rbi, disk_devt(conf->mddev->gendisk),
1200 sh->dev[i].sector);
1201 if (should_defer && op_is_write(op))
1202 bio_list_add(&pending_bios, rbi);
1203 else
1204 generic_make_request(rbi);
1205 }
1206 if (!rdev && !rrdev) {
1207 if (op_is_write(op))
1208 set_bit(STRIPE_DEGRADED, &sh->state);
1209 pr_debug("skip op %d on disc %d for sector %llu\n",
1210 bi->bi_opf, i, (unsigned long long)sh->sector);
1211 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 set_bit(STRIPE_HANDLE, &sh->state);
1213 }
1214
1215 if (!head_sh->batch_head)
1216 continue;
1217 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 batch_list);
1219 if (sh != head_sh)
1220 goto again;
1221 }
1222
1223 if (should_defer && !bio_list_empty(&pending_bios))
1224 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225}
1226
1227static struct dma_async_tx_descriptor *
1228async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 sector_t sector, struct dma_async_tx_descriptor *tx,
1230 struct stripe_head *sh, int no_skipcopy)
1231{
1232 struct bio_vec bvl;
1233 struct bvec_iter iter;
1234 struct page *bio_page;
1235 int page_offset;
1236 struct async_submit_ctl submit;
1237 enum async_tx_flags flags = 0;
1238
1239 if (bio->bi_iter.bi_sector >= sector)
1240 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241 else
1242 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1243
1244 if (frombio)
1245 flags |= ASYNC_TX_FENCE;
1246 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247
1248 bio_for_each_segment(bvl, bio, iter) {
1249 int len = bvl.bv_len;
1250 int clen;
1251 int b_offset = 0;
1252
1253 if (page_offset < 0) {
1254 b_offset = -page_offset;
1255 page_offset += b_offset;
1256 len -= b_offset;
1257 }
1258
1259 if (len > 0 && page_offset + len > STRIPE_SIZE)
1260 clen = STRIPE_SIZE - page_offset;
1261 else
1262 clen = len;
1263
1264 if (clen > 0) {
1265 b_offset += bvl.bv_offset;
1266 bio_page = bvl.bv_page;
1267 if (frombio) {
1268 if (sh->raid_conf->skip_copy &&
1269 b_offset == 0 && page_offset == 0 &&
1270 clen == STRIPE_SIZE &&
1271 !no_skipcopy)
1272 *page = bio_page;
1273 else
1274 tx = async_memcpy(*page, bio_page, page_offset,
1275 b_offset, clen, &submit);
1276 } else
1277 tx = async_memcpy(bio_page, *page, b_offset,
1278 page_offset, clen, &submit);
1279 }
1280 /* chain the operations */
1281 submit.depend_tx = tx;
1282
1283 if (clen < len) /* hit end of page */
1284 break;
1285 page_offset += len;
1286 }
1287
1288 return tx;
1289}
1290
1291static void ops_complete_biofill(void *stripe_head_ref)
1292{
1293 struct stripe_head *sh = stripe_head_ref;
1294 int i;
1295
1296 pr_debug("%s: stripe %llu\n", __func__,
1297 (unsigned long long)sh->sector);
1298
1299 /* clear completed biofills */
1300 for (i = sh->disks; i--; ) {
1301 struct r5dev *dev = &sh->dev[i];
1302
1303 /* acknowledge completion of a biofill operation */
1304 /* and check if we need to reply to a read request,
1305 * new R5_Wantfill requests are held off until
1306 * !STRIPE_BIOFILL_RUN
1307 */
1308 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309 struct bio *rbi, *rbi2;
1310
1311 BUG_ON(!dev->read);
1312 rbi = dev->read;
1313 dev->read = NULL;
1314 while (rbi && rbi->bi_iter.bi_sector <
1315 dev->sector + STRIPE_SECTORS) {
1316 rbi2 = r5_next_bio(rbi, dev->sector);
1317 bio_endio(rbi);
1318 rbi = rbi2;
1319 }
1320 }
1321 }
1322 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1323
1324 set_bit(STRIPE_HANDLE, &sh->state);
1325 raid5_release_stripe(sh);
1326}
1327
1328static void ops_run_biofill(struct stripe_head *sh)
1329{
1330 struct dma_async_tx_descriptor *tx = NULL;
1331 struct async_submit_ctl submit;
1332 int i;
1333
1334 BUG_ON(sh->batch_head);
1335 pr_debug("%s: stripe %llu\n", __func__,
1336 (unsigned long long)sh->sector);
1337
1338 for (i = sh->disks; i--; ) {
1339 struct r5dev *dev = &sh->dev[i];
1340 if (test_bit(R5_Wantfill, &dev->flags)) {
1341 struct bio *rbi;
1342 spin_lock_irq(&sh->stripe_lock);
1343 dev->read = rbi = dev->toread;
1344 dev->toread = NULL;
1345 spin_unlock_irq(&sh->stripe_lock);
1346 while (rbi && rbi->bi_iter.bi_sector <
1347 dev->sector + STRIPE_SECTORS) {
1348 tx = async_copy_data(0, rbi, &dev->page,
1349 dev->sector, tx, sh, 0);
1350 rbi = r5_next_bio(rbi, dev->sector);
1351 }
1352 }
1353 }
1354
1355 atomic_inc(&sh->count);
1356 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357 async_trigger_callback(&submit);
1358}
1359
1360static void mark_target_uptodate(struct stripe_head *sh, int target)
1361{
1362 struct r5dev *tgt;
1363
1364 if (target < 0)
1365 return;
1366
1367 tgt = &sh->dev[target];
1368 set_bit(R5_UPTODATE, &tgt->flags);
1369 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370 clear_bit(R5_Wantcompute, &tgt->flags);
1371}
1372
1373static void ops_complete_compute(void *stripe_head_ref)
1374{
1375 struct stripe_head *sh = stripe_head_ref;
1376
1377 pr_debug("%s: stripe %llu\n", __func__,
1378 (unsigned long long)sh->sector);
1379
1380 /* mark the computed target(s) as uptodate */
1381 mark_target_uptodate(sh, sh->ops.target);
1382 mark_target_uptodate(sh, sh->ops.target2);
1383
1384 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385 if (sh->check_state == check_state_compute_run)
1386 sh->check_state = check_state_compute_result;
1387 set_bit(STRIPE_HANDLE, &sh->state);
1388 raid5_release_stripe(sh);
1389}
1390
1391/* return a pointer to the address conversion region of the scribble buffer */
1392static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1393{
1394 return percpu->scribble + i * percpu->scribble_obj_size;
1395}
1396
1397/* return a pointer to the address conversion region of the scribble buffer */
1398static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399 struct raid5_percpu *percpu, int i)
1400{
1401 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1402}
1403
1404static struct dma_async_tx_descriptor *
1405ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1406{
1407 int disks = sh->disks;
1408 struct page **xor_srcs = to_addr_page(percpu, 0);
1409 int target = sh->ops.target;
1410 struct r5dev *tgt = &sh->dev[target];
1411 struct page *xor_dest = tgt->page;
1412 int count = 0;
1413 struct dma_async_tx_descriptor *tx;
1414 struct async_submit_ctl submit;
1415 int i;
1416
1417 BUG_ON(sh->batch_head);
1418
1419 pr_debug("%s: stripe %llu block: %d\n",
1420 __func__, (unsigned long long)sh->sector, target);
1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422
1423 for (i = disks; i--; )
1424 if (i != target)
1425 xor_srcs[count++] = sh->dev[i].page;
1426
1427 atomic_inc(&sh->count);
1428
1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431 if (unlikely(count == 1))
1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433 else
1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1435
1436 return tx;
1437}
1438
1439/* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1442 *
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1447 */
1448static int set_syndrome_sources(struct page **srcs,
1449 struct stripe_head *sh,
1450 int srctype)
1451{
1452 int disks = sh->disks;
1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 int d0_idx = raid6_d0(sh);
1455 int count;
1456 int i;
1457
1458 for (i = 0; i < disks; i++)
1459 srcs[i] = NULL;
1460
1461 count = 0;
1462 i = d0_idx;
1463 do {
1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465 struct r5dev *dev = &sh->dev[i];
1466
1467 if (i == sh->qd_idx || i == sh->pd_idx ||
1468 (srctype == SYNDROME_SRC_ALL) ||
1469 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470 (test_bit(R5_Wantdrain, &dev->flags) ||
1471 test_bit(R5_InJournal, &dev->flags))) ||
1472 (srctype == SYNDROME_SRC_WRITTEN &&
1473 (dev->written ||
1474 test_bit(R5_InJournal, &dev->flags)))) {
1475 if (test_bit(R5_InJournal, &dev->flags))
1476 srcs[slot] = sh->dev[i].orig_page;
1477 else
1478 srcs[slot] = sh->dev[i].page;
1479 }
1480 i = raid6_next_disk(i, disks);
1481 } while (i != d0_idx);
1482
1483 return syndrome_disks;
1484}
1485
1486static struct dma_async_tx_descriptor *
1487ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488{
1489 int disks = sh->disks;
1490 struct page **blocks = to_addr_page(percpu, 0);
1491 int target;
1492 int qd_idx = sh->qd_idx;
1493 struct dma_async_tx_descriptor *tx;
1494 struct async_submit_ctl submit;
1495 struct r5dev *tgt;
1496 struct page *dest;
1497 int i;
1498 int count;
1499
1500 BUG_ON(sh->batch_head);
1501 if (sh->ops.target < 0)
1502 target = sh->ops.target2;
1503 else if (sh->ops.target2 < 0)
1504 target = sh->ops.target;
1505 else
1506 /* we should only have one valid target */
1507 BUG();
1508 BUG_ON(target < 0);
1509 pr_debug("%s: stripe %llu block: %d\n",
1510 __func__, (unsigned long long)sh->sector, target);
1511
1512 tgt = &sh->dev[target];
1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514 dest = tgt->page;
1515
1516 atomic_inc(&sh->count);
1517
1518 if (target == qd_idx) {
1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 blocks[count] = NULL; /* regenerating p is not necessary */
1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 ops_complete_compute, sh,
1524 to_addr_conv(sh, percpu, 0));
1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526 } else {
1527 /* Compute any data- or p-drive using XOR */
1528 count = 0;
1529 for (i = disks; i-- ; ) {
1530 if (i == target || i == qd_idx)
1531 continue;
1532 blocks[count++] = sh->dev[i].page;
1533 }
1534
1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 NULL, ops_complete_compute, sh,
1537 to_addr_conv(sh, percpu, 0));
1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539 }
1540
1541 return tx;
1542}
1543
1544static struct dma_async_tx_descriptor *
1545ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546{
1547 int i, count, disks = sh->disks;
1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 int d0_idx = raid6_d0(sh);
1550 int faila = -1, failb = -1;
1551 int target = sh->ops.target;
1552 int target2 = sh->ops.target2;
1553 struct r5dev *tgt = &sh->dev[target];
1554 struct r5dev *tgt2 = &sh->dev[target2];
1555 struct dma_async_tx_descriptor *tx;
1556 struct page **blocks = to_addr_page(percpu, 0);
1557 struct async_submit_ctl submit;
1558
1559 BUG_ON(sh->batch_head);
1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 __func__, (unsigned long long)sh->sector, target, target2);
1562 BUG_ON(target < 0 || target2 < 0);
1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565
1566 /* we need to open-code set_syndrome_sources to handle the
1567 * slot number conversion for 'faila' and 'failb'
1568 */
1569 for (i = 0; i < disks ; i++)
1570 blocks[i] = NULL;
1571 count = 0;
1572 i = d0_idx;
1573 do {
1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575
1576 blocks[slot] = sh->dev[i].page;
1577
1578 if (i == target)
1579 faila = slot;
1580 if (i == target2)
1581 failb = slot;
1582 i = raid6_next_disk(i, disks);
1583 } while (i != d0_idx);
1584
1585 BUG_ON(faila == failb);
1586 if (failb < faila)
1587 swap(faila, failb);
1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 __func__, (unsigned long long)sh->sector, faila, failb);
1590
1591 atomic_inc(&sh->count);
1592
1593 if (failb == syndrome_disks+1) {
1594 /* Q disk is one of the missing disks */
1595 if (faila == syndrome_disks) {
1596 /* Missing P+Q, just recompute */
1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 ops_complete_compute, sh,
1599 to_addr_conv(sh, percpu, 0));
1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601 STRIPE_SIZE, &submit);
1602 } else {
1603 struct page *dest;
1604 int data_target;
1605 int qd_idx = sh->qd_idx;
1606
1607 /* Missing D+Q: recompute D from P, then recompute Q */
1608 if (target == qd_idx)
1609 data_target = target2;
1610 else
1611 data_target = target;
1612
1613 count = 0;
1614 for (i = disks; i-- ; ) {
1615 if (i == data_target || i == qd_idx)
1616 continue;
1617 blocks[count++] = sh->dev[i].page;
1618 }
1619 dest = sh->dev[data_target].page;
1620 init_async_submit(&submit,
1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622 NULL, NULL, NULL,
1623 to_addr_conv(sh, percpu, 0));
1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625 &submit);
1626
1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 ops_complete_compute, sh,
1630 to_addr_conv(sh, percpu, 0));
1631 return async_gen_syndrome(blocks, 0, count+2,
1632 STRIPE_SIZE, &submit);
1633 }
1634 } else {
1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 ops_complete_compute, sh,
1637 to_addr_conv(sh, percpu, 0));
1638 if (failb == syndrome_disks) {
1639 /* We're missing D+P. */
1640 return async_raid6_datap_recov(syndrome_disks+2,
1641 STRIPE_SIZE, faila,
1642 blocks, &submit);
1643 } else {
1644 /* We're missing D+D. */
1645 return async_raid6_2data_recov(syndrome_disks+2,
1646 STRIPE_SIZE, faila, failb,
1647 blocks, &submit);
1648 }
1649 }
1650}
1651
1652static void ops_complete_prexor(void *stripe_head_ref)
1653{
1654 struct stripe_head *sh = stripe_head_ref;
1655
1656 pr_debug("%s: stripe %llu\n", __func__,
1657 (unsigned long long)sh->sector);
1658
1659 if (r5c_is_writeback(sh->raid_conf->log))
1660 /*
1661 * raid5-cache write back uses orig_page during prexor.
1662 * After prexor, it is time to free orig_page
1663 */
1664 r5c_release_extra_page(sh);
1665}
1666
1667static struct dma_async_tx_descriptor *
1668ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 struct dma_async_tx_descriptor *tx)
1670{
1671 int disks = sh->disks;
1672 struct page **xor_srcs = to_addr_page(percpu, 0);
1673 int count = 0, pd_idx = sh->pd_idx, i;
1674 struct async_submit_ctl submit;
1675
1676 /* existing parity data subtracted */
1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678
1679 BUG_ON(sh->batch_head);
1680 pr_debug("%s: stripe %llu\n", __func__,
1681 (unsigned long long)sh->sector);
1682
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685 /* Only process blocks that are known to be uptodate */
1686 if (test_bit(R5_InJournal, &dev->flags))
1687 xor_srcs[count++] = dev->orig_page;
1688 else if (test_bit(R5_Wantdrain, &dev->flags))
1689 xor_srcs[count++] = dev->page;
1690 }
1691
1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1695
1696 return tx;
1697}
1698
1699static struct dma_async_tx_descriptor *
1700ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 struct dma_async_tx_descriptor *tx)
1702{
1703 struct page **blocks = to_addr_page(percpu, 0);
1704 int count;
1705 struct async_submit_ctl submit;
1706
1707 pr_debug("%s: stripe %llu\n", __func__,
1708 (unsigned long long)sh->sector);
1709
1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711
1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1715
1716 return tx;
1717}
1718
1719static struct dma_async_tx_descriptor *
1720ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1721{
1722 struct r5conf *conf = sh->raid_conf;
1723 int disks = sh->disks;
1724 int i;
1725 struct stripe_head *head_sh = sh;
1726
1727 pr_debug("%s: stripe %llu\n", __func__,
1728 (unsigned long long)sh->sector);
1729
1730 for (i = disks; i--; ) {
1731 struct r5dev *dev;
1732 struct bio *chosen;
1733
1734 sh = head_sh;
1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736 struct bio *wbi;
1737
1738again:
1739 dev = &sh->dev[i];
1740 /*
1741 * clear R5_InJournal, so when rewriting a page in
1742 * journal, it is not skipped by r5l_log_stripe()
1743 */
1744 clear_bit(R5_InJournal, &dev->flags);
1745 spin_lock_irq(&sh->stripe_lock);
1746 chosen = dev->towrite;
1747 dev->towrite = NULL;
1748 sh->overwrite_disks = 0;
1749 BUG_ON(dev->written);
1750 wbi = dev->written = chosen;
1751 spin_unlock_irq(&sh->stripe_lock);
1752 WARN_ON(dev->page != dev->orig_page);
1753
1754 while (wbi && wbi->bi_iter.bi_sector <
1755 dev->sector + STRIPE_SECTORS) {
1756 if (wbi->bi_opf & REQ_FUA)
1757 set_bit(R5_WantFUA, &dev->flags);
1758 if (wbi->bi_opf & REQ_SYNC)
1759 set_bit(R5_SyncIO, &dev->flags);
1760 if (bio_op(wbi) == REQ_OP_DISCARD)
1761 set_bit(R5_Discard, &dev->flags);
1762 else {
1763 tx = async_copy_data(1, wbi, &dev->page,
1764 dev->sector, tx, sh,
1765 r5c_is_writeback(conf->log));
1766 if (dev->page != dev->orig_page &&
1767 !r5c_is_writeback(conf->log)) {
1768 set_bit(R5_SkipCopy, &dev->flags);
1769 clear_bit(R5_UPTODATE, &dev->flags);
1770 clear_bit(R5_OVERWRITE, &dev->flags);
1771 }
1772 }
1773 wbi = r5_next_bio(wbi, dev->sector);
1774 }
1775
1776 if (head_sh->batch_head) {
1777 sh = list_first_entry(&sh->batch_list,
1778 struct stripe_head,
1779 batch_list);
1780 if (sh == head_sh)
1781 continue;
1782 goto again;
1783 }
1784 }
1785 }
1786
1787 return tx;
1788}
1789
1790static void ops_complete_reconstruct(void *stripe_head_ref)
1791{
1792 struct stripe_head *sh = stripe_head_ref;
1793 int disks = sh->disks;
1794 int pd_idx = sh->pd_idx;
1795 int qd_idx = sh->qd_idx;
1796 int i;
1797 bool fua = false, sync = false, discard = false;
1798
1799 pr_debug("%s: stripe %llu\n", __func__,
1800 (unsigned long long)sh->sector);
1801
1802 for (i = disks; i--; ) {
1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1806 }
1807
1808 for (i = disks; i--; ) {
1809 struct r5dev *dev = &sh->dev[i];
1810
1811 if (dev->written || i == pd_idx || i == qd_idx) {
1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813 set_bit(R5_UPTODATE, &dev->flags);
1814 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815 set_bit(R5_Expanded, &dev->flags);
1816 }
1817 if (fua)
1818 set_bit(R5_WantFUA, &dev->flags);
1819 if (sync)
1820 set_bit(R5_SyncIO, &dev->flags);
1821 }
1822 }
1823
1824 if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 sh->reconstruct_state = reconstruct_state_drain_result;
1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 else {
1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 sh->reconstruct_state = reconstruct_state_result;
1831 }
1832
1833 set_bit(STRIPE_HANDLE, &sh->state);
1834 raid5_release_stripe(sh);
1835}
1836
1837static void
1838ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 struct dma_async_tx_descriptor *tx)
1840{
1841 int disks = sh->disks;
1842 struct page **xor_srcs;
1843 struct async_submit_ctl submit;
1844 int count, pd_idx = sh->pd_idx, i;
1845 struct page *xor_dest;
1846 int prexor = 0;
1847 unsigned long flags;
1848 int j = 0;
1849 struct stripe_head *head_sh = sh;
1850 int last_stripe;
1851
1852 pr_debug("%s: stripe %llu\n", __func__,
1853 (unsigned long long)sh->sector);
1854
1855 for (i = 0; i < sh->disks; i++) {
1856 if (pd_idx == i)
1857 continue;
1858 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 break;
1860 }
1861 if (i >= sh->disks) {
1862 atomic_inc(&sh->count);
1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 ops_complete_reconstruct(sh);
1865 return;
1866 }
1867again:
1868 count = 0;
1869 xor_srcs = to_addr_page(percpu, j);
1870 /* check if prexor is active which means only process blocks
1871 * that are part of a read-modify-write (written)
1872 */
1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 prexor = 1;
1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 for (i = disks; i--; ) {
1877 struct r5dev *dev = &sh->dev[i];
1878 if (head_sh->dev[i].written ||
1879 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 xor_srcs[count++] = dev->page;
1881 }
1882 } else {
1883 xor_dest = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1886 if (i != pd_idx)
1887 xor_srcs[count++] = dev->page;
1888 }
1889 }
1890
1891 /* 1/ if we prexor'd then the dest is reused as a source
1892 * 2/ if we did not prexor then we are redoing the parity
1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 * for the synchronous xor case
1895 */
1896 last_stripe = !head_sh->batch_head ||
1897 list_first_entry(&sh->batch_list,
1898 struct stripe_head, batch_list) == head_sh;
1899 if (last_stripe) {
1900 flags = ASYNC_TX_ACK |
1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902
1903 atomic_inc(&head_sh->count);
1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 to_addr_conv(sh, percpu, j));
1906 } else {
1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 init_async_submit(&submit, flags, tx, NULL, NULL,
1909 to_addr_conv(sh, percpu, j));
1910 }
1911
1912 if (unlikely(count == 1))
1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 else
1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 if (!last_stripe) {
1917 j++;
1918 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 batch_list);
1920 goto again;
1921 }
1922}
1923
1924static void
1925ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 struct dma_async_tx_descriptor *tx)
1927{
1928 struct async_submit_ctl submit;
1929 struct page **blocks;
1930 int count, i, j = 0;
1931 struct stripe_head *head_sh = sh;
1932 int last_stripe;
1933 int synflags;
1934 unsigned long txflags;
1935
1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937
1938 for (i = 0; i < sh->disks; i++) {
1939 if (sh->pd_idx == i || sh->qd_idx == i)
1940 continue;
1941 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 break;
1943 }
1944 if (i >= sh->disks) {
1945 atomic_inc(&sh->count);
1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 ops_complete_reconstruct(sh);
1949 return;
1950 }
1951
1952again:
1953 blocks = to_addr_page(percpu, j);
1954
1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 synflags = SYNDROME_SRC_WRITTEN;
1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 } else {
1959 synflags = SYNDROME_SRC_ALL;
1960 txflags = ASYNC_TX_ACK;
1961 }
1962
1963 count = set_syndrome_sources(blocks, sh, synflags);
1964 last_stripe = !head_sh->batch_head ||
1965 list_first_entry(&sh->batch_list,
1966 struct stripe_head, batch_list) == head_sh;
1967
1968 if (last_stripe) {
1969 atomic_inc(&head_sh->count);
1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 head_sh, to_addr_conv(sh, percpu, j));
1972 } else
1973 init_async_submit(&submit, 0, tx, NULL, NULL,
1974 to_addr_conv(sh, percpu, j));
1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1976 if (!last_stripe) {
1977 j++;
1978 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 batch_list);
1980 goto again;
1981 }
1982}
1983
1984static void ops_complete_check(void *stripe_head_ref)
1985{
1986 struct stripe_head *sh = stripe_head_ref;
1987
1988 pr_debug("%s: stripe %llu\n", __func__,
1989 (unsigned long long)sh->sector);
1990
1991 sh->check_state = check_state_check_result;
1992 set_bit(STRIPE_HANDLE, &sh->state);
1993 raid5_release_stripe(sh);
1994}
1995
1996static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997{
1998 int disks = sh->disks;
1999 int pd_idx = sh->pd_idx;
2000 int qd_idx = sh->qd_idx;
2001 struct page *xor_dest;
2002 struct page **xor_srcs = to_addr_page(percpu, 0);
2003 struct dma_async_tx_descriptor *tx;
2004 struct async_submit_ctl submit;
2005 int count;
2006 int i;
2007
2008 pr_debug("%s: stripe %llu\n", __func__,
2009 (unsigned long long)sh->sector);
2010
2011 BUG_ON(sh->batch_head);
2012 count = 0;
2013 xor_dest = sh->dev[pd_idx].page;
2014 xor_srcs[count++] = xor_dest;
2015 for (i = disks; i--; ) {
2016 if (i == pd_idx || i == qd_idx)
2017 continue;
2018 xor_srcs[count++] = sh->dev[i].page;
2019 }
2020
2021 init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 to_addr_conv(sh, percpu, 0));
2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 &sh->ops.zero_sum_result, &submit);
2025
2026 atomic_inc(&sh->count);
2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 tx = async_trigger_callback(&submit);
2029}
2030
2031static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032{
2033 struct page **srcs = to_addr_page(percpu, 0);
2034 struct async_submit_ctl submit;
2035 int count;
2036
2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 (unsigned long long)sh->sector, checkp);
2039
2040 BUG_ON(sh->batch_head);
2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 if (!checkp)
2043 srcs[count] = NULL;
2044
2045 atomic_inc(&sh->count);
2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 sh, to_addr_conv(sh, percpu, 0));
2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050}
2051
2052static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053{
2054 int overlap_clear = 0, i, disks = sh->disks;
2055 struct dma_async_tx_descriptor *tx = NULL;
2056 struct r5conf *conf = sh->raid_conf;
2057 int level = conf->level;
2058 struct raid5_percpu *percpu;
2059 unsigned long cpu;
2060
2061 cpu = get_cpu();
2062 percpu = per_cpu_ptr(conf->percpu, cpu);
2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 ops_run_biofill(sh);
2065 overlap_clear++;
2066 }
2067
2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 if (level < 6)
2070 tx = ops_run_compute5(sh, percpu);
2071 else {
2072 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 tx = ops_run_compute6_1(sh, percpu);
2074 else
2075 tx = ops_run_compute6_2(sh, percpu);
2076 }
2077 /* terminate the chain if reconstruct is not set to be run */
2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 async_tx_ack(tx);
2080 }
2081
2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 if (level < 6)
2084 tx = ops_run_prexor5(sh, percpu, tx);
2085 else
2086 tx = ops_run_prexor6(sh, percpu, tx);
2087 }
2088
2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 tx = ops_run_partial_parity(sh, percpu, tx);
2091
2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 tx = ops_run_biodrain(sh, tx);
2094 overlap_clear++;
2095 }
2096
2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 if (level < 6)
2099 ops_run_reconstruct5(sh, percpu, tx);
2100 else
2101 ops_run_reconstruct6(sh, percpu, tx);
2102 }
2103
2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 if (sh->check_state == check_state_run)
2106 ops_run_check_p(sh, percpu);
2107 else if (sh->check_state == check_state_run_q)
2108 ops_run_check_pq(sh, percpu, 0);
2109 else if (sh->check_state == check_state_run_pq)
2110 ops_run_check_pq(sh, percpu, 1);
2111 else
2112 BUG();
2113 }
2114
2115 if (overlap_clear && !sh->batch_head)
2116 for (i = disks; i--; ) {
2117 struct r5dev *dev = &sh->dev[i];
2118 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 wake_up(&sh->raid_conf->wait_for_overlap);
2120 }
2121 put_cpu();
2122}
2123
2124static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125{
2126 if (sh->ppl_page)
2127 __free_page(sh->ppl_page);
2128 kmem_cache_free(sc, sh);
2129}
2130
2131static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 int disks, struct r5conf *conf)
2133{
2134 struct stripe_head *sh;
2135 int i;
2136
2137 sh = kmem_cache_zalloc(sc, gfp);
2138 if (sh) {
2139 spin_lock_init(&sh->stripe_lock);
2140 spin_lock_init(&sh->batch_lock);
2141 INIT_LIST_HEAD(&sh->batch_list);
2142 INIT_LIST_HEAD(&sh->lru);
2143 INIT_LIST_HEAD(&sh->r5c);
2144 INIT_LIST_HEAD(&sh->log_list);
2145 atomic_set(&sh->count, 1);
2146 sh->raid_conf = conf;
2147 sh->log_start = MaxSector;
2148 for (i = 0; i < disks; i++) {
2149 struct r5dev *dev = &sh->dev[i];
2150
2151 bio_init(&dev->req, &dev->vec, 1);
2152 bio_init(&dev->rreq, &dev->rvec, 1);
2153 }
2154
2155 if (raid5_has_ppl(conf)) {
2156 sh->ppl_page = alloc_page(gfp);
2157 if (!sh->ppl_page) {
2158 free_stripe(sc, sh);
2159 sh = NULL;
2160 }
2161 }
2162 }
2163 return sh;
2164}
2165static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166{
2167 struct stripe_head *sh;
2168
2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 if (!sh)
2171 return 0;
2172
2173 if (grow_buffers(sh, gfp)) {
2174 shrink_buffers(sh);
2175 free_stripe(conf->slab_cache, sh);
2176 return 0;
2177 }
2178 sh->hash_lock_index =
2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 /* we just created an active stripe so... */
2181 atomic_inc(&conf->active_stripes);
2182
2183 raid5_release_stripe(sh);
2184 conf->max_nr_stripes++;
2185 return 1;
2186}
2187
2188static int grow_stripes(struct r5conf *conf, int num)
2189{
2190 struct kmem_cache *sc;
2191 size_t namelen = sizeof(conf->cache_name[0]);
2192 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193
2194 if (conf->mddev->gendisk)
2195 snprintf(conf->cache_name[0], namelen,
2196 "raid%d-%s", conf->level, mdname(conf->mddev));
2197 else
2198 snprintf(conf->cache_name[0], namelen,
2199 "raid%d-%p", conf->level, conf->mddev);
2200 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2201
2202 conf->active_name = 0;
2203 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 0, 0, NULL);
2206 if (!sc)
2207 return 1;
2208 conf->slab_cache = sc;
2209 conf->pool_size = devs;
2210 while (num--)
2211 if (!grow_one_stripe(conf, GFP_KERNEL))
2212 return 1;
2213
2214 return 0;
2215}
2216
2217/**
2218 * scribble_len - return the required size of the scribble region
2219 * @num - total number of disks in the array
2220 *
2221 * The size must be enough to contain:
2222 * 1/ a struct page pointer for each device in the array +2
2223 * 2/ room to convert each entry in (1) to its corresponding dma
2224 * (dma_map_page()) or page (page_address()) address.
2225 *
2226 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227 * calculate over all devices (not just the data blocks), using zeros in place
2228 * of the P and Q blocks.
2229 */
2230static int scribble_alloc(struct raid5_percpu *percpu,
2231 int num, int cnt)
2232{
2233 size_t obj_size =
2234 sizeof(struct page *) * (num+2) +
2235 sizeof(addr_conv_t) * (num+2);
2236 void *scribble;
2237
2238 /*
2239 * If here is in raid array suspend context, it is in memalloc noio
2240 * context as well, there is no potential recursive memory reclaim
2241 * I/Os with the GFP_KERNEL flag.
2242 */
2243 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2244 if (!scribble)
2245 return -ENOMEM;
2246
2247 kvfree(percpu->scribble);
2248
2249 percpu->scribble = scribble;
2250 percpu->scribble_obj_size = obj_size;
2251 return 0;
2252}
2253
2254static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2255{
2256 unsigned long cpu;
2257 int err = 0;
2258
2259 /*
2260 * Never shrink. And mddev_suspend() could deadlock if this is called
2261 * from raid5d. In that case, scribble_disks and scribble_sectors
2262 * should equal to new_disks and new_sectors
2263 */
2264 if (conf->scribble_disks >= new_disks &&
2265 conf->scribble_sectors >= new_sectors)
2266 return 0;
2267 mddev_suspend(conf->mddev);
2268 get_online_cpus();
2269
2270 for_each_present_cpu(cpu) {
2271 struct raid5_percpu *percpu;
2272
2273 percpu = per_cpu_ptr(conf->percpu, cpu);
2274 err = scribble_alloc(percpu, new_disks,
2275 new_sectors / STRIPE_SECTORS);
2276 if (err)
2277 break;
2278 }
2279
2280 put_online_cpus();
2281 mddev_resume(conf->mddev);
2282 if (!err) {
2283 conf->scribble_disks = new_disks;
2284 conf->scribble_sectors = new_sectors;
2285 }
2286 return err;
2287}
2288
2289static int resize_stripes(struct r5conf *conf, int newsize)
2290{
2291 /* Make all the stripes able to hold 'newsize' devices.
2292 * New slots in each stripe get 'page' set to a new page.
2293 *
2294 * This happens in stages:
2295 * 1/ create a new kmem_cache and allocate the required number of
2296 * stripe_heads.
2297 * 2/ gather all the old stripe_heads and transfer the pages across
2298 * to the new stripe_heads. This will have the side effect of
2299 * freezing the array as once all stripe_heads have been collected,
2300 * no IO will be possible. Old stripe heads are freed once their
2301 * pages have been transferred over, and the old kmem_cache is
2302 * freed when all stripes are done.
2303 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2304 * we simple return a failure status - no need to clean anything up.
2305 * 4/ allocate new pages for the new slots in the new stripe_heads.
2306 * If this fails, we don't bother trying the shrink the
2307 * stripe_heads down again, we just leave them as they are.
2308 * As each stripe_head is processed the new one is released into
2309 * active service.
2310 *
2311 * Once step2 is started, we cannot afford to wait for a write,
2312 * so we use GFP_NOIO allocations.
2313 */
2314 struct stripe_head *osh, *nsh;
2315 LIST_HEAD(newstripes);
2316 struct disk_info *ndisks;
2317 int err = 0;
2318 struct kmem_cache *sc;
2319 int i;
2320 int hash, cnt;
2321
2322 md_allow_write(conf->mddev);
2323
2324 /* Step 1 */
2325 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2326 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2327 0, 0, NULL);
2328 if (!sc)
2329 return -ENOMEM;
2330
2331 /* Need to ensure auto-resizing doesn't interfere */
2332 mutex_lock(&conf->cache_size_mutex);
2333
2334 for (i = conf->max_nr_stripes; i; i--) {
2335 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2336 if (!nsh)
2337 break;
2338
2339 list_add(&nsh->lru, &newstripes);
2340 }
2341 if (i) {
2342 /* didn't get enough, give up */
2343 while (!list_empty(&newstripes)) {
2344 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2345 list_del(&nsh->lru);
2346 free_stripe(sc, nsh);
2347 }
2348 kmem_cache_destroy(sc);
2349 mutex_unlock(&conf->cache_size_mutex);
2350 return -ENOMEM;
2351 }
2352 /* Step 2 - Must use GFP_NOIO now.
2353 * OK, we have enough stripes, start collecting inactive
2354 * stripes and copying them over
2355 */
2356 hash = 0;
2357 cnt = 0;
2358 list_for_each_entry(nsh, &newstripes, lru) {
2359 lock_device_hash_lock(conf, hash);
2360 wait_event_cmd(conf->wait_for_stripe,
2361 !list_empty(conf->inactive_list + hash),
2362 unlock_device_hash_lock(conf, hash),
2363 lock_device_hash_lock(conf, hash));
2364 osh = get_free_stripe(conf, hash);
2365 unlock_device_hash_lock(conf, hash);
2366
2367 for(i=0; i<conf->pool_size; i++) {
2368 nsh->dev[i].page = osh->dev[i].page;
2369 nsh->dev[i].orig_page = osh->dev[i].page;
2370 }
2371 nsh->hash_lock_index = hash;
2372 free_stripe(conf->slab_cache, osh);
2373 cnt++;
2374 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2375 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2376 hash++;
2377 cnt = 0;
2378 }
2379 }
2380 kmem_cache_destroy(conf->slab_cache);
2381
2382 /* Step 3.
2383 * At this point, we are holding all the stripes so the array
2384 * is completely stalled, so now is a good time to resize
2385 * conf->disks and the scribble region
2386 */
2387 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2388 if (ndisks) {
2389 for (i = 0; i < conf->pool_size; i++)
2390 ndisks[i] = conf->disks[i];
2391
2392 for (i = conf->pool_size; i < newsize; i++) {
2393 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2394 if (!ndisks[i].extra_page)
2395 err = -ENOMEM;
2396 }
2397
2398 if (err) {
2399 for (i = conf->pool_size; i < newsize; i++)
2400 if (ndisks[i].extra_page)
2401 put_page(ndisks[i].extra_page);
2402 kfree(ndisks);
2403 } else {
2404 kfree(conf->disks);
2405 conf->disks = ndisks;
2406 }
2407 } else
2408 err = -ENOMEM;
2409
2410 conf->slab_cache = sc;
2411 conf->active_name = 1-conf->active_name;
2412
2413 /* Step 4, return new stripes to service */
2414 while(!list_empty(&newstripes)) {
2415 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2416 list_del_init(&nsh->lru);
2417
2418 for (i=conf->raid_disks; i < newsize; i++)
2419 if (nsh->dev[i].page == NULL) {
2420 struct page *p = alloc_page(GFP_NOIO);
2421 nsh->dev[i].page = p;
2422 nsh->dev[i].orig_page = p;
2423 if (!p)
2424 err = -ENOMEM;
2425 }
2426 raid5_release_stripe(nsh);
2427 }
2428 /* critical section pass, GFP_NOIO no longer needed */
2429
2430 if (!err)
2431 conf->pool_size = newsize;
2432 mutex_unlock(&conf->cache_size_mutex);
2433
2434 return err;
2435}
2436
2437static int drop_one_stripe(struct r5conf *conf)
2438{
2439 struct stripe_head *sh;
2440 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2441
2442 spin_lock_irq(conf->hash_locks + hash);
2443 sh = get_free_stripe(conf, hash);
2444 spin_unlock_irq(conf->hash_locks + hash);
2445 if (!sh)
2446 return 0;
2447 BUG_ON(atomic_read(&sh->count));
2448 shrink_buffers(sh);
2449 free_stripe(conf->slab_cache, sh);
2450 atomic_dec(&conf->active_stripes);
2451 conf->max_nr_stripes--;
2452 return 1;
2453}
2454
2455static void shrink_stripes(struct r5conf *conf)
2456{
2457 while (conf->max_nr_stripes &&
2458 drop_one_stripe(conf))
2459 ;
2460
2461 kmem_cache_destroy(conf->slab_cache);
2462 conf->slab_cache = NULL;
2463}
2464
2465static void raid5_end_read_request(struct bio * bi)
2466{
2467 struct stripe_head *sh = bi->bi_private;
2468 struct r5conf *conf = sh->raid_conf;
2469 int disks = sh->disks, i;
2470 char b[BDEVNAME_SIZE];
2471 struct md_rdev *rdev = NULL;
2472 sector_t s;
2473
2474 for (i=0 ; i<disks; i++)
2475 if (bi == &sh->dev[i].req)
2476 break;
2477
2478 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2479 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2480 bi->bi_status);
2481 if (i == disks) {
2482 bio_reset(bi);
2483 BUG();
2484 return;
2485 }
2486 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2487 /* If replacement finished while this request was outstanding,
2488 * 'replacement' might be NULL already.
2489 * In that case it moved down to 'rdev'.
2490 * rdev is not removed until all requests are finished.
2491 */
2492 rdev = conf->disks[i].replacement;
2493 if (!rdev)
2494 rdev = conf->disks[i].rdev;
2495
2496 if (use_new_offset(conf, sh))
2497 s = sh->sector + rdev->new_data_offset;
2498 else
2499 s = sh->sector + rdev->data_offset;
2500 if (!bi->bi_status) {
2501 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2502 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2503 /* Note that this cannot happen on a
2504 * replacement device. We just fail those on
2505 * any error
2506 */
2507 pr_info_ratelimited(
2508 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2509 mdname(conf->mddev), STRIPE_SECTORS,
2510 (unsigned long long)s,
2511 bdevname(rdev->bdev, b));
2512 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2513 clear_bit(R5_ReadError, &sh->dev[i].flags);
2514 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2515 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2516 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2517
2518 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2519 /*
2520 * end read for a page in journal, this
2521 * must be preparing for prexor in rmw
2522 */
2523 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2524
2525 if (atomic_read(&rdev->read_errors))
2526 atomic_set(&rdev->read_errors, 0);
2527 } else {
2528 const char *bdn = bdevname(rdev->bdev, b);
2529 int retry = 0;
2530 int set_bad = 0;
2531
2532 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2533 if (!(bi->bi_status == BLK_STS_PROTECTION))
2534 atomic_inc(&rdev->read_errors);
2535 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2536 pr_warn_ratelimited(
2537 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2538 mdname(conf->mddev),
2539 (unsigned long long)s,
2540 bdn);
2541 else if (conf->mddev->degraded >= conf->max_degraded) {
2542 set_bad = 1;
2543 pr_warn_ratelimited(
2544 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2545 mdname(conf->mddev),
2546 (unsigned long long)s,
2547 bdn);
2548 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2549 /* Oh, no!!! */
2550 set_bad = 1;
2551 pr_warn_ratelimited(
2552 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2553 mdname(conf->mddev),
2554 (unsigned long long)s,
2555 bdn);
2556 } else if (atomic_read(&rdev->read_errors)
2557 > conf->max_nr_stripes) {
2558 if (!test_bit(Faulty, &rdev->flags)) {
2559 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2560 mdname(conf->mddev),
2561 atomic_read(&rdev->read_errors),
2562 conf->max_nr_stripes);
2563 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2564 mdname(conf->mddev), bdn);
2565 }
2566 } else
2567 retry = 1;
2568 if (set_bad && test_bit(In_sync, &rdev->flags)
2569 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2570 retry = 1;
2571 if (retry)
2572 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2573 set_bit(R5_ReadError, &sh->dev[i].flags);
2574 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2575 set_bit(R5_ReadError, &sh->dev[i].flags);
2576 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2577 } else
2578 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2579 else {
2580 clear_bit(R5_ReadError, &sh->dev[i].flags);
2581 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2582 if (!(set_bad
2583 && test_bit(In_sync, &rdev->flags)
2584 && rdev_set_badblocks(
2585 rdev, sh->sector, STRIPE_SECTORS, 0)))
2586 md_error(conf->mddev, rdev);
2587 }
2588 }
2589 rdev_dec_pending(rdev, conf->mddev);
2590 bio_reset(bi);
2591 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 raid5_release_stripe(sh);
2594}
2595
2596static void raid5_end_write_request(struct bio *bi)
2597{
2598 struct stripe_head *sh = bi->bi_private;
2599 struct r5conf *conf = sh->raid_conf;
2600 int disks = sh->disks, i;
2601 struct md_rdev *rdev;
2602 sector_t first_bad;
2603 int bad_sectors;
2604 int replacement = 0;
2605
2606 for (i = 0 ; i < disks; i++) {
2607 if (bi == &sh->dev[i].req) {
2608 rdev = conf->disks[i].rdev;
2609 break;
2610 }
2611 if (bi == &sh->dev[i].rreq) {
2612 rdev = conf->disks[i].replacement;
2613 if (rdev)
2614 replacement = 1;
2615 else
2616 /* rdev was removed and 'replacement'
2617 * replaced it. rdev is not removed
2618 * until all requests are finished.
2619 */
2620 rdev = conf->disks[i].rdev;
2621 break;
2622 }
2623 }
2624 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2625 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2626 bi->bi_status);
2627 if (i == disks) {
2628 bio_reset(bi);
2629 BUG();
2630 return;
2631 }
2632
2633 if (replacement) {
2634 if (bi->bi_status)
2635 md_error(conf->mddev, rdev);
2636 else if (is_badblock(rdev, sh->sector,
2637 STRIPE_SECTORS,
2638 &first_bad, &bad_sectors))
2639 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2640 } else {
2641 if (bi->bi_status) {
2642 set_bit(STRIPE_DEGRADED, &sh->state);
2643 set_bit(WriteErrorSeen, &rdev->flags);
2644 set_bit(R5_WriteError, &sh->dev[i].flags);
2645 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2646 set_bit(MD_RECOVERY_NEEDED,
2647 &rdev->mddev->recovery);
2648 } else if (is_badblock(rdev, sh->sector,
2649 STRIPE_SECTORS,
2650 &first_bad, &bad_sectors)) {
2651 set_bit(R5_MadeGood, &sh->dev[i].flags);
2652 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2653 /* That was a successful write so make
2654 * sure it looks like we already did
2655 * a re-write.
2656 */
2657 set_bit(R5_ReWrite, &sh->dev[i].flags);
2658 }
2659 }
2660 rdev_dec_pending(rdev, conf->mddev);
2661
2662 if (sh->batch_head && bi->bi_status && !replacement)
2663 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2664
2665 bio_reset(bi);
2666 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2668 set_bit(STRIPE_HANDLE, &sh->state);
2669
2670 if (sh->batch_head && sh != sh->batch_head)
2671 raid5_release_stripe(sh->batch_head);
2672 raid5_release_stripe(sh);
2673}
2674
2675static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2676{
2677 char b[BDEVNAME_SIZE];
2678 struct r5conf *conf = mddev->private;
2679 unsigned long flags;
2680 pr_debug("raid456: error called\n");
2681
2682 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n",
2683 mdname(mddev), bdevname(rdev->bdev, b));
2684
2685 spin_lock_irqsave(&conf->device_lock, flags);
2686 set_bit(Faulty, &rdev->flags);
2687 clear_bit(In_sync, &rdev->flags);
2688 mddev->degraded = raid5_calc_degraded(conf);
2689
2690 if (has_failed(conf)) {
2691 set_bit(MD_BROKEN, &conf->mddev->flags);
2692 conf->recovery_disabled = mddev->recovery_disabled;
2693
2694 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2695 mdname(mddev), mddev->degraded, conf->raid_disks);
2696 } else {
2697 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2698 mdname(mddev), conf->raid_disks - mddev->degraded);
2699 }
2700
2701 spin_unlock_irqrestore(&conf->device_lock, flags);
2702 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2703
2704 set_bit(Blocked, &rdev->flags);
2705 set_mask_bits(&mddev->sb_flags, 0,
2706 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2707 r5c_update_on_rdev_error(mddev, rdev);
2708}
2709
2710/*
2711 * Input: a 'big' sector number,
2712 * Output: index of the data and parity disk, and the sector # in them.
2713 */
2714sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2715 int previous, int *dd_idx,
2716 struct stripe_head *sh)
2717{
2718 sector_t stripe, stripe2;
2719 sector_t chunk_number;
2720 unsigned int chunk_offset;
2721 int pd_idx, qd_idx;
2722 int ddf_layout = 0;
2723 sector_t new_sector;
2724 int algorithm = previous ? conf->prev_algo
2725 : conf->algorithm;
2726 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2727 : conf->chunk_sectors;
2728 int raid_disks = previous ? conf->previous_raid_disks
2729 : conf->raid_disks;
2730 int data_disks = raid_disks - conf->max_degraded;
2731
2732 /* First compute the information on this sector */
2733
2734 /*
2735 * Compute the chunk number and the sector offset inside the chunk
2736 */
2737 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2738 chunk_number = r_sector;
2739
2740 /*
2741 * Compute the stripe number
2742 */
2743 stripe = chunk_number;
2744 *dd_idx = sector_div(stripe, data_disks);
2745 stripe2 = stripe;
2746 /*
2747 * Select the parity disk based on the user selected algorithm.
2748 */
2749 pd_idx = qd_idx = -1;
2750 switch(conf->level) {
2751 case 4:
2752 pd_idx = data_disks;
2753 break;
2754 case 5:
2755 switch (algorithm) {
2756 case ALGORITHM_LEFT_ASYMMETRIC:
2757 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2758 if (*dd_idx >= pd_idx)
2759 (*dd_idx)++;
2760 break;
2761 case ALGORITHM_RIGHT_ASYMMETRIC:
2762 pd_idx = sector_div(stripe2, raid_disks);
2763 if (*dd_idx >= pd_idx)
2764 (*dd_idx)++;
2765 break;
2766 case ALGORITHM_LEFT_SYMMETRIC:
2767 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2768 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2769 break;
2770 case ALGORITHM_RIGHT_SYMMETRIC:
2771 pd_idx = sector_div(stripe2, raid_disks);
2772 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2773 break;
2774 case ALGORITHM_PARITY_0:
2775 pd_idx = 0;
2776 (*dd_idx)++;
2777 break;
2778 case ALGORITHM_PARITY_N:
2779 pd_idx = data_disks;
2780 break;
2781 default:
2782 BUG();
2783 }
2784 break;
2785 case 6:
2786
2787 switch (algorithm) {
2788 case ALGORITHM_LEFT_ASYMMETRIC:
2789 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2790 qd_idx = pd_idx + 1;
2791 if (pd_idx == raid_disks-1) {
2792 (*dd_idx)++; /* Q D D D P */
2793 qd_idx = 0;
2794 } else if (*dd_idx >= pd_idx)
2795 (*dd_idx) += 2; /* D D P Q D */
2796 break;
2797 case ALGORITHM_RIGHT_ASYMMETRIC:
2798 pd_idx = sector_div(stripe2, raid_disks);
2799 qd_idx = pd_idx + 1;
2800 if (pd_idx == raid_disks-1) {
2801 (*dd_idx)++; /* Q D D D P */
2802 qd_idx = 0;
2803 } else if (*dd_idx >= pd_idx)
2804 (*dd_idx) += 2; /* D D P Q D */
2805 break;
2806 case ALGORITHM_LEFT_SYMMETRIC:
2807 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2808 qd_idx = (pd_idx + 1) % raid_disks;
2809 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2810 break;
2811 case ALGORITHM_RIGHT_SYMMETRIC:
2812 pd_idx = sector_div(stripe2, raid_disks);
2813 qd_idx = (pd_idx + 1) % raid_disks;
2814 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2815 break;
2816
2817 case ALGORITHM_PARITY_0:
2818 pd_idx = 0;
2819 qd_idx = 1;
2820 (*dd_idx) += 2;
2821 break;
2822 case ALGORITHM_PARITY_N:
2823 pd_idx = data_disks;
2824 qd_idx = data_disks + 1;
2825 break;
2826
2827 case ALGORITHM_ROTATING_ZERO_RESTART:
2828 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2829 * of blocks for computing Q is different.
2830 */
2831 pd_idx = sector_div(stripe2, raid_disks);
2832 qd_idx = pd_idx + 1;
2833 if (pd_idx == raid_disks-1) {
2834 (*dd_idx)++; /* Q D D D P */
2835 qd_idx = 0;
2836 } else if (*dd_idx >= pd_idx)
2837 (*dd_idx) += 2; /* D D P Q D */
2838 ddf_layout = 1;
2839 break;
2840
2841 case ALGORITHM_ROTATING_N_RESTART:
2842 /* Same a left_asymmetric, by first stripe is
2843 * D D D P Q rather than
2844 * Q D D D P
2845 */
2846 stripe2 += 1;
2847 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2848 qd_idx = pd_idx + 1;
2849 if (pd_idx == raid_disks-1) {
2850 (*dd_idx)++; /* Q D D D P */
2851 qd_idx = 0;
2852 } else if (*dd_idx >= pd_idx)
2853 (*dd_idx) += 2; /* D D P Q D */
2854 ddf_layout = 1;
2855 break;
2856
2857 case ALGORITHM_ROTATING_N_CONTINUE:
2858 /* Same as left_symmetric but Q is before P */
2859 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2860 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2861 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2862 ddf_layout = 1;
2863 break;
2864
2865 case ALGORITHM_LEFT_ASYMMETRIC_6:
2866 /* RAID5 left_asymmetric, with Q on last device */
2867 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2868 if (*dd_idx >= pd_idx)
2869 (*dd_idx)++;
2870 qd_idx = raid_disks - 1;
2871 break;
2872
2873 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2874 pd_idx = sector_div(stripe2, raid_disks-1);
2875 if (*dd_idx >= pd_idx)
2876 (*dd_idx)++;
2877 qd_idx = raid_disks - 1;
2878 break;
2879
2880 case ALGORITHM_LEFT_SYMMETRIC_6:
2881 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2882 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2883 qd_idx = raid_disks - 1;
2884 break;
2885
2886 case ALGORITHM_RIGHT_SYMMETRIC_6:
2887 pd_idx = sector_div(stripe2, raid_disks-1);
2888 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2889 qd_idx = raid_disks - 1;
2890 break;
2891
2892 case ALGORITHM_PARITY_0_6:
2893 pd_idx = 0;
2894 (*dd_idx)++;
2895 qd_idx = raid_disks - 1;
2896 break;
2897
2898 default:
2899 BUG();
2900 }
2901 break;
2902 }
2903
2904 if (sh) {
2905 sh->pd_idx = pd_idx;
2906 sh->qd_idx = qd_idx;
2907 sh->ddf_layout = ddf_layout;
2908 }
2909 /*
2910 * Finally, compute the new sector number
2911 */
2912 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2913 return new_sector;
2914}
2915
2916sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2917{
2918 struct r5conf *conf = sh->raid_conf;
2919 int raid_disks = sh->disks;
2920 int data_disks = raid_disks - conf->max_degraded;
2921 sector_t new_sector = sh->sector, check;
2922 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2923 : conf->chunk_sectors;
2924 int algorithm = previous ? conf->prev_algo
2925 : conf->algorithm;
2926 sector_t stripe;
2927 int chunk_offset;
2928 sector_t chunk_number;
2929 int dummy1, dd_idx = i;
2930 sector_t r_sector;
2931 struct stripe_head sh2;
2932
2933 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2934 stripe = new_sector;
2935
2936 if (i == sh->pd_idx)
2937 return 0;
2938 switch(conf->level) {
2939 case 4: break;
2940 case 5:
2941 switch (algorithm) {
2942 case ALGORITHM_LEFT_ASYMMETRIC:
2943 case ALGORITHM_RIGHT_ASYMMETRIC:
2944 if (i > sh->pd_idx)
2945 i--;
2946 break;
2947 case ALGORITHM_LEFT_SYMMETRIC:
2948 case ALGORITHM_RIGHT_SYMMETRIC:
2949 if (i < sh->pd_idx)
2950 i += raid_disks;
2951 i -= (sh->pd_idx + 1);
2952 break;
2953 case ALGORITHM_PARITY_0:
2954 i -= 1;
2955 break;
2956 case ALGORITHM_PARITY_N:
2957 break;
2958 default:
2959 BUG();
2960 }
2961 break;
2962 case 6:
2963 if (i == sh->qd_idx)
2964 return 0; /* It is the Q disk */
2965 switch (algorithm) {
2966 case ALGORITHM_LEFT_ASYMMETRIC:
2967 case ALGORITHM_RIGHT_ASYMMETRIC:
2968 case ALGORITHM_ROTATING_ZERO_RESTART:
2969 case ALGORITHM_ROTATING_N_RESTART:
2970 if (sh->pd_idx == raid_disks-1)
2971 i--; /* Q D D D P */
2972 else if (i > sh->pd_idx)
2973 i -= 2; /* D D P Q D */
2974 break;
2975 case ALGORITHM_LEFT_SYMMETRIC:
2976 case ALGORITHM_RIGHT_SYMMETRIC:
2977 if (sh->pd_idx == raid_disks-1)
2978 i--; /* Q D D D P */
2979 else {
2980 /* D D P Q D */
2981 if (i < sh->pd_idx)
2982 i += raid_disks;
2983 i -= (sh->pd_idx + 2);
2984 }
2985 break;
2986 case ALGORITHM_PARITY_0:
2987 i -= 2;
2988 break;
2989 case ALGORITHM_PARITY_N:
2990 break;
2991 case ALGORITHM_ROTATING_N_CONTINUE:
2992 /* Like left_symmetric, but P is before Q */
2993 if (sh->pd_idx == 0)
2994 i--; /* P D D D Q */
2995 else {
2996 /* D D Q P D */
2997 if (i < sh->pd_idx)
2998 i += raid_disks;
2999 i -= (sh->pd_idx + 1);
3000 }
3001 break;
3002 case ALGORITHM_LEFT_ASYMMETRIC_6:
3003 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3004 if (i > sh->pd_idx)
3005 i--;
3006 break;
3007 case ALGORITHM_LEFT_SYMMETRIC_6:
3008 case ALGORITHM_RIGHT_SYMMETRIC_6:
3009 if (i < sh->pd_idx)
3010 i += data_disks + 1;
3011 i -= (sh->pd_idx + 1);
3012 break;
3013 case ALGORITHM_PARITY_0_6:
3014 i -= 1;
3015 break;
3016 default:
3017 BUG();
3018 }
3019 break;
3020 }
3021
3022 chunk_number = stripe * data_disks + i;
3023 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3024
3025 check = raid5_compute_sector(conf, r_sector,
3026 previous, &dummy1, &sh2);
3027 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3028 || sh2.qd_idx != sh->qd_idx) {
3029 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3030 mdname(conf->mddev));
3031 return 0;
3032 }
3033 return r_sector;
3034}
3035
3036/*
3037 * There are cases where we want handle_stripe_dirtying() and
3038 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3039 *
3040 * This function checks whether we want to delay the towrite. Specifically,
3041 * we delay the towrite when:
3042 *
3043 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3044 * stripe has data in journal (for other devices).
3045 *
3046 * In this case, when reading data for the non-overwrite dev, it is
3047 * necessary to handle complex rmw of write back cache (prexor with
3048 * orig_page, and xor with page). To keep read path simple, we would
3049 * like to flush data in journal to RAID disks first, so complex rmw
3050 * is handled in the write patch (handle_stripe_dirtying).
3051 *
3052 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3053 *
3054 * It is important to be able to flush all stripes in raid5-cache.
3055 * Therefore, we need reserve some space on the journal device for
3056 * these flushes. If flush operation includes pending writes to the
3057 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3058 * for the flush out. If we exclude these pending writes from flush
3059 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3060 * Therefore, excluding pending writes in these cases enables more
3061 * efficient use of the journal device.
3062 *
3063 * Note: To make sure the stripe makes progress, we only delay
3064 * towrite for stripes with data already in journal (injournal > 0).
3065 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3066 * no_space_stripes list.
3067 *
3068 * 3. during journal failure
3069 * In journal failure, we try to flush all cached data to raid disks
3070 * based on data in stripe cache. The array is read-only to upper
3071 * layers, so we would skip all pending writes.
3072 *
3073 */
3074static inline bool delay_towrite(struct r5conf *conf,
3075 struct r5dev *dev,
3076 struct stripe_head_state *s)
3077{
3078 /* case 1 above */
3079 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3080 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3081 return true;
3082 /* case 2 above */
3083 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3084 s->injournal > 0)
3085 return true;
3086 /* case 3 above */
3087 if (s->log_failed && s->injournal)
3088 return true;
3089 return false;
3090}
3091
3092static void
3093schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3094 int rcw, int expand)
3095{
3096 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3097 struct r5conf *conf = sh->raid_conf;
3098 int level = conf->level;
3099
3100 if (rcw) {
3101 /*
3102 * In some cases, handle_stripe_dirtying initially decided to
3103 * run rmw and allocates extra page for prexor. However, rcw is
3104 * cheaper later on. We need to free the extra page now,
3105 * because we won't be able to do that in ops_complete_prexor().
3106 */
3107 r5c_release_extra_page(sh);
3108
3109 for (i = disks; i--; ) {
3110 struct r5dev *dev = &sh->dev[i];
3111
3112 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3113 set_bit(R5_LOCKED, &dev->flags);
3114 set_bit(R5_Wantdrain, &dev->flags);
3115 if (!expand)
3116 clear_bit(R5_UPTODATE, &dev->flags);
3117 s->locked++;
3118 } else if (test_bit(R5_InJournal, &dev->flags)) {
3119 set_bit(R5_LOCKED, &dev->flags);
3120 s->locked++;
3121 }
3122 }
3123 /* if we are not expanding this is a proper write request, and
3124 * there will be bios with new data to be drained into the
3125 * stripe cache
3126 */
3127 if (!expand) {
3128 if (!s->locked)
3129 /* False alarm, nothing to do */
3130 return;
3131 sh->reconstruct_state = reconstruct_state_drain_run;
3132 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3133 } else
3134 sh->reconstruct_state = reconstruct_state_run;
3135
3136 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3137
3138 if (s->locked + conf->max_degraded == disks)
3139 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3140 atomic_inc(&conf->pending_full_writes);
3141 } else {
3142 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3143 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3144 BUG_ON(level == 6 &&
3145 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3146 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3147
3148 for (i = disks; i--; ) {
3149 struct r5dev *dev = &sh->dev[i];
3150 if (i == pd_idx || i == qd_idx)
3151 continue;
3152
3153 if (dev->towrite &&
3154 (test_bit(R5_UPTODATE, &dev->flags) ||
3155 test_bit(R5_Wantcompute, &dev->flags))) {
3156 set_bit(R5_Wantdrain, &dev->flags);
3157 set_bit(R5_LOCKED, &dev->flags);
3158 clear_bit(R5_UPTODATE, &dev->flags);
3159 s->locked++;
3160 } else if (test_bit(R5_InJournal, &dev->flags)) {
3161 set_bit(R5_LOCKED, &dev->flags);
3162 s->locked++;
3163 }
3164 }
3165 if (!s->locked)
3166 /* False alarm - nothing to do */
3167 return;
3168 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3169 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3170 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3171 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3172 }
3173
3174 /* keep the parity disk(s) locked while asynchronous operations
3175 * are in flight
3176 */
3177 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3178 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3179 s->locked++;
3180
3181 if (level == 6) {
3182 int qd_idx = sh->qd_idx;
3183 struct r5dev *dev = &sh->dev[qd_idx];
3184
3185 set_bit(R5_LOCKED, &dev->flags);
3186 clear_bit(R5_UPTODATE, &dev->flags);
3187 s->locked++;
3188 }
3189
3190 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3191 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3192 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3193 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3194 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3195
3196 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3197 __func__, (unsigned long long)sh->sector,
3198 s->locked, s->ops_request);
3199}
3200
3201/*
3202 * Each stripe/dev can have one or more bion attached.
3203 * toread/towrite point to the first in a chain.
3204 * The bi_next chain must be in order.
3205 */
3206static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3207 int forwrite, int previous)
3208{
3209 struct bio **bip;
3210 struct r5conf *conf = sh->raid_conf;
3211 int firstwrite=0;
3212
3213 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3214 (unsigned long long)bi->bi_iter.bi_sector,
3215 (unsigned long long)sh->sector);
3216
3217 spin_lock_irq(&sh->stripe_lock);
3218 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3219 /* Don't allow new IO added to stripes in batch list */
3220 if (sh->batch_head)
3221 goto overlap;
3222 if (forwrite) {
3223 bip = &sh->dev[dd_idx].towrite;
3224 if (*bip == NULL)
3225 firstwrite = 1;
3226 } else
3227 bip = &sh->dev[dd_idx].toread;
3228 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3229 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3230 goto overlap;
3231 bip = & (*bip)->bi_next;
3232 }
3233 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3234 goto overlap;
3235
3236 if (forwrite && raid5_has_ppl(conf)) {
3237 /*
3238 * With PPL only writes to consecutive data chunks within a
3239 * stripe are allowed because for a single stripe_head we can
3240 * only have one PPL entry at a time, which describes one data
3241 * range. Not really an overlap, but wait_for_overlap can be
3242 * used to handle this.
3243 */
3244 sector_t sector;
3245 sector_t first = 0;
3246 sector_t last = 0;
3247 int count = 0;
3248 int i;
3249
3250 for (i = 0; i < sh->disks; i++) {
3251 if (i != sh->pd_idx &&
3252 (i == dd_idx || sh->dev[i].towrite)) {
3253 sector = sh->dev[i].sector;
3254 if (count == 0 || sector < first)
3255 first = sector;
3256 if (sector > last)
3257 last = sector;
3258 count++;
3259 }
3260 }
3261
3262 if (first + conf->chunk_sectors * (count - 1) != last)
3263 goto overlap;
3264 }
3265
3266 if (!forwrite || previous)
3267 clear_bit(STRIPE_BATCH_READY, &sh->state);
3268
3269 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3270 if (*bip)
3271 bi->bi_next = *bip;
3272 *bip = bi;
3273 bio_inc_remaining(bi);
3274 md_write_inc(conf->mddev, bi);
3275
3276 if (forwrite) {
3277 /* check if page is covered */
3278 sector_t sector = sh->dev[dd_idx].sector;
3279 for (bi=sh->dev[dd_idx].towrite;
3280 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3281 bi && bi->bi_iter.bi_sector <= sector;
3282 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3283 if (bio_end_sector(bi) >= sector)
3284 sector = bio_end_sector(bi);
3285 }
3286 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3287 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3288 sh->overwrite_disks++;
3289 }
3290
3291 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3292 (unsigned long long)(*bip)->bi_iter.bi_sector,
3293 (unsigned long long)sh->sector, dd_idx);
3294
3295 if (conf->mddev->bitmap && firstwrite) {
3296 /* Cannot hold spinlock over bitmap_startwrite,
3297 * but must ensure this isn't added to a batch until
3298 * we have added to the bitmap and set bm_seq.
3299 * So set STRIPE_BITMAP_PENDING to prevent
3300 * batching.
3301 * If multiple add_stripe_bio() calls race here they
3302 * much all set STRIPE_BITMAP_PENDING. So only the first one
3303 * to complete "bitmap_startwrite" gets to set
3304 * STRIPE_BIT_DELAY. This is important as once a stripe
3305 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3306 * any more.
3307 */
3308 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3309 spin_unlock_irq(&sh->stripe_lock);
3310 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3311 STRIPE_SECTORS, 0);
3312 spin_lock_irq(&sh->stripe_lock);
3313 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3314 if (!sh->batch_head) {
3315 sh->bm_seq = conf->seq_flush+1;
3316 set_bit(STRIPE_BIT_DELAY, &sh->state);
3317 }
3318 }
3319 spin_unlock_irq(&sh->stripe_lock);
3320
3321 if (stripe_can_batch(sh))
3322 stripe_add_to_batch_list(conf, sh);
3323 return 1;
3324
3325 overlap:
3326 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3327 spin_unlock_irq(&sh->stripe_lock);
3328 return 0;
3329}
3330
3331static void end_reshape(struct r5conf *conf);
3332
3333static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3334 struct stripe_head *sh)
3335{
3336 int sectors_per_chunk =
3337 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3338 int dd_idx;
3339 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3340 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3341
3342 raid5_compute_sector(conf,
3343 stripe * (disks - conf->max_degraded)
3344 *sectors_per_chunk + chunk_offset,
3345 previous,
3346 &dd_idx, sh);
3347}
3348
3349static void
3350handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3351 struct stripe_head_state *s, int disks)
3352{
3353 int i;
3354 BUG_ON(sh->batch_head);
3355 for (i = disks; i--; ) {
3356 struct bio *bi;
3357 int bitmap_end = 0;
3358
3359 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3360 struct md_rdev *rdev;
3361 rcu_read_lock();
3362 rdev = rcu_dereference(conf->disks[i].rdev);
3363 if (rdev && test_bit(In_sync, &rdev->flags) &&
3364 !test_bit(Faulty, &rdev->flags))
3365 atomic_inc(&rdev->nr_pending);
3366 else
3367 rdev = NULL;
3368 rcu_read_unlock();
3369 if (rdev) {
3370 if (!rdev_set_badblocks(
3371 rdev,
3372 sh->sector,
3373 STRIPE_SECTORS, 0))
3374 md_error(conf->mddev, rdev);
3375 rdev_dec_pending(rdev, conf->mddev);
3376 }
3377 }
3378 spin_lock_irq(&sh->stripe_lock);
3379 /* fail all writes first */
3380 bi = sh->dev[i].towrite;
3381 sh->dev[i].towrite = NULL;
3382 sh->overwrite_disks = 0;
3383 spin_unlock_irq(&sh->stripe_lock);
3384 if (bi)
3385 bitmap_end = 1;
3386
3387 log_stripe_write_finished(sh);
3388
3389 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3390 wake_up(&conf->wait_for_overlap);
3391
3392 while (bi && bi->bi_iter.bi_sector <
3393 sh->dev[i].sector + STRIPE_SECTORS) {
3394 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3395
3396 md_write_end(conf->mddev);
3397 bio_io_error(bi);
3398 bi = nextbi;
3399 }
3400 if (bitmap_end)
3401 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3402 STRIPE_SECTORS, 0, 0);
3403 bitmap_end = 0;
3404 /* and fail all 'written' */
3405 bi = sh->dev[i].written;
3406 sh->dev[i].written = NULL;
3407 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3408 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3409 sh->dev[i].page = sh->dev[i].orig_page;
3410 }
3411
3412 if (bi) bitmap_end = 1;
3413 while (bi && bi->bi_iter.bi_sector <
3414 sh->dev[i].sector + STRIPE_SECTORS) {
3415 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3416
3417 md_write_end(conf->mddev);
3418 bio_io_error(bi);
3419 bi = bi2;
3420 }
3421
3422 /* fail any reads if this device is non-operational and
3423 * the data has not reached the cache yet.
3424 */
3425 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3426 s->failed > conf->max_degraded &&
3427 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3428 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3429 spin_lock_irq(&sh->stripe_lock);
3430 bi = sh->dev[i].toread;
3431 sh->dev[i].toread = NULL;
3432 spin_unlock_irq(&sh->stripe_lock);
3433 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3434 wake_up(&conf->wait_for_overlap);
3435 if (bi)
3436 s->to_read--;
3437 while (bi && bi->bi_iter.bi_sector <
3438 sh->dev[i].sector + STRIPE_SECTORS) {
3439 struct bio *nextbi =
3440 r5_next_bio(bi, sh->dev[i].sector);
3441
3442 bio_io_error(bi);
3443 bi = nextbi;
3444 }
3445 }
3446 if (bitmap_end)
3447 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3448 STRIPE_SECTORS, 0, 0);
3449 /* If we were in the middle of a write the parity block might
3450 * still be locked - so just clear all R5_LOCKED flags
3451 */
3452 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3453 }
3454 s->to_write = 0;
3455 s->written = 0;
3456
3457 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3458 if (atomic_dec_and_test(&conf->pending_full_writes))
3459 md_wakeup_thread(conf->mddev->thread);
3460}
3461
3462static void
3463handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3464 struct stripe_head_state *s)
3465{
3466 int abort = 0;
3467 int i;
3468
3469 BUG_ON(sh->batch_head);
3470 clear_bit(STRIPE_SYNCING, &sh->state);
3471 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3472 wake_up(&conf->wait_for_overlap);
3473 s->syncing = 0;
3474 s->replacing = 0;
3475 /* There is nothing more to do for sync/check/repair.
3476 * Don't even need to abort as that is handled elsewhere
3477 * if needed, and not always wanted e.g. if there is a known
3478 * bad block here.
3479 * For recover/replace we need to record a bad block on all
3480 * non-sync devices, or abort the recovery
3481 */
3482 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3483 /* During recovery devices cannot be removed, so
3484 * locking and refcounting of rdevs is not needed
3485 */
3486 rcu_read_lock();
3487 for (i = 0; i < conf->raid_disks; i++) {
3488 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3489 if (rdev
3490 && !test_bit(Faulty, &rdev->flags)
3491 && !test_bit(In_sync, &rdev->flags)
3492 && !rdev_set_badblocks(rdev, sh->sector,
3493 STRIPE_SECTORS, 0))
3494 abort = 1;
3495 rdev = rcu_dereference(conf->disks[i].replacement);
3496 if (rdev
3497 && !test_bit(Faulty, &rdev->flags)
3498 && !test_bit(In_sync, &rdev->flags)
3499 && !rdev_set_badblocks(rdev, sh->sector,
3500 STRIPE_SECTORS, 0))
3501 abort = 1;
3502 }
3503 rcu_read_unlock();
3504 if (abort)
3505 conf->recovery_disabled =
3506 conf->mddev->recovery_disabled;
3507 }
3508 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3509}
3510
3511static int want_replace(struct stripe_head *sh, int disk_idx)
3512{
3513 struct md_rdev *rdev;
3514 int rv = 0;
3515
3516 rcu_read_lock();
3517 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3518 if (rdev
3519 && !test_bit(Faulty, &rdev->flags)
3520 && !test_bit(In_sync, &rdev->flags)
3521 && (rdev->recovery_offset <= sh->sector
3522 || rdev->mddev->recovery_cp <= sh->sector))
3523 rv = 1;
3524 rcu_read_unlock();
3525 return rv;
3526}
3527
3528static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3529 int disk_idx, int disks)
3530{
3531 struct r5dev *dev = &sh->dev[disk_idx];
3532 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3533 &sh->dev[s->failed_num[1]] };
3534 int i;
3535
3536
3537 if (test_bit(R5_LOCKED, &dev->flags) ||
3538 test_bit(R5_UPTODATE, &dev->flags))
3539 /* No point reading this as we already have it or have
3540 * decided to get it.
3541 */
3542 return 0;
3543
3544 if (dev->toread ||
3545 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3546 /* We need this block to directly satisfy a request */
3547 return 1;
3548
3549 if (s->syncing || s->expanding ||
3550 (s->replacing && want_replace(sh, disk_idx)))
3551 /* When syncing, or expanding we read everything.
3552 * When replacing, we need the replaced block.
3553 */
3554 return 1;
3555
3556 if ((s->failed >= 1 && fdev[0]->toread) ||
3557 (s->failed >= 2 && fdev[1]->toread))
3558 /* If we want to read from a failed device, then
3559 * we need to actually read every other device.
3560 */
3561 return 1;
3562
3563 /* Sometimes neither read-modify-write nor reconstruct-write
3564 * cycles can work. In those cases we read every block we
3565 * can. Then the parity-update is certain to have enough to
3566 * work with.
3567 * This can only be a problem when we need to write something,
3568 * and some device has failed. If either of those tests
3569 * fail we need look no further.
3570 */
3571 if (!s->failed || !s->to_write)
3572 return 0;
3573
3574 if (test_bit(R5_Insync, &dev->flags) &&
3575 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3576 /* Pre-reads at not permitted until after short delay
3577 * to gather multiple requests. However if this
3578 * device is no Insync, the block could only be computed
3579 * and there is no need to delay that.
3580 */
3581 return 0;
3582
3583 for (i = 0; i < s->failed && i < 2; i++) {
3584 if (fdev[i]->towrite &&
3585 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3586 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3587 /* If we have a partial write to a failed
3588 * device, then we will need to reconstruct
3589 * the content of that device, so all other
3590 * devices must be read.
3591 */
3592 return 1;
3593 }
3594
3595 /* If we are forced to do a reconstruct-write, either because
3596 * the current RAID6 implementation only supports that, or
3597 * because parity cannot be trusted and we are currently
3598 * recovering it, there is extra need to be careful.
3599 * If one of the devices that we would need to read, because
3600 * it is not being overwritten (and maybe not written at all)
3601 * is missing/faulty, then we need to read everything we can.
3602 */
3603 if (sh->raid_conf->level != 6 &&
3604 sh->raid_conf->rmw_level != PARITY_DISABLE_RMW &&
3605 sh->sector < sh->raid_conf->mddev->recovery_cp)
3606 /* reconstruct-write isn't being forced */
3607 return 0;
3608 for (i = 0; i < s->failed && i < 2; i++) {
3609 if (s->failed_num[i] != sh->pd_idx &&
3610 s->failed_num[i] != sh->qd_idx &&
3611 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3612 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3613 return 1;
3614 }
3615
3616 return 0;
3617}
3618
3619/* fetch_block - checks the given member device to see if its data needs
3620 * to be read or computed to satisfy a request.
3621 *
3622 * Returns 1 when no more member devices need to be checked, otherwise returns
3623 * 0 to tell the loop in handle_stripe_fill to continue
3624 */
3625static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3626 int disk_idx, int disks)
3627{
3628 struct r5dev *dev = &sh->dev[disk_idx];
3629
3630 /* is the data in this block needed, and can we get it? */
3631 if (need_this_block(sh, s, disk_idx, disks)) {
3632 /* we would like to get this block, possibly by computing it,
3633 * otherwise read it if the backing disk is insync
3634 */
3635 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3636 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3637 BUG_ON(sh->batch_head);
3638
3639 /*
3640 * In the raid6 case if the only non-uptodate disk is P
3641 * then we already trusted P to compute the other failed
3642 * drives. It is safe to compute rather than re-read P.
3643 * In other cases we only compute blocks from failed
3644 * devices, otherwise check/repair might fail to detect
3645 * a real inconsistency.
3646 */
3647
3648 if ((s->uptodate == disks - 1) &&
3649 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3650 (s->failed && (disk_idx == s->failed_num[0] ||
3651 disk_idx == s->failed_num[1])))) {
3652 /* have disk failed, and we're requested to fetch it;
3653 * do compute it
3654 */
3655 pr_debug("Computing stripe %llu block %d\n",
3656 (unsigned long long)sh->sector, disk_idx);
3657 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3658 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3659 set_bit(R5_Wantcompute, &dev->flags);
3660 sh->ops.target = disk_idx;
3661 sh->ops.target2 = -1; /* no 2nd target */
3662 s->req_compute = 1;
3663 /* Careful: from this point on 'uptodate' is in the eye
3664 * of raid_run_ops which services 'compute' operations
3665 * before writes. R5_Wantcompute flags a block that will
3666 * be R5_UPTODATE by the time it is needed for a
3667 * subsequent operation.
3668 */
3669 s->uptodate++;
3670 return 1;
3671 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3672 /* Computing 2-failure is *very* expensive; only
3673 * do it if failed >= 2
3674 */
3675 int other;
3676 for (other = disks; other--; ) {
3677 if (other == disk_idx)
3678 continue;
3679 if (!test_bit(R5_UPTODATE,
3680 &sh->dev[other].flags))
3681 break;
3682 }
3683 BUG_ON(other < 0);
3684 pr_debug("Computing stripe %llu blocks %d,%d\n",
3685 (unsigned long long)sh->sector,
3686 disk_idx, other);
3687 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3688 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3689 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3690 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3691 sh->ops.target = disk_idx;
3692 sh->ops.target2 = other;
3693 s->uptodate += 2;
3694 s->req_compute = 1;
3695 return 1;
3696 } else if (test_bit(R5_Insync, &dev->flags)) {
3697 set_bit(R5_LOCKED, &dev->flags);
3698 set_bit(R5_Wantread, &dev->flags);
3699 s->locked++;
3700 pr_debug("Reading block %d (sync=%d)\n",
3701 disk_idx, s->syncing);
3702 }
3703 }
3704
3705 return 0;
3706}
3707
3708/**
3709 * handle_stripe_fill - read or compute data to satisfy pending requests.
3710 */
3711static void handle_stripe_fill(struct stripe_head *sh,
3712 struct stripe_head_state *s,
3713 int disks)
3714{
3715 int i;
3716
3717 /* look for blocks to read/compute, skip this if a compute
3718 * is already in flight, or if the stripe contents are in the
3719 * midst of changing due to a write
3720 */
3721 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3722 !sh->reconstruct_state) {
3723
3724 /*
3725 * For degraded stripe with data in journal, do not handle
3726 * read requests yet, instead, flush the stripe to raid
3727 * disks first, this avoids handling complex rmw of write
3728 * back cache (prexor with orig_page, and then xor with
3729 * page) in the read path
3730 */
3731 if (s->to_read && s->injournal && s->failed) {
3732 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3733 r5c_make_stripe_write_out(sh);
3734 goto out;
3735 }
3736
3737 for (i = disks; i--; )
3738 if (fetch_block(sh, s, i, disks))
3739 break;
3740 }
3741out:
3742 set_bit(STRIPE_HANDLE, &sh->state);
3743}
3744
3745static void break_stripe_batch_list(struct stripe_head *head_sh,
3746 unsigned long handle_flags);
3747/* handle_stripe_clean_event
3748 * any written block on an uptodate or failed drive can be returned.
3749 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3750 * never LOCKED, so we don't need to test 'failed' directly.
3751 */
3752static void handle_stripe_clean_event(struct r5conf *conf,
3753 struct stripe_head *sh, int disks)
3754{
3755 int i;
3756 struct r5dev *dev;
3757 int discard_pending = 0;
3758 struct stripe_head *head_sh = sh;
3759 bool do_endio = false;
3760
3761 for (i = disks; i--; )
3762 if (sh->dev[i].written) {
3763 dev = &sh->dev[i];
3764 if (!test_bit(R5_LOCKED, &dev->flags) &&
3765 (test_bit(R5_UPTODATE, &dev->flags) ||
3766 test_bit(R5_Discard, &dev->flags) ||
3767 test_bit(R5_SkipCopy, &dev->flags))) {
3768 /* We can return any write requests */
3769 struct bio *wbi, *wbi2;
3770 pr_debug("Return write for disc %d\n", i);
3771 if (test_and_clear_bit(R5_Discard, &dev->flags))
3772 clear_bit(R5_UPTODATE, &dev->flags);
3773 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3774 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3775 }
3776 do_endio = true;
3777
3778returnbi:
3779 dev->page = dev->orig_page;
3780 wbi = dev->written;
3781 dev->written = NULL;
3782 while (wbi && wbi->bi_iter.bi_sector <
3783 dev->sector + STRIPE_SECTORS) {
3784 wbi2 = r5_next_bio(wbi, dev->sector);
3785 md_write_end(conf->mddev);
3786 bio_endio(wbi);
3787 wbi = wbi2;
3788 }
3789 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3790 STRIPE_SECTORS,
3791 !test_bit(STRIPE_DEGRADED, &sh->state),
3792 0);
3793 if (head_sh->batch_head) {
3794 sh = list_first_entry(&sh->batch_list,
3795 struct stripe_head,
3796 batch_list);
3797 if (sh != head_sh) {
3798 dev = &sh->dev[i];
3799 goto returnbi;
3800 }
3801 }
3802 sh = head_sh;
3803 dev = &sh->dev[i];
3804 } else if (test_bit(R5_Discard, &dev->flags))
3805 discard_pending = 1;
3806 }
3807
3808 log_stripe_write_finished(sh);
3809
3810 if (!discard_pending &&
3811 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3812 int hash;
3813 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3814 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3815 if (sh->qd_idx >= 0) {
3816 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3817 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3818 }
3819 /* now that discard is done we can proceed with any sync */
3820 clear_bit(STRIPE_DISCARD, &sh->state);
3821 /*
3822 * SCSI discard will change some bio fields and the stripe has
3823 * no updated data, so remove it from hash list and the stripe
3824 * will be reinitialized
3825 */
3826unhash:
3827 hash = sh->hash_lock_index;
3828 spin_lock_irq(conf->hash_locks + hash);
3829 remove_hash(sh);
3830 spin_unlock_irq(conf->hash_locks + hash);
3831 if (head_sh->batch_head) {
3832 sh = list_first_entry(&sh->batch_list,
3833 struct stripe_head, batch_list);
3834 if (sh != head_sh)
3835 goto unhash;
3836 }
3837 sh = head_sh;
3838
3839 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3840 set_bit(STRIPE_HANDLE, &sh->state);
3841
3842 }
3843
3844 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3845 if (atomic_dec_and_test(&conf->pending_full_writes))
3846 md_wakeup_thread(conf->mddev->thread);
3847
3848 if (head_sh->batch_head && do_endio)
3849 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3850}
3851
3852/*
3853 * For RMW in write back cache, we need extra page in prexor to store the
3854 * old data. This page is stored in dev->orig_page.
3855 *
3856 * This function checks whether we have data for prexor. The exact logic
3857 * is:
3858 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3859 */
3860static inline bool uptodate_for_rmw(struct r5dev *dev)
3861{
3862 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3863 (!test_bit(R5_InJournal, &dev->flags) ||
3864 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3865}
3866
3867static int handle_stripe_dirtying(struct r5conf *conf,
3868 struct stripe_head *sh,
3869 struct stripe_head_state *s,
3870 int disks)
3871{
3872 int rmw = 0, rcw = 0, i;
3873 sector_t recovery_cp = conf->mddev->recovery_cp;
3874
3875 /* Check whether resync is now happening or should start.
3876 * If yes, then the array is dirty (after unclean shutdown or
3877 * initial creation), so parity in some stripes might be inconsistent.
3878 * In this case, we need to always do reconstruct-write, to ensure
3879 * that in case of drive failure or read-error correction, we
3880 * generate correct data from the parity.
3881 */
3882 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3883 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3884 s->failed == 0)) {
3885 /* Calculate the real rcw later - for now make it
3886 * look like rcw is cheaper
3887 */
3888 rcw = 1; rmw = 2;
3889 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3890 conf->rmw_level, (unsigned long long)recovery_cp,
3891 (unsigned long long)sh->sector);
3892 } else for (i = disks; i--; ) {
3893 /* would I have to read this buffer for read_modify_write */
3894 struct r5dev *dev = &sh->dev[i];
3895 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3896 i == sh->pd_idx || i == sh->qd_idx ||
3897 test_bit(R5_InJournal, &dev->flags)) &&
3898 !test_bit(R5_LOCKED, &dev->flags) &&
3899 !(uptodate_for_rmw(dev) ||
3900 test_bit(R5_Wantcompute, &dev->flags))) {
3901 if (test_bit(R5_Insync, &dev->flags))
3902 rmw++;
3903 else
3904 rmw += 2*disks; /* cannot read it */
3905 }
3906 /* Would I have to read this buffer for reconstruct_write */
3907 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3908 i != sh->pd_idx && i != sh->qd_idx &&
3909 !test_bit(R5_LOCKED, &dev->flags) &&
3910 !(test_bit(R5_UPTODATE, &dev->flags) ||
3911 test_bit(R5_Wantcompute, &dev->flags))) {
3912 if (test_bit(R5_Insync, &dev->flags))
3913 rcw++;
3914 else
3915 rcw += 2*disks;
3916 }
3917 }
3918
3919 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3920 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3921 set_bit(STRIPE_HANDLE, &sh->state);
3922 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3923 /* prefer read-modify-write, but need to get some data */
3924 if (conf->mddev->queue)
3925 blk_add_trace_msg(conf->mddev->queue,
3926 "raid5 rmw %llu %d",
3927 (unsigned long long)sh->sector, rmw);
3928 for (i = disks; i--; ) {
3929 struct r5dev *dev = &sh->dev[i];
3930 if (test_bit(R5_InJournal, &dev->flags) &&
3931 dev->page == dev->orig_page &&
3932 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3933 /* alloc page for prexor */
3934 struct page *p = alloc_page(GFP_NOIO);
3935
3936 if (p) {
3937 dev->orig_page = p;
3938 continue;
3939 }
3940
3941 /*
3942 * alloc_page() failed, try use
3943 * disk_info->extra_page
3944 */
3945 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3946 &conf->cache_state)) {
3947 r5c_use_extra_page(sh);
3948 break;
3949 }
3950
3951 /* extra_page in use, add to delayed_list */
3952 set_bit(STRIPE_DELAYED, &sh->state);
3953 s->waiting_extra_page = 1;
3954 return -EAGAIN;
3955 }
3956 }
3957
3958 for (i = disks; i--; ) {
3959 struct r5dev *dev = &sh->dev[i];
3960 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3961 i == sh->pd_idx || i == sh->qd_idx ||
3962 test_bit(R5_InJournal, &dev->flags)) &&
3963 !test_bit(R5_LOCKED, &dev->flags) &&
3964 !(uptodate_for_rmw(dev) ||
3965 test_bit(R5_Wantcompute, &dev->flags)) &&
3966 test_bit(R5_Insync, &dev->flags)) {
3967 if (test_bit(STRIPE_PREREAD_ACTIVE,
3968 &sh->state)) {
3969 pr_debug("Read_old block %d for r-m-w\n",
3970 i);
3971 set_bit(R5_LOCKED, &dev->flags);
3972 set_bit(R5_Wantread, &dev->flags);
3973 s->locked++;
3974 } else {
3975 set_bit(STRIPE_DELAYED, &sh->state);
3976 set_bit(STRIPE_HANDLE, &sh->state);
3977 }
3978 }
3979 }
3980 }
3981 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3982 /* want reconstruct write, but need to get some data */
3983 int qread =0;
3984 rcw = 0;
3985 for (i = disks; i--; ) {
3986 struct r5dev *dev = &sh->dev[i];
3987 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3988 i != sh->pd_idx && i != sh->qd_idx &&
3989 !test_bit(R5_LOCKED, &dev->flags) &&
3990 !(test_bit(R5_UPTODATE, &dev->flags) ||
3991 test_bit(R5_Wantcompute, &dev->flags))) {
3992 rcw++;
3993 if (test_bit(R5_Insync, &dev->flags) &&
3994 test_bit(STRIPE_PREREAD_ACTIVE,
3995 &sh->state)) {
3996 pr_debug("Read_old block "
3997 "%d for Reconstruct\n", i);
3998 set_bit(R5_LOCKED, &dev->flags);
3999 set_bit(R5_Wantread, &dev->flags);
4000 s->locked++;
4001 qread++;
4002 } else {
4003 set_bit(STRIPE_DELAYED, &sh->state);
4004 set_bit(STRIPE_HANDLE, &sh->state);
4005 }
4006 }
4007 }
4008 if (rcw && conf->mddev->queue)
4009 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4010 (unsigned long long)sh->sector,
4011 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4012 }
4013
4014 if (rcw > disks && rmw > disks &&
4015 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4016 set_bit(STRIPE_DELAYED, &sh->state);
4017
4018 /* now if nothing is locked, and if we have enough data,
4019 * we can start a write request
4020 */
4021 /* since handle_stripe can be called at any time we need to handle the
4022 * case where a compute block operation has been submitted and then a
4023 * subsequent call wants to start a write request. raid_run_ops only
4024 * handles the case where compute block and reconstruct are requested
4025 * simultaneously. If this is not the case then new writes need to be
4026 * held off until the compute completes.
4027 */
4028 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4029 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4030 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4031 schedule_reconstruction(sh, s, rcw == 0, 0);
4032 return 0;
4033}
4034
4035static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4036 struct stripe_head_state *s, int disks)
4037{
4038 struct r5dev *dev = NULL;
4039
4040 BUG_ON(sh->batch_head);
4041 set_bit(STRIPE_HANDLE, &sh->state);
4042
4043 switch (sh->check_state) {
4044 case check_state_idle:
4045 /* start a new check operation if there are no failures */
4046 if (s->failed == 0) {
4047 BUG_ON(s->uptodate != disks);
4048 sh->check_state = check_state_run;
4049 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4050 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4051 s->uptodate--;
4052 break;
4053 }
4054 dev = &sh->dev[s->failed_num[0]];
4055 /* fall through */
4056 case check_state_compute_result:
4057 sh->check_state = check_state_idle;
4058 if (!dev)
4059 dev = &sh->dev[sh->pd_idx];
4060
4061 /* check that a write has not made the stripe insync */
4062 if (test_bit(STRIPE_INSYNC, &sh->state))
4063 break;
4064
4065 /* either failed parity check, or recovery is happening */
4066 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4067 BUG_ON(s->uptodate != disks);
4068
4069 set_bit(R5_LOCKED, &dev->flags);
4070 s->locked++;
4071 set_bit(R5_Wantwrite, &dev->flags);
4072
4073 clear_bit(STRIPE_DEGRADED, &sh->state);
4074 set_bit(STRIPE_INSYNC, &sh->state);
4075 break;
4076 case check_state_run:
4077 break; /* we will be called again upon completion */
4078 case check_state_check_result:
4079 sh->check_state = check_state_idle;
4080
4081 /* if a failure occurred during the check operation, leave
4082 * STRIPE_INSYNC not set and let the stripe be handled again
4083 */
4084 if (s->failed)
4085 break;
4086
4087 /* handle a successful check operation, if parity is correct
4088 * we are done. Otherwise update the mismatch count and repair
4089 * parity if !MD_RECOVERY_CHECK
4090 */
4091 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4092 /* parity is correct (on disc,
4093 * not in buffer any more)
4094 */
4095 set_bit(STRIPE_INSYNC, &sh->state);
4096 else {
4097 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4098 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4099 /* don't try to repair!! */
4100 set_bit(STRIPE_INSYNC, &sh->state);
4101 pr_warn_ratelimited("%s: mismatch sector in range "
4102 "%llu-%llu\n", mdname(conf->mddev),
4103 (unsigned long long) sh->sector,
4104 (unsigned long long) sh->sector +
4105 STRIPE_SECTORS);
4106 } else {
4107 sh->check_state = check_state_compute_run;
4108 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4109 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4110 set_bit(R5_Wantcompute,
4111 &sh->dev[sh->pd_idx].flags);
4112 sh->ops.target = sh->pd_idx;
4113 sh->ops.target2 = -1;
4114 s->uptodate++;
4115 }
4116 }
4117 break;
4118 case check_state_compute_run:
4119 break;
4120 default:
4121 pr_err("%s: unknown check_state: %d sector: %llu\n",
4122 __func__, sh->check_state,
4123 (unsigned long long) sh->sector);
4124 BUG();
4125 }
4126}
4127
4128static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4129 struct stripe_head_state *s,
4130 int disks)
4131{
4132 int pd_idx = sh->pd_idx;
4133 int qd_idx = sh->qd_idx;
4134 struct r5dev *dev;
4135
4136 BUG_ON(sh->batch_head);
4137 set_bit(STRIPE_HANDLE, &sh->state);
4138
4139 BUG_ON(s->failed > 2);
4140
4141 /* Want to check and possibly repair P and Q.
4142 * However there could be one 'failed' device, in which
4143 * case we can only check one of them, possibly using the
4144 * other to generate missing data
4145 */
4146
4147 switch (sh->check_state) {
4148 case check_state_idle:
4149 /* start a new check operation if there are < 2 failures */
4150 if (s->failed == s->q_failed) {
4151 /* The only possible failed device holds Q, so it
4152 * makes sense to check P (If anything else were failed,
4153 * we would have used P to recreate it).
4154 */
4155 sh->check_state = check_state_run;
4156 }
4157 if (!s->q_failed && s->failed < 2) {
4158 /* Q is not failed, and we didn't use it to generate
4159 * anything, so it makes sense to check it
4160 */
4161 if (sh->check_state == check_state_run)
4162 sh->check_state = check_state_run_pq;
4163 else
4164 sh->check_state = check_state_run_q;
4165 }
4166
4167 /* discard potentially stale zero_sum_result */
4168 sh->ops.zero_sum_result = 0;
4169
4170 if (sh->check_state == check_state_run) {
4171 /* async_xor_zero_sum destroys the contents of P */
4172 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4173 s->uptodate--;
4174 }
4175 if (sh->check_state >= check_state_run &&
4176 sh->check_state <= check_state_run_pq) {
4177 /* async_syndrome_zero_sum preserves P and Q, so
4178 * no need to mark them !uptodate here
4179 */
4180 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4181 break;
4182 }
4183
4184 /* we have 2-disk failure */
4185 BUG_ON(s->failed != 2);
4186 /* fall through */
4187 case check_state_compute_result:
4188 sh->check_state = check_state_idle;
4189
4190 /* check that a write has not made the stripe insync */
4191 if (test_bit(STRIPE_INSYNC, &sh->state))
4192 break;
4193
4194 /* now write out any block on a failed drive,
4195 * or P or Q if they were recomputed
4196 */
4197 dev = NULL;
4198 if (s->failed == 2) {
4199 dev = &sh->dev[s->failed_num[1]];
4200 s->locked++;
4201 set_bit(R5_LOCKED, &dev->flags);
4202 set_bit(R5_Wantwrite, &dev->flags);
4203 }
4204 if (s->failed >= 1) {
4205 dev = &sh->dev[s->failed_num[0]];
4206 s->locked++;
4207 set_bit(R5_LOCKED, &dev->flags);
4208 set_bit(R5_Wantwrite, &dev->flags);
4209 }
4210 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4211 dev = &sh->dev[pd_idx];
4212 s->locked++;
4213 set_bit(R5_LOCKED, &dev->flags);
4214 set_bit(R5_Wantwrite, &dev->flags);
4215 }
4216 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4217 dev = &sh->dev[qd_idx];
4218 s->locked++;
4219 set_bit(R5_LOCKED, &dev->flags);
4220 set_bit(R5_Wantwrite, &dev->flags);
4221 }
4222 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4223 "%s: disk%td not up to date\n",
4224 mdname(conf->mddev),
4225 dev - (struct r5dev *) &sh->dev)) {
4226 clear_bit(R5_LOCKED, &dev->flags);
4227 clear_bit(R5_Wantwrite, &dev->flags);
4228 s->locked--;
4229 }
4230 clear_bit(STRIPE_DEGRADED, &sh->state);
4231
4232 set_bit(STRIPE_INSYNC, &sh->state);
4233 break;
4234 case check_state_run:
4235 case check_state_run_q:
4236 case check_state_run_pq:
4237 break; /* we will be called again upon completion */
4238 case check_state_check_result:
4239 sh->check_state = check_state_idle;
4240
4241 /* handle a successful check operation, if parity is correct
4242 * we are done. Otherwise update the mismatch count and repair
4243 * parity if !MD_RECOVERY_CHECK
4244 */
4245 if (sh->ops.zero_sum_result == 0) {
4246 /* both parities are correct */
4247 if (!s->failed)
4248 set_bit(STRIPE_INSYNC, &sh->state);
4249 else {
4250 /* in contrast to the raid5 case we can validate
4251 * parity, but still have a failure to write
4252 * back
4253 */
4254 sh->check_state = check_state_compute_result;
4255 /* Returning at this point means that we may go
4256 * off and bring p and/or q uptodate again so
4257 * we make sure to check zero_sum_result again
4258 * to verify if p or q need writeback
4259 */
4260 }
4261 } else {
4262 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4263 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4264 /* don't try to repair!! */
4265 set_bit(STRIPE_INSYNC, &sh->state);
4266 pr_warn_ratelimited("%s: mismatch sector in range "
4267 "%llu-%llu\n", mdname(conf->mddev),
4268 (unsigned long long) sh->sector,
4269 (unsigned long long) sh->sector +
4270 STRIPE_SECTORS);
4271 } else {
4272 int *target = &sh->ops.target;
4273
4274 sh->ops.target = -1;
4275 sh->ops.target2 = -1;
4276 sh->check_state = check_state_compute_run;
4277 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4278 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4279 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4280 set_bit(R5_Wantcompute,
4281 &sh->dev[pd_idx].flags);
4282 *target = pd_idx;
4283 target = &sh->ops.target2;
4284 s->uptodate++;
4285 }
4286 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4287 set_bit(R5_Wantcompute,
4288 &sh->dev[qd_idx].flags);
4289 *target = qd_idx;
4290 s->uptodate++;
4291 }
4292 }
4293 }
4294 break;
4295 case check_state_compute_run:
4296 break;
4297 default:
4298 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4299 __func__, sh->check_state,
4300 (unsigned long long) sh->sector);
4301 BUG();
4302 }
4303}
4304
4305static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4306{
4307 int i;
4308
4309 /* We have read all the blocks in this stripe and now we need to
4310 * copy some of them into a target stripe for expand.
4311 */
4312 struct dma_async_tx_descriptor *tx = NULL;
4313 BUG_ON(sh->batch_head);
4314 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4315 for (i = 0; i < sh->disks; i++)
4316 if (i != sh->pd_idx && i != sh->qd_idx) {
4317 int dd_idx, j;
4318 struct stripe_head *sh2;
4319 struct async_submit_ctl submit;
4320
4321 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4322 sector_t s = raid5_compute_sector(conf, bn, 0,
4323 &dd_idx, NULL);
4324 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4325 if (sh2 == NULL)
4326 /* so far only the early blocks of this stripe
4327 * have been requested. When later blocks
4328 * get requested, we will try again
4329 */
4330 continue;
4331 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4332 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4333 /* must have already done this block */
4334 raid5_release_stripe(sh2);
4335 continue;
4336 }
4337
4338 /* place all the copies on one channel */
4339 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4340 tx = async_memcpy(sh2->dev[dd_idx].page,
4341 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4342 &submit);
4343
4344 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4345 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4346 for (j = 0; j < conf->raid_disks; j++)
4347 if (j != sh2->pd_idx &&
4348 j != sh2->qd_idx &&
4349 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4350 break;
4351 if (j == conf->raid_disks) {
4352 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4353 set_bit(STRIPE_HANDLE, &sh2->state);
4354 }
4355 raid5_release_stripe(sh2);
4356
4357 }
4358 /* done submitting copies, wait for them to complete */
4359 async_tx_quiesce(&tx);
4360}
4361
4362/*
4363 * handle_stripe - do things to a stripe.
4364 *
4365 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4366 * state of various bits to see what needs to be done.
4367 * Possible results:
4368 * return some read requests which now have data
4369 * return some write requests which are safely on storage
4370 * schedule a read on some buffers
4371 * schedule a write of some buffers
4372 * return confirmation of parity correctness
4373 *
4374 */
4375
4376static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4377{
4378 struct r5conf *conf = sh->raid_conf;
4379 int disks = sh->disks;
4380 struct r5dev *dev;
4381 int i;
4382 int do_recovery = 0;
4383
4384 memset(s, 0, sizeof(*s));
4385
4386 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4387 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4388 s->failed_num[0] = -1;
4389 s->failed_num[1] = -1;
4390 s->log_failed = r5l_log_disk_error(conf);
4391
4392 /* Now to look around and see what can be done */
4393 rcu_read_lock();
4394 for (i=disks; i--; ) {
4395 struct md_rdev *rdev;
4396 sector_t first_bad;
4397 int bad_sectors;
4398 int is_bad = 0;
4399
4400 dev = &sh->dev[i];
4401
4402 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4403 i, dev->flags,
4404 dev->toread, dev->towrite, dev->written);
4405 /* maybe we can reply to a read
4406 *
4407 * new wantfill requests are only permitted while
4408 * ops_complete_biofill is guaranteed to be inactive
4409 */
4410 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4411 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4412 set_bit(R5_Wantfill, &dev->flags);
4413
4414 /* now count some things */
4415 if (test_bit(R5_LOCKED, &dev->flags))
4416 s->locked++;
4417 if (test_bit(R5_UPTODATE, &dev->flags))
4418 s->uptodate++;
4419 if (test_bit(R5_Wantcompute, &dev->flags)) {
4420 s->compute++;
4421 BUG_ON(s->compute > 2);
4422 }
4423
4424 if (test_bit(R5_Wantfill, &dev->flags))
4425 s->to_fill++;
4426 else if (dev->toread)
4427 s->to_read++;
4428 if (dev->towrite) {
4429 s->to_write++;
4430 if (!test_bit(R5_OVERWRITE, &dev->flags))
4431 s->non_overwrite++;
4432 }
4433 if (dev->written)
4434 s->written++;
4435 /* Prefer to use the replacement for reads, but only
4436 * if it is recovered enough and has no bad blocks.
4437 */
4438 rdev = rcu_dereference(conf->disks[i].replacement);
4439 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4440 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4441 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4442 &first_bad, &bad_sectors))
4443 set_bit(R5_ReadRepl, &dev->flags);
4444 else {
4445 if (rdev && !test_bit(Faulty, &rdev->flags))
4446 set_bit(R5_NeedReplace, &dev->flags);
4447 else
4448 clear_bit(R5_NeedReplace, &dev->flags);
4449 rdev = rcu_dereference(conf->disks[i].rdev);
4450 clear_bit(R5_ReadRepl, &dev->flags);
4451 }
4452 if (rdev && test_bit(Faulty, &rdev->flags))
4453 rdev = NULL;
4454 if (rdev) {
4455 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4456 &first_bad, &bad_sectors);
4457 if (s->blocked_rdev == NULL
4458 && (test_bit(Blocked, &rdev->flags)
4459 || is_bad < 0)) {
4460 if (is_bad < 0)
4461 set_bit(BlockedBadBlocks,
4462 &rdev->flags);
4463 s->blocked_rdev = rdev;
4464 atomic_inc(&rdev->nr_pending);
4465 }
4466 }
4467 clear_bit(R5_Insync, &dev->flags);
4468 if (!rdev)
4469 /* Not in-sync */;
4470 else if (is_bad) {
4471 /* also not in-sync */
4472 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4473 test_bit(R5_UPTODATE, &dev->flags)) {
4474 /* treat as in-sync, but with a read error
4475 * which we can now try to correct
4476 */
4477 set_bit(R5_Insync, &dev->flags);
4478 set_bit(R5_ReadError, &dev->flags);
4479 }
4480 } else if (test_bit(In_sync, &rdev->flags))
4481 set_bit(R5_Insync, &dev->flags);
4482 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4483 /* in sync if before recovery_offset */
4484 set_bit(R5_Insync, &dev->flags);
4485 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4486 test_bit(R5_Expanded, &dev->flags))
4487 /* If we've reshaped into here, we assume it is Insync.
4488 * We will shortly update recovery_offset to make
4489 * it official.
4490 */
4491 set_bit(R5_Insync, &dev->flags);
4492
4493 if (test_bit(R5_WriteError, &dev->flags)) {
4494 /* This flag does not apply to '.replacement'
4495 * only to .rdev, so make sure to check that*/
4496 struct md_rdev *rdev2 = rcu_dereference(
4497 conf->disks[i].rdev);
4498 if (rdev2 == rdev)
4499 clear_bit(R5_Insync, &dev->flags);
4500 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4501 s->handle_bad_blocks = 1;
4502 atomic_inc(&rdev2->nr_pending);
4503 } else
4504 clear_bit(R5_WriteError, &dev->flags);
4505 }
4506 if (test_bit(R5_MadeGood, &dev->flags)) {
4507 /* This flag does not apply to '.replacement'
4508 * only to .rdev, so make sure to check that*/
4509 struct md_rdev *rdev2 = rcu_dereference(
4510 conf->disks[i].rdev);
4511 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4512 s->handle_bad_blocks = 1;
4513 atomic_inc(&rdev2->nr_pending);
4514 } else
4515 clear_bit(R5_MadeGood, &dev->flags);
4516 }
4517 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4518 struct md_rdev *rdev2 = rcu_dereference(
4519 conf->disks[i].replacement);
4520 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4521 s->handle_bad_blocks = 1;
4522 atomic_inc(&rdev2->nr_pending);
4523 } else
4524 clear_bit(R5_MadeGoodRepl, &dev->flags);
4525 }
4526 if (!test_bit(R5_Insync, &dev->flags)) {
4527 /* The ReadError flag will just be confusing now */
4528 clear_bit(R5_ReadError, &dev->flags);
4529 clear_bit(R5_ReWrite, &dev->flags);
4530 }
4531 if (test_bit(R5_ReadError, &dev->flags))
4532 clear_bit(R5_Insync, &dev->flags);
4533 if (!test_bit(R5_Insync, &dev->flags)) {
4534 if (s->failed < 2)
4535 s->failed_num[s->failed] = i;
4536 s->failed++;
4537 if (rdev && !test_bit(Faulty, &rdev->flags))
4538 do_recovery = 1;
4539 else if (!rdev) {
4540 rdev = rcu_dereference(
4541 conf->disks[i].replacement);
4542 if (rdev && !test_bit(Faulty, &rdev->flags))
4543 do_recovery = 1;
4544 }
4545 }
4546
4547 if (test_bit(R5_InJournal, &dev->flags))
4548 s->injournal++;
4549 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4550 s->just_cached++;
4551 }
4552 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4553 /* If there is a failed device being replaced,
4554 * we must be recovering.
4555 * else if we are after recovery_cp, we must be syncing
4556 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4557 * else we can only be replacing
4558 * sync and recovery both need to read all devices, and so
4559 * use the same flag.
4560 */
4561 if (do_recovery ||
4562 sh->sector >= conf->mddev->recovery_cp ||
4563 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4564 s->syncing = 1;
4565 else
4566 s->replacing = 1;
4567 }
4568 rcu_read_unlock();
4569}
4570
4571static int clear_batch_ready(struct stripe_head *sh)
4572{
4573 /* Return '1' if this is a member of batch, or
4574 * '0' if it is a lone stripe or a head which can now be
4575 * handled.
4576 */
4577 struct stripe_head *tmp;
4578 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4579 return (sh->batch_head && sh->batch_head != sh);
4580 spin_lock(&sh->stripe_lock);
4581 if (!sh->batch_head) {
4582 spin_unlock(&sh->stripe_lock);
4583 return 0;
4584 }
4585
4586 /*
4587 * this stripe could be added to a batch list before we check
4588 * BATCH_READY, skips it
4589 */
4590 if (sh->batch_head != sh) {
4591 spin_unlock(&sh->stripe_lock);
4592 return 1;
4593 }
4594 spin_lock(&sh->batch_lock);
4595 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4596 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4597 spin_unlock(&sh->batch_lock);
4598 spin_unlock(&sh->stripe_lock);
4599
4600 /*
4601 * BATCH_READY is cleared, no new stripes can be added.
4602 * batch_list can be accessed without lock
4603 */
4604 return 0;
4605}
4606
4607static void break_stripe_batch_list(struct stripe_head *head_sh,
4608 unsigned long handle_flags)
4609{
4610 struct stripe_head *sh, *next;
4611 int i;
4612 int do_wakeup = 0;
4613
4614 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4615
4616 list_del_init(&sh->batch_list);
4617
4618 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4619 (1 << STRIPE_SYNCING) |
4620 (1 << STRIPE_REPLACED) |
4621 (1 << STRIPE_DELAYED) |
4622 (1 << STRIPE_BIT_DELAY) |
4623 (1 << STRIPE_FULL_WRITE) |
4624 (1 << STRIPE_BIOFILL_RUN) |
4625 (1 << STRIPE_COMPUTE_RUN) |
4626 (1 << STRIPE_DISCARD) |
4627 (1 << STRIPE_BATCH_READY) |
4628 (1 << STRIPE_BATCH_ERR) |
4629 (1 << STRIPE_BITMAP_PENDING)),
4630 "stripe state: %lx\n", sh->state);
4631 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4632 (1 << STRIPE_REPLACED)),
4633 "head stripe state: %lx\n", head_sh->state);
4634
4635 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4636 (1 << STRIPE_PREREAD_ACTIVE) |
4637 (1 << STRIPE_DEGRADED) |
4638 (1 << STRIPE_ON_UNPLUG_LIST)),
4639 head_sh->state & (1 << STRIPE_INSYNC));
4640
4641 sh->check_state = head_sh->check_state;
4642 sh->reconstruct_state = head_sh->reconstruct_state;
4643 spin_lock_irq(&sh->stripe_lock);
4644 sh->batch_head = NULL;
4645 spin_unlock_irq(&sh->stripe_lock);
4646 for (i = 0; i < sh->disks; i++) {
4647 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4648 do_wakeup = 1;
4649 sh->dev[i].flags = head_sh->dev[i].flags &
4650 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4651 }
4652 if (handle_flags == 0 ||
4653 sh->state & handle_flags)
4654 set_bit(STRIPE_HANDLE, &sh->state);
4655 raid5_release_stripe(sh);
4656 }
4657 spin_lock_irq(&head_sh->stripe_lock);
4658 head_sh->batch_head = NULL;
4659 spin_unlock_irq(&head_sh->stripe_lock);
4660 for (i = 0; i < head_sh->disks; i++)
4661 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4662 do_wakeup = 1;
4663 if (head_sh->state & handle_flags)
4664 set_bit(STRIPE_HANDLE, &head_sh->state);
4665
4666 if (do_wakeup)
4667 wake_up(&head_sh->raid_conf->wait_for_overlap);
4668}
4669
4670static void handle_stripe(struct stripe_head *sh)
4671{
4672 struct stripe_head_state s;
4673 struct r5conf *conf = sh->raid_conf;
4674 int i;
4675 int prexor;
4676 int disks = sh->disks;
4677 struct r5dev *pdev, *qdev;
4678
4679 clear_bit(STRIPE_HANDLE, &sh->state);
4680 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4681 /* already being handled, ensure it gets handled
4682 * again when current action finishes */
4683 set_bit(STRIPE_HANDLE, &sh->state);
4684 return;
4685 }
4686
4687 if (clear_batch_ready(sh) ) {
4688 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4689 return;
4690 }
4691
4692 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4693 break_stripe_batch_list(sh, 0);
4694
4695 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4696 spin_lock(&sh->stripe_lock);
4697 /*
4698 * Cannot process 'sync' concurrently with 'discard'.
4699 * Flush data in r5cache before 'sync'.
4700 */
4701 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4702 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4703 !test_bit(STRIPE_DISCARD, &sh->state) &&
4704 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4705 set_bit(STRIPE_SYNCING, &sh->state);
4706 clear_bit(STRIPE_INSYNC, &sh->state);
4707 clear_bit(STRIPE_REPLACED, &sh->state);
4708 }
4709 spin_unlock(&sh->stripe_lock);
4710 }
4711 clear_bit(STRIPE_DELAYED, &sh->state);
4712
4713 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4714 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4715 (unsigned long long)sh->sector, sh->state,
4716 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4717 sh->check_state, sh->reconstruct_state);
4718
4719 analyse_stripe(sh, &s);
4720
4721 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4722 goto finish;
4723
4724 if (s.handle_bad_blocks ||
4725 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4726 set_bit(STRIPE_HANDLE, &sh->state);
4727 goto finish;
4728 }
4729
4730 if (unlikely(s.blocked_rdev)) {
4731 if (s.syncing || s.expanding || s.expanded ||
4732 s.replacing || s.to_write || s.written) {
4733 set_bit(STRIPE_HANDLE, &sh->state);
4734 goto finish;
4735 }
4736 /* There is nothing for the blocked_rdev to block */
4737 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4738 s.blocked_rdev = NULL;
4739 }
4740
4741 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4742 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4743 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4744 }
4745
4746 pr_debug("locked=%d uptodate=%d to_read=%d"
4747 " to_write=%d failed=%d failed_num=%d,%d\n",
4748 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4749 s.failed_num[0], s.failed_num[1]);
4750 /*
4751 * check if the array has lost more than max_degraded devices and,
4752 * if so, some requests might need to be failed.
4753 *
4754 * When journal device failed (log_failed), we will only process
4755 * the stripe if there is data need write to raid disks
4756 */
4757 if (s.failed > conf->max_degraded ||
4758 (s.log_failed && s.injournal == 0)) {
4759 sh->check_state = 0;
4760 sh->reconstruct_state = 0;
4761 break_stripe_batch_list(sh, 0);
4762 if (s.to_read+s.to_write+s.written)
4763 handle_failed_stripe(conf, sh, &s, disks);
4764 if (s.syncing + s.replacing)
4765 handle_failed_sync(conf, sh, &s);
4766 }
4767
4768 /* Now we check to see if any write operations have recently
4769 * completed
4770 */
4771 prexor = 0;
4772 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4773 prexor = 1;
4774 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4775 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4776 sh->reconstruct_state = reconstruct_state_idle;
4777
4778 /* All the 'written' buffers and the parity block are ready to
4779 * be written back to disk
4780 */
4781 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4782 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4783 BUG_ON(sh->qd_idx >= 0 &&
4784 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4785 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4786 for (i = disks; i--; ) {
4787 struct r5dev *dev = &sh->dev[i];
4788 if (test_bit(R5_LOCKED, &dev->flags) &&
4789 (i == sh->pd_idx || i == sh->qd_idx ||
4790 dev->written || test_bit(R5_InJournal,
4791 &dev->flags))) {
4792 pr_debug("Writing block %d\n", i);
4793 set_bit(R5_Wantwrite, &dev->flags);
4794 if (prexor)
4795 continue;
4796 if (s.failed > 1)
4797 continue;
4798 if (!test_bit(R5_Insync, &dev->flags) ||
4799 ((i == sh->pd_idx || i == sh->qd_idx) &&
4800 s.failed == 0))
4801 set_bit(STRIPE_INSYNC, &sh->state);
4802 }
4803 }
4804 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4805 s.dec_preread_active = 1;
4806 }
4807
4808 /*
4809 * might be able to return some write requests if the parity blocks
4810 * are safe, or on a failed drive
4811 */
4812 pdev = &sh->dev[sh->pd_idx];
4813 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4814 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4815 qdev = &sh->dev[sh->qd_idx];
4816 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4817 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4818 || conf->level < 6;
4819
4820 if (s.written &&
4821 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4822 && !test_bit(R5_LOCKED, &pdev->flags)
4823 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4824 test_bit(R5_Discard, &pdev->flags))))) &&
4825 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4826 && !test_bit(R5_LOCKED, &qdev->flags)
4827 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4828 test_bit(R5_Discard, &qdev->flags))))))
4829 handle_stripe_clean_event(conf, sh, disks);
4830
4831 if (s.just_cached)
4832 r5c_handle_cached_data_endio(conf, sh, disks);
4833 log_stripe_write_finished(sh);
4834
4835 /* Now we might consider reading some blocks, either to check/generate
4836 * parity, or to satisfy requests
4837 * or to load a block that is being partially written.
4838 */
4839 if (s.to_read || s.non_overwrite
4840 || (s.to_write && s.failed)
4841 || (s.syncing && (s.uptodate + s.compute < disks))
4842 || s.replacing
4843 || s.expanding)
4844 handle_stripe_fill(sh, &s, disks);
4845
4846 /*
4847 * When the stripe finishes full journal write cycle (write to journal
4848 * and raid disk), this is the clean up procedure so it is ready for
4849 * next operation.
4850 */
4851 r5c_finish_stripe_write_out(conf, sh, &s);
4852
4853 /*
4854 * Now to consider new write requests, cache write back and what else,
4855 * if anything should be read. We do not handle new writes when:
4856 * 1/ A 'write' operation (copy+xor) is already in flight.
4857 * 2/ A 'check' operation is in flight, as it may clobber the parity
4858 * block.
4859 * 3/ A r5c cache log write is in flight.
4860 */
4861
4862 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4863 if (!r5c_is_writeback(conf->log)) {
4864 if (s.to_write)
4865 handle_stripe_dirtying(conf, sh, &s, disks);
4866 } else { /* write back cache */
4867 int ret = 0;
4868
4869 /* First, try handle writes in caching phase */
4870 if (s.to_write)
4871 ret = r5c_try_caching_write(conf, sh, &s,
4872 disks);
4873 /*
4874 * If caching phase failed: ret == -EAGAIN
4875 * OR
4876 * stripe under reclaim: !caching && injournal
4877 *
4878 * fall back to handle_stripe_dirtying()
4879 */
4880 if (ret == -EAGAIN ||
4881 /* stripe under reclaim: !caching && injournal */
4882 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4883 s.injournal > 0)) {
4884 ret = handle_stripe_dirtying(conf, sh, &s,
4885 disks);
4886 if (ret == -EAGAIN)
4887 goto finish;
4888 }
4889 }
4890 }
4891
4892 /* maybe we need to check and possibly fix the parity for this stripe
4893 * Any reads will already have been scheduled, so we just see if enough
4894 * data is available. The parity check is held off while parity
4895 * dependent operations are in flight.
4896 */
4897 if (sh->check_state ||
4898 (s.syncing && s.locked == 0 &&
4899 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4900 !test_bit(STRIPE_INSYNC, &sh->state))) {
4901 if (conf->level == 6)
4902 handle_parity_checks6(conf, sh, &s, disks);
4903 else
4904 handle_parity_checks5(conf, sh, &s, disks);
4905 }
4906
4907 if ((s.replacing || s.syncing) && s.locked == 0
4908 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4909 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4910 /* Write out to replacement devices where possible */
4911 for (i = 0; i < conf->raid_disks; i++)
4912 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4913 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4914 set_bit(R5_WantReplace, &sh->dev[i].flags);
4915 set_bit(R5_LOCKED, &sh->dev[i].flags);
4916 s.locked++;
4917 }
4918 if (s.replacing)
4919 set_bit(STRIPE_INSYNC, &sh->state);
4920 set_bit(STRIPE_REPLACED, &sh->state);
4921 }
4922 if ((s.syncing || s.replacing) && s.locked == 0 &&
4923 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4924 test_bit(STRIPE_INSYNC, &sh->state)) {
4925 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4926 clear_bit(STRIPE_SYNCING, &sh->state);
4927 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4928 wake_up(&conf->wait_for_overlap);
4929 }
4930
4931 /* If the failed drives are just a ReadError, then we might need
4932 * to progress the repair/check process
4933 */
4934 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4935 for (i = 0; i < s.failed; i++) {
4936 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4937 if (test_bit(R5_ReadError, &dev->flags)
4938 && !test_bit(R5_LOCKED, &dev->flags)
4939 && test_bit(R5_UPTODATE, &dev->flags)
4940 ) {
4941 if (!test_bit(R5_ReWrite, &dev->flags)) {
4942 set_bit(R5_Wantwrite, &dev->flags);
4943 set_bit(R5_ReWrite, &dev->flags);
4944 set_bit(R5_LOCKED, &dev->flags);
4945 s.locked++;
4946 } else {
4947 /* let's read it back */
4948 set_bit(R5_Wantread, &dev->flags);
4949 set_bit(R5_LOCKED, &dev->flags);
4950 s.locked++;
4951 }
4952 }
4953 }
4954
4955 /* Finish reconstruct operations initiated by the expansion process */
4956 if (sh->reconstruct_state == reconstruct_state_result) {
4957 struct stripe_head *sh_src
4958 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4959 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4960 /* sh cannot be written until sh_src has been read.
4961 * so arrange for sh to be delayed a little
4962 */
4963 set_bit(STRIPE_DELAYED, &sh->state);
4964 set_bit(STRIPE_HANDLE, &sh->state);
4965 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4966 &sh_src->state))
4967 atomic_inc(&conf->preread_active_stripes);
4968 raid5_release_stripe(sh_src);
4969 goto finish;
4970 }
4971 if (sh_src)
4972 raid5_release_stripe(sh_src);
4973
4974 sh->reconstruct_state = reconstruct_state_idle;
4975 clear_bit(STRIPE_EXPANDING, &sh->state);
4976 for (i = conf->raid_disks; i--; ) {
4977 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4978 set_bit(R5_LOCKED, &sh->dev[i].flags);
4979 s.locked++;
4980 }
4981 }
4982
4983 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4984 !sh->reconstruct_state) {
4985 /* Need to write out all blocks after computing parity */
4986 sh->disks = conf->raid_disks;
4987 stripe_set_idx(sh->sector, conf, 0, sh);
4988 schedule_reconstruction(sh, &s, 1, 1);
4989 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4990 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4991 atomic_dec(&conf->reshape_stripes);
4992 wake_up(&conf->wait_for_overlap);
4993 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4994 }
4995
4996 if (s.expanding && s.locked == 0 &&
4997 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4998 handle_stripe_expansion(conf, sh);
4999
5000finish:
5001 /* wait for this device to become unblocked */
5002 if (unlikely(s.blocked_rdev)) {
5003 if (conf->mddev->external)
5004 md_wait_for_blocked_rdev(s.blocked_rdev,
5005 conf->mddev);
5006 else
5007 /* Internal metadata will immediately
5008 * be written by raid5d, so we don't
5009 * need to wait here.
5010 */
5011 rdev_dec_pending(s.blocked_rdev,
5012 conf->mddev);
5013 }
5014
5015 if (s.handle_bad_blocks)
5016 for (i = disks; i--; ) {
5017 struct md_rdev *rdev;
5018 struct r5dev *dev = &sh->dev[i];
5019 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5020 /* We own a safe reference to the rdev */
5021 rdev = conf->disks[i].rdev;
5022 if (!rdev_set_badblocks(rdev, sh->sector,
5023 STRIPE_SECTORS, 0))
5024 md_error(conf->mddev, rdev);
5025 rdev_dec_pending(rdev, conf->mddev);
5026 }
5027 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5028 rdev = conf->disks[i].rdev;
5029 rdev_clear_badblocks(rdev, sh->sector,
5030 STRIPE_SECTORS, 0);
5031 rdev_dec_pending(rdev, conf->mddev);
5032 }
5033 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5034 rdev = conf->disks[i].replacement;
5035 if (!rdev)
5036 /* rdev have been moved down */
5037 rdev = conf->disks[i].rdev;
5038 rdev_clear_badblocks(rdev, sh->sector,
5039 STRIPE_SECTORS, 0);
5040 rdev_dec_pending(rdev, conf->mddev);
5041 }
5042 }
5043
5044 if (s.ops_request)
5045 raid_run_ops(sh, s.ops_request);
5046
5047 ops_run_io(sh, &s);
5048
5049 if (s.dec_preread_active) {
5050 /* We delay this until after ops_run_io so that if make_request
5051 * is waiting on a flush, it won't continue until the writes
5052 * have actually been submitted.
5053 */
5054 atomic_dec(&conf->preread_active_stripes);
5055 if (atomic_read(&conf->preread_active_stripes) <
5056 IO_THRESHOLD)
5057 md_wakeup_thread(conf->mddev->thread);
5058 }
5059
5060 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5061}
5062
5063static void raid5_activate_delayed(struct r5conf *conf)
5064{
5065 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5066 while (!list_empty(&conf->delayed_list)) {
5067 struct list_head *l = conf->delayed_list.next;
5068 struct stripe_head *sh;
5069 sh = list_entry(l, struct stripe_head, lru);
5070 list_del_init(l);
5071 clear_bit(STRIPE_DELAYED, &sh->state);
5072 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5073 atomic_inc(&conf->preread_active_stripes);
5074 list_add_tail(&sh->lru, &conf->hold_list);
5075 raid5_wakeup_stripe_thread(sh);
5076 }
5077 }
5078}
5079
5080static void activate_bit_delay(struct r5conf *conf,
5081 struct list_head *temp_inactive_list)
5082{
5083 /* device_lock is held */
5084 struct list_head head;
5085 list_add(&head, &conf->bitmap_list);
5086 list_del_init(&conf->bitmap_list);
5087 while (!list_empty(&head)) {
5088 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5089 int hash;
5090 list_del_init(&sh->lru);
5091 atomic_inc(&sh->count);
5092 hash = sh->hash_lock_index;
5093 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5094 }
5095}
5096
5097static int raid5_congested(struct mddev *mddev, int bits)
5098{
5099 struct r5conf *conf = mddev->private;
5100
5101 /* No difference between reads and writes. Just check
5102 * how busy the stripe_cache is
5103 */
5104
5105 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5106 return 1;
5107
5108 /* Also checks whether there is pressure on r5cache log space */
5109 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5110 return 1;
5111 if (conf->quiesce)
5112 return 1;
5113 if (atomic_read(&conf->empty_inactive_list_nr))
5114 return 1;
5115
5116 return 0;
5117}
5118
5119static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5120{
5121 struct r5conf *conf = mddev->private;
5122 sector_t sector = bio->bi_iter.bi_sector;
5123 unsigned int chunk_sectors;
5124 unsigned int bio_sectors = bio_sectors(bio);
5125
5126 WARN_ON_ONCE(bio->bi_partno);
5127
5128 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5129 return chunk_sectors >=
5130 ((sector & (chunk_sectors - 1)) + bio_sectors);
5131}
5132
5133/*
5134 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5135 * later sampled by raid5d.
5136 */
5137static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5138{
5139 unsigned long flags;
5140
5141 spin_lock_irqsave(&conf->device_lock, flags);
5142
5143 bi->bi_next = conf->retry_read_aligned_list;
5144 conf->retry_read_aligned_list = bi;
5145
5146 spin_unlock_irqrestore(&conf->device_lock, flags);
5147 md_wakeup_thread(conf->mddev->thread);
5148}
5149
5150static struct bio *remove_bio_from_retry(struct r5conf *conf,
5151 unsigned int *offset)
5152{
5153 struct bio *bi;
5154
5155 bi = conf->retry_read_aligned;
5156 if (bi) {
5157 *offset = conf->retry_read_offset;
5158 conf->retry_read_aligned = NULL;
5159 return bi;
5160 }
5161 bi = conf->retry_read_aligned_list;
5162 if(bi) {
5163 conf->retry_read_aligned_list = bi->bi_next;
5164 bi->bi_next = NULL;
5165 *offset = 0;
5166 }
5167
5168 return bi;
5169}
5170
5171/*
5172 * The "raid5_align_endio" should check if the read succeeded and if it
5173 * did, call bio_endio on the original bio (having bio_put the new bio
5174 * first).
5175 * If the read failed..
5176 */
5177static void raid5_align_endio(struct bio *bi)
5178{
5179 struct bio* raid_bi = bi->bi_private;
5180 struct mddev *mddev;
5181 struct r5conf *conf;
5182 struct md_rdev *rdev;
5183 blk_status_t error = bi->bi_status;
5184
5185 bio_put(bi);
5186
5187 rdev = (void*)raid_bi->bi_next;
5188 raid_bi->bi_next = NULL;
5189 mddev = rdev->mddev;
5190 conf = mddev->private;
5191
5192 rdev_dec_pending(rdev, conf->mddev);
5193
5194 if (!error) {
5195 bio_endio(raid_bi);
5196 if (atomic_dec_and_test(&conf->active_aligned_reads))
5197 wake_up(&conf->wait_for_quiescent);
5198 return;
5199 }
5200
5201 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5202
5203 add_bio_to_retry(raid_bi, conf);
5204}
5205
5206static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5207{
5208 struct r5conf *conf = mddev->private;
5209 int dd_idx;
5210 struct bio* align_bi;
5211 struct md_rdev *rdev;
5212 sector_t end_sector;
5213
5214 if (!in_chunk_boundary(mddev, raid_bio)) {
5215 pr_debug("%s: non aligned\n", __func__);
5216 return 0;
5217 }
5218 /*
5219 * use bio_clone_fast to make a copy of the bio
5220 */
5221 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5222 if (!align_bi)
5223 return 0;
5224 /*
5225 * set bi_end_io to a new function, and set bi_private to the
5226 * original bio.
5227 */
5228 align_bi->bi_end_io = raid5_align_endio;
5229 align_bi->bi_private = raid_bio;
5230 /*
5231 * compute position
5232 */
5233 align_bi->bi_iter.bi_sector =
5234 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5235 0, &dd_idx, NULL);
5236
5237 end_sector = bio_end_sector(align_bi);
5238 rcu_read_lock();
5239 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5240 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5241 rdev->recovery_offset < end_sector) {
5242 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5243 if (rdev &&
5244 (test_bit(Faulty, &rdev->flags) ||
5245 !(test_bit(In_sync, &rdev->flags) ||
5246 rdev->recovery_offset >= end_sector)))
5247 rdev = NULL;
5248 }
5249
5250 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5251 rcu_read_unlock();
5252 bio_put(align_bi);
5253 return 0;
5254 }
5255
5256 if (rdev) {
5257 sector_t first_bad;
5258 int bad_sectors;
5259
5260 atomic_inc(&rdev->nr_pending);
5261 rcu_read_unlock();
5262 raid_bio->bi_next = (void*)rdev;
5263 bio_set_dev(align_bi, rdev->bdev);
5264
5265 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5266 bio_sectors(align_bi),
5267 &first_bad, &bad_sectors)) {
5268 bio_put(align_bi);
5269 rdev_dec_pending(rdev, mddev);
5270 return 0;
5271 }
5272
5273 /* No reshape active, so we can trust rdev->data_offset */
5274 align_bi->bi_iter.bi_sector += rdev->data_offset;
5275
5276 spin_lock_irq(&conf->device_lock);
5277 wait_event_lock_irq(conf->wait_for_quiescent,
5278 conf->quiesce == 0,
5279 conf->device_lock);
5280 atomic_inc(&conf->active_aligned_reads);
5281 spin_unlock_irq(&conf->device_lock);
5282
5283 if (mddev->gendisk)
5284 trace_block_bio_remap(align_bi->bi_disk->queue,
5285 align_bi, disk_devt(mddev->gendisk),
5286 raid_bio->bi_iter.bi_sector);
5287 generic_make_request(align_bi);
5288 return 1;
5289 } else {
5290 rcu_read_unlock();
5291 bio_put(align_bi);
5292 return 0;
5293 }
5294}
5295
5296static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5297{
5298 struct bio *split;
5299 sector_t sector = raid_bio->bi_iter.bi_sector;
5300 unsigned chunk_sects = mddev->chunk_sectors;
5301 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5302
5303 if (sectors < bio_sectors(raid_bio)) {
5304 struct r5conf *conf = mddev->private;
5305 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5306 bio_chain(split, raid_bio);
5307 generic_make_request(raid_bio);
5308 raid_bio = split;
5309 }
5310
5311 if (!raid5_read_one_chunk(mddev, raid_bio))
5312 return raid_bio;
5313
5314 return NULL;
5315}
5316
5317/* __get_priority_stripe - get the next stripe to process
5318 *
5319 * Full stripe writes are allowed to pass preread active stripes up until
5320 * the bypass_threshold is exceeded. In general the bypass_count
5321 * increments when the handle_list is handled before the hold_list; however, it
5322 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5323 * stripe with in flight i/o. The bypass_count will be reset when the
5324 * head of the hold_list has changed, i.e. the head was promoted to the
5325 * handle_list.
5326 */
5327static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5328{
5329 struct stripe_head *sh, *tmp;
5330 struct list_head *handle_list = NULL;
5331 struct r5worker_group *wg;
5332 bool second_try = !r5c_is_writeback(conf->log) &&
5333 !r5l_log_disk_error(conf);
5334 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5335 r5l_log_disk_error(conf);
5336
5337again:
5338 wg = NULL;
5339 sh = NULL;
5340 if (conf->worker_cnt_per_group == 0) {
5341 handle_list = try_loprio ? &conf->loprio_list :
5342 &conf->handle_list;
5343 } else if (group != ANY_GROUP) {
5344 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5345 &conf->worker_groups[group].handle_list;
5346 wg = &conf->worker_groups[group];
5347 } else {
5348 int i;
5349 for (i = 0; i < conf->group_cnt; i++) {
5350 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5351 &conf->worker_groups[i].handle_list;
5352 wg = &conf->worker_groups[i];
5353 if (!list_empty(handle_list))
5354 break;
5355 }
5356 }
5357
5358 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5359 __func__,
5360 list_empty(handle_list) ? "empty" : "busy",
5361 list_empty(&conf->hold_list) ? "empty" : "busy",
5362 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5363
5364 if (!list_empty(handle_list)) {
5365 sh = list_entry(handle_list->next, typeof(*sh), lru);
5366
5367 if (list_empty(&conf->hold_list))
5368 conf->bypass_count = 0;
5369 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5370 if (conf->hold_list.next == conf->last_hold)
5371 conf->bypass_count++;
5372 else {
5373 conf->last_hold = conf->hold_list.next;
5374 conf->bypass_count -= conf->bypass_threshold;
5375 if (conf->bypass_count < 0)
5376 conf->bypass_count = 0;
5377 }
5378 }
5379 } else if (!list_empty(&conf->hold_list) &&
5380 ((conf->bypass_threshold &&
5381 conf->bypass_count > conf->bypass_threshold) ||
5382 atomic_read(&conf->pending_full_writes) == 0)) {
5383
5384 list_for_each_entry(tmp, &conf->hold_list, lru) {
5385 if (conf->worker_cnt_per_group == 0 ||
5386 group == ANY_GROUP ||
5387 !cpu_online(tmp->cpu) ||
5388 cpu_to_group(tmp->cpu) == group) {
5389 sh = tmp;
5390 break;
5391 }
5392 }
5393
5394 if (sh) {
5395 conf->bypass_count -= conf->bypass_threshold;
5396 if (conf->bypass_count < 0)
5397 conf->bypass_count = 0;
5398 }
5399 wg = NULL;
5400 }
5401
5402 if (!sh) {
5403 if (second_try)
5404 return NULL;
5405 second_try = true;
5406 try_loprio = !try_loprio;
5407 goto again;
5408 }
5409
5410 if (wg) {
5411 wg->stripes_cnt--;
5412 sh->group = NULL;
5413 }
5414 list_del_init(&sh->lru);
5415 BUG_ON(atomic_inc_return(&sh->count) != 1);
5416 return sh;
5417}
5418
5419struct raid5_plug_cb {
5420 struct blk_plug_cb cb;
5421 struct list_head list;
5422 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5423};
5424
5425static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5426{
5427 struct raid5_plug_cb *cb = container_of(
5428 blk_cb, struct raid5_plug_cb, cb);
5429 struct stripe_head *sh;
5430 struct mddev *mddev = cb->cb.data;
5431 struct r5conf *conf = mddev->private;
5432 int cnt = 0;
5433 int hash;
5434
5435 if (cb->list.next && !list_empty(&cb->list)) {
5436 spin_lock_irq(&conf->device_lock);
5437 while (!list_empty(&cb->list)) {
5438 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5439 list_del_init(&sh->lru);
5440 /*
5441 * avoid race release_stripe_plug() sees
5442 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5443 * is still in our list
5444 */
5445 smp_mb__before_atomic();
5446 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5447 /*
5448 * STRIPE_ON_RELEASE_LIST could be set here. In that
5449 * case, the count is always > 1 here
5450 */
5451 hash = sh->hash_lock_index;
5452 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5453 cnt++;
5454 }
5455 spin_unlock_irq(&conf->device_lock);
5456 }
5457 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5458 NR_STRIPE_HASH_LOCKS);
5459 if (mddev->queue)
5460 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5461 kfree(cb);
5462}
5463
5464static void release_stripe_plug(struct mddev *mddev,
5465 struct stripe_head *sh)
5466{
5467 struct blk_plug_cb *blk_cb = blk_check_plugged(
5468 raid5_unplug, mddev,
5469 sizeof(struct raid5_plug_cb));
5470 struct raid5_plug_cb *cb;
5471
5472 if (!blk_cb) {
5473 raid5_release_stripe(sh);
5474 return;
5475 }
5476
5477 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5478
5479 if (cb->list.next == NULL) {
5480 int i;
5481 INIT_LIST_HEAD(&cb->list);
5482 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5483 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5484 }
5485
5486 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5487 list_add_tail(&sh->lru, &cb->list);
5488 else
5489 raid5_release_stripe(sh);
5490}
5491
5492static void make_discard_request(struct mddev *mddev, struct bio *bi)
5493{
5494 struct r5conf *conf = mddev->private;
5495 sector_t logical_sector, last_sector;
5496 struct stripe_head *sh;
5497 int stripe_sectors;
5498
5499 if (mddev->reshape_position != MaxSector)
5500 /* Skip discard while reshape is happening */
5501 return;
5502
5503 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5504 last_sector = bio_end_sector(bi);
5505
5506 bi->bi_next = NULL;
5507
5508 stripe_sectors = conf->chunk_sectors *
5509 (conf->raid_disks - conf->max_degraded);
5510 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5511 stripe_sectors);
5512 sector_div(last_sector, stripe_sectors);
5513
5514 logical_sector *= conf->chunk_sectors;
5515 last_sector *= conf->chunk_sectors;
5516
5517 for (; logical_sector < last_sector;
5518 logical_sector += STRIPE_SECTORS) {
5519 DEFINE_WAIT(w);
5520 int d;
5521 again:
5522 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5523 prepare_to_wait(&conf->wait_for_overlap, &w,
5524 TASK_UNINTERRUPTIBLE);
5525 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5526 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5527 raid5_release_stripe(sh);
5528 schedule();
5529 goto again;
5530 }
5531 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5532 spin_lock_irq(&sh->stripe_lock);
5533 for (d = 0; d < conf->raid_disks; d++) {
5534 if (d == sh->pd_idx || d == sh->qd_idx)
5535 continue;
5536 if (sh->dev[d].towrite || sh->dev[d].toread) {
5537 set_bit(R5_Overlap, &sh->dev[d].flags);
5538 spin_unlock_irq(&sh->stripe_lock);
5539 raid5_release_stripe(sh);
5540 schedule();
5541 goto again;
5542 }
5543 }
5544 set_bit(STRIPE_DISCARD, &sh->state);
5545 finish_wait(&conf->wait_for_overlap, &w);
5546 sh->overwrite_disks = 0;
5547 for (d = 0; d < conf->raid_disks; d++) {
5548 if (d == sh->pd_idx || d == sh->qd_idx)
5549 continue;
5550 sh->dev[d].towrite = bi;
5551 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5552 bio_inc_remaining(bi);
5553 md_write_inc(mddev, bi);
5554 sh->overwrite_disks++;
5555 }
5556 spin_unlock_irq(&sh->stripe_lock);
5557 if (conf->mddev->bitmap) {
5558 for (d = 0;
5559 d < conf->raid_disks - conf->max_degraded;
5560 d++)
5561 md_bitmap_startwrite(mddev->bitmap,
5562 sh->sector,
5563 STRIPE_SECTORS,
5564 0);
5565 sh->bm_seq = conf->seq_flush + 1;
5566 set_bit(STRIPE_BIT_DELAY, &sh->state);
5567 }
5568
5569 set_bit(STRIPE_HANDLE, &sh->state);
5570 clear_bit(STRIPE_DELAYED, &sh->state);
5571 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5572 atomic_inc(&conf->preread_active_stripes);
5573 release_stripe_plug(mddev, sh);
5574 }
5575
5576 bio_endio(bi);
5577}
5578
5579static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5580{
5581 struct r5conf *conf = mddev->private;
5582 int dd_idx;
5583 sector_t new_sector;
5584 sector_t logical_sector, last_sector;
5585 struct stripe_head *sh;
5586 const int rw = bio_data_dir(bi);
5587 DEFINE_WAIT(w);
5588 bool do_prepare;
5589 bool do_flush = false;
5590
5591 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5592 int ret = log_handle_flush_request(conf, bi);
5593
5594 if (ret == 0)
5595 return true;
5596 if (ret == -ENODEV) {
5597 if (md_flush_request(mddev, bi))
5598 return true;
5599 }
5600 /* ret == -EAGAIN, fallback */
5601 /*
5602 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5603 * we need to flush journal device
5604 */
5605 do_flush = bi->bi_opf & REQ_PREFLUSH;
5606 }
5607
5608 if (!md_write_start(mddev, bi))
5609 return false;
5610 /*
5611 * If array is degraded, better not do chunk aligned read because
5612 * later we might have to read it again in order to reconstruct
5613 * data on failed drives.
5614 */
5615 if (rw == READ && mddev->degraded == 0 &&
5616 mddev->reshape_position == MaxSector) {
5617 bi = chunk_aligned_read(mddev, bi);
5618 if (!bi)
5619 return true;
5620 }
5621
5622 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5623 make_discard_request(mddev, bi);
5624 md_write_end(mddev);
5625 return true;
5626 }
5627
5628 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5629 last_sector = bio_end_sector(bi);
5630 bi->bi_next = NULL;
5631
5632 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5633 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5634 int previous;
5635 int seq;
5636
5637 do_prepare = false;
5638 retry:
5639 seq = read_seqcount_begin(&conf->gen_lock);
5640 previous = 0;
5641 if (do_prepare)
5642 prepare_to_wait(&conf->wait_for_overlap, &w,
5643 TASK_UNINTERRUPTIBLE);
5644 if (unlikely(conf->reshape_progress != MaxSector)) {
5645 /* spinlock is needed as reshape_progress may be
5646 * 64bit on a 32bit platform, and so it might be
5647 * possible to see a half-updated value
5648 * Of course reshape_progress could change after
5649 * the lock is dropped, so once we get a reference
5650 * to the stripe that we think it is, we will have
5651 * to check again.
5652 */
5653 spin_lock_irq(&conf->device_lock);
5654 if (mddev->reshape_backwards
5655 ? logical_sector < conf->reshape_progress
5656 : logical_sector >= conf->reshape_progress) {
5657 previous = 1;
5658 } else {
5659 if (mddev->reshape_backwards
5660 ? logical_sector < conf->reshape_safe
5661 : logical_sector >= conf->reshape_safe) {
5662 spin_unlock_irq(&conf->device_lock);
5663 schedule();
5664 do_prepare = true;
5665 goto retry;
5666 }
5667 }
5668 spin_unlock_irq(&conf->device_lock);
5669 }
5670
5671 new_sector = raid5_compute_sector(conf, logical_sector,
5672 previous,
5673 &dd_idx, NULL);
5674 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5675 (unsigned long long)new_sector,
5676 (unsigned long long)logical_sector);
5677
5678 sh = raid5_get_active_stripe(conf, new_sector, previous,
5679 (bi->bi_opf & REQ_RAHEAD), 0);
5680 if (sh) {
5681 if (unlikely(previous)) {
5682 /* expansion might have moved on while waiting for a
5683 * stripe, so we must do the range check again.
5684 * Expansion could still move past after this
5685 * test, but as we are holding a reference to
5686 * 'sh', we know that if that happens,
5687 * STRIPE_EXPANDING will get set and the expansion
5688 * won't proceed until we finish with the stripe.
5689 */
5690 int must_retry = 0;
5691 spin_lock_irq(&conf->device_lock);
5692 if (mddev->reshape_backwards
5693 ? logical_sector >= conf->reshape_progress
5694 : logical_sector < conf->reshape_progress)
5695 /* mismatch, need to try again */
5696 must_retry = 1;
5697 spin_unlock_irq(&conf->device_lock);
5698 if (must_retry) {
5699 raid5_release_stripe(sh);
5700 schedule();
5701 do_prepare = true;
5702 goto retry;
5703 }
5704 }
5705 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5706 /* Might have got the wrong stripe_head
5707 * by accident
5708 */
5709 raid5_release_stripe(sh);
5710 goto retry;
5711 }
5712
5713 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5714 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5715 /* Stripe is busy expanding or
5716 * add failed due to overlap. Flush everything
5717 * and wait a while
5718 */
5719 md_wakeup_thread(mddev->thread);
5720 raid5_release_stripe(sh);
5721 schedule();
5722 do_prepare = true;
5723 goto retry;
5724 }
5725 if (do_flush) {
5726 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5727 /* we only need flush for one stripe */
5728 do_flush = false;
5729 }
5730
5731 if (!sh->batch_head || sh == sh->batch_head)
5732 set_bit(STRIPE_HANDLE, &sh->state);
5733 clear_bit(STRIPE_DELAYED, &sh->state);
5734 if ((!sh->batch_head || sh == sh->batch_head) &&
5735 (bi->bi_opf & REQ_SYNC) &&
5736 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5737 atomic_inc(&conf->preread_active_stripes);
5738 release_stripe_plug(mddev, sh);
5739 } else {
5740 /* cannot get stripe for read-ahead, just give-up */
5741 bi->bi_status = BLK_STS_IOERR;
5742 break;
5743 }
5744 }
5745 finish_wait(&conf->wait_for_overlap, &w);
5746
5747 if (rw == WRITE)
5748 md_write_end(mddev);
5749 bio_endio(bi);
5750 return true;
5751}
5752
5753static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5754
5755static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5756{
5757 /* reshaping is quite different to recovery/resync so it is
5758 * handled quite separately ... here.
5759 *
5760 * On each call to sync_request, we gather one chunk worth of
5761 * destination stripes and flag them as expanding.
5762 * Then we find all the source stripes and request reads.
5763 * As the reads complete, handle_stripe will copy the data
5764 * into the destination stripe and release that stripe.
5765 */
5766 struct r5conf *conf = mddev->private;
5767 struct stripe_head *sh;
5768 struct md_rdev *rdev;
5769 sector_t first_sector, last_sector;
5770 int raid_disks = conf->previous_raid_disks;
5771 int data_disks = raid_disks - conf->max_degraded;
5772 int new_data_disks = conf->raid_disks - conf->max_degraded;
5773 int i;
5774 int dd_idx;
5775 sector_t writepos, readpos, safepos;
5776 sector_t stripe_addr;
5777 int reshape_sectors;
5778 struct list_head stripes;
5779 sector_t retn;
5780
5781 if (sector_nr == 0) {
5782 /* If restarting in the middle, skip the initial sectors */
5783 if (mddev->reshape_backwards &&
5784 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5785 sector_nr = raid5_size(mddev, 0, 0)
5786 - conf->reshape_progress;
5787 } else if (mddev->reshape_backwards &&
5788 conf->reshape_progress == MaxSector) {
5789 /* shouldn't happen, but just in case, finish up.*/
5790 sector_nr = MaxSector;
5791 } else if (!mddev->reshape_backwards &&
5792 conf->reshape_progress > 0)
5793 sector_nr = conf->reshape_progress;
5794 sector_div(sector_nr, new_data_disks);
5795 if (sector_nr) {
5796 mddev->curr_resync_completed = sector_nr;
5797 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5798 *skipped = 1;
5799 retn = sector_nr;
5800 goto finish;
5801 }
5802 }
5803
5804 /* We need to process a full chunk at a time.
5805 * If old and new chunk sizes differ, we need to process the
5806 * largest of these
5807 */
5808
5809 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5810
5811 /* We update the metadata at least every 10 seconds, or when
5812 * the data about to be copied would over-write the source of
5813 * the data at the front of the range. i.e. one new_stripe
5814 * along from reshape_progress new_maps to after where
5815 * reshape_safe old_maps to
5816 */
5817 writepos = conf->reshape_progress;
5818 sector_div(writepos, new_data_disks);
5819 readpos = conf->reshape_progress;
5820 sector_div(readpos, data_disks);
5821 safepos = conf->reshape_safe;
5822 sector_div(safepos, data_disks);
5823 if (mddev->reshape_backwards) {
5824 if (WARN_ON(writepos < reshape_sectors))
5825 return MaxSector;
5826
5827 writepos -= reshape_sectors;
5828 readpos += reshape_sectors;
5829 safepos += reshape_sectors;
5830 } else {
5831 writepos += reshape_sectors;
5832 /* readpos and safepos are worst-case calculations.
5833 * A negative number is overly pessimistic, and causes
5834 * obvious problems for unsigned storage. So clip to 0.
5835 */
5836 readpos -= min_t(sector_t, reshape_sectors, readpos);
5837 safepos -= min_t(sector_t, reshape_sectors, safepos);
5838 }
5839
5840 /* Having calculated the 'writepos' possibly use it
5841 * to set 'stripe_addr' which is where we will write to.
5842 */
5843 if (mddev->reshape_backwards) {
5844 if (WARN_ON(conf->reshape_progress == 0))
5845 return MaxSector;
5846
5847 stripe_addr = writepos;
5848 if (WARN_ON((mddev->dev_sectors &
5849 ~((sector_t)reshape_sectors - 1)) -
5850 reshape_sectors - stripe_addr != sector_nr))
5851 return MaxSector;
5852 } else {
5853 if (WARN_ON(writepos != sector_nr + reshape_sectors))
5854 return MaxSector;
5855
5856 stripe_addr = sector_nr;
5857 }
5858
5859 /* 'writepos' is the most advanced device address we might write.
5860 * 'readpos' is the least advanced device address we might read.
5861 * 'safepos' is the least address recorded in the metadata as having
5862 * been reshaped.
5863 * If there is a min_offset_diff, these are adjusted either by
5864 * increasing the safepos/readpos if diff is negative, or
5865 * increasing writepos if diff is positive.
5866 * If 'readpos' is then behind 'writepos', there is no way that we can
5867 * ensure safety in the face of a crash - that must be done by userspace
5868 * making a backup of the data. So in that case there is no particular
5869 * rush to update metadata.
5870 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5871 * update the metadata to advance 'safepos' to match 'readpos' so that
5872 * we can be safe in the event of a crash.
5873 * So we insist on updating metadata if safepos is behind writepos and
5874 * readpos is beyond writepos.
5875 * In any case, update the metadata every 10 seconds.
5876 * Maybe that number should be configurable, but I'm not sure it is
5877 * worth it.... maybe it could be a multiple of safemode_delay???
5878 */
5879 if (conf->min_offset_diff < 0) {
5880 safepos += -conf->min_offset_diff;
5881 readpos += -conf->min_offset_diff;
5882 } else
5883 writepos += conf->min_offset_diff;
5884
5885 if ((mddev->reshape_backwards
5886 ? (safepos > writepos && readpos < writepos)
5887 : (safepos < writepos && readpos > writepos)) ||
5888 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5889 /* Cannot proceed until we've updated the superblock... */
5890 wait_event(conf->wait_for_overlap,
5891 atomic_read(&conf->reshape_stripes)==0
5892 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5893 if (atomic_read(&conf->reshape_stripes) != 0)
5894 return 0;
5895 mddev->reshape_position = conf->reshape_progress;
5896 mddev->curr_resync_completed = sector_nr;
5897 if (!mddev->reshape_backwards)
5898 /* Can update recovery_offset */
5899 rdev_for_each(rdev, mddev)
5900 if (rdev->raid_disk >= 0 &&
5901 !test_bit(Journal, &rdev->flags) &&
5902 !test_bit(In_sync, &rdev->flags) &&
5903 rdev->recovery_offset < sector_nr)
5904 rdev->recovery_offset = sector_nr;
5905
5906 conf->reshape_checkpoint = jiffies;
5907 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5908 md_wakeup_thread(mddev->thread);
5909 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5910 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5911 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5912 return 0;
5913 spin_lock_irq(&conf->device_lock);
5914 conf->reshape_safe = mddev->reshape_position;
5915 spin_unlock_irq(&conf->device_lock);
5916 wake_up(&conf->wait_for_overlap);
5917 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5918 }
5919
5920 INIT_LIST_HEAD(&stripes);
5921 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5922 int j;
5923 int skipped_disk = 0;
5924 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5925 set_bit(STRIPE_EXPANDING, &sh->state);
5926 atomic_inc(&conf->reshape_stripes);
5927 /* If any of this stripe is beyond the end of the old
5928 * array, then we need to zero those blocks
5929 */
5930 for (j=sh->disks; j--;) {
5931 sector_t s;
5932 if (j == sh->pd_idx)
5933 continue;
5934 if (conf->level == 6 &&
5935 j == sh->qd_idx)
5936 continue;
5937 s = raid5_compute_blocknr(sh, j, 0);
5938 if (s < raid5_size(mddev, 0, 0)) {
5939 skipped_disk = 1;
5940 continue;
5941 }
5942 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5943 set_bit(R5_Expanded, &sh->dev[j].flags);
5944 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5945 }
5946 if (!skipped_disk) {
5947 set_bit(STRIPE_EXPAND_READY, &sh->state);
5948 set_bit(STRIPE_HANDLE, &sh->state);
5949 }
5950 list_add(&sh->lru, &stripes);
5951 }
5952 spin_lock_irq(&conf->device_lock);
5953 if (mddev->reshape_backwards)
5954 conf->reshape_progress -= reshape_sectors * new_data_disks;
5955 else
5956 conf->reshape_progress += reshape_sectors * new_data_disks;
5957 spin_unlock_irq(&conf->device_lock);
5958 /* Ok, those stripe are ready. We can start scheduling
5959 * reads on the source stripes.
5960 * The source stripes are determined by mapping the first and last
5961 * block on the destination stripes.
5962 */
5963 first_sector =
5964 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5965 1, &dd_idx, NULL);
5966 last_sector =
5967 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5968 * new_data_disks - 1),
5969 1, &dd_idx, NULL);
5970 if (last_sector >= mddev->dev_sectors)
5971 last_sector = mddev->dev_sectors - 1;
5972 while (first_sector <= last_sector) {
5973 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5974 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5975 set_bit(STRIPE_HANDLE, &sh->state);
5976 raid5_release_stripe(sh);
5977 first_sector += STRIPE_SECTORS;
5978 }
5979 /* Now that the sources are clearly marked, we can release
5980 * the destination stripes
5981 */
5982 while (!list_empty(&stripes)) {
5983 sh = list_entry(stripes.next, struct stripe_head, lru);
5984 list_del_init(&sh->lru);
5985 raid5_release_stripe(sh);
5986 }
5987 /* If this takes us to the resync_max point where we have to pause,
5988 * then we need to write out the superblock.
5989 */
5990 sector_nr += reshape_sectors;
5991 retn = reshape_sectors;
5992finish:
5993 if (mddev->curr_resync_completed > mddev->resync_max ||
5994 (sector_nr - mddev->curr_resync_completed) * 2
5995 >= mddev->resync_max - mddev->curr_resync_completed) {
5996 /* Cannot proceed until we've updated the superblock... */
5997 wait_event(conf->wait_for_overlap,
5998 atomic_read(&conf->reshape_stripes) == 0
5999 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6000 if (atomic_read(&conf->reshape_stripes) != 0)
6001 goto ret;
6002 mddev->reshape_position = conf->reshape_progress;
6003 mddev->curr_resync_completed = sector_nr;
6004 if (!mddev->reshape_backwards)
6005 /* Can update recovery_offset */
6006 rdev_for_each(rdev, mddev)
6007 if (rdev->raid_disk >= 0 &&
6008 !test_bit(Journal, &rdev->flags) &&
6009 !test_bit(In_sync, &rdev->flags) &&
6010 rdev->recovery_offset < sector_nr)
6011 rdev->recovery_offset = sector_nr;
6012 conf->reshape_checkpoint = jiffies;
6013 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6014 md_wakeup_thread(mddev->thread);
6015 wait_event(mddev->sb_wait,
6016 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6017 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6018 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6019 goto ret;
6020 spin_lock_irq(&conf->device_lock);
6021 conf->reshape_safe = mddev->reshape_position;
6022 spin_unlock_irq(&conf->device_lock);
6023 wake_up(&conf->wait_for_overlap);
6024 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6025 }
6026ret:
6027 return retn;
6028}
6029
6030static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6031 int *skipped)
6032{
6033 struct r5conf *conf = mddev->private;
6034 struct stripe_head *sh;
6035 sector_t max_sector = mddev->dev_sectors;
6036 sector_t sync_blocks;
6037 int still_degraded = 0;
6038 int i;
6039
6040 if (sector_nr >= max_sector) {
6041 /* just being told to finish up .. nothing much to do */
6042
6043 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6044 end_reshape(conf);
6045 return 0;
6046 }
6047
6048 if (mddev->curr_resync < max_sector) /* aborted */
6049 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6050 &sync_blocks, 1);
6051 else /* completed sync */
6052 conf->fullsync = 0;
6053 md_bitmap_close_sync(mddev->bitmap);
6054
6055 return 0;
6056 }
6057
6058 /* Allow raid5_quiesce to complete */
6059 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6060
6061 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6062 return reshape_request(mddev, sector_nr, skipped);
6063
6064 /* No need to check resync_max as we never do more than one
6065 * stripe, and as resync_max will always be on a chunk boundary,
6066 * if the check in md_do_sync didn't fire, there is no chance
6067 * of overstepping resync_max here
6068 */
6069
6070 /* if there is too many failed drives and we are trying
6071 * to resync, then assert that we are finished, because there is
6072 * nothing we can do.
6073 */
6074 if (mddev->degraded >= conf->max_degraded &&
6075 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6076 sector_t rv = mddev->dev_sectors - sector_nr;
6077 *skipped = 1;
6078 return rv;
6079 }
6080 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6081 !conf->fullsync &&
6082 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6083 sync_blocks >= STRIPE_SECTORS) {
6084 /* we can skip this block, and probably more */
6085 sync_blocks /= STRIPE_SECTORS;
6086 *skipped = 1;
6087 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6088 }
6089
6090 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6091
6092 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6093 if (sh == NULL) {
6094 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6095 /* make sure we don't swamp the stripe cache if someone else
6096 * is trying to get access
6097 */
6098 schedule_timeout_uninterruptible(1);
6099 }
6100 /* Need to check if array will still be degraded after recovery/resync
6101 * Note in case of > 1 drive failures it's possible we're rebuilding
6102 * one drive while leaving another faulty drive in array.
6103 */
6104 rcu_read_lock();
6105 for (i = 0; i < conf->raid_disks; i++) {
6106 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6107
6108 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6109 still_degraded = 1;
6110 }
6111 rcu_read_unlock();
6112
6113 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6114
6115 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6116 set_bit(STRIPE_HANDLE, &sh->state);
6117
6118 raid5_release_stripe(sh);
6119
6120 return STRIPE_SECTORS;
6121}
6122
6123static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6124 unsigned int offset)
6125{
6126 /* We may not be able to submit a whole bio at once as there
6127 * may not be enough stripe_heads available.
6128 * We cannot pre-allocate enough stripe_heads as we may need
6129 * more than exist in the cache (if we allow ever large chunks).
6130 * So we do one stripe head at a time and record in
6131 * ->bi_hw_segments how many have been done.
6132 *
6133 * We *know* that this entire raid_bio is in one chunk, so
6134 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6135 */
6136 struct stripe_head *sh;
6137 int dd_idx;
6138 sector_t sector, logical_sector, last_sector;
6139 int scnt = 0;
6140 int handled = 0;
6141
6142 logical_sector = raid_bio->bi_iter.bi_sector &
6143 ~((sector_t)STRIPE_SECTORS-1);
6144 sector = raid5_compute_sector(conf, logical_sector,
6145 0, &dd_idx, NULL);
6146 last_sector = bio_end_sector(raid_bio);
6147
6148 for (; logical_sector < last_sector;
6149 logical_sector += STRIPE_SECTORS,
6150 sector += STRIPE_SECTORS,
6151 scnt++) {
6152
6153 if (scnt < offset)
6154 /* already done this stripe */
6155 continue;
6156
6157 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6158
6159 if (!sh) {
6160 /* failed to get a stripe - must wait */
6161 conf->retry_read_aligned = raid_bio;
6162 conf->retry_read_offset = scnt;
6163 return handled;
6164 }
6165
6166 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6167 raid5_release_stripe(sh);
6168 conf->retry_read_aligned = raid_bio;
6169 conf->retry_read_offset = scnt;
6170 return handled;
6171 }
6172
6173 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6174 handle_stripe(sh);
6175 raid5_release_stripe(sh);
6176 handled++;
6177 }
6178
6179 bio_endio(raid_bio);
6180
6181 if (atomic_dec_and_test(&conf->active_aligned_reads))
6182 wake_up(&conf->wait_for_quiescent);
6183 return handled;
6184}
6185
6186static int handle_active_stripes(struct r5conf *conf, int group,
6187 struct r5worker *worker,
6188 struct list_head *temp_inactive_list)
6189 __releases(&conf->device_lock)
6190 __acquires(&conf->device_lock)
6191{
6192 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6193 int i, batch_size = 0, hash;
6194 bool release_inactive = false;
6195
6196 while (batch_size < MAX_STRIPE_BATCH &&
6197 (sh = __get_priority_stripe(conf, group)) != NULL)
6198 batch[batch_size++] = sh;
6199
6200 if (batch_size == 0) {
6201 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6202 if (!list_empty(temp_inactive_list + i))
6203 break;
6204 if (i == NR_STRIPE_HASH_LOCKS) {
6205 spin_unlock_irq(&conf->device_lock);
6206 log_flush_stripe_to_raid(conf);
6207 spin_lock_irq(&conf->device_lock);
6208 return batch_size;
6209 }
6210 release_inactive = true;
6211 }
6212 spin_unlock_irq(&conf->device_lock);
6213
6214 release_inactive_stripe_list(conf, temp_inactive_list,
6215 NR_STRIPE_HASH_LOCKS);
6216
6217 r5l_flush_stripe_to_raid(conf->log);
6218 if (release_inactive) {
6219 spin_lock_irq(&conf->device_lock);
6220 return 0;
6221 }
6222
6223 for (i = 0; i < batch_size; i++)
6224 handle_stripe(batch[i]);
6225 log_write_stripe_run(conf);
6226
6227 cond_resched();
6228
6229 spin_lock_irq(&conf->device_lock);
6230 for (i = 0; i < batch_size; i++) {
6231 hash = batch[i]->hash_lock_index;
6232 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6233 }
6234 return batch_size;
6235}
6236
6237static void raid5_do_work(struct work_struct *work)
6238{
6239 struct r5worker *worker = container_of(work, struct r5worker, work);
6240 struct r5worker_group *group = worker->group;
6241 struct r5conf *conf = group->conf;
6242 struct mddev *mddev = conf->mddev;
6243 int group_id = group - conf->worker_groups;
6244 int handled;
6245 struct blk_plug plug;
6246
6247 pr_debug("+++ raid5worker active\n");
6248
6249 blk_start_plug(&plug);
6250 handled = 0;
6251 spin_lock_irq(&conf->device_lock);
6252 while (1) {
6253 int batch_size, released;
6254
6255 released = release_stripe_list(conf, worker->temp_inactive_list);
6256
6257 batch_size = handle_active_stripes(conf, group_id, worker,
6258 worker->temp_inactive_list);
6259 worker->working = false;
6260 if (!batch_size && !released)
6261 break;
6262 handled += batch_size;
6263 wait_event_lock_irq(mddev->sb_wait,
6264 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6265 conf->device_lock);
6266 }
6267 pr_debug("%d stripes handled\n", handled);
6268
6269 spin_unlock_irq(&conf->device_lock);
6270
6271 flush_deferred_bios(conf);
6272
6273 r5l_flush_stripe_to_raid(conf->log);
6274
6275 async_tx_issue_pending_all();
6276 blk_finish_plug(&plug);
6277
6278 pr_debug("--- raid5worker inactive\n");
6279}
6280
6281/*
6282 * This is our raid5 kernel thread.
6283 *
6284 * We scan the hash table for stripes which can be handled now.
6285 * During the scan, completed stripes are saved for us by the interrupt
6286 * handler, so that they will not have to wait for our next wakeup.
6287 */
6288static void raid5d(struct md_thread *thread)
6289{
6290 struct mddev *mddev = thread->mddev;
6291 struct r5conf *conf = mddev->private;
6292 int handled;
6293 struct blk_plug plug;
6294
6295 pr_debug("+++ raid5d active\n");
6296
6297 md_check_recovery(mddev);
6298
6299 blk_start_plug(&plug);
6300 handled = 0;
6301 spin_lock_irq(&conf->device_lock);
6302 while (1) {
6303 struct bio *bio;
6304 int batch_size, released;
6305 unsigned int offset;
6306
6307 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6308 break;
6309
6310 released = release_stripe_list(conf, conf->temp_inactive_list);
6311 if (released)
6312 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6313
6314 if (
6315 !list_empty(&conf->bitmap_list)) {
6316 /* Now is a good time to flush some bitmap updates */
6317 conf->seq_flush++;
6318 spin_unlock_irq(&conf->device_lock);
6319 md_bitmap_unplug(mddev->bitmap);
6320 spin_lock_irq(&conf->device_lock);
6321 conf->seq_write = conf->seq_flush;
6322 activate_bit_delay(conf, conf->temp_inactive_list);
6323 }
6324 raid5_activate_delayed(conf);
6325
6326 while ((bio = remove_bio_from_retry(conf, &offset))) {
6327 int ok;
6328 spin_unlock_irq(&conf->device_lock);
6329 ok = retry_aligned_read(conf, bio, offset);
6330 spin_lock_irq(&conf->device_lock);
6331 if (!ok)
6332 break;
6333 handled++;
6334 }
6335
6336 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6337 conf->temp_inactive_list);
6338 if (!batch_size && !released)
6339 break;
6340 handled += batch_size;
6341
6342 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6343 spin_unlock_irq(&conf->device_lock);
6344 md_check_recovery(mddev);
6345 spin_lock_irq(&conf->device_lock);
6346 }
6347 }
6348 pr_debug("%d stripes handled\n", handled);
6349
6350 spin_unlock_irq(&conf->device_lock);
6351 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6352 mutex_trylock(&conf->cache_size_mutex)) {
6353 grow_one_stripe(conf, __GFP_NOWARN);
6354 /* Set flag even if allocation failed. This helps
6355 * slow down allocation requests when mem is short
6356 */
6357 set_bit(R5_DID_ALLOC, &conf->cache_state);
6358 mutex_unlock(&conf->cache_size_mutex);
6359 }
6360
6361 flush_deferred_bios(conf);
6362
6363 r5l_flush_stripe_to_raid(conf->log);
6364
6365 async_tx_issue_pending_all();
6366 blk_finish_plug(&plug);
6367
6368 pr_debug("--- raid5d inactive\n");
6369}
6370
6371static ssize_t
6372raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6373{
6374 struct r5conf *conf;
6375 int ret = 0;
6376 spin_lock(&mddev->lock);
6377 conf = mddev->private;
6378 if (conf)
6379 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6380 spin_unlock(&mddev->lock);
6381 return ret;
6382}
6383
6384int
6385raid5_set_cache_size(struct mddev *mddev, int size)
6386{
6387 int result = 0;
6388 struct r5conf *conf = mddev->private;
6389
6390 if (size <= 16 || size > 32768)
6391 return -EINVAL;
6392
6393 conf->min_nr_stripes = size;
6394 mutex_lock(&conf->cache_size_mutex);
6395 while (size < conf->max_nr_stripes &&
6396 drop_one_stripe(conf))
6397 ;
6398 mutex_unlock(&conf->cache_size_mutex);
6399
6400 md_allow_write(mddev);
6401
6402 mutex_lock(&conf->cache_size_mutex);
6403 while (size > conf->max_nr_stripes)
6404 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6405 conf->min_nr_stripes = conf->max_nr_stripes;
6406 result = -ENOMEM;
6407 break;
6408 }
6409 mutex_unlock(&conf->cache_size_mutex);
6410
6411 return result;
6412}
6413EXPORT_SYMBOL(raid5_set_cache_size);
6414
6415static ssize_t
6416raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6417{
6418 struct r5conf *conf;
6419 unsigned long new;
6420 int err;
6421
6422 if (len >= PAGE_SIZE)
6423 return -EINVAL;
6424 if (kstrtoul(page, 10, &new))
6425 return -EINVAL;
6426 err = mddev_lock(mddev);
6427 if (err)
6428 return err;
6429 conf = mddev->private;
6430 if (!conf)
6431 err = -ENODEV;
6432 else
6433 err = raid5_set_cache_size(mddev, new);
6434 mddev_unlock(mddev);
6435
6436 return err ?: len;
6437}
6438
6439static struct md_sysfs_entry
6440raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6441 raid5_show_stripe_cache_size,
6442 raid5_store_stripe_cache_size);
6443
6444static ssize_t
6445raid5_show_rmw_level(struct mddev *mddev, char *page)
6446{
6447 struct r5conf *conf = mddev->private;
6448 if (conf)
6449 return sprintf(page, "%d\n", conf->rmw_level);
6450 else
6451 return 0;
6452}
6453
6454static ssize_t
6455raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6456{
6457 struct r5conf *conf = mddev->private;
6458 unsigned long new;
6459
6460 if (!conf)
6461 return -ENODEV;
6462
6463 if (len >= PAGE_SIZE)
6464 return -EINVAL;
6465
6466 if (kstrtoul(page, 10, &new))
6467 return -EINVAL;
6468
6469 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6470 return -EINVAL;
6471
6472 if (new != PARITY_DISABLE_RMW &&
6473 new != PARITY_ENABLE_RMW &&
6474 new != PARITY_PREFER_RMW)
6475 return -EINVAL;
6476
6477 conf->rmw_level = new;
6478 return len;
6479}
6480
6481static struct md_sysfs_entry
6482raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6483 raid5_show_rmw_level,
6484 raid5_store_rmw_level);
6485
6486
6487static ssize_t
6488raid5_show_preread_threshold(struct mddev *mddev, char *page)
6489{
6490 struct r5conf *conf;
6491 int ret = 0;
6492 spin_lock(&mddev->lock);
6493 conf = mddev->private;
6494 if (conf)
6495 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6496 spin_unlock(&mddev->lock);
6497 return ret;
6498}
6499
6500static ssize_t
6501raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6502{
6503 struct r5conf *conf;
6504 unsigned long new;
6505 int err;
6506
6507 if (len >= PAGE_SIZE)
6508 return -EINVAL;
6509 if (kstrtoul(page, 10, &new))
6510 return -EINVAL;
6511
6512 err = mddev_lock(mddev);
6513 if (err)
6514 return err;
6515 conf = mddev->private;
6516 if (!conf)
6517 err = -ENODEV;
6518 else if (new > conf->min_nr_stripes)
6519 err = -EINVAL;
6520 else
6521 conf->bypass_threshold = new;
6522 mddev_unlock(mddev);
6523 return err ?: len;
6524}
6525
6526static struct md_sysfs_entry
6527raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6528 S_IRUGO | S_IWUSR,
6529 raid5_show_preread_threshold,
6530 raid5_store_preread_threshold);
6531
6532static ssize_t
6533raid5_show_skip_copy(struct mddev *mddev, char *page)
6534{
6535 struct r5conf *conf;
6536 int ret = 0;
6537 spin_lock(&mddev->lock);
6538 conf = mddev->private;
6539 if (conf)
6540 ret = sprintf(page, "%d\n", conf->skip_copy);
6541 spin_unlock(&mddev->lock);
6542 return ret;
6543}
6544
6545static ssize_t
6546raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6547{
6548 struct r5conf *conf;
6549 unsigned long new;
6550 int err;
6551
6552 if (len >= PAGE_SIZE)
6553 return -EINVAL;
6554 if (kstrtoul(page, 10, &new))
6555 return -EINVAL;
6556 new = !!new;
6557
6558 err = mddev_lock(mddev);
6559 if (err)
6560 return err;
6561 conf = mddev->private;
6562 if (!conf)
6563 err = -ENODEV;
6564 else if (new != conf->skip_copy) {
6565 mddev_suspend(mddev);
6566 conf->skip_copy = new;
6567 if (new)
6568 mddev->queue->backing_dev_info->capabilities |=
6569 BDI_CAP_STABLE_WRITES;
6570 else
6571 mddev->queue->backing_dev_info->capabilities &=
6572 ~BDI_CAP_STABLE_WRITES;
6573 mddev_resume(mddev);
6574 }
6575 mddev_unlock(mddev);
6576 return err ?: len;
6577}
6578
6579static struct md_sysfs_entry
6580raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6581 raid5_show_skip_copy,
6582 raid5_store_skip_copy);
6583
6584static ssize_t
6585stripe_cache_active_show(struct mddev *mddev, char *page)
6586{
6587 struct r5conf *conf = mddev->private;
6588 if (conf)
6589 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6590 else
6591 return 0;
6592}
6593
6594static struct md_sysfs_entry
6595raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6596
6597static ssize_t
6598raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6599{
6600 struct r5conf *conf;
6601 int ret = 0;
6602 spin_lock(&mddev->lock);
6603 conf = mddev->private;
6604 if (conf)
6605 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6606 spin_unlock(&mddev->lock);
6607 return ret;
6608}
6609
6610static int alloc_thread_groups(struct r5conf *conf, int cnt,
6611 int *group_cnt,
6612 int *worker_cnt_per_group,
6613 struct r5worker_group **worker_groups);
6614static ssize_t
6615raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6616{
6617 struct r5conf *conf;
6618 unsigned int new;
6619 int err;
6620 struct r5worker_group *new_groups, *old_groups;
6621 int group_cnt, worker_cnt_per_group;
6622
6623 if (len >= PAGE_SIZE)
6624 return -EINVAL;
6625 if (kstrtouint(page, 10, &new))
6626 return -EINVAL;
6627 /* 8192 should be big enough */
6628 if (new > 8192)
6629 return -EINVAL;
6630
6631 err = mddev_lock(mddev);
6632 if (err)
6633 return err;
6634 conf = mddev->private;
6635 if (!conf)
6636 err = -ENODEV;
6637 else if (new != conf->worker_cnt_per_group) {
6638 mddev_suspend(mddev);
6639
6640 old_groups = conf->worker_groups;
6641 if (old_groups)
6642 flush_workqueue(raid5_wq);
6643
6644 err = alloc_thread_groups(conf, new,
6645 &group_cnt, &worker_cnt_per_group,
6646 &new_groups);
6647 if (!err) {
6648 spin_lock_irq(&conf->device_lock);
6649 conf->group_cnt = group_cnt;
6650 conf->worker_cnt_per_group = worker_cnt_per_group;
6651 conf->worker_groups = new_groups;
6652 spin_unlock_irq(&conf->device_lock);
6653
6654 if (old_groups)
6655 kfree(old_groups[0].workers);
6656 kfree(old_groups);
6657 }
6658 mddev_resume(mddev);
6659 }
6660 mddev_unlock(mddev);
6661
6662 return err ?: len;
6663}
6664
6665static struct md_sysfs_entry
6666raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6667 raid5_show_group_thread_cnt,
6668 raid5_store_group_thread_cnt);
6669
6670static struct attribute *raid5_attrs[] = {
6671 &raid5_stripecache_size.attr,
6672 &raid5_stripecache_active.attr,
6673 &raid5_preread_bypass_threshold.attr,
6674 &raid5_group_thread_cnt.attr,
6675 &raid5_skip_copy.attr,
6676 &raid5_rmw_level.attr,
6677 &r5c_journal_mode.attr,
6678 &ppl_write_hint.attr,
6679 NULL,
6680};
6681static struct attribute_group raid5_attrs_group = {
6682 .name = NULL,
6683 .attrs = raid5_attrs,
6684};
6685
6686static int alloc_thread_groups(struct r5conf *conf, int cnt,
6687 int *group_cnt,
6688 int *worker_cnt_per_group,
6689 struct r5worker_group **worker_groups)
6690{
6691 int i, j, k;
6692 ssize_t size;
6693 struct r5worker *workers;
6694
6695 *worker_cnt_per_group = cnt;
6696 if (cnt == 0) {
6697 *group_cnt = 0;
6698 *worker_groups = NULL;
6699 return 0;
6700 }
6701 *group_cnt = num_possible_nodes();
6702 size = sizeof(struct r5worker) * cnt;
6703 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6704 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6705 GFP_NOIO);
6706 if (!*worker_groups || !workers) {
6707 kfree(workers);
6708 kfree(*worker_groups);
6709 return -ENOMEM;
6710 }
6711
6712 for (i = 0; i < *group_cnt; i++) {
6713 struct r5worker_group *group;
6714
6715 group = &(*worker_groups)[i];
6716 INIT_LIST_HEAD(&group->handle_list);
6717 INIT_LIST_HEAD(&group->loprio_list);
6718 group->conf = conf;
6719 group->workers = workers + i * cnt;
6720
6721 for (j = 0; j < cnt; j++) {
6722 struct r5worker *worker = group->workers + j;
6723 worker->group = group;
6724 INIT_WORK(&worker->work, raid5_do_work);
6725
6726 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6727 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6728 }
6729 }
6730
6731 return 0;
6732}
6733
6734static void free_thread_groups(struct r5conf *conf)
6735{
6736 if (conf->worker_groups)
6737 kfree(conf->worker_groups[0].workers);
6738 kfree(conf->worker_groups);
6739 conf->worker_groups = NULL;
6740}
6741
6742static sector_t
6743raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6744{
6745 struct r5conf *conf = mddev->private;
6746
6747 if (!sectors)
6748 sectors = mddev->dev_sectors;
6749 if (!raid_disks)
6750 /* size is defined by the smallest of previous and new size */
6751 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6752
6753 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6754 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6755 return sectors * (raid_disks - conf->max_degraded);
6756}
6757
6758static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6759{
6760 safe_put_page(percpu->spare_page);
6761 percpu->spare_page = NULL;
6762 kvfree(percpu->scribble);
6763 percpu->scribble = NULL;
6764}
6765
6766static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6767{
6768 if (conf->level == 6 && !percpu->spare_page) {
6769 percpu->spare_page = alloc_page(GFP_KERNEL);
6770 if (!percpu->spare_page)
6771 return -ENOMEM;
6772 }
6773
6774 if (scribble_alloc(percpu,
6775 max(conf->raid_disks,
6776 conf->previous_raid_disks),
6777 max(conf->chunk_sectors,
6778 conf->prev_chunk_sectors)
6779 / STRIPE_SECTORS)) {
6780 free_scratch_buffer(conf, percpu);
6781 return -ENOMEM;
6782 }
6783
6784 return 0;
6785}
6786
6787static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6788{
6789 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6790
6791 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6792 return 0;
6793}
6794
6795static void raid5_free_percpu(struct r5conf *conf)
6796{
6797 if (!conf->percpu)
6798 return;
6799
6800 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6801 free_percpu(conf->percpu);
6802}
6803
6804static void free_conf(struct r5conf *conf)
6805{
6806 int i;
6807
6808 log_exit(conf);
6809
6810 unregister_shrinker(&conf->shrinker);
6811 free_thread_groups(conf);
6812 shrink_stripes(conf);
6813 raid5_free_percpu(conf);
6814 for (i = 0; i < conf->pool_size; i++)
6815 if (conf->disks[i].extra_page)
6816 put_page(conf->disks[i].extra_page);
6817 kfree(conf->disks);
6818 bioset_exit(&conf->bio_split);
6819 kfree(conf->stripe_hashtbl);
6820 kfree(conf->pending_data);
6821 kfree(conf);
6822}
6823
6824static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6825{
6826 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6827 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6828
6829 if (alloc_scratch_buffer(conf, percpu)) {
6830 pr_warn("%s: failed memory allocation for cpu%u\n",
6831 __func__, cpu);
6832 return -ENOMEM;
6833 }
6834 return 0;
6835}
6836
6837static int raid5_alloc_percpu(struct r5conf *conf)
6838{
6839 int err = 0;
6840
6841 conf->percpu = alloc_percpu(struct raid5_percpu);
6842 if (!conf->percpu)
6843 return -ENOMEM;
6844
6845 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6846 if (!err) {
6847 conf->scribble_disks = max(conf->raid_disks,
6848 conf->previous_raid_disks);
6849 conf->scribble_sectors = max(conf->chunk_sectors,
6850 conf->prev_chunk_sectors);
6851 }
6852 return err;
6853}
6854
6855static unsigned long raid5_cache_scan(struct shrinker *shrink,
6856 struct shrink_control *sc)
6857{
6858 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6859 unsigned long ret = SHRINK_STOP;
6860
6861 if (mutex_trylock(&conf->cache_size_mutex)) {
6862 ret= 0;
6863 while (ret < sc->nr_to_scan &&
6864 conf->max_nr_stripes > conf->min_nr_stripes) {
6865 if (drop_one_stripe(conf) == 0) {
6866 ret = SHRINK_STOP;
6867 break;
6868 }
6869 ret++;
6870 }
6871 mutex_unlock(&conf->cache_size_mutex);
6872 }
6873 return ret;
6874}
6875
6876static unsigned long raid5_cache_count(struct shrinker *shrink,
6877 struct shrink_control *sc)
6878{
6879 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6880
6881 if (conf->max_nr_stripes < conf->min_nr_stripes)
6882 /* unlikely, but not impossible */
6883 return 0;
6884 return conf->max_nr_stripes - conf->min_nr_stripes;
6885}
6886
6887static struct r5conf *setup_conf(struct mddev *mddev)
6888{
6889 struct r5conf *conf;
6890 int raid_disk, memory, max_disks;
6891 struct md_rdev *rdev;
6892 struct disk_info *disk;
6893 char pers_name[6];
6894 int i;
6895 int group_cnt, worker_cnt_per_group;
6896 struct r5worker_group *new_group;
6897 int ret;
6898
6899 if (mddev->new_level != 5
6900 && mddev->new_level != 4
6901 && mddev->new_level != 6) {
6902 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6903 mdname(mddev), mddev->new_level);
6904 return ERR_PTR(-EIO);
6905 }
6906 if ((mddev->new_level == 5
6907 && !algorithm_valid_raid5(mddev->new_layout)) ||
6908 (mddev->new_level == 6
6909 && !algorithm_valid_raid6(mddev->new_layout))) {
6910 pr_warn("md/raid:%s: layout %d not supported\n",
6911 mdname(mddev), mddev->new_layout);
6912 return ERR_PTR(-EIO);
6913 }
6914 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6915 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6916 mdname(mddev), mddev->raid_disks);
6917 return ERR_PTR(-EINVAL);
6918 }
6919
6920 if (!mddev->new_chunk_sectors ||
6921 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6922 !is_power_of_2(mddev->new_chunk_sectors)) {
6923 pr_warn("md/raid:%s: invalid chunk size %d\n",
6924 mdname(mddev), mddev->new_chunk_sectors << 9);
6925 return ERR_PTR(-EINVAL);
6926 }
6927
6928 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6929 if (conf == NULL)
6930 goto abort;
6931 INIT_LIST_HEAD(&conf->free_list);
6932 INIT_LIST_HEAD(&conf->pending_list);
6933 conf->pending_data = kcalloc(PENDING_IO_MAX,
6934 sizeof(struct r5pending_data),
6935 GFP_KERNEL);
6936 if (!conf->pending_data)
6937 goto abort;
6938 for (i = 0; i < PENDING_IO_MAX; i++)
6939 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6940 /* Don't enable multi-threading by default*/
6941 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6942 &new_group)) {
6943 conf->group_cnt = group_cnt;
6944 conf->worker_cnt_per_group = worker_cnt_per_group;
6945 conf->worker_groups = new_group;
6946 } else
6947 goto abort;
6948 spin_lock_init(&conf->device_lock);
6949 seqcount_init(&conf->gen_lock);
6950 mutex_init(&conf->cache_size_mutex);
6951 init_waitqueue_head(&conf->wait_for_quiescent);
6952 init_waitqueue_head(&conf->wait_for_stripe);
6953 init_waitqueue_head(&conf->wait_for_overlap);
6954 INIT_LIST_HEAD(&conf->handle_list);
6955 INIT_LIST_HEAD(&conf->loprio_list);
6956 INIT_LIST_HEAD(&conf->hold_list);
6957 INIT_LIST_HEAD(&conf->delayed_list);
6958 INIT_LIST_HEAD(&conf->bitmap_list);
6959 init_llist_head(&conf->released_stripes);
6960 atomic_set(&conf->active_stripes, 0);
6961 atomic_set(&conf->preread_active_stripes, 0);
6962 atomic_set(&conf->active_aligned_reads, 0);
6963 spin_lock_init(&conf->pending_bios_lock);
6964 conf->batch_bio_dispatch = true;
6965 rdev_for_each(rdev, mddev) {
6966 if (test_bit(Journal, &rdev->flags))
6967 continue;
6968 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6969 conf->batch_bio_dispatch = false;
6970 break;
6971 }
6972 }
6973
6974 conf->bypass_threshold = BYPASS_THRESHOLD;
6975 conf->recovery_disabled = mddev->recovery_disabled - 1;
6976
6977 conf->raid_disks = mddev->raid_disks;
6978 if (mddev->reshape_position == MaxSector)
6979 conf->previous_raid_disks = mddev->raid_disks;
6980 else
6981 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6982 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6983
6984 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6985 GFP_KERNEL);
6986
6987 if (!conf->disks)
6988 goto abort;
6989
6990 for (i = 0; i < max_disks; i++) {
6991 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6992 if (!conf->disks[i].extra_page)
6993 goto abort;
6994 }
6995
6996 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6997 if (ret)
6998 goto abort;
6999 conf->mddev = mddev;
7000
7001 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7002 goto abort;
7003
7004 /* We init hash_locks[0] separately to that it can be used
7005 * as the reference lock in the spin_lock_nest_lock() call
7006 * in lock_all_device_hash_locks_irq in order to convince
7007 * lockdep that we know what we are doing.
7008 */
7009 spin_lock_init(conf->hash_locks);
7010 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7011 spin_lock_init(conf->hash_locks + i);
7012
7013 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7014 INIT_LIST_HEAD(conf->inactive_list + i);
7015
7016 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7017 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7018
7019 atomic_set(&conf->r5c_cached_full_stripes, 0);
7020 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7021 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7022 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7023 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7024 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7025
7026 conf->level = mddev->new_level;
7027 conf->chunk_sectors = mddev->new_chunk_sectors;
7028 if (raid5_alloc_percpu(conf) != 0)
7029 goto abort;
7030
7031 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7032
7033 rdev_for_each(rdev, mddev) {
7034 raid_disk = rdev->raid_disk;
7035 if (raid_disk >= max_disks
7036 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7037 continue;
7038 disk = conf->disks + raid_disk;
7039
7040 if (test_bit(Replacement, &rdev->flags)) {
7041 if (disk->replacement)
7042 goto abort;
7043 disk->replacement = rdev;
7044 } else {
7045 if (disk->rdev)
7046 goto abort;
7047 disk->rdev = rdev;
7048 }
7049
7050 if (test_bit(In_sync, &rdev->flags)) {
7051 char b[BDEVNAME_SIZE];
7052 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7053 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7054 } else if (rdev->saved_raid_disk != raid_disk)
7055 /* Cannot rely on bitmap to complete recovery */
7056 conf->fullsync = 1;
7057 }
7058
7059 conf->level = mddev->new_level;
7060 if (conf->level == 6) {
7061 conf->max_degraded = 2;
7062 if (raid6_call.xor_syndrome)
7063 conf->rmw_level = PARITY_ENABLE_RMW;
7064 else
7065 conf->rmw_level = PARITY_DISABLE_RMW;
7066 } else {
7067 conf->max_degraded = 1;
7068 conf->rmw_level = PARITY_ENABLE_RMW;
7069 }
7070 conf->algorithm = mddev->new_layout;
7071 conf->reshape_progress = mddev->reshape_position;
7072 if (conf->reshape_progress != MaxSector) {
7073 conf->prev_chunk_sectors = mddev->chunk_sectors;
7074 conf->prev_algo = mddev->layout;
7075 } else {
7076 conf->prev_chunk_sectors = conf->chunk_sectors;
7077 conf->prev_algo = conf->algorithm;
7078 }
7079
7080 conf->min_nr_stripes = NR_STRIPES;
7081 if (mddev->reshape_position != MaxSector) {
7082 int stripes = max_t(int,
7083 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7084 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7085 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7086 if (conf->min_nr_stripes != NR_STRIPES)
7087 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7088 mdname(mddev), conf->min_nr_stripes);
7089 }
7090 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7091 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7092 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7093 if (grow_stripes(conf, conf->min_nr_stripes)) {
7094 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7095 mdname(mddev), memory);
7096 goto abort;
7097 } else
7098 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7099 /*
7100 * Losing a stripe head costs more than the time to refill it,
7101 * it reduces the queue depth and so can hurt throughput.
7102 * So set it rather large, scaled by number of devices.
7103 */
7104 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7105 conf->shrinker.scan_objects = raid5_cache_scan;
7106 conf->shrinker.count_objects = raid5_cache_count;
7107 conf->shrinker.batch = 128;
7108 conf->shrinker.flags = 0;
7109 if (register_shrinker(&conf->shrinker)) {
7110 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7111 mdname(mddev));
7112 goto abort;
7113 }
7114
7115 sprintf(pers_name, "raid%d", mddev->new_level);
7116 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7117 if (!conf->thread) {
7118 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7119 mdname(mddev));
7120 goto abort;
7121 }
7122
7123 return conf;
7124
7125 abort:
7126 if (conf) {
7127 free_conf(conf);
7128 return ERR_PTR(-EIO);
7129 } else
7130 return ERR_PTR(-ENOMEM);
7131}
7132
7133static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7134{
7135 switch (algo) {
7136 case ALGORITHM_PARITY_0:
7137 if (raid_disk < max_degraded)
7138 return 1;
7139 break;
7140 case ALGORITHM_PARITY_N:
7141 if (raid_disk >= raid_disks - max_degraded)
7142 return 1;
7143 break;
7144 case ALGORITHM_PARITY_0_6:
7145 if (raid_disk == 0 ||
7146 raid_disk == raid_disks - 1)
7147 return 1;
7148 break;
7149 case ALGORITHM_LEFT_ASYMMETRIC_6:
7150 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7151 case ALGORITHM_LEFT_SYMMETRIC_6:
7152 case ALGORITHM_RIGHT_SYMMETRIC_6:
7153 if (raid_disk == raid_disks - 1)
7154 return 1;
7155 }
7156 return 0;
7157}
7158
7159static void raid5_set_io_opt(struct r5conf *conf)
7160{
7161 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7162 (conf->raid_disks - conf->max_degraded));
7163}
7164
7165static int raid5_run(struct mddev *mddev)
7166{
7167 struct r5conf *conf;
7168 int working_disks = 0;
7169 int dirty_parity_disks = 0;
7170 struct md_rdev *rdev;
7171 struct md_rdev *journal_dev = NULL;
7172 sector_t reshape_offset = 0;
7173 int i;
7174 long long min_offset_diff = 0;
7175 int first = 1;
7176
7177 if (mddev_init_writes_pending(mddev) < 0)
7178 return -ENOMEM;
7179
7180 if (mddev->recovery_cp != MaxSector)
7181 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7182 mdname(mddev));
7183
7184 rdev_for_each(rdev, mddev) {
7185 long long diff;
7186
7187 if (test_bit(Journal, &rdev->flags)) {
7188 journal_dev = rdev;
7189 continue;
7190 }
7191 if (rdev->raid_disk < 0)
7192 continue;
7193 diff = (rdev->new_data_offset - rdev->data_offset);
7194 if (first) {
7195 min_offset_diff = diff;
7196 first = 0;
7197 } else if (mddev->reshape_backwards &&
7198 diff < min_offset_diff)
7199 min_offset_diff = diff;
7200 else if (!mddev->reshape_backwards &&
7201 diff > min_offset_diff)
7202 min_offset_diff = diff;
7203 }
7204
7205 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7206 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7207 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7208 mdname(mddev));
7209 return -EINVAL;
7210 }
7211
7212 if (mddev->reshape_position != MaxSector) {
7213 /* Check that we can continue the reshape.
7214 * Difficulties arise if the stripe we would write to
7215 * next is at or after the stripe we would read from next.
7216 * For a reshape that changes the number of devices, this
7217 * is only possible for a very short time, and mdadm makes
7218 * sure that time appears to have past before assembling
7219 * the array. So we fail if that time hasn't passed.
7220 * For a reshape that keeps the number of devices the same
7221 * mdadm must be monitoring the reshape can keeping the
7222 * critical areas read-only and backed up. It will start
7223 * the array in read-only mode, so we check for that.
7224 */
7225 sector_t here_new, here_old;
7226 int old_disks;
7227 int max_degraded = (mddev->level == 6 ? 2 : 1);
7228 int chunk_sectors;
7229 int new_data_disks;
7230
7231 if (journal_dev) {
7232 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7233 mdname(mddev));
7234 return -EINVAL;
7235 }
7236
7237 if (mddev->new_level != mddev->level) {
7238 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7239 mdname(mddev));
7240 return -EINVAL;
7241 }
7242 old_disks = mddev->raid_disks - mddev->delta_disks;
7243 /* reshape_position must be on a new-stripe boundary, and one
7244 * further up in new geometry must map after here in old
7245 * geometry.
7246 * If the chunk sizes are different, then as we perform reshape
7247 * in units of the largest of the two, reshape_position needs
7248 * be a multiple of the largest chunk size times new data disks.
7249 */
7250 here_new = mddev->reshape_position;
7251 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7252 new_data_disks = mddev->raid_disks - max_degraded;
7253 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7254 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7255 mdname(mddev));
7256 return -EINVAL;
7257 }
7258 reshape_offset = here_new * chunk_sectors;
7259 /* here_new is the stripe we will write to */
7260 here_old = mddev->reshape_position;
7261 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7262 /* here_old is the first stripe that we might need to read
7263 * from */
7264 if (mddev->delta_disks == 0) {
7265 /* We cannot be sure it is safe to start an in-place
7266 * reshape. It is only safe if user-space is monitoring
7267 * and taking constant backups.
7268 * mdadm always starts a situation like this in
7269 * readonly mode so it can take control before
7270 * allowing any writes. So just check for that.
7271 */
7272 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7273 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7274 /* not really in-place - so OK */;
7275 else if (mddev->ro == 0) {
7276 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7277 mdname(mddev));
7278 return -EINVAL;
7279 }
7280 } else if (mddev->reshape_backwards
7281 ? (here_new * chunk_sectors + min_offset_diff <=
7282 here_old * chunk_sectors)
7283 : (here_new * chunk_sectors >=
7284 here_old * chunk_sectors + (-min_offset_diff))) {
7285 /* Reading from the same stripe as writing to - bad */
7286 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7287 mdname(mddev));
7288 return -EINVAL;
7289 }
7290 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7291 /* OK, we should be able to continue; */
7292 } else {
7293 BUG_ON(mddev->level != mddev->new_level);
7294 BUG_ON(mddev->layout != mddev->new_layout);
7295 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7296 BUG_ON(mddev->delta_disks != 0);
7297 }
7298
7299 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7300 test_bit(MD_HAS_PPL, &mddev->flags)) {
7301 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7302 mdname(mddev));
7303 clear_bit(MD_HAS_PPL, &mddev->flags);
7304 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7305 }
7306
7307 if (mddev->private == NULL)
7308 conf = setup_conf(mddev);
7309 else
7310 conf = mddev->private;
7311
7312 if (IS_ERR(conf))
7313 return PTR_ERR(conf);
7314
7315 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7316 if (!journal_dev) {
7317 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7318 mdname(mddev));
7319 mddev->ro = 1;
7320 set_disk_ro(mddev->gendisk, 1);
7321 } else if (mddev->recovery_cp == MaxSector)
7322 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7323 }
7324
7325 conf->min_offset_diff = min_offset_diff;
7326 mddev->thread = conf->thread;
7327 conf->thread = NULL;
7328 mddev->private = conf;
7329
7330 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7331 i++) {
7332 rdev = conf->disks[i].rdev;
7333 if (!rdev && conf->disks[i].replacement) {
7334 /* The replacement is all we have yet */
7335 rdev = conf->disks[i].replacement;
7336 conf->disks[i].replacement = NULL;
7337 clear_bit(Replacement, &rdev->flags);
7338 conf->disks[i].rdev = rdev;
7339 }
7340 if (!rdev)
7341 continue;
7342 if (conf->disks[i].replacement &&
7343 conf->reshape_progress != MaxSector) {
7344 /* replacements and reshape simply do not mix. */
7345 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7346 goto abort;
7347 }
7348 if (test_bit(In_sync, &rdev->flags)) {
7349 working_disks++;
7350 continue;
7351 }
7352 /* This disc is not fully in-sync. However if it
7353 * just stored parity (beyond the recovery_offset),
7354 * when we don't need to be concerned about the
7355 * array being dirty.
7356 * When reshape goes 'backwards', we never have
7357 * partially completed devices, so we only need
7358 * to worry about reshape going forwards.
7359 */
7360 /* Hack because v0.91 doesn't store recovery_offset properly. */
7361 if (mddev->major_version == 0 &&
7362 mddev->minor_version > 90)
7363 rdev->recovery_offset = reshape_offset;
7364
7365 if (rdev->recovery_offset < reshape_offset) {
7366 /* We need to check old and new layout */
7367 if (!only_parity(rdev->raid_disk,
7368 conf->algorithm,
7369 conf->raid_disks,
7370 conf->max_degraded))
7371 continue;
7372 }
7373 if (!only_parity(rdev->raid_disk,
7374 conf->prev_algo,
7375 conf->previous_raid_disks,
7376 conf->max_degraded))
7377 continue;
7378 dirty_parity_disks++;
7379 }
7380
7381 /*
7382 * 0 for a fully functional array, 1 or 2 for a degraded array.
7383 */
7384 mddev->degraded = raid5_calc_degraded(conf);
7385
7386 if (has_failed(conf)) {
7387 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7388 mdname(mddev), mddev->degraded, conf->raid_disks);
7389 goto abort;
7390 }
7391
7392 /* device size must be a multiple of chunk size */
7393 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7394 mddev->resync_max_sectors = mddev->dev_sectors;
7395
7396 if (mddev->degraded > dirty_parity_disks &&
7397 mddev->recovery_cp != MaxSector) {
7398 if (test_bit(MD_HAS_PPL, &mddev->flags))
7399 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7400 mdname(mddev));
7401 else if (mddev->ok_start_degraded)
7402 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7403 mdname(mddev));
7404 else {
7405 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7406 mdname(mddev));
7407 goto abort;
7408 }
7409 }
7410
7411 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7412 mdname(mddev), conf->level,
7413 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7414 mddev->new_layout);
7415
7416 print_raid5_conf(conf);
7417
7418 if (conf->reshape_progress != MaxSector) {
7419 conf->reshape_safe = conf->reshape_progress;
7420 atomic_set(&conf->reshape_stripes, 0);
7421 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7422 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7423 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7424 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7425 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7426 "reshape");
7427 if (!mddev->sync_thread)
7428 goto abort;
7429 }
7430
7431 /* Ok, everything is just fine now */
7432 if (mddev->to_remove == &raid5_attrs_group)
7433 mddev->to_remove = NULL;
7434 else if (mddev->kobj.sd &&
7435 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7436 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7437 mdname(mddev));
7438 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7439
7440 if (mddev->queue) {
7441 int chunk_size;
7442 /* read-ahead size must cover two whole stripes, which
7443 * is 2 * (datadisks) * chunksize where 'n' is the
7444 * number of raid devices
7445 */
7446 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7447 int stripe = data_disks *
7448 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7449 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7450 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7451
7452 chunk_size = mddev->chunk_sectors << 9;
7453 blk_queue_io_min(mddev->queue, chunk_size);
7454 raid5_set_io_opt(conf);
7455 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7456 /*
7457 * We can only discard a whole stripe. It doesn't make sense to
7458 * discard data disk but write parity disk
7459 */
7460 stripe = stripe * PAGE_SIZE;
7461 /* Round up to power of 2, as discard handling
7462 * currently assumes that */
7463 while ((stripe-1) & stripe)
7464 stripe = (stripe | (stripe-1)) + 1;
7465 mddev->queue->limits.discard_alignment = stripe;
7466 mddev->queue->limits.discard_granularity = stripe;
7467
7468 blk_queue_max_write_same_sectors(mddev->queue, 0);
7469 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7470
7471 rdev_for_each(rdev, mddev) {
7472 disk_stack_limits(mddev->gendisk, rdev->bdev,
7473 rdev->data_offset << 9);
7474 disk_stack_limits(mddev->gendisk, rdev->bdev,
7475 rdev->new_data_offset << 9);
7476 }
7477
7478 /*
7479 * zeroing is required, otherwise data
7480 * could be lost. Consider a scenario: discard a stripe
7481 * (the stripe could be inconsistent if
7482 * discard_zeroes_data is 0); write one disk of the
7483 * stripe (the stripe could be inconsistent again
7484 * depending on which disks are used to calculate
7485 * parity); the disk is broken; The stripe data of this
7486 * disk is lost.
7487 *
7488 * We only allow DISCARD if the sysadmin has confirmed that
7489 * only safe devices are in use by setting a module parameter.
7490 * A better idea might be to turn DISCARD into WRITE_ZEROES
7491 * requests, as that is required to be safe.
7492 */
7493 if (devices_handle_discard_safely &&
7494 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7495 mddev->queue->limits.discard_granularity >= stripe)
7496 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7497 mddev->queue);
7498 else
7499 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7500 mddev->queue);
7501
7502 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7503 }
7504
7505 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7506 goto abort;
7507
7508 return 0;
7509abort:
7510 md_unregister_thread(&mddev->thread);
7511 print_raid5_conf(conf);
7512 free_conf(conf);
7513 mddev->private = NULL;
7514 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7515 return -EIO;
7516}
7517
7518static void raid5_free(struct mddev *mddev, void *priv)
7519{
7520 struct r5conf *conf = priv;
7521
7522 free_conf(conf);
7523 mddev->to_remove = &raid5_attrs_group;
7524}
7525
7526static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7527{
7528 struct r5conf *conf = mddev->private;
7529 int i;
7530
7531 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7532 conf->chunk_sectors / 2, mddev->layout);
7533 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7534 rcu_read_lock();
7535 for (i = 0; i < conf->raid_disks; i++) {
7536 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7537 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7538 }
7539 rcu_read_unlock();
7540 seq_printf (seq, "]");
7541}
7542
7543static void print_raid5_conf (struct r5conf *conf)
7544{
7545 int i;
7546 struct disk_info *tmp;
7547
7548 pr_debug("RAID conf printout:\n");
7549 if (!conf) {
7550 pr_debug("(conf==NULL)\n");
7551 return;
7552 }
7553 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7554 conf->raid_disks,
7555 conf->raid_disks - conf->mddev->degraded);
7556
7557 for (i = 0; i < conf->raid_disks; i++) {
7558 char b[BDEVNAME_SIZE];
7559 tmp = conf->disks + i;
7560 if (tmp->rdev)
7561 pr_debug(" disk %d, o:%d, dev:%s\n",
7562 i, !test_bit(Faulty, &tmp->rdev->flags),
7563 bdevname(tmp->rdev->bdev, b));
7564 }
7565}
7566
7567static int raid5_spare_active(struct mddev *mddev)
7568{
7569 int i;
7570 struct r5conf *conf = mddev->private;
7571 struct disk_info *tmp;
7572 int count = 0;
7573 unsigned long flags;
7574
7575 for (i = 0; i < conf->raid_disks; i++) {
7576 tmp = conf->disks + i;
7577 if (tmp->replacement
7578 && tmp->replacement->recovery_offset == MaxSector
7579 && !test_bit(Faulty, &tmp->replacement->flags)
7580 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7581 /* Replacement has just become active. */
7582 if (!tmp->rdev
7583 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7584 count++;
7585 if (tmp->rdev) {
7586 /* Replaced device not technically faulty,
7587 * but we need to be sure it gets removed
7588 * and never re-added.
7589 */
7590 set_bit(Faulty, &tmp->rdev->flags);
7591 sysfs_notify_dirent_safe(
7592 tmp->rdev->sysfs_state);
7593 }
7594 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7595 } else if (tmp->rdev
7596 && tmp->rdev->recovery_offset == MaxSector
7597 && !test_bit(Faulty, &tmp->rdev->flags)
7598 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7599 count++;
7600 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7601 }
7602 }
7603 spin_lock_irqsave(&conf->device_lock, flags);
7604 mddev->degraded = raid5_calc_degraded(conf);
7605 spin_unlock_irqrestore(&conf->device_lock, flags);
7606 print_raid5_conf(conf);
7607 return count;
7608}
7609
7610static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7611{
7612 struct r5conf *conf = mddev->private;
7613 int err = 0;
7614 int number = rdev->raid_disk;
7615 struct md_rdev **rdevp;
7616 struct disk_info *p = conf->disks + number;
7617
7618 print_raid5_conf(conf);
7619 if (test_bit(Journal, &rdev->flags) && conf->log) {
7620 /*
7621 * we can't wait pending write here, as this is called in
7622 * raid5d, wait will deadlock.
7623 * neilb: there is no locking about new writes here,
7624 * so this cannot be safe.
7625 */
7626 if (atomic_read(&conf->active_stripes) ||
7627 atomic_read(&conf->r5c_cached_full_stripes) ||
7628 atomic_read(&conf->r5c_cached_partial_stripes)) {
7629 return -EBUSY;
7630 }
7631 log_exit(conf);
7632 return 0;
7633 }
7634 if (rdev == p->rdev)
7635 rdevp = &p->rdev;
7636 else if (rdev == p->replacement)
7637 rdevp = &p->replacement;
7638 else
7639 return 0;
7640
7641 if (number >= conf->raid_disks &&
7642 conf->reshape_progress == MaxSector)
7643 clear_bit(In_sync, &rdev->flags);
7644
7645 if (test_bit(In_sync, &rdev->flags) ||
7646 atomic_read(&rdev->nr_pending)) {
7647 err = -EBUSY;
7648 goto abort;
7649 }
7650 /* Only remove non-faulty devices if recovery
7651 * isn't possible.
7652 */
7653 if (!test_bit(Faulty, &rdev->flags) &&
7654 mddev->recovery_disabled != conf->recovery_disabled &&
7655 !has_failed(conf) &&
7656 (!p->replacement || p->replacement == rdev) &&
7657 number < conf->raid_disks) {
7658 err = -EBUSY;
7659 goto abort;
7660 }
7661 *rdevp = NULL;
7662 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7663 synchronize_rcu();
7664 if (atomic_read(&rdev->nr_pending)) {
7665 /* lost the race, try later */
7666 err = -EBUSY;
7667 *rdevp = rdev;
7668 }
7669 }
7670 if (!err) {
7671 err = log_modify(conf, rdev, false);
7672 if (err)
7673 goto abort;
7674 }
7675 if (p->replacement) {
7676 /* We must have just cleared 'rdev' */
7677 p->rdev = p->replacement;
7678 clear_bit(Replacement, &p->replacement->flags);
7679 smp_mb(); /* Make sure other CPUs may see both as identical
7680 * but will never see neither - if they are careful
7681 */
7682 p->replacement = NULL;
7683
7684 if (!err)
7685 err = log_modify(conf, p->rdev, true);
7686 }
7687
7688 clear_bit(WantReplacement, &rdev->flags);
7689abort:
7690
7691 print_raid5_conf(conf);
7692 return err;
7693}
7694
7695static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7696{
7697 struct r5conf *conf = mddev->private;
7698 int ret, err = -EEXIST;
7699 int disk;
7700 struct disk_info *p;
7701 int first = 0;
7702 int last = conf->raid_disks - 1;
7703
7704 if (test_bit(Journal, &rdev->flags)) {
7705 if (conf->log)
7706 return -EBUSY;
7707
7708 rdev->raid_disk = 0;
7709 /*
7710 * The array is in readonly mode if journal is missing, so no
7711 * write requests running. We should be safe
7712 */
7713 ret = log_init(conf, rdev, false);
7714 if (ret)
7715 return ret;
7716
7717 ret = r5l_start(conf->log);
7718 if (ret)
7719 return ret;
7720
7721 return 0;
7722 }
7723 if (mddev->recovery_disabled == conf->recovery_disabled)
7724 return -EBUSY;
7725
7726 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7727 /* no point adding a device */
7728 return -EINVAL;
7729
7730 if (rdev->raid_disk >= 0)
7731 first = last = rdev->raid_disk;
7732
7733 /*
7734 * find the disk ... but prefer rdev->saved_raid_disk
7735 * if possible.
7736 */
7737 if (rdev->saved_raid_disk >= 0 &&
7738 rdev->saved_raid_disk >= first &&
7739 rdev->saved_raid_disk <= last &&
7740 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7741 first = rdev->saved_raid_disk;
7742
7743 for (disk = first; disk <= last; disk++) {
7744 p = conf->disks + disk;
7745 if (p->rdev == NULL) {
7746 clear_bit(In_sync, &rdev->flags);
7747 rdev->raid_disk = disk;
7748 if (rdev->saved_raid_disk != disk)
7749 conf->fullsync = 1;
7750 rcu_assign_pointer(p->rdev, rdev);
7751
7752 err = log_modify(conf, rdev, true);
7753
7754 goto out;
7755 }
7756 }
7757 for (disk = first; disk <= last; disk++) {
7758 p = conf->disks + disk;
7759 if (test_bit(WantReplacement, &p->rdev->flags) &&
7760 p->replacement == NULL) {
7761 clear_bit(In_sync, &rdev->flags);
7762 set_bit(Replacement, &rdev->flags);
7763 rdev->raid_disk = disk;
7764 err = 0;
7765 conf->fullsync = 1;
7766 rcu_assign_pointer(p->replacement, rdev);
7767 break;
7768 }
7769 }
7770out:
7771 print_raid5_conf(conf);
7772 return err;
7773}
7774
7775static int raid5_resize(struct mddev *mddev, sector_t sectors)
7776{
7777 /* no resync is happening, and there is enough space
7778 * on all devices, so we can resize.
7779 * We need to make sure resync covers any new space.
7780 * If the array is shrinking we should possibly wait until
7781 * any io in the removed space completes, but it hardly seems
7782 * worth it.
7783 */
7784 sector_t newsize;
7785 struct r5conf *conf = mddev->private;
7786
7787 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7788 return -EINVAL;
7789 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7790 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7791 if (mddev->external_size &&
7792 mddev->array_sectors > newsize)
7793 return -EINVAL;
7794 if (mddev->bitmap) {
7795 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7796 if (ret)
7797 return ret;
7798 }
7799 md_set_array_sectors(mddev, newsize);
7800 if (sectors > mddev->dev_sectors &&
7801 mddev->recovery_cp > mddev->dev_sectors) {
7802 mddev->recovery_cp = mddev->dev_sectors;
7803 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7804 }
7805 mddev->dev_sectors = sectors;
7806 mddev->resync_max_sectors = sectors;
7807 return 0;
7808}
7809
7810static int check_stripe_cache(struct mddev *mddev)
7811{
7812 /* Can only proceed if there are plenty of stripe_heads.
7813 * We need a minimum of one full stripe,, and for sensible progress
7814 * it is best to have about 4 times that.
7815 * If we require 4 times, then the default 256 4K stripe_heads will
7816 * allow for chunk sizes up to 256K, which is probably OK.
7817 * If the chunk size is greater, user-space should request more
7818 * stripe_heads first.
7819 */
7820 struct r5conf *conf = mddev->private;
7821 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7822 > conf->min_nr_stripes ||
7823 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7824 > conf->min_nr_stripes) {
7825 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7826 mdname(mddev),
7827 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7828 / STRIPE_SIZE)*4);
7829 return 0;
7830 }
7831 return 1;
7832}
7833
7834static int check_reshape(struct mddev *mddev)
7835{
7836 struct r5conf *conf = mddev->private;
7837
7838 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7839 return -EINVAL;
7840 if (mddev->delta_disks == 0 &&
7841 mddev->new_layout == mddev->layout &&
7842 mddev->new_chunk_sectors == mddev->chunk_sectors)
7843 return 0; /* nothing to do */
7844 if (has_failed(conf))
7845 return -EINVAL;
7846 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7847 /* We might be able to shrink, but the devices must
7848 * be made bigger first.
7849 * For raid6, 4 is the minimum size.
7850 * Otherwise 2 is the minimum
7851 */
7852 int min = 2;
7853 if (mddev->level == 6)
7854 min = 4;
7855 if (mddev->raid_disks + mddev->delta_disks < min)
7856 return -EINVAL;
7857 }
7858
7859 if (!check_stripe_cache(mddev))
7860 return -ENOSPC;
7861
7862 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7863 mddev->delta_disks > 0)
7864 if (resize_chunks(conf,
7865 conf->previous_raid_disks
7866 + max(0, mddev->delta_disks),
7867 max(mddev->new_chunk_sectors,
7868 mddev->chunk_sectors)
7869 ) < 0)
7870 return -ENOMEM;
7871
7872 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7873 return 0; /* never bother to shrink */
7874 return resize_stripes(conf, (conf->previous_raid_disks
7875 + mddev->delta_disks));
7876}
7877
7878static int raid5_start_reshape(struct mddev *mddev)
7879{
7880 struct r5conf *conf = mddev->private;
7881 struct md_rdev *rdev;
7882 int spares = 0;
7883 unsigned long flags;
7884
7885 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7886 return -EBUSY;
7887
7888 if (!check_stripe_cache(mddev))
7889 return -ENOSPC;
7890
7891 if (has_failed(conf))
7892 return -EINVAL;
7893
7894 rdev_for_each(rdev, mddev) {
7895 if (!test_bit(In_sync, &rdev->flags)
7896 && !test_bit(Faulty, &rdev->flags))
7897 spares++;
7898 }
7899
7900 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7901 /* Not enough devices even to make a degraded array
7902 * of that size
7903 */
7904 return -EINVAL;
7905
7906 /* Refuse to reduce size of the array. Any reductions in
7907 * array size must be through explicit setting of array_size
7908 * attribute.
7909 */
7910 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7911 < mddev->array_sectors) {
7912 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7913 mdname(mddev));
7914 return -EINVAL;
7915 }
7916
7917 atomic_set(&conf->reshape_stripes, 0);
7918 spin_lock_irq(&conf->device_lock);
7919 write_seqcount_begin(&conf->gen_lock);
7920 conf->previous_raid_disks = conf->raid_disks;
7921 conf->raid_disks += mddev->delta_disks;
7922 conf->prev_chunk_sectors = conf->chunk_sectors;
7923 conf->chunk_sectors = mddev->new_chunk_sectors;
7924 conf->prev_algo = conf->algorithm;
7925 conf->algorithm = mddev->new_layout;
7926 conf->generation++;
7927 /* Code that selects data_offset needs to see the generation update
7928 * if reshape_progress has been set - so a memory barrier needed.
7929 */
7930 smp_mb();
7931 if (mddev->reshape_backwards)
7932 conf->reshape_progress = raid5_size(mddev, 0, 0);
7933 else
7934 conf->reshape_progress = 0;
7935 conf->reshape_safe = conf->reshape_progress;
7936 write_seqcount_end(&conf->gen_lock);
7937 spin_unlock_irq(&conf->device_lock);
7938
7939 /* Now make sure any requests that proceeded on the assumption
7940 * the reshape wasn't running - like Discard or Read - have
7941 * completed.
7942 */
7943 mddev_suspend(mddev);
7944 mddev_resume(mddev);
7945
7946 /* Add some new drives, as many as will fit.
7947 * We know there are enough to make the newly sized array work.
7948 * Don't add devices if we are reducing the number of
7949 * devices in the array. This is because it is not possible
7950 * to correctly record the "partially reconstructed" state of
7951 * such devices during the reshape and confusion could result.
7952 */
7953 if (mddev->delta_disks >= 0) {
7954 rdev_for_each(rdev, mddev)
7955 if (rdev->raid_disk < 0 &&
7956 !test_bit(Faulty, &rdev->flags)) {
7957 if (raid5_add_disk(mddev, rdev) == 0) {
7958 if (rdev->raid_disk
7959 >= conf->previous_raid_disks)
7960 set_bit(In_sync, &rdev->flags);
7961 else
7962 rdev->recovery_offset = 0;
7963
7964 if (sysfs_link_rdev(mddev, rdev))
7965 /* Failure here is OK */;
7966 }
7967 } else if (rdev->raid_disk >= conf->previous_raid_disks
7968 && !test_bit(Faulty, &rdev->flags)) {
7969 /* This is a spare that was manually added */
7970 set_bit(In_sync, &rdev->flags);
7971 }
7972
7973 /* When a reshape changes the number of devices,
7974 * ->degraded is measured against the larger of the
7975 * pre and post number of devices.
7976 */
7977 spin_lock_irqsave(&conf->device_lock, flags);
7978 mddev->degraded = raid5_calc_degraded(conf);
7979 spin_unlock_irqrestore(&conf->device_lock, flags);
7980 }
7981 mddev->raid_disks = conf->raid_disks;
7982 mddev->reshape_position = conf->reshape_progress;
7983 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7984
7985 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7986 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7987 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7988 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7989 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7990 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7991 "reshape");
7992 if (!mddev->sync_thread) {
7993 mddev->recovery = 0;
7994 spin_lock_irq(&conf->device_lock);
7995 write_seqcount_begin(&conf->gen_lock);
7996 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7997 mddev->new_chunk_sectors =
7998 conf->chunk_sectors = conf->prev_chunk_sectors;
7999 mddev->new_layout = conf->algorithm = conf->prev_algo;
8000 rdev_for_each(rdev, mddev)
8001 rdev->new_data_offset = rdev->data_offset;
8002 smp_wmb();
8003 conf->generation --;
8004 conf->reshape_progress = MaxSector;
8005 mddev->reshape_position = MaxSector;
8006 write_seqcount_end(&conf->gen_lock);
8007 spin_unlock_irq(&conf->device_lock);
8008 return -EAGAIN;
8009 }
8010 conf->reshape_checkpoint = jiffies;
8011 md_wakeup_thread(mddev->sync_thread);
8012 md_new_event(mddev);
8013 return 0;
8014}
8015
8016/* This is called from the reshape thread and should make any
8017 * changes needed in 'conf'
8018 */
8019static void end_reshape(struct r5conf *conf)
8020{
8021
8022 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8023 struct md_rdev *rdev;
8024
8025 spin_lock_irq(&conf->device_lock);
8026 conf->previous_raid_disks = conf->raid_disks;
8027 md_finish_reshape(conf->mddev);
8028 smp_wmb();
8029 conf->reshape_progress = MaxSector;
8030 conf->mddev->reshape_position = MaxSector;
8031 rdev_for_each(rdev, conf->mddev)
8032 if (rdev->raid_disk >= 0 &&
8033 !test_bit(Journal, &rdev->flags) &&
8034 !test_bit(In_sync, &rdev->flags))
8035 rdev->recovery_offset = MaxSector;
8036 spin_unlock_irq(&conf->device_lock);
8037 wake_up(&conf->wait_for_overlap);
8038
8039 /* read-ahead size must cover two whole stripes, which is
8040 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8041 */
8042 if (conf->mddev->queue) {
8043 int data_disks = conf->raid_disks - conf->max_degraded;
8044 int stripe = data_disks * ((conf->chunk_sectors << 9)
8045 / PAGE_SIZE);
8046 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8047 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8048 raid5_set_io_opt(conf);
8049 }
8050 }
8051}
8052
8053/* This is called from the raid5d thread with mddev_lock held.
8054 * It makes config changes to the device.
8055 */
8056static void raid5_finish_reshape(struct mddev *mddev)
8057{
8058 struct r5conf *conf = mddev->private;
8059
8060 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8061
8062 if (mddev->delta_disks <= 0) {
8063 int d;
8064 spin_lock_irq(&conf->device_lock);
8065 mddev->degraded = raid5_calc_degraded(conf);
8066 spin_unlock_irq(&conf->device_lock);
8067 for (d = conf->raid_disks ;
8068 d < conf->raid_disks - mddev->delta_disks;
8069 d++) {
8070 struct md_rdev *rdev = conf->disks[d].rdev;
8071 if (rdev)
8072 clear_bit(In_sync, &rdev->flags);
8073 rdev = conf->disks[d].replacement;
8074 if (rdev)
8075 clear_bit(In_sync, &rdev->flags);
8076 }
8077 }
8078 mddev->layout = conf->algorithm;
8079 mddev->chunk_sectors = conf->chunk_sectors;
8080 mddev->reshape_position = MaxSector;
8081 mddev->delta_disks = 0;
8082 mddev->reshape_backwards = 0;
8083 }
8084}
8085
8086static void raid5_quiesce(struct mddev *mddev, int quiesce)
8087{
8088 struct r5conf *conf = mddev->private;
8089
8090 if (quiesce) {
8091 /* stop all writes */
8092 lock_all_device_hash_locks_irq(conf);
8093 /* '2' tells resync/reshape to pause so that all
8094 * active stripes can drain
8095 */
8096 r5c_flush_cache(conf, INT_MAX);
8097 conf->quiesce = 2;
8098 wait_event_cmd(conf->wait_for_quiescent,
8099 atomic_read(&conf->active_stripes) == 0 &&
8100 atomic_read(&conf->active_aligned_reads) == 0,
8101 unlock_all_device_hash_locks_irq(conf),
8102 lock_all_device_hash_locks_irq(conf));
8103 conf->quiesce = 1;
8104 unlock_all_device_hash_locks_irq(conf);
8105 /* allow reshape to continue */
8106 wake_up(&conf->wait_for_overlap);
8107 } else {
8108 /* re-enable writes */
8109 lock_all_device_hash_locks_irq(conf);
8110 conf->quiesce = 0;
8111 wake_up(&conf->wait_for_quiescent);
8112 wake_up(&conf->wait_for_overlap);
8113 unlock_all_device_hash_locks_irq(conf);
8114 }
8115 log_quiesce(conf, quiesce);
8116}
8117
8118static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8119{
8120 struct r0conf *raid0_conf = mddev->private;
8121 sector_t sectors;
8122
8123 /* for raid0 takeover only one zone is supported */
8124 if (raid0_conf->nr_strip_zones > 1) {
8125 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8126 mdname(mddev));
8127 return ERR_PTR(-EINVAL);
8128 }
8129
8130 sectors = raid0_conf->strip_zone[0].zone_end;
8131 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8132 mddev->dev_sectors = sectors;
8133 mddev->new_level = level;
8134 mddev->new_layout = ALGORITHM_PARITY_N;
8135 mddev->new_chunk_sectors = mddev->chunk_sectors;
8136 mddev->raid_disks += 1;
8137 mddev->delta_disks = 1;
8138 /* make sure it will be not marked as dirty */
8139 mddev->recovery_cp = MaxSector;
8140
8141 return setup_conf(mddev);
8142}
8143
8144static void *raid5_takeover_raid1(struct mddev *mddev)
8145{
8146 int chunksect;
8147 void *ret;
8148
8149 if (mddev->raid_disks != 2 ||
8150 mddev->degraded > 1)
8151 return ERR_PTR(-EINVAL);
8152
8153 /* Should check if there are write-behind devices? */
8154
8155 chunksect = 64*2; /* 64K by default */
8156
8157 /* The array must be an exact multiple of chunksize */
8158 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8159 chunksect >>= 1;
8160
8161 if ((chunksect<<9) < STRIPE_SIZE)
8162 /* array size does not allow a suitable chunk size */
8163 return ERR_PTR(-EINVAL);
8164
8165 mddev->new_level = 5;
8166 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8167 mddev->new_chunk_sectors = chunksect;
8168
8169 ret = setup_conf(mddev);
8170 if (!IS_ERR(ret))
8171 mddev_clear_unsupported_flags(mddev,
8172 UNSUPPORTED_MDDEV_FLAGS);
8173 return ret;
8174}
8175
8176static void *raid5_takeover_raid6(struct mddev *mddev)
8177{
8178 int new_layout;
8179
8180 switch (mddev->layout) {
8181 case ALGORITHM_LEFT_ASYMMETRIC_6:
8182 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8183 break;
8184 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8185 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8186 break;
8187 case ALGORITHM_LEFT_SYMMETRIC_6:
8188 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8189 break;
8190 case ALGORITHM_RIGHT_SYMMETRIC_6:
8191 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8192 break;
8193 case ALGORITHM_PARITY_0_6:
8194 new_layout = ALGORITHM_PARITY_0;
8195 break;
8196 case ALGORITHM_PARITY_N:
8197 new_layout = ALGORITHM_PARITY_N;
8198 break;
8199 default:
8200 return ERR_PTR(-EINVAL);
8201 }
8202 mddev->new_level = 5;
8203 mddev->new_layout = new_layout;
8204 mddev->delta_disks = -1;
8205 mddev->raid_disks -= 1;
8206 return setup_conf(mddev);
8207}
8208
8209static int raid5_check_reshape(struct mddev *mddev)
8210{
8211 /* For a 2-drive array, the layout and chunk size can be changed
8212 * immediately as not restriping is needed.
8213 * For larger arrays we record the new value - after validation
8214 * to be used by a reshape pass.
8215 */
8216 struct r5conf *conf = mddev->private;
8217 int new_chunk = mddev->new_chunk_sectors;
8218
8219 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8220 return -EINVAL;
8221 if (new_chunk > 0) {
8222 if (!is_power_of_2(new_chunk))
8223 return -EINVAL;
8224 if (new_chunk < (PAGE_SIZE>>9))
8225 return -EINVAL;
8226 if (mddev->array_sectors & (new_chunk-1))
8227 /* not factor of array size */
8228 return -EINVAL;
8229 }
8230
8231 /* They look valid */
8232
8233 if (mddev->raid_disks == 2) {
8234 /* can make the change immediately */
8235 if (mddev->new_layout >= 0) {
8236 conf->algorithm = mddev->new_layout;
8237 mddev->layout = mddev->new_layout;
8238 }
8239 if (new_chunk > 0) {
8240 conf->chunk_sectors = new_chunk ;
8241 mddev->chunk_sectors = new_chunk;
8242 }
8243 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8244 md_wakeup_thread(mddev->thread);
8245 }
8246 return check_reshape(mddev);
8247}
8248
8249static int raid6_check_reshape(struct mddev *mddev)
8250{
8251 int new_chunk = mddev->new_chunk_sectors;
8252
8253 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8254 return -EINVAL;
8255 if (new_chunk > 0) {
8256 if (!is_power_of_2(new_chunk))
8257 return -EINVAL;
8258 if (new_chunk < (PAGE_SIZE >> 9))
8259 return -EINVAL;
8260 if (mddev->array_sectors & (new_chunk-1))
8261 /* not factor of array size */
8262 return -EINVAL;
8263 }
8264
8265 /* They look valid */
8266 return check_reshape(mddev);
8267}
8268
8269static void *raid5_takeover(struct mddev *mddev)
8270{
8271 /* raid5 can take over:
8272 * raid0 - if there is only one strip zone - make it a raid4 layout
8273 * raid1 - if there are two drives. We need to know the chunk size
8274 * raid4 - trivial - just use a raid4 layout.
8275 * raid6 - Providing it is a *_6 layout
8276 */
8277 if (mddev->level == 0)
8278 return raid45_takeover_raid0(mddev, 5);
8279 if (mddev->level == 1)
8280 return raid5_takeover_raid1(mddev);
8281 if (mddev->level == 4) {
8282 mddev->new_layout = ALGORITHM_PARITY_N;
8283 mddev->new_level = 5;
8284 return setup_conf(mddev);
8285 }
8286 if (mddev->level == 6)
8287 return raid5_takeover_raid6(mddev);
8288
8289 return ERR_PTR(-EINVAL);
8290}
8291
8292static void *raid4_takeover(struct mddev *mddev)
8293{
8294 /* raid4 can take over:
8295 * raid0 - if there is only one strip zone
8296 * raid5 - if layout is right
8297 */
8298 if (mddev->level == 0)
8299 return raid45_takeover_raid0(mddev, 4);
8300 if (mddev->level == 5 &&
8301 mddev->layout == ALGORITHM_PARITY_N) {
8302 mddev->new_layout = 0;
8303 mddev->new_level = 4;
8304 return setup_conf(mddev);
8305 }
8306 return ERR_PTR(-EINVAL);
8307}
8308
8309static struct md_personality raid5_personality;
8310
8311static void *raid6_takeover(struct mddev *mddev)
8312{
8313 /* Currently can only take over a raid5. We map the
8314 * personality to an equivalent raid6 personality
8315 * with the Q block at the end.
8316 */
8317 int new_layout;
8318
8319 if (mddev->pers != &raid5_personality)
8320 return ERR_PTR(-EINVAL);
8321 if (mddev->degraded > 1)
8322 return ERR_PTR(-EINVAL);
8323 if (mddev->raid_disks > 253)
8324 return ERR_PTR(-EINVAL);
8325 if (mddev->raid_disks < 3)
8326 return ERR_PTR(-EINVAL);
8327
8328 switch (mddev->layout) {
8329 case ALGORITHM_LEFT_ASYMMETRIC:
8330 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8331 break;
8332 case ALGORITHM_RIGHT_ASYMMETRIC:
8333 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8334 break;
8335 case ALGORITHM_LEFT_SYMMETRIC:
8336 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8337 break;
8338 case ALGORITHM_RIGHT_SYMMETRIC:
8339 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8340 break;
8341 case ALGORITHM_PARITY_0:
8342 new_layout = ALGORITHM_PARITY_0_6;
8343 break;
8344 case ALGORITHM_PARITY_N:
8345 new_layout = ALGORITHM_PARITY_N;
8346 break;
8347 default:
8348 return ERR_PTR(-EINVAL);
8349 }
8350 mddev->new_level = 6;
8351 mddev->new_layout = new_layout;
8352 mddev->delta_disks = 1;
8353 mddev->raid_disks += 1;
8354 return setup_conf(mddev);
8355}
8356
8357static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8358{
8359 struct r5conf *conf;
8360 int err;
8361
8362 err = mddev_lock(mddev);
8363 if (err)
8364 return err;
8365 conf = mddev->private;
8366 if (!conf) {
8367 mddev_unlock(mddev);
8368 return -ENODEV;
8369 }
8370
8371 if (strncmp(buf, "ppl", 3) == 0) {
8372 /* ppl only works with RAID 5 */
8373 if (!raid5_has_ppl(conf) && conf->level == 5) {
8374 err = log_init(conf, NULL, true);
8375 if (!err) {
8376 err = resize_stripes(conf, conf->pool_size);
8377 if (err)
8378 log_exit(conf);
8379 }
8380 } else
8381 err = -EINVAL;
8382 } else if (strncmp(buf, "resync", 6) == 0) {
8383 if (raid5_has_ppl(conf)) {
8384 mddev_suspend(mddev);
8385 log_exit(conf);
8386 mddev_resume(mddev);
8387 err = resize_stripes(conf, conf->pool_size);
8388 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8389 r5l_log_disk_error(conf)) {
8390 bool journal_dev_exists = false;
8391 struct md_rdev *rdev;
8392
8393 rdev_for_each(rdev, mddev)
8394 if (test_bit(Journal, &rdev->flags)) {
8395 journal_dev_exists = true;
8396 break;
8397 }
8398
8399 if (!journal_dev_exists) {
8400 mddev_suspend(mddev);
8401 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8402 mddev_resume(mddev);
8403 } else /* need remove journal device first */
8404 err = -EBUSY;
8405 } else
8406 err = -EINVAL;
8407 } else {
8408 err = -EINVAL;
8409 }
8410
8411 if (!err)
8412 md_update_sb(mddev, 1);
8413
8414 mddev_unlock(mddev);
8415
8416 return err;
8417}
8418
8419static int raid5_start(struct mddev *mddev)
8420{
8421 struct r5conf *conf = mddev->private;
8422
8423 return r5l_start(conf->log);
8424}
8425
8426static struct md_personality raid6_personality =
8427{
8428 .name = "raid6",
8429 .level = 6,
8430 .owner = THIS_MODULE,
8431 .make_request = raid5_make_request,
8432 .run = raid5_run,
8433 .start = raid5_start,
8434 .free = raid5_free,
8435 .status = raid5_status,
8436 .error_handler = raid5_error,
8437 .hot_add_disk = raid5_add_disk,
8438 .hot_remove_disk= raid5_remove_disk,
8439 .spare_active = raid5_spare_active,
8440 .sync_request = raid5_sync_request,
8441 .resize = raid5_resize,
8442 .size = raid5_size,
8443 .check_reshape = raid6_check_reshape,
8444 .start_reshape = raid5_start_reshape,
8445 .finish_reshape = raid5_finish_reshape,
8446 .quiesce = raid5_quiesce,
8447 .takeover = raid6_takeover,
8448 .congested = raid5_congested,
8449 .change_consistency_policy = raid5_change_consistency_policy,
8450};
8451static struct md_personality raid5_personality =
8452{
8453 .name = "raid5",
8454 .level = 5,
8455 .owner = THIS_MODULE,
8456 .make_request = raid5_make_request,
8457 .run = raid5_run,
8458 .start = raid5_start,
8459 .free = raid5_free,
8460 .status = raid5_status,
8461 .error_handler = raid5_error,
8462 .hot_add_disk = raid5_add_disk,
8463 .hot_remove_disk= raid5_remove_disk,
8464 .spare_active = raid5_spare_active,
8465 .sync_request = raid5_sync_request,
8466 .resize = raid5_resize,
8467 .size = raid5_size,
8468 .check_reshape = raid5_check_reshape,
8469 .start_reshape = raid5_start_reshape,
8470 .finish_reshape = raid5_finish_reshape,
8471 .quiesce = raid5_quiesce,
8472 .takeover = raid5_takeover,
8473 .congested = raid5_congested,
8474 .change_consistency_policy = raid5_change_consistency_policy,
8475};
8476
8477static struct md_personality raid4_personality =
8478{
8479 .name = "raid4",
8480 .level = 4,
8481 .owner = THIS_MODULE,
8482 .make_request = raid5_make_request,
8483 .run = raid5_run,
8484 .start = raid5_start,
8485 .free = raid5_free,
8486 .status = raid5_status,
8487 .error_handler = raid5_error,
8488 .hot_add_disk = raid5_add_disk,
8489 .hot_remove_disk= raid5_remove_disk,
8490 .spare_active = raid5_spare_active,
8491 .sync_request = raid5_sync_request,
8492 .resize = raid5_resize,
8493 .size = raid5_size,
8494 .check_reshape = raid5_check_reshape,
8495 .start_reshape = raid5_start_reshape,
8496 .finish_reshape = raid5_finish_reshape,
8497 .quiesce = raid5_quiesce,
8498 .takeover = raid4_takeover,
8499 .congested = raid5_congested,
8500 .change_consistency_policy = raid5_change_consistency_policy,
8501};
8502
8503static int __init raid5_init(void)
8504{
8505 int ret;
8506
8507 raid5_wq = alloc_workqueue("raid5wq",
8508 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8509 if (!raid5_wq)
8510 return -ENOMEM;
8511
8512 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8513 "md/raid5:prepare",
8514 raid456_cpu_up_prepare,
8515 raid456_cpu_dead);
8516 if (ret) {
8517 destroy_workqueue(raid5_wq);
8518 return ret;
8519 }
8520 register_md_personality(&raid6_personality);
8521 register_md_personality(&raid5_personality);
8522 register_md_personality(&raid4_personality);
8523 return 0;
8524}
8525
8526static void raid5_exit(void)
8527{
8528 unregister_md_personality(&raid6_personality);
8529 unregister_md_personality(&raid5_personality);
8530 unregister_md_personality(&raid4_personality);
8531 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8532 destroy_workqueue(raid5_wq);
8533}
8534
8535module_init(raid5_init);
8536module_exit(raid5_exit);
8537MODULE_LICENSE("GPL");
8538MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8539MODULE_ALIAS("md-personality-4"); /* RAID5 */
8540MODULE_ALIAS("md-raid5");
8541MODULE_ALIAS("md-raid4");
8542MODULE_ALIAS("md-level-5");
8543MODULE_ALIAS("md-level-4");
8544MODULE_ALIAS("md-personality-8"); /* RAID6 */
8545MODULE_ALIAS("md-raid6");
8546MODULE_ALIAS("md-level-6");
8547
8548/* This used to be two separate modules, they were: */
8549MODULE_ALIAS("raid5");
8550MODULE_ALIAS("raid6");