b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T). |
| 4 | * |
| 5 | * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/) |
| 6 | */ |
| 7 | |
| 8 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 9 | |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/slab.h> |
| 12 | #include <linux/i2c.h> |
| 13 | #include <linux/mutex.h> |
| 14 | #include <asm/div64.h> |
| 15 | |
| 16 | #include <media/dvb_math.h> |
| 17 | |
| 18 | #include <media/dvb_frontend.h> |
| 19 | |
| 20 | #include "dib8000.h" |
| 21 | |
| 22 | #define LAYER_ALL -1 |
| 23 | #define LAYER_A 1 |
| 24 | #define LAYER_B 2 |
| 25 | #define LAYER_C 3 |
| 26 | |
| 27 | #define MAX_NUMBER_OF_FRONTENDS 6 |
| 28 | /* #define DIB8000_AGC_FREEZE */ |
| 29 | |
| 30 | static int debug; |
| 31 | module_param(debug, int, 0644); |
| 32 | MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| 33 | |
| 34 | #define dprintk(fmt, arg...) do { \ |
| 35 | if (debug) \ |
| 36 | printk(KERN_DEBUG pr_fmt("%s: " fmt), \ |
| 37 | __func__, ##arg); \ |
| 38 | } while (0) |
| 39 | |
| 40 | struct i2c_device { |
| 41 | struct i2c_adapter *adap; |
| 42 | u8 addr; |
| 43 | u8 *i2c_write_buffer; |
| 44 | u8 *i2c_read_buffer; |
| 45 | struct mutex *i2c_buffer_lock; |
| 46 | }; |
| 47 | |
| 48 | enum param_loop_step { |
| 49 | LOOP_TUNE_1, |
| 50 | LOOP_TUNE_2 |
| 51 | }; |
| 52 | |
| 53 | enum dib8000_autosearch_step { |
| 54 | AS_START = 0, |
| 55 | AS_SEARCHING_FFT, |
| 56 | AS_SEARCHING_GUARD, |
| 57 | AS_DONE = 100, |
| 58 | }; |
| 59 | |
| 60 | enum timeout_mode { |
| 61 | SYMBOL_DEPENDENT_OFF = 0, |
| 62 | SYMBOL_DEPENDENT_ON, |
| 63 | }; |
| 64 | |
| 65 | struct dib8000_state { |
| 66 | struct dib8000_config cfg; |
| 67 | |
| 68 | struct i2c_device i2c; |
| 69 | |
| 70 | struct dibx000_i2c_master i2c_master; |
| 71 | |
| 72 | u16 wbd_ref; |
| 73 | |
| 74 | u8 current_band; |
| 75 | u32 current_bandwidth; |
| 76 | struct dibx000_agc_config *current_agc; |
| 77 | u32 timf; |
| 78 | u32 timf_default; |
| 79 | |
| 80 | u8 div_force_off:1; |
| 81 | u8 div_state:1; |
| 82 | u16 div_sync_wait; |
| 83 | |
| 84 | u8 agc_state; |
| 85 | u8 differential_constellation; |
| 86 | u8 diversity_onoff; |
| 87 | |
| 88 | s16 ber_monitored_layer; |
| 89 | u16 gpio_dir; |
| 90 | u16 gpio_val; |
| 91 | |
| 92 | u16 revision; |
| 93 | u8 isdbt_cfg_loaded; |
| 94 | enum frontend_tune_state tune_state; |
| 95 | s32 status; |
| 96 | |
| 97 | struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; |
| 98 | |
| 99 | /* for the I2C transfer */ |
| 100 | struct i2c_msg msg[2]; |
| 101 | u8 i2c_write_buffer[4]; |
| 102 | u8 i2c_read_buffer[2]; |
| 103 | struct mutex i2c_buffer_lock; |
| 104 | u8 input_mode_mpeg; |
| 105 | |
| 106 | u16 tuner_enable; |
| 107 | struct i2c_adapter dib8096p_tuner_adap; |
| 108 | u16 current_demod_bw; |
| 109 | |
| 110 | u16 seg_mask; |
| 111 | u16 seg_diff_mask; |
| 112 | u16 mode; |
| 113 | u8 layer_b_nb_seg; |
| 114 | u8 layer_c_nb_seg; |
| 115 | |
| 116 | u8 channel_parameters_set; |
| 117 | u16 autosearch_state; |
| 118 | u16 found_nfft; |
| 119 | u16 found_guard; |
| 120 | u8 subchannel; |
| 121 | u8 symbol_duration; |
| 122 | unsigned long timeout; |
| 123 | u8 longest_intlv_layer; |
| 124 | u16 output_mode; |
| 125 | |
| 126 | /* for DVBv5 stats */ |
| 127 | s64 init_ucb; |
| 128 | unsigned long per_jiffies_stats; |
| 129 | unsigned long ber_jiffies_stats; |
| 130 | unsigned long ber_jiffies_stats_layer[3]; |
| 131 | |
| 132 | #ifdef DIB8000_AGC_FREEZE |
| 133 | u16 agc1_max; |
| 134 | u16 agc1_min; |
| 135 | u16 agc2_max; |
| 136 | u16 agc2_min; |
| 137 | #endif |
| 138 | }; |
| 139 | |
| 140 | enum dib8000_power_mode { |
| 141 | DIB8000_POWER_ALL = 0, |
| 142 | DIB8000_POWER_INTERFACE_ONLY, |
| 143 | }; |
| 144 | |
| 145 | static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg) |
| 146 | { |
| 147 | u16 ret; |
| 148 | struct i2c_msg msg[2] = { |
| 149 | {.addr = i2c->addr >> 1, .flags = 0, .len = 2}, |
| 150 | {.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2}, |
| 151 | }; |
| 152 | |
| 153 | if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { |
| 154 | dprintk("could not acquire lock\n"); |
| 155 | return 0; |
| 156 | } |
| 157 | |
| 158 | msg[0].buf = i2c->i2c_write_buffer; |
| 159 | msg[0].buf[0] = reg >> 8; |
| 160 | msg[0].buf[1] = reg & 0xff; |
| 161 | msg[1].buf = i2c->i2c_read_buffer; |
| 162 | |
| 163 | if (i2c_transfer(i2c->adap, msg, 2) != 2) |
| 164 | dprintk("i2c read error on %d\n", reg); |
| 165 | |
| 166 | ret = (msg[1].buf[0] << 8) | msg[1].buf[1]; |
| 167 | mutex_unlock(i2c->i2c_buffer_lock); |
| 168 | return ret; |
| 169 | } |
| 170 | |
| 171 | static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg) |
| 172 | { |
| 173 | u16 ret; |
| 174 | |
| 175 | state->i2c_write_buffer[0] = reg >> 8; |
| 176 | state->i2c_write_buffer[1] = reg & 0xff; |
| 177 | |
| 178 | memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); |
| 179 | state->msg[0].addr = state->i2c.addr >> 1; |
| 180 | state->msg[0].flags = 0; |
| 181 | state->msg[0].buf = state->i2c_write_buffer; |
| 182 | state->msg[0].len = 2; |
| 183 | state->msg[1].addr = state->i2c.addr >> 1; |
| 184 | state->msg[1].flags = I2C_M_RD; |
| 185 | state->msg[1].buf = state->i2c_read_buffer; |
| 186 | state->msg[1].len = 2; |
| 187 | |
| 188 | if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2) |
| 189 | dprintk("i2c read error on %d\n", reg); |
| 190 | |
| 191 | ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; |
| 192 | |
| 193 | return ret; |
| 194 | } |
| 195 | |
| 196 | static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) |
| 197 | { |
| 198 | u16 ret; |
| 199 | |
| 200 | if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| 201 | dprintk("could not acquire lock\n"); |
| 202 | return 0; |
| 203 | } |
| 204 | |
| 205 | ret = __dib8000_read_word(state, reg); |
| 206 | |
| 207 | mutex_unlock(&state->i2c_buffer_lock); |
| 208 | |
| 209 | return ret; |
| 210 | } |
| 211 | |
| 212 | static u32 dib8000_read32(struct dib8000_state *state, u16 reg) |
| 213 | { |
| 214 | u16 rw[2]; |
| 215 | |
| 216 | if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| 217 | dprintk("could not acquire lock\n"); |
| 218 | return 0; |
| 219 | } |
| 220 | |
| 221 | rw[0] = __dib8000_read_word(state, reg + 0); |
| 222 | rw[1] = __dib8000_read_word(state, reg + 1); |
| 223 | |
| 224 | mutex_unlock(&state->i2c_buffer_lock); |
| 225 | |
| 226 | return ((rw[0] << 16) | (rw[1])); |
| 227 | } |
| 228 | |
| 229 | static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) |
| 230 | { |
| 231 | struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4}; |
| 232 | int ret = 0; |
| 233 | |
| 234 | if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { |
| 235 | dprintk("could not acquire lock\n"); |
| 236 | return -EINVAL; |
| 237 | } |
| 238 | |
| 239 | msg.buf = i2c->i2c_write_buffer; |
| 240 | msg.buf[0] = (reg >> 8) & 0xff; |
| 241 | msg.buf[1] = reg & 0xff; |
| 242 | msg.buf[2] = (val >> 8) & 0xff; |
| 243 | msg.buf[3] = val & 0xff; |
| 244 | |
| 245 | ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0; |
| 246 | mutex_unlock(i2c->i2c_buffer_lock); |
| 247 | |
| 248 | return ret; |
| 249 | } |
| 250 | |
| 251 | static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val) |
| 252 | { |
| 253 | int ret; |
| 254 | |
| 255 | if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| 256 | dprintk("could not acquire lock\n"); |
| 257 | return -EINVAL; |
| 258 | } |
| 259 | |
| 260 | state->i2c_write_buffer[0] = (reg >> 8) & 0xff; |
| 261 | state->i2c_write_buffer[1] = reg & 0xff; |
| 262 | state->i2c_write_buffer[2] = (val >> 8) & 0xff; |
| 263 | state->i2c_write_buffer[3] = val & 0xff; |
| 264 | |
| 265 | memset(&state->msg[0], 0, sizeof(struct i2c_msg)); |
| 266 | state->msg[0].addr = state->i2c.addr >> 1; |
| 267 | state->msg[0].flags = 0; |
| 268 | state->msg[0].buf = state->i2c_write_buffer; |
| 269 | state->msg[0].len = 4; |
| 270 | |
| 271 | ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ? |
| 272 | -EREMOTEIO : 0); |
| 273 | mutex_unlock(&state->i2c_buffer_lock); |
| 274 | |
| 275 | return ret; |
| 276 | } |
| 277 | |
| 278 | static const s16 coeff_2k_sb_1seg_dqpsk[8] = { |
| 279 | (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c, |
| 280 | (920 << 5) | 0x09 |
| 281 | }; |
| 282 | |
| 283 | static const s16 coeff_2k_sb_1seg[8] = { |
| 284 | (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f |
| 285 | }; |
| 286 | |
| 287 | static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = { |
| 288 | (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11, |
| 289 | (-931 << 5) | 0x0f |
| 290 | }; |
| 291 | |
| 292 | static const s16 coeff_2k_sb_3seg_0dqpsk[8] = { |
| 293 | (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e, |
| 294 | (982 << 5) | 0x0c |
| 295 | }; |
| 296 | |
| 297 | static const s16 coeff_2k_sb_3seg_1dqpsk[8] = { |
| 298 | (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12, |
| 299 | (-720 << 5) | 0x0d |
| 300 | }; |
| 301 | |
| 302 | static const s16 coeff_2k_sb_3seg[8] = { |
| 303 | (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e, |
| 304 | (-610 << 5) | 0x0a |
| 305 | }; |
| 306 | |
| 307 | static const s16 coeff_4k_sb_1seg_dqpsk[8] = { |
| 308 | (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f, |
| 309 | (-922 << 5) | 0x0d |
| 310 | }; |
| 311 | |
| 312 | static const s16 coeff_4k_sb_1seg[8] = { |
| 313 | (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d, |
| 314 | (-655 << 5) | 0x0a |
| 315 | }; |
| 316 | |
| 317 | static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = { |
| 318 | (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14, |
| 319 | (-958 << 5) | 0x13 |
| 320 | }; |
| 321 | |
| 322 | static const s16 coeff_4k_sb_3seg_0dqpsk[8] = { |
| 323 | (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12, |
| 324 | (-568 << 5) | 0x0f |
| 325 | }; |
| 326 | |
| 327 | static const s16 coeff_4k_sb_3seg_1dqpsk[8] = { |
| 328 | (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14, |
| 329 | (-848 << 5) | 0x13 |
| 330 | }; |
| 331 | |
| 332 | static const s16 coeff_4k_sb_3seg[8] = { |
| 333 | (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12, |
| 334 | (-869 << 5) | 0x13 |
| 335 | }; |
| 336 | |
| 337 | static const s16 coeff_8k_sb_1seg_dqpsk[8] = { |
| 338 | (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13, |
| 339 | (-598 << 5) | 0x10 |
| 340 | }; |
| 341 | |
| 342 | static const s16 coeff_8k_sb_1seg[8] = { |
| 343 | (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f, |
| 344 | (585 << 5) | 0x0f |
| 345 | }; |
| 346 | |
| 347 | static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = { |
| 348 | (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18, |
| 349 | (0 << 5) | 0x14 |
| 350 | }; |
| 351 | |
| 352 | static const s16 coeff_8k_sb_3seg_0dqpsk[8] = { |
| 353 | (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15, |
| 354 | (-877 << 5) | 0x15 |
| 355 | }; |
| 356 | |
| 357 | static const s16 coeff_8k_sb_3seg_1dqpsk[8] = { |
| 358 | (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18, |
| 359 | (-921 << 5) | 0x14 |
| 360 | }; |
| 361 | |
| 362 | static const s16 coeff_8k_sb_3seg[8] = { |
| 363 | (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15, |
| 364 | (690 << 5) | 0x14 |
| 365 | }; |
| 366 | |
| 367 | static const s16 ana_fe_coeff_3seg[24] = { |
| 368 | 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017 |
| 369 | }; |
| 370 | |
| 371 | static const s16 ana_fe_coeff_1seg[24] = { |
| 372 | 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003 |
| 373 | }; |
| 374 | |
| 375 | static const s16 ana_fe_coeff_13seg[24] = { |
| 376 | 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1 |
| 377 | }; |
| 378 | |
| 379 | static u16 fft_to_mode(struct dib8000_state *state) |
| 380 | { |
| 381 | u16 mode; |
| 382 | switch (state->fe[0]->dtv_property_cache.transmission_mode) { |
| 383 | case TRANSMISSION_MODE_2K: |
| 384 | mode = 1; |
| 385 | break; |
| 386 | case TRANSMISSION_MODE_4K: |
| 387 | mode = 2; |
| 388 | break; |
| 389 | default: |
| 390 | case TRANSMISSION_MODE_AUTO: |
| 391 | case TRANSMISSION_MODE_8K: |
| 392 | mode = 3; |
| 393 | break; |
| 394 | } |
| 395 | return mode; |
| 396 | } |
| 397 | |
| 398 | static void dib8000_set_acquisition_mode(struct dib8000_state *state) |
| 399 | { |
| 400 | u16 nud = dib8000_read_word(state, 298); |
| 401 | nud |= (1 << 3) | (1 << 0); |
| 402 | dprintk("acquisition mode activated\n"); |
| 403 | dib8000_write_word(state, 298, nud); |
| 404 | } |
| 405 | static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode) |
| 406 | { |
| 407 | struct dib8000_state *state = fe->demodulator_priv; |
| 408 | u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */ |
| 409 | |
| 410 | state->output_mode = mode; |
| 411 | outreg = 0; |
| 412 | fifo_threshold = 1792; |
| 413 | smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); |
| 414 | |
| 415 | dprintk("-I- Setting output mode for demod %p to %d\n", |
| 416 | &state->fe[0], mode); |
| 417 | |
| 418 | switch (mode) { |
| 419 | case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock |
| 420 | outreg = (1 << 10); /* 0x0400 */ |
| 421 | break; |
| 422 | case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock |
| 423 | outreg = (1 << 10) | (1 << 6); /* 0x0440 */ |
| 424 | break; |
| 425 | case OUTMODE_MPEG2_SERIAL: // STBs with serial input |
| 426 | outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ |
| 427 | break; |
| 428 | case OUTMODE_DIVERSITY: |
| 429 | if (state->cfg.hostbus_diversity) { |
| 430 | outreg = (1 << 10) | (4 << 6); /* 0x0500 */ |
| 431 | sram &= 0xfdff; |
| 432 | } else |
| 433 | sram |= 0x0c00; |
| 434 | break; |
| 435 | case OUTMODE_MPEG2_FIFO: // e.g. USB feeding |
| 436 | smo_mode |= (3 << 1); |
| 437 | fifo_threshold = 512; |
| 438 | outreg = (1 << 10) | (5 << 6); |
| 439 | break; |
| 440 | case OUTMODE_HIGH_Z: // disable |
| 441 | outreg = 0; |
| 442 | break; |
| 443 | |
| 444 | case OUTMODE_ANALOG_ADC: |
| 445 | outreg = (1 << 10) | (3 << 6); |
| 446 | dib8000_set_acquisition_mode(state); |
| 447 | break; |
| 448 | |
| 449 | default: |
| 450 | dprintk("Unhandled output_mode passed to be set for demod %p\n", |
| 451 | &state->fe[0]); |
| 452 | return -EINVAL; |
| 453 | } |
| 454 | |
| 455 | if (state->cfg.output_mpeg2_in_188_bytes) |
| 456 | smo_mode |= (1 << 5); |
| 457 | |
| 458 | dib8000_write_word(state, 299, smo_mode); |
| 459 | dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */ |
| 460 | dib8000_write_word(state, 1286, outreg); |
| 461 | dib8000_write_word(state, 1291, sram); |
| 462 | |
| 463 | return 0; |
| 464 | } |
| 465 | |
| 466 | static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff) |
| 467 | { |
| 468 | struct dib8000_state *state = fe->demodulator_priv; |
| 469 | u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0; |
| 470 | |
| 471 | dprintk("set diversity input to %i\n", onoff); |
| 472 | if (!state->differential_constellation) { |
| 473 | dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1 |
| 474 | dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2 |
| 475 | } else { |
| 476 | dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0 |
| 477 | dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0 |
| 478 | } |
| 479 | state->diversity_onoff = onoff; |
| 480 | |
| 481 | switch (onoff) { |
| 482 | case 0: /* only use the internal way - not the diversity input */ |
| 483 | dib8000_write_word(state, 270, 1); |
| 484 | dib8000_write_word(state, 271, 0); |
| 485 | break; |
| 486 | case 1: /* both ways */ |
| 487 | dib8000_write_word(state, 270, 6); |
| 488 | dib8000_write_word(state, 271, 6); |
| 489 | break; |
| 490 | case 2: /* only the diversity input */ |
| 491 | dib8000_write_word(state, 270, 0); |
| 492 | dib8000_write_word(state, 271, 1); |
| 493 | break; |
| 494 | } |
| 495 | |
| 496 | if (state->revision == 0x8002) { |
| 497 | tmp = dib8000_read_word(state, 903); |
| 498 | dib8000_write_word(state, 903, tmp & ~(1 << 3)); |
| 499 | msleep(30); |
| 500 | dib8000_write_word(state, 903, tmp | (1 << 3)); |
| 501 | } |
| 502 | return 0; |
| 503 | } |
| 504 | |
| 505 | static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode) |
| 506 | { |
| 507 | /* by default everything is going to be powered off */ |
| 508 | u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff, |
| 509 | reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, |
| 510 | reg_1280; |
| 511 | |
| 512 | if (state->revision != 0x8090) |
| 513 | reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00; |
| 514 | else |
| 515 | reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80; |
| 516 | |
| 517 | /* now, depending on the requested mode, we power on */ |
| 518 | switch (mode) { |
| 519 | /* power up everything in the demod */ |
| 520 | case DIB8000_POWER_ALL: |
| 521 | reg_774 = 0x0000; |
| 522 | reg_775 = 0x0000; |
| 523 | reg_776 = 0x0000; |
| 524 | reg_900 &= 0xfffc; |
| 525 | if (state->revision != 0x8090) |
| 526 | reg_1280 &= 0x00ff; |
| 527 | else |
| 528 | reg_1280 &= 0x707f; |
| 529 | break; |
| 530 | case DIB8000_POWER_INTERFACE_ONLY: |
| 531 | if (state->revision != 0x8090) |
| 532 | reg_1280 &= 0x00ff; |
| 533 | else |
| 534 | reg_1280 &= 0xfa7b; |
| 535 | break; |
| 536 | } |
| 537 | |
| 538 | dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774, reg_775, reg_776, reg_900, reg_1280); |
| 539 | dib8000_write_word(state, 774, reg_774); |
| 540 | dib8000_write_word(state, 775, reg_775); |
| 541 | dib8000_write_word(state, 776, reg_776); |
| 542 | dib8000_write_word(state, 900, reg_900); |
| 543 | dib8000_write_word(state, 1280, reg_1280); |
| 544 | } |
| 545 | |
| 546 | static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no) |
| 547 | { |
| 548 | int ret = 0; |
| 549 | u16 reg, reg_907 = dib8000_read_word(state, 907); |
| 550 | u16 reg_908 = dib8000_read_word(state, 908); |
| 551 | |
| 552 | switch (no) { |
| 553 | case DIBX000_SLOW_ADC_ON: |
| 554 | if (state->revision != 0x8090) { |
| 555 | reg_908 |= (1 << 1) | (1 << 0); |
| 556 | ret |= dib8000_write_word(state, 908, reg_908); |
| 557 | reg_908 &= ~(1 << 1); |
| 558 | } else { |
| 559 | reg = dib8000_read_word(state, 1925); |
| 560 | /* en_slowAdc = 1 & reset_sladc = 1 */ |
| 561 | dib8000_write_word(state, 1925, reg | |
| 562 | (1<<4) | (1<<2)); |
| 563 | |
| 564 | /* read access to make it works... strange ... */ |
| 565 | reg = dib8000_read_word(state, 1925); |
| 566 | msleep(20); |
| 567 | /* en_slowAdc = 1 & reset_sladc = 0 */ |
| 568 | dib8000_write_word(state, 1925, reg & ~(1<<4)); |
| 569 | |
| 570 | reg = dib8000_read_word(state, 921) & ~((0x3 << 14) |
| 571 | | (0x3 << 12)); |
| 572 | /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; |
| 573 | (Vin2 = Vcm) */ |
| 574 | dib8000_write_word(state, 921, reg | (1 << 14) |
| 575 | | (3 << 12)); |
| 576 | } |
| 577 | break; |
| 578 | |
| 579 | case DIBX000_SLOW_ADC_OFF: |
| 580 | if (state->revision == 0x8090) { |
| 581 | reg = dib8000_read_word(state, 1925); |
| 582 | /* reset_sladc = 1 en_slowAdc = 0 */ |
| 583 | dib8000_write_word(state, 1925, |
| 584 | (reg & ~(1<<2)) | (1<<4)); |
| 585 | } |
| 586 | reg_908 |= (1 << 1) | (1 << 0); |
| 587 | break; |
| 588 | |
| 589 | case DIBX000_ADC_ON: |
| 590 | reg_907 &= 0x0fff; |
| 591 | reg_908 &= 0x0003; |
| 592 | break; |
| 593 | |
| 594 | case DIBX000_ADC_OFF: // leave the VBG voltage on |
| 595 | reg_907 = (1 << 13) | (1 << 12); |
| 596 | reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1); |
| 597 | break; |
| 598 | |
| 599 | case DIBX000_VBG_ENABLE: |
| 600 | reg_907 &= ~(1 << 15); |
| 601 | break; |
| 602 | |
| 603 | case DIBX000_VBG_DISABLE: |
| 604 | reg_907 |= (1 << 15); |
| 605 | break; |
| 606 | |
| 607 | default: |
| 608 | break; |
| 609 | } |
| 610 | |
| 611 | ret |= dib8000_write_word(state, 907, reg_907); |
| 612 | ret |= dib8000_write_word(state, 908, reg_908); |
| 613 | |
| 614 | return ret; |
| 615 | } |
| 616 | |
| 617 | static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw) |
| 618 | { |
| 619 | struct dib8000_state *state = fe->demodulator_priv; |
| 620 | u32 timf; |
| 621 | |
| 622 | if (bw == 0) |
| 623 | bw = 6000; |
| 624 | |
| 625 | if (state->timf == 0) { |
| 626 | dprintk("using default timf\n"); |
| 627 | timf = state->timf_default; |
| 628 | } else { |
| 629 | dprintk("using updated timf\n"); |
| 630 | timf = state->timf; |
| 631 | } |
| 632 | |
| 633 | dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff)); |
| 634 | dib8000_write_word(state, 30, (u16) ((timf) & 0xffff)); |
| 635 | |
| 636 | return 0; |
| 637 | } |
| 638 | |
| 639 | static int dib8000_sad_calib(struct dib8000_state *state) |
| 640 | { |
| 641 | u8 sad_sel = 3; |
| 642 | |
| 643 | if (state->revision == 0x8090) { |
| 644 | dib8000_write_word(state, 922, (sad_sel << 2)); |
| 645 | dib8000_write_word(state, 923, 2048); |
| 646 | |
| 647 | dib8000_write_word(state, 922, (sad_sel << 2) | 0x1); |
| 648 | dib8000_write_word(state, 922, (sad_sel << 2)); |
| 649 | } else { |
| 650 | /* internal */ |
| 651 | dib8000_write_word(state, 923, (0 << 1) | (0 << 0)); |
| 652 | dib8000_write_word(state, 924, 776); |
| 653 | |
| 654 | /* do the calibration */ |
| 655 | dib8000_write_word(state, 923, (1 << 0)); |
| 656 | dib8000_write_word(state, 923, (0 << 0)); |
| 657 | } |
| 658 | |
| 659 | msleep(1); |
| 660 | return 0; |
| 661 | } |
| 662 | |
| 663 | static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value) |
| 664 | { |
| 665 | struct dib8000_state *state = fe->demodulator_priv; |
| 666 | if (value > 4095) |
| 667 | value = 4095; |
| 668 | state->wbd_ref = value; |
| 669 | return dib8000_write_word(state, 106, value); |
| 670 | } |
| 671 | |
| 672 | static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw) |
| 673 | { |
| 674 | dprintk("ifreq: %d %x, inversion: %d\n", bw->ifreq, bw->ifreq, bw->ifreq >> 25); |
| 675 | if (state->revision != 0x8090) { |
| 676 | dib8000_write_word(state, 23, |
| 677 | (u16) (((bw->internal * 1000) >> 16) & 0xffff)); |
| 678 | dib8000_write_word(state, 24, |
| 679 | (u16) ((bw->internal * 1000) & 0xffff)); |
| 680 | } else { |
| 681 | dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff)); |
| 682 | dib8000_write_word(state, 24, |
| 683 | (u16) ((bw->internal / 2 * 1000) & 0xffff)); |
| 684 | } |
| 685 | dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff)); |
| 686 | dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff)); |
| 687 | dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003)); |
| 688 | |
| 689 | if (state->revision != 0x8090) |
| 690 | dib8000_write_word(state, 922, bw->sad_cfg); |
| 691 | } |
| 692 | |
| 693 | static void dib8000_reset_pll(struct dib8000_state *state) |
| 694 | { |
| 695 | const struct dibx000_bandwidth_config *pll = state->cfg.pll; |
| 696 | u16 clk_cfg1, reg; |
| 697 | |
| 698 | if (state->revision != 0x8090) { |
| 699 | dib8000_write_word(state, 901, |
| 700 | (pll->pll_prediv << 8) | (pll->pll_ratio << 0)); |
| 701 | |
| 702 | clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) | |
| 703 | (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | |
| 704 | (1 << 3) | (pll->pll_range << 1) | |
| 705 | (pll->pll_reset << 0); |
| 706 | |
| 707 | dib8000_write_word(state, 902, clk_cfg1); |
| 708 | clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3); |
| 709 | dib8000_write_word(state, 902, clk_cfg1); |
| 710 | |
| 711 | dprintk("clk_cfg1: 0x%04x\n", clk_cfg1); |
| 712 | |
| 713 | /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */ |
| 714 | if (state->cfg.pll->ADClkSrc == 0) |
| 715 | dib8000_write_word(state, 904, |
| 716 | (0 << 15) | (0 << 12) | (0 << 10) | |
| 717 | (pll->modulo << 8) | |
| 718 | (pll->ADClkSrc << 7) | (0 << 1)); |
| 719 | else if (state->cfg.refclksel != 0) |
| 720 | dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | |
| 721 | ((state->cfg.refclksel & 0x3) << 10) | |
| 722 | (pll->modulo << 8) | |
| 723 | (pll->ADClkSrc << 7) | (0 << 1)); |
| 724 | else |
| 725 | dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | |
| 726 | (3 << 10) | (pll->modulo << 8) | |
| 727 | (pll->ADClkSrc << 7) | (0 << 1)); |
| 728 | } else { |
| 729 | dib8000_write_word(state, 1856, (!pll->pll_reset<<13) | |
| 730 | (pll->pll_range<<12) | (pll->pll_ratio<<6) | |
| 731 | (pll->pll_prediv)); |
| 732 | |
| 733 | reg = dib8000_read_word(state, 1857); |
| 734 | dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15)); |
| 735 | |
| 736 | reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */ |
| 737 | dib8000_write_word(state, 1858, reg | 1); |
| 738 | |
| 739 | dib8000_write_word(state, 904, (pll->modulo << 8)); |
| 740 | } |
| 741 | |
| 742 | dib8000_reset_pll_common(state, pll); |
| 743 | } |
| 744 | |
| 745 | static int dib8000_update_pll(struct dvb_frontend *fe, |
| 746 | struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio) |
| 747 | { |
| 748 | struct dib8000_state *state = fe->demodulator_priv; |
| 749 | u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856); |
| 750 | u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ; |
| 751 | u32 internal, xtal; |
| 752 | |
| 753 | /* get back old values */ |
| 754 | prediv = reg_1856 & 0x3f; |
| 755 | loopdiv = (reg_1856 >> 6) & 0x3f; |
| 756 | |
| 757 | if ((pll == NULL) || (pll->pll_prediv == prediv && |
| 758 | pll->pll_ratio == loopdiv)) |
| 759 | return -EINVAL; |
| 760 | |
| 761 | dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio); |
| 762 | if (state->revision == 0x8090) { |
| 763 | reg_1856 &= 0xf000; |
| 764 | reg_1857 = dib8000_read_word(state, 1857); |
| 765 | /* disable PLL */ |
| 766 | dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15)); |
| 767 | |
| 768 | dib8000_write_word(state, 1856, reg_1856 | |
| 769 | ((pll->pll_ratio & 0x3f) << 6) | |
| 770 | (pll->pll_prediv & 0x3f)); |
| 771 | |
| 772 | /* write new system clk into P_sec_len */ |
| 773 | internal = dib8000_read32(state, 23) / 1000; |
| 774 | dprintk("Old Internal = %d\n", internal); |
| 775 | xtal = 2 * (internal / loopdiv) * prediv; |
| 776 | internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio; |
| 777 | dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal, internal/1000, internal/2000, internal/8000); |
| 778 | dprintk("New Internal = %d\n", internal); |
| 779 | |
| 780 | dib8000_write_word(state, 23, |
| 781 | (u16) (((internal / 2) >> 16) & 0xffff)); |
| 782 | dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff)); |
| 783 | /* enable PLL */ |
| 784 | dib8000_write_word(state, 1857, reg_1857 | (1 << 15)); |
| 785 | |
| 786 | while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1) |
| 787 | dprintk("Waiting for PLL to lock\n"); |
| 788 | |
| 789 | /* verify */ |
| 790 | reg_1856 = dib8000_read_word(state, 1856); |
| 791 | dprintk("PLL Updated with prediv = %d and loopdiv = %d\n", |
| 792 | reg_1856&0x3f, (reg_1856>>6)&0x3f); |
| 793 | } else { |
| 794 | if (bw != state->current_demod_bw) { |
| 795 | /** Bandwidth change => force PLL update **/ |
| 796 | dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv); |
| 797 | |
| 798 | if (state->cfg.pll->pll_prediv != oldprediv) { |
| 799 | /** Full PLL change only if prediv is changed **/ |
| 800 | |
| 801 | /** full update => bypass and reconfigure **/ |
| 802 | dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio); |
| 803 | dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */ |
| 804 | dib8000_reset_pll(state); |
| 805 | dib8000_write_word(state, 898, 0x0004); /* sad */ |
| 806 | } else |
| 807 | ratio = state->cfg.pll->pll_ratio; |
| 808 | |
| 809 | state->current_demod_bw = bw; |
| 810 | } |
| 811 | |
| 812 | if (ratio != 0) { |
| 813 | /** ratio update => only change ratio **/ |
| 814 | dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state->cfg.pll->pll_prediv, ratio); |
| 815 | dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */ |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | return 0; |
| 820 | } |
| 821 | |
| 822 | static int dib8000_reset_gpio(struct dib8000_state *st) |
| 823 | { |
| 824 | /* reset the GPIOs */ |
| 825 | dib8000_write_word(st, 1029, st->cfg.gpio_dir); |
| 826 | dib8000_write_word(st, 1030, st->cfg.gpio_val); |
| 827 | |
| 828 | /* TODO 782 is P_gpio_od */ |
| 829 | |
| 830 | dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos); |
| 831 | |
| 832 | dib8000_write_word(st, 1037, st->cfg.pwm_freq_div); |
| 833 | return 0; |
| 834 | } |
| 835 | |
| 836 | static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val) |
| 837 | { |
| 838 | st->cfg.gpio_dir = dib8000_read_word(st, 1029); |
| 839 | st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */ |
| 840 | st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */ |
| 841 | dib8000_write_word(st, 1029, st->cfg.gpio_dir); |
| 842 | |
| 843 | st->cfg.gpio_val = dib8000_read_word(st, 1030); |
| 844 | st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */ |
| 845 | st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */ |
| 846 | dib8000_write_word(st, 1030, st->cfg.gpio_val); |
| 847 | |
| 848 | dprintk("gpio dir: %x: gpio val: %x\n", st->cfg.gpio_dir, st->cfg.gpio_val); |
| 849 | |
| 850 | return 0; |
| 851 | } |
| 852 | |
| 853 | static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) |
| 854 | { |
| 855 | struct dib8000_state *state = fe->demodulator_priv; |
| 856 | return dib8000_cfg_gpio(state, num, dir, val); |
| 857 | } |
| 858 | |
| 859 | static const u16 dib8000_defaults[] = { |
| 860 | /* auto search configuration - lock0 by default waiting |
| 861 | * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */ |
| 862 | 3, 7, |
| 863 | 0x0004, |
| 864 | 0x0400, |
| 865 | 0x0814, |
| 866 | |
| 867 | 12, 11, |
| 868 | 0x001b, |
| 869 | 0x7740, |
| 870 | 0x005b, |
| 871 | 0x8d80, |
| 872 | 0x01c9, |
| 873 | 0xc380, |
| 874 | 0x0000, |
| 875 | 0x0080, |
| 876 | 0x0000, |
| 877 | 0x0090, |
| 878 | 0x0001, |
| 879 | 0xd4c0, |
| 880 | |
| 881 | /*1, 32, |
| 882 | 0x6680 // P_corm_thres Lock algorithms configuration */ |
| 883 | |
| 884 | 11, 80, /* set ADC level to -16 */ |
| 885 | (1 << 13) - 825 - 117, |
| 886 | (1 << 13) - 837 - 117, |
| 887 | (1 << 13) - 811 - 117, |
| 888 | (1 << 13) - 766 - 117, |
| 889 | (1 << 13) - 737 - 117, |
| 890 | (1 << 13) - 693 - 117, |
| 891 | (1 << 13) - 648 - 117, |
| 892 | (1 << 13) - 619 - 117, |
| 893 | (1 << 13) - 575 - 117, |
| 894 | (1 << 13) - 531 - 117, |
| 895 | (1 << 13) - 501 - 117, |
| 896 | |
| 897 | 4, 108, |
| 898 | 0, |
| 899 | 0, |
| 900 | 0, |
| 901 | 0, |
| 902 | |
| 903 | 1, 175, |
| 904 | 0x0410, |
| 905 | 1, 179, |
| 906 | 8192, // P_fft_nb_to_cut |
| 907 | |
| 908 | 6, 181, |
| 909 | 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800 |
| 910 | 0x2800, |
| 911 | 0x2800, |
| 912 | 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800 |
| 913 | 0x2800, |
| 914 | 0x2800, |
| 915 | |
| 916 | 2, 193, |
| 917 | 0x0666, // P_pha3_thres |
| 918 | 0x0000, // P_cti_use_cpe, P_cti_use_prog |
| 919 | |
| 920 | 2, 205, |
| 921 | 0x200f, // P_cspu_regul, P_cspu_win_cut |
| 922 | 0x000f, // P_des_shift_work |
| 923 | |
| 924 | 5, 215, |
| 925 | 0x023d, // P_adp_regul_cnt |
| 926 | 0x00a4, // P_adp_noise_cnt |
| 927 | 0x00a4, // P_adp_regul_ext |
| 928 | 0x7ff0, // P_adp_noise_ext |
| 929 | 0x3ccc, // P_adp_fil |
| 930 | |
| 931 | 1, 230, |
| 932 | 0x0000, // P_2d_byp_ti_num |
| 933 | |
| 934 | 1, 263, |
| 935 | 0x800, //P_equal_thres_wgn |
| 936 | |
| 937 | 1, 268, |
| 938 | (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode |
| 939 | |
| 940 | 1, 270, |
| 941 | 0x0001, // P_div_lock0_wait |
| 942 | 1, 285, |
| 943 | 0x0020, //p_fec_ |
| 944 | 1, 299, |
| 945 | 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */ |
| 946 | |
| 947 | 1, 338, |
| 948 | (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1 |
| 949 | (1 << 10) | |
| 950 | (0 << 9) | /* P_ctrl_pre_freq_inh=0 */ |
| 951 | (3 << 5) | /* P_ctrl_pre_freq_step=3 */ |
| 952 | (1 << 0), /* P_pre_freq_win_len=1 */ |
| 953 | |
| 954 | 0, |
| 955 | }; |
| 956 | |
| 957 | static u16 dib8000_identify(struct i2c_device *client) |
| 958 | { |
| 959 | u16 value; |
| 960 | |
| 961 | //because of glitches sometimes |
| 962 | value = dib8000_i2c_read16(client, 896); |
| 963 | |
| 964 | if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) { |
| 965 | dprintk("wrong Vendor ID (read=0x%x)\n", value); |
| 966 | return 0; |
| 967 | } |
| 968 | |
| 969 | value = dib8000_i2c_read16(client, 897); |
| 970 | if (value != 0x8000 && value != 0x8001 && |
| 971 | value != 0x8002 && value != 0x8090) { |
| 972 | dprintk("wrong Device ID (%x)\n", value); |
| 973 | return 0; |
| 974 | } |
| 975 | |
| 976 | switch (value) { |
| 977 | case 0x8000: |
| 978 | dprintk("found DiB8000A\n"); |
| 979 | break; |
| 980 | case 0x8001: |
| 981 | dprintk("found DiB8000B\n"); |
| 982 | break; |
| 983 | case 0x8002: |
| 984 | dprintk("found DiB8000C\n"); |
| 985 | break; |
| 986 | case 0x8090: |
| 987 | dprintk("found DiB8096P\n"); |
| 988 | break; |
| 989 | } |
| 990 | return value; |
| 991 | } |
| 992 | |
| 993 | static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc); |
| 994 | |
| 995 | static void dib8000_reset_stats(struct dvb_frontend *fe) |
| 996 | { |
| 997 | struct dib8000_state *state = fe->demodulator_priv; |
| 998 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 999 | u32 ucb; |
| 1000 | |
| 1001 | memset(&c->strength, 0, sizeof(c->strength)); |
| 1002 | memset(&c->cnr, 0, sizeof(c->cnr)); |
| 1003 | memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); |
| 1004 | memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); |
| 1005 | memset(&c->block_error, 0, sizeof(c->block_error)); |
| 1006 | |
| 1007 | c->strength.len = 1; |
| 1008 | c->cnr.len = 1; |
| 1009 | c->block_error.len = 1; |
| 1010 | c->block_count.len = 1; |
| 1011 | c->post_bit_error.len = 1; |
| 1012 | c->post_bit_count.len = 1; |
| 1013 | |
| 1014 | c->strength.stat[0].scale = FE_SCALE_DECIBEL; |
| 1015 | c->strength.stat[0].uvalue = 0; |
| 1016 | |
| 1017 | c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1018 | c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1019 | c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1020 | c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1021 | c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1022 | |
| 1023 | dib8000_read_unc_blocks(fe, &ucb); |
| 1024 | |
| 1025 | state->init_ucb = -ucb; |
| 1026 | state->ber_jiffies_stats = 0; |
| 1027 | state->per_jiffies_stats = 0; |
| 1028 | memset(&state->ber_jiffies_stats_layer, 0, |
| 1029 | sizeof(state->ber_jiffies_stats_layer)); |
| 1030 | } |
| 1031 | |
| 1032 | static int dib8000_reset(struct dvb_frontend *fe) |
| 1033 | { |
| 1034 | struct dib8000_state *state = fe->demodulator_priv; |
| 1035 | |
| 1036 | if ((state->revision = dib8000_identify(&state->i2c)) == 0) |
| 1037 | return -EINVAL; |
| 1038 | |
| 1039 | /* sram lead in, rdy */ |
| 1040 | if (state->revision != 0x8090) |
| 1041 | dib8000_write_word(state, 1287, 0x0003); |
| 1042 | |
| 1043 | if (state->revision == 0x8000) |
| 1044 | dprintk("error : dib8000 MA not supported\n"); |
| 1045 | |
| 1046 | dibx000_reset_i2c_master(&state->i2c_master); |
| 1047 | |
| 1048 | dib8000_set_power_mode(state, DIB8000_POWER_ALL); |
| 1049 | |
| 1050 | /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ |
| 1051 | dib8000_set_adc_state(state, DIBX000_ADC_OFF); |
| 1052 | |
| 1053 | /* restart all parts */ |
| 1054 | dib8000_write_word(state, 770, 0xffff); |
| 1055 | dib8000_write_word(state, 771, 0xffff); |
| 1056 | dib8000_write_word(state, 772, 0xfffc); |
| 1057 | dib8000_write_word(state, 898, 0x000c); /* restart sad */ |
| 1058 | if (state->revision == 0x8090) |
| 1059 | dib8000_write_word(state, 1280, 0x0045); |
| 1060 | else |
| 1061 | dib8000_write_word(state, 1280, 0x004d); |
| 1062 | dib8000_write_word(state, 1281, 0x000c); |
| 1063 | |
| 1064 | dib8000_write_word(state, 770, 0x0000); |
| 1065 | dib8000_write_word(state, 771, 0x0000); |
| 1066 | dib8000_write_word(state, 772, 0x0000); |
| 1067 | dib8000_write_word(state, 898, 0x0004); // sad |
| 1068 | dib8000_write_word(state, 1280, 0x0000); |
| 1069 | dib8000_write_word(state, 1281, 0x0000); |
| 1070 | |
| 1071 | /* drives */ |
| 1072 | if (state->revision != 0x8090) { |
| 1073 | if (state->cfg.drives) |
| 1074 | dib8000_write_word(state, 906, state->cfg.drives); |
| 1075 | else { |
| 1076 | dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n"); |
| 1077 | /* min drive SDRAM - not optimal - adjust */ |
| 1078 | dib8000_write_word(state, 906, 0x2d98); |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | dib8000_reset_pll(state); |
| 1083 | if (state->revision != 0x8090) |
| 1084 | dib8000_write_word(state, 898, 0x0004); |
| 1085 | |
| 1086 | if (dib8000_reset_gpio(state) != 0) |
| 1087 | dprintk("GPIO reset was not successful.\n"); |
| 1088 | |
| 1089 | if ((state->revision != 0x8090) && |
| 1090 | (dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0)) |
| 1091 | dprintk("OUTPUT_MODE could not be reset.\n"); |
| 1092 | |
| 1093 | state->current_agc = NULL; |
| 1094 | |
| 1095 | // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... |
| 1096 | /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */ |
| 1097 | if (state->cfg.pll->ifreq == 0) |
| 1098 | dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */ |
| 1099 | else |
| 1100 | dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */ |
| 1101 | |
| 1102 | { |
| 1103 | u16 l = 0, r; |
| 1104 | const u16 *n; |
| 1105 | n = dib8000_defaults; |
| 1106 | l = *n++; |
| 1107 | while (l) { |
| 1108 | r = *n++; |
| 1109 | do { |
| 1110 | dib8000_write_word(state, r, *n++); |
| 1111 | r++; |
| 1112 | } while (--l); |
| 1113 | l = *n++; |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | state->isdbt_cfg_loaded = 0; |
| 1118 | |
| 1119 | //div_cfg override for special configs |
| 1120 | if ((state->revision != 8090) && (state->cfg.div_cfg != 0)) |
| 1121 | dib8000_write_word(state, 903, state->cfg.div_cfg); |
| 1122 | |
| 1123 | /* unforce divstr regardless whether i2c enumeration was done or not */ |
| 1124 | dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1)); |
| 1125 | |
| 1126 | dib8000_set_bandwidth(fe, 6000); |
| 1127 | |
| 1128 | dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON); |
| 1129 | dib8000_sad_calib(state); |
| 1130 | if (state->revision != 0x8090) |
| 1131 | dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF); |
| 1132 | |
| 1133 | /* ber_rs_len = 3 */ |
| 1134 | dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); |
| 1135 | |
| 1136 | dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); |
| 1137 | |
| 1138 | dib8000_reset_stats(fe); |
| 1139 | |
| 1140 | return 0; |
| 1141 | } |
| 1142 | |
| 1143 | static void dib8000_restart_agc(struct dib8000_state *state) |
| 1144 | { |
| 1145 | // P_restart_iqc & P_restart_agc |
| 1146 | dib8000_write_word(state, 770, 0x0a00); |
| 1147 | dib8000_write_word(state, 770, 0x0000); |
| 1148 | } |
| 1149 | |
| 1150 | static int dib8000_update_lna(struct dib8000_state *state) |
| 1151 | { |
| 1152 | u16 dyn_gain; |
| 1153 | |
| 1154 | if (state->cfg.update_lna) { |
| 1155 | // read dyn_gain here (because it is demod-dependent and not tuner) |
| 1156 | dyn_gain = dib8000_read_word(state, 390); |
| 1157 | |
| 1158 | if (state->cfg.update_lna(state->fe[0], dyn_gain)) { |
| 1159 | dib8000_restart_agc(state); |
| 1160 | return 1; |
| 1161 | } |
| 1162 | } |
| 1163 | return 0; |
| 1164 | } |
| 1165 | |
| 1166 | static int dib8000_set_agc_config(struct dib8000_state *state, u8 band) |
| 1167 | { |
| 1168 | struct dibx000_agc_config *agc = NULL; |
| 1169 | int i; |
| 1170 | u16 reg; |
| 1171 | |
| 1172 | if (state->current_band == band && state->current_agc != NULL) |
| 1173 | return 0; |
| 1174 | state->current_band = band; |
| 1175 | |
| 1176 | for (i = 0; i < state->cfg.agc_config_count; i++) |
| 1177 | if (state->cfg.agc[i].band_caps & band) { |
| 1178 | agc = &state->cfg.agc[i]; |
| 1179 | break; |
| 1180 | } |
| 1181 | |
| 1182 | if (agc == NULL) { |
| 1183 | dprintk("no valid AGC configuration found for band 0x%02x\n", band); |
| 1184 | return -EINVAL; |
| 1185 | } |
| 1186 | |
| 1187 | state->current_agc = agc; |
| 1188 | |
| 1189 | /* AGC */ |
| 1190 | dib8000_write_word(state, 76, agc->setup); |
| 1191 | dib8000_write_word(state, 77, agc->inv_gain); |
| 1192 | dib8000_write_word(state, 78, agc->time_stabiliz); |
| 1193 | dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock); |
| 1194 | |
| 1195 | // Demod AGC loop configuration |
| 1196 | dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp); |
| 1197 | dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp); |
| 1198 | |
| 1199 | dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", |
| 1200 | state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); |
| 1201 | |
| 1202 | /* AGC continued */ |
| 1203 | if (state->wbd_ref != 0) |
| 1204 | dib8000_write_word(state, 106, state->wbd_ref); |
| 1205 | else // use default |
| 1206 | dib8000_write_word(state, 106, agc->wbd_ref); |
| 1207 | |
| 1208 | if (state->revision == 0x8090) { |
| 1209 | reg = dib8000_read_word(state, 922) & (0x3 << 2); |
| 1210 | dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2)); |
| 1211 | } |
| 1212 | |
| 1213 | dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); |
| 1214 | dib8000_write_word(state, 108, agc->agc1_max); |
| 1215 | dib8000_write_word(state, 109, agc->agc1_min); |
| 1216 | dib8000_write_word(state, 110, agc->agc2_max); |
| 1217 | dib8000_write_word(state, 111, agc->agc2_min); |
| 1218 | dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2); |
| 1219 | dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); |
| 1220 | dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); |
| 1221 | dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); |
| 1222 | |
| 1223 | dib8000_write_word(state, 75, agc->agc1_pt3); |
| 1224 | if (state->revision != 0x8090) |
| 1225 | dib8000_write_word(state, 923, |
| 1226 | (dib8000_read_word(state, 923) & 0xffe3) | |
| 1227 | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); |
| 1228 | |
| 1229 | return 0; |
| 1230 | } |
| 1231 | |
| 1232 | static void dib8000_pwm_agc_reset(struct dvb_frontend *fe) |
| 1233 | { |
| 1234 | struct dib8000_state *state = fe->demodulator_priv; |
| 1235 | dib8000_set_adc_state(state, DIBX000_ADC_ON); |
| 1236 | dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))); |
| 1237 | } |
| 1238 | |
| 1239 | static int dib8000_agc_soft_split(struct dib8000_state *state) |
| 1240 | { |
| 1241 | u16 agc, split_offset; |
| 1242 | |
| 1243 | if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) |
| 1244 | return 0; |
| 1245 | |
| 1246 | // n_agc_global |
| 1247 | agc = dib8000_read_word(state, 390); |
| 1248 | |
| 1249 | if (agc > state->current_agc->split.min_thres) |
| 1250 | split_offset = state->current_agc->split.min; |
| 1251 | else if (agc < state->current_agc->split.max_thres) |
| 1252 | split_offset = state->current_agc->split.max; |
| 1253 | else |
| 1254 | split_offset = state->current_agc->split.max * |
| 1255 | (agc - state->current_agc->split.min_thres) / |
| 1256 | (state->current_agc->split.max_thres - state->current_agc->split.min_thres); |
| 1257 | |
| 1258 | dprintk("AGC split_offset: %d\n", split_offset); |
| 1259 | |
| 1260 | // P_agc_force_split and P_agc_split_offset |
| 1261 | dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset); |
| 1262 | return 5000; |
| 1263 | } |
| 1264 | |
| 1265 | static int dib8000_agc_startup(struct dvb_frontend *fe) |
| 1266 | { |
| 1267 | struct dib8000_state *state = fe->demodulator_priv; |
| 1268 | enum frontend_tune_state *tune_state = &state->tune_state; |
| 1269 | int ret = 0; |
| 1270 | u16 reg; |
| 1271 | u32 upd_demod_gain_period = 0x8000; |
| 1272 | |
| 1273 | switch (*tune_state) { |
| 1274 | case CT_AGC_START: |
| 1275 | // set power-up level: interf+analog+AGC |
| 1276 | |
| 1277 | if (state->revision != 0x8090) |
| 1278 | dib8000_set_adc_state(state, DIBX000_ADC_ON); |
| 1279 | else { |
| 1280 | dib8000_set_power_mode(state, DIB8000_POWER_ALL); |
| 1281 | |
| 1282 | reg = dib8000_read_word(state, 1947)&0xff00; |
| 1283 | dib8000_write_word(state, 1946, |
| 1284 | upd_demod_gain_period & 0xFFFF); |
| 1285 | /* bit 14 = enDemodGain */ |
| 1286 | dib8000_write_word(state, 1947, reg | (1<<14) | |
| 1287 | ((upd_demod_gain_period >> 16) & 0xFF)); |
| 1288 | |
| 1289 | /* enable adc i & q */ |
| 1290 | reg = dib8000_read_word(state, 1920); |
| 1291 | dib8000_write_word(state, 1920, (reg | 0x3) & |
| 1292 | (~(1 << 7))); |
| 1293 | } |
| 1294 | |
| 1295 | if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) { |
| 1296 | *tune_state = CT_AGC_STOP; |
| 1297 | state->status = FE_STATUS_TUNE_FAILED; |
| 1298 | break; |
| 1299 | } |
| 1300 | |
| 1301 | ret = 70; |
| 1302 | *tune_state = CT_AGC_STEP_0; |
| 1303 | break; |
| 1304 | |
| 1305 | case CT_AGC_STEP_0: |
| 1306 | //AGC initialization |
| 1307 | if (state->cfg.agc_control) |
| 1308 | state->cfg.agc_control(fe, 1); |
| 1309 | |
| 1310 | dib8000_restart_agc(state); |
| 1311 | |
| 1312 | // wait AGC rough lock time |
| 1313 | ret = 50; |
| 1314 | *tune_state = CT_AGC_STEP_1; |
| 1315 | break; |
| 1316 | |
| 1317 | case CT_AGC_STEP_1: |
| 1318 | // wait AGC accurate lock time |
| 1319 | ret = 70; |
| 1320 | |
| 1321 | if (dib8000_update_lna(state)) |
| 1322 | // wait only AGC rough lock time |
| 1323 | ret = 50; |
| 1324 | else |
| 1325 | *tune_state = CT_AGC_STEP_2; |
| 1326 | break; |
| 1327 | |
| 1328 | case CT_AGC_STEP_2: |
| 1329 | dib8000_agc_soft_split(state); |
| 1330 | |
| 1331 | if (state->cfg.agc_control) |
| 1332 | state->cfg.agc_control(fe, 0); |
| 1333 | |
| 1334 | *tune_state = CT_AGC_STOP; |
| 1335 | break; |
| 1336 | default: |
| 1337 | ret = dib8000_agc_soft_split(state); |
| 1338 | break; |
| 1339 | } |
| 1340 | return ret; |
| 1341 | |
| 1342 | } |
| 1343 | |
| 1344 | static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive) |
| 1345 | { |
| 1346 | u16 reg; |
| 1347 | |
| 1348 | drive &= 0x7; |
| 1349 | |
| 1350 | /* drive host bus 2, 3, 4 */ |
| 1351 | reg = dib8000_read_word(state, 1798) & |
| 1352 | ~(0x7 | (0x7 << 6) | (0x7 << 12)); |
| 1353 | reg |= (drive<<12) | (drive<<6) | drive; |
| 1354 | dib8000_write_word(state, 1798, reg); |
| 1355 | |
| 1356 | /* drive host bus 5,6 */ |
| 1357 | reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); |
| 1358 | reg |= (drive<<8) | (drive<<2); |
| 1359 | dib8000_write_word(state, 1799, reg); |
| 1360 | |
| 1361 | /* drive host bus 7, 8, 9 */ |
| 1362 | reg = dib8000_read_word(state, 1800) & |
| 1363 | ~(0x7 | (0x7 << 6) | (0x7 << 12)); |
| 1364 | reg |= (drive<<12) | (drive<<6) | drive; |
| 1365 | dib8000_write_word(state, 1800, reg); |
| 1366 | |
| 1367 | /* drive host bus 10, 11 */ |
| 1368 | reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); |
| 1369 | reg |= (drive<<8) | (drive<<2); |
| 1370 | dib8000_write_word(state, 1801, reg); |
| 1371 | |
| 1372 | /* drive host bus 12, 13, 14 */ |
| 1373 | reg = dib8000_read_word(state, 1802) & |
| 1374 | ~(0x7 | (0x7 << 6) | (0x7 << 12)); |
| 1375 | reg |= (drive<<12) | (drive<<6) | drive; |
| 1376 | dib8000_write_word(state, 1802, reg); |
| 1377 | } |
| 1378 | |
| 1379 | static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout, |
| 1380 | u32 insertExtSynchro, u32 syncSize) |
| 1381 | { |
| 1382 | u32 quantif = 3; |
| 1383 | u32 nom = (insertExtSynchro * P_Kin+syncSize); |
| 1384 | u32 denom = P_Kout; |
| 1385 | u32 syncFreq = ((nom << quantif) / denom); |
| 1386 | |
| 1387 | if ((syncFreq & ((1 << quantif) - 1)) != 0) |
| 1388 | syncFreq = (syncFreq >> quantif) + 1; |
| 1389 | else |
| 1390 | syncFreq = (syncFreq >> quantif); |
| 1391 | |
| 1392 | if (syncFreq != 0) |
| 1393 | syncFreq = syncFreq - 1; |
| 1394 | |
| 1395 | return syncFreq; |
| 1396 | } |
| 1397 | |
| 1398 | static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin, |
| 1399 | u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, |
| 1400 | u32 syncWord, u32 syncSize) |
| 1401 | { |
| 1402 | dprintk("Configure DibStream Tx\n"); |
| 1403 | |
| 1404 | dib8000_write_word(state, 1615, 1); |
| 1405 | dib8000_write_word(state, 1603, P_Kin); |
| 1406 | dib8000_write_word(state, 1605, P_Kout); |
| 1407 | dib8000_write_word(state, 1606, insertExtSynchro); |
| 1408 | dib8000_write_word(state, 1608, synchroMode); |
| 1409 | dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff); |
| 1410 | dib8000_write_word(state, 1610, syncWord & 0xffff); |
| 1411 | dib8000_write_word(state, 1612, syncSize); |
| 1412 | dib8000_write_word(state, 1615, 0); |
| 1413 | } |
| 1414 | |
| 1415 | static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin, |
| 1416 | u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, |
| 1417 | u32 syncWord, u32 syncSize, u32 dataOutRate) |
| 1418 | { |
| 1419 | u32 syncFreq; |
| 1420 | |
| 1421 | dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode); |
| 1422 | |
| 1423 | if ((P_Kin != 0) && (P_Kout != 0)) { |
| 1424 | syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout, |
| 1425 | insertExtSynchro, syncSize); |
| 1426 | dib8000_write_word(state, 1542, syncFreq); |
| 1427 | } |
| 1428 | |
| 1429 | dib8000_write_word(state, 1554, 1); |
| 1430 | dib8000_write_word(state, 1536, P_Kin); |
| 1431 | dib8000_write_word(state, 1537, P_Kout); |
| 1432 | dib8000_write_word(state, 1539, synchroMode); |
| 1433 | dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff); |
| 1434 | dib8000_write_word(state, 1541, syncWord & 0xffff); |
| 1435 | dib8000_write_word(state, 1543, syncSize); |
| 1436 | dib8000_write_word(state, 1544, dataOutRate); |
| 1437 | dib8000_write_word(state, 1554, 0); |
| 1438 | } |
| 1439 | |
| 1440 | static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff) |
| 1441 | { |
| 1442 | u16 reg_1287; |
| 1443 | |
| 1444 | reg_1287 = dib8000_read_word(state, 1287); |
| 1445 | |
| 1446 | switch (onoff) { |
| 1447 | case 1: |
| 1448 | reg_1287 &= ~(1 << 8); |
| 1449 | break; |
| 1450 | case 0: |
| 1451 | reg_1287 |= (1 << 8); |
| 1452 | break; |
| 1453 | } |
| 1454 | |
| 1455 | dib8000_write_word(state, 1287, reg_1287); |
| 1456 | } |
| 1457 | |
| 1458 | static void dib8096p_configMpegMux(struct dib8000_state *state, |
| 1459 | u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) |
| 1460 | { |
| 1461 | u16 reg_1287; |
| 1462 | |
| 1463 | dprintk("Enable Mpeg mux\n"); |
| 1464 | |
| 1465 | dib8096p_enMpegMux(state, 0); |
| 1466 | |
| 1467 | /* If the input mode is MPEG do not divide the serial clock */ |
| 1468 | if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) |
| 1469 | enSerialClkDiv2 = 0; |
| 1470 | |
| 1471 | reg_1287 = ((pulseWidth & 0x1f) << 3) | |
| 1472 | ((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1); |
| 1473 | dib8000_write_word(state, 1287, reg_1287); |
| 1474 | |
| 1475 | dib8096p_enMpegMux(state, 1); |
| 1476 | } |
| 1477 | |
| 1478 | static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode) |
| 1479 | { |
| 1480 | u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7); |
| 1481 | |
| 1482 | switch (mode) { |
| 1483 | case MPEG_ON_DIBTX: |
| 1484 | dprintk("SET MPEG ON DIBSTREAM TX\n"); |
| 1485 | dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); |
| 1486 | reg_1288 |= (1 << 9); break; |
| 1487 | case DIV_ON_DIBTX: |
| 1488 | dprintk("SET DIV_OUT ON DIBSTREAM TX\n"); |
| 1489 | dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); |
| 1490 | reg_1288 |= (1 << 8); break; |
| 1491 | case ADC_ON_DIBTX: |
| 1492 | dprintk("SET ADC_OUT ON DIBSTREAM TX\n"); |
| 1493 | dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); |
| 1494 | reg_1288 |= (1 << 7); break; |
| 1495 | default: |
| 1496 | break; |
| 1497 | } |
| 1498 | dib8000_write_word(state, 1288, reg_1288); |
| 1499 | } |
| 1500 | |
| 1501 | static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode) |
| 1502 | { |
| 1503 | u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4); |
| 1504 | |
| 1505 | switch (mode) { |
| 1506 | case DEMOUT_ON_HOSTBUS: |
| 1507 | dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n"); |
| 1508 | dib8096p_enMpegMux(state, 0); |
| 1509 | reg_1288 |= (1 << 6); |
| 1510 | break; |
| 1511 | case DIBTX_ON_HOSTBUS: |
| 1512 | dprintk("SET DIBSTREAM TX ON HOST BUS\n"); |
| 1513 | dib8096p_enMpegMux(state, 0); |
| 1514 | reg_1288 |= (1 << 5); |
| 1515 | break; |
| 1516 | case MPEG_ON_HOSTBUS: |
| 1517 | dprintk("SET MPEG MUX ON HOST BUS\n"); |
| 1518 | reg_1288 |= (1 << 4); |
| 1519 | break; |
| 1520 | default: |
| 1521 | break; |
| 1522 | } |
| 1523 | dib8000_write_word(state, 1288, reg_1288); |
| 1524 | } |
| 1525 | |
| 1526 | static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff) |
| 1527 | { |
| 1528 | struct dib8000_state *state = fe->demodulator_priv; |
| 1529 | u16 reg_1287; |
| 1530 | |
| 1531 | switch (onoff) { |
| 1532 | case 0: /* only use the internal way - not the diversity input */ |
| 1533 | dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", |
| 1534 | __func__); |
| 1535 | /* outputRate = 8 */ |
| 1536 | dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); |
| 1537 | |
| 1538 | /* Do not divide the serial clock of MPEG MUX in |
| 1539 | SERIAL MODE in case input mode MPEG is used */ |
| 1540 | reg_1287 = dib8000_read_word(state, 1287); |
| 1541 | /* enSerialClkDiv2 == 1 ? */ |
| 1542 | if ((reg_1287 & 0x1) == 1) { |
| 1543 | /* force enSerialClkDiv2 = 0 */ |
| 1544 | reg_1287 &= ~0x1; |
| 1545 | dib8000_write_word(state, 1287, reg_1287); |
| 1546 | } |
| 1547 | state->input_mode_mpeg = 1; |
| 1548 | break; |
| 1549 | case 1: /* both ways */ |
| 1550 | case 2: /* only the diversity input */ |
| 1551 | dprintk("%s ON : Enable diversity INPUT\n", __func__); |
| 1552 | dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); |
| 1553 | state->input_mode_mpeg = 0; |
| 1554 | break; |
| 1555 | } |
| 1556 | |
| 1557 | dib8000_set_diversity_in(state->fe[0], onoff); |
| 1558 | return 0; |
| 1559 | } |
| 1560 | |
| 1561 | static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode) |
| 1562 | { |
| 1563 | struct dib8000_state *state = fe->demodulator_priv; |
| 1564 | u16 outreg, smo_mode, fifo_threshold; |
| 1565 | u8 prefer_mpeg_mux_use = 1; |
| 1566 | int ret = 0; |
| 1567 | |
| 1568 | state->output_mode = mode; |
| 1569 | dib8096p_host_bus_drive(state, 1); |
| 1570 | |
| 1571 | fifo_threshold = 1792; |
| 1572 | smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); |
| 1573 | outreg = dib8000_read_word(state, 1286) & |
| 1574 | ~((1 << 10) | (0x7 << 6) | (1 << 1)); |
| 1575 | |
| 1576 | switch (mode) { |
| 1577 | case OUTMODE_HIGH_Z: |
| 1578 | outreg = 0; |
| 1579 | break; |
| 1580 | |
| 1581 | case OUTMODE_MPEG2_SERIAL: |
| 1582 | if (prefer_mpeg_mux_use) { |
| 1583 | dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n"); |
| 1584 | dib8096p_configMpegMux(state, 3, 1, 1); |
| 1585 | dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); |
| 1586 | } else {/* Use Smooth block */ |
| 1587 | dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n"); |
| 1588 | dib8096p_setHostBusMux(state, |
| 1589 | DEMOUT_ON_HOSTBUS); |
| 1590 | outreg |= (2 << 6) | (0 << 1); |
| 1591 | } |
| 1592 | break; |
| 1593 | |
| 1594 | case OUTMODE_MPEG2_PAR_GATED_CLK: |
| 1595 | if (prefer_mpeg_mux_use) { |
| 1596 | dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n"); |
| 1597 | dib8096p_configMpegMux(state, 2, 0, 0); |
| 1598 | dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); |
| 1599 | } else { /* Use Smooth block */ |
| 1600 | dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n"); |
| 1601 | dib8096p_setHostBusMux(state, |
| 1602 | DEMOUT_ON_HOSTBUS); |
| 1603 | outreg |= (0 << 6); |
| 1604 | } |
| 1605 | break; |
| 1606 | |
| 1607 | case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ |
| 1608 | dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n"); |
| 1609 | dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); |
| 1610 | outreg |= (1 << 6); |
| 1611 | break; |
| 1612 | |
| 1613 | case OUTMODE_MPEG2_FIFO: |
| 1614 | /* Using Smooth block because not supported |
| 1615 | by new Mpeg Mux bloc */ |
| 1616 | dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n"); |
| 1617 | dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); |
| 1618 | outreg |= (5 << 6); |
| 1619 | smo_mode |= (3 << 1); |
| 1620 | fifo_threshold = 512; |
| 1621 | break; |
| 1622 | |
| 1623 | case OUTMODE_DIVERSITY: |
| 1624 | dprintk("dib8096P setting output mode MODE_DIVERSITY\n"); |
| 1625 | dib8096p_setDibTxMux(state, DIV_ON_DIBTX); |
| 1626 | dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| 1627 | break; |
| 1628 | |
| 1629 | case OUTMODE_ANALOG_ADC: |
| 1630 | dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n"); |
| 1631 | dib8096p_setDibTxMux(state, ADC_ON_DIBTX); |
| 1632 | dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| 1633 | break; |
| 1634 | } |
| 1635 | |
| 1636 | if (mode != OUTMODE_HIGH_Z) |
| 1637 | outreg |= (1<<10); |
| 1638 | |
| 1639 | dprintk("output_mpeg2_in_188_bytes = %d\n", |
| 1640 | state->cfg.output_mpeg2_in_188_bytes); |
| 1641 | if (state->cfg.output_mpeg2_in_188_bytes) |
| 1642 | smo_mode |= (1 << 5); |
| 1643 | |
| 1644 | ret |= dib8000_write_word(state, 299, smo_mode); |
| 1645 | /* synchronous fread */ |
| 1646 | ret |= dib8000_write_word(state, 299 + 1, fifo_threshold); |
| 1647 | ret |= dib8000_write_word(state, 1286, outreg); |
| 1648 | |
| 1649 | return ret; |
| 1650 | } |
| 1651 | |
| 1652 | static int map_addr_to_serpar_number(struct i2c_msg *msg) |
| 1653 | { |
| 1654 | if (msg->buf[0] <= 15) |
| 1655 | msg->buf[0] -= 1; |
| 1656 | else if (msg->buf[0] == 17) |
| 1657 | msg->buf[0] = 15; |
| 1658 | else if (msg->buf[0] == 16) |
| 1659 | msg->buf[0] = 17; |
| 1660 | else if (msg->buf[0] == 19) |
| 1661 | msg->buf[0] = 16; |
| 1662 | else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) |
| 1663 | msg->buf[0] -= 3; |
| 1664 | else if (msg->buf[0] == 28) |
| 1665 | msg->buf[0] = 23; |
| 1666 | else if (msg->buf[0] == 99) |
| 1667 | msg->buf[0] = 99; |
| 1668 | else |
| 1669 | return -EINVAL; |
| 1670 | return 0; |
| 1671 | } |
| 1672 | |
| 1673 | static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap, |
| 1674 | struct i2c_msg msg[], int num) |
| 1675 | { |
| 1676 | struct dib8000_state *state = i2c_get_adapdata(i2c_adap); |
| 1677 | u8 n_overflow = 1; |
| 1678 | u16 i = 1000; |
| 1679 | u16 serpar_num = msg[0].buf[0]; |
| 1680 | |
| 1681 | while (n_overflow == 1 && i) { |
| 1682 | n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; |
| 1683 | i--; |
| 1684 | if (i == 0) |
| 1685 | dprintk("Tuner ITF: write busy (overflow)\n"); |
| 1686 | } |
| 1687 | dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); |
| 1688 | dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); |
| 1689 | |
| 1690 | return num; |
| 1691 | } |
| 1692 | |
| 1693 | static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap, |
| 1694 | struct i2c_msg msg[], int num) |
| 1695 | { |
| 1696 | struct dib8000_state *state = i2c_get_adapdata(i2c_adap); |
| 1697 | u8 n_overflow = 1, n_empty = 1; |
| 1698 | u16 i = 1000; |
| 1699 | u16 serpar_num = msg[0].buf[0]; |
| 1700 | u16 read_word; |
| 1701 | |
| 1702 | while (n_overflow == 1 && i) { |
| 1703 | n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; |
| 1704 | i--; |
| 1705 | if (i == 0) |
| 1706 | dprintk("TunerITF: read busy (overflow)\n"); |
| 1707 | } |
| 1708 | dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f)); |
| 1709 | |
| 1710 | i = 1000; |
| 1711 | while (n_empty == 1 && i) { |
| 1712 | n_empty = dib8000_read_word(state, 1984)&0x1; |
| 1713 | i--; |
| 1714 | if (i == 0) |
| 1715 | dprintk("TunerITF: read busy (empty)\n"); |
| 1716 | } |
| 1717 | |
| 1718 | read_word = dib8000_read_word(state, 1987); |
| 1719 | msg[1].buf[0] = (read_word >> 8) & 0xff; |
| 1720 | msg[1].buf[1] = (read_word) & 0xff; |
| 1721 | |
| 1722 | return num; |
| 1723 | } |
| 1724 | |
| 1725 | static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, |
| 1726 | struct i2c_msg msg[], int num) |
| 1727 | { |
| 1728 | if (map_addr_to_serpar_number(&msg[0]) == 0) { |
| 1729 | if (num == 1) /* write */ |
| 1730 | return dib8096p_tuner_write_serpar(i2c_adap, msg, 1); |
| 1731 | else /* read */ |
| 1732 | return dib8096p_tuner_read_serpar(i2c_adap, msg, 2); |
| 1733 | } |
| 1734 | return num; |
| 1735 | } |
| 1736 | |
| 1737 | static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap, |
| 1738 | struct i2c_msg msg[], int num, u16 apb_address) |
| 1739 | { |
| 1740 | struct dib8000_state *state = i2c_get_adapdata(i2c_adap); |
| 1741 | u16 word; |
| 1742 | |
| 1743 | if (num == 1) { /* write */ |
| 1744 | dib8000_write_word(state, apb_address, |
| 1745 | ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); |
| 1746 | } else { |
| 1747 | word = dib8000_read_word(state, apb_address); |
| 1748 | msg[1].buf[0] = (word >> 8) & 0xff; |
| 1749 | msg[1].buf[1] = (word) & 0xff; |
| 1750 | } |
| 1751 | return num; |
| 1752 | } |
| 1753 | |
| 1754 | static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap, |
| 1755 | struct i2c_msg msg[], int num) |
| 1756 | { |
| 1757 | struct dib8000_state *state = i2c_get_adapdata(i2c_adap); |
| 1758 | u16 apb_address = 0, word; |
| 1759 | int i = 0; |
| 1760 | |
| 1761 | switch (msg[0].buf[0]) { |
| 1762 | case 0x12: |
| 1763 | apb_address = 1920; |
| 1764 | break; |
| 1765 | case 0x14: |
| 1766 | apb_address = 1921; |
| 1767 | break; |
| 1768 | case 0x24: |
| 1769 | apb_address = 1922; |
| 1770 | break; |
| 1771 | case 0x1a: |
| 1772 | apb_address = 1923; |
| 1773 | break; |
| 1774 | case 0x22: |
| 1775 | apb_address = 1924; |
| 1776 | break; |
| 1777 | case 0x33: |
| 1778 | apb_address = 1926; |
| 1779 | break; |
| 1780 | case 0x34: |
| 1781 | apb_address = 1927; |
| 1782 | break; |
| 1783 | case 0x35: |
| 1784 | apb_address = 1928; |
| 1785 | break; |
| 1786 | case 0x36: |
| 1787 | apb_address = 1929; |
| 1788 | break; |
| 1789 | case 0x37: |
| 1790 | apb_address = 1930; |
| 1791 | break; |
| 1792 | case 0x38: |
| 1793 | apb_address = 1931; |
| 1794 | break; |
| 1795 | case 0x39: |
| 1796 | apb_address = 1932; |
| 1797 | break; |
| 1798 | case 0x2a: |
| 1799 | apb_address = 1935; |
| 1800 | break; |
| 1801 | case 0x2b: |
| 1802 | apb_address = 1936; |
| 1803 | break; |
| 1804 | case 0x2c: |
| 1805 | apb_address = 1937; |
| 1806 | break; |
| 1807 | case 0x2d: |
| 1808 | apb_address = 1938; |
| 1809 | break; |
| 1810 | case 0x2e: |
| 1811 | apb_address = 1939; |
| 1812 | break; |
| 1813 | case 0x2f: |
| 1814 | apb_address = 1940; |
| 1815 | break; |
| 1816 | case 0x30: |
| 1817 | apb_address = 1941; |
| 1818 | break; |
| 1819 | case 0x31: |
| 1820 | apb_address = 1942; |
| 1821 | break; |
| 1822 | case 0x32: |
| 1823 | apb_address = 1943; |
| 1824 | break; |
| 1825 | case 0x3e: |
| 1826 | apb_address = 1944; |
| 1827 | break; |
| 1828 | case 0x3f: |
| 1829 | apb_address = 1945; |
| 1830 | break; |
| 1831 | case 0x40: |
| 1832 | apb_address = 1948; |
| 1833 | break; |
| 1834 | case 0x25: |
| 1835 | apb_address = 936; |
| 1836 | break; |
| 1837 | case 0x26: |
| 1838 | apb_address = 937; |
| 1839 | break; |
| 1840 | case 0x27: |
| 1841 | apb_address = 938; |
| 1842 | break; |
| 1843 | case 0x28: |
| 1844 | apb_address = 939; |
| 1845 | break; |
| 1846 | case 0x1d: |
| 1847 | /* get sad sel request */ |
| 1848 | i = ((dib8000_read_word(state, 921) >> 12)&0x3); |
| 1849 | word = dib8000_read_word(state, 924+i); |
| 1850 | msg[1].buf[0] = (word >> 8) & 0xff; |
| 1851 | msg[1].buf[1] = (word) & 0xff; |
| 1852 | return num; |
| 1853 | case 0x1f: |
| 1854 | if (num == 1) { /* write */ |
| 1855 | word = (u16) ((msg[0].buf[1] << 8) | |
| 1856 | msg[0].buf[2]); |
| 1857 | /* in the VGAMODE Sel are located on bit 0/1 */ |
| 1858 | word &= 0x3; |
| 1859 | word = (dib8000_read_word(state, 921) & |
| 1860 | ~(3<<12)) | (word<<12); |
| 1861 | /* Set the proper input */ |
| 1862 | dib8000_write_word(state, 921, word); |
| 1863 | return num; |
| 1864 | } |
| 1865 | } |
| 1866 | |
| 1867 | if (apb_address != 0) /* R/W access via APB */ |
| 1868 | return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address); |
| 1869 | else /* R/W access via SERPAR */ |
| 1870 | return dib8096p_tuner_rw_serpar(i2c_adap, msg, num); |
| 1871 | |
| 1872 | return 0; |
| 1873 | } |
| 1874 | |
| 1875 | static u32 dib8096p_i2c_func(struct i2c_adapter *adapter) |
| 1876 | { |
| 1877 | return I2C_FUNC_I2C; |
| 1878 | } |
| 1879 | |
| 1880 | static const struct i2c_algorithm dib8096p_tuner_xfer_algo = { |
| 1881 | .master_xfer = dib8096p_tuner_xfer, |
| 1882 | .functionality = dib8096p_i2c_func, |
| 1883 | }; |
| 1884 | |
| 1885 | static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe) |
| 1886 | { |
| 1887 | struct dib8000_state *st = fe->demodulator_priv; |
| 1888 | return &st->dib8096p_tuner_adap; |
| 1889 | } |
| 1890 | |
| 1891 | static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff) |
| 1892 | { |
| 1893 | struct dib8000_state *state = fe->demodulator_priv; |
| 1894 | u16 en_cur_state; |
| 1895 | |
| 1896 | dprintk("sleep dib8096p: %d\n", onoff); |
| 1897 | |
| 1898 | en_cur_state = dib8000_read_word(state, 1922); |
| 1899 | |
| 1900 | /* LNAs and MIX are ON and therefore it is a valid configuration */ |
| 1901 | if (en_cur_state > 0xff) |
| 1902 | state->tuner_enable = en_cur_state ; |
| 1903 | |
| 1904 | if (onoff) |
| 1905 | en_cur_state &= 0x00ff; |
| 1906 | else { |
| 1907 | if (state->tuner_enable != 0) |
| 1908 | en_cur_state = state->tuner_enable; |
| 1909 | } |
| 1910 | |
| 1911 | dib8000_write_word(state, 1922, en_cur_state); |
| 1912 | |
| 1913 | return 0; |
| 1914 | } |
| 1915 | |
| 1916 | static const s32 lut_1000ln_mant[] = |
| 1917 | { |
| 1918 | 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600 |
| 1919 | }; |
| 1920 | |
| 1921 | static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode) |
| 1922 | { |
| 1923 | struct dib8000_state *state = fe->demodulator_priv; |
| 1924 | u32 ix = 0, tmp_val = 0, exp = 0, mant = 0; |
| 1925 | s32 val; |
| 1926 | |
| 1927 | val = dib8000_read32(state, 384); |
| 1928 | if (mode) { |
| 1929 | tmp_val = val; |
| 1930 | while (tmp_val >>= 1) |
| 1931 | exp++; |
| 1932 | mant = (val * 1000 / (1<<exp)); |
| 1933 | ix = (u8)((mant-1000)/100); /* index of the LUT */ |
| 1934 | val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); |
| 1935 | val = (val*256)/1000; |
| 1936 | } |
| 1937 | return val; |
| 1938 | } |
| 1939 | |
| 1940 | static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ) |
| 1941 | { |
| 1942 | struct dib8000_state *state = fe->demodulator_priv; |
| 1943 | int val = 0; |
| 1944 | |
| 1945 | switch (IQ) { |
| 1946 | case 1: |
| 1947 | val = dib8000_read_word(state, 403); |
| 1948 | break; |
| 1949 | case 0: |
| 1950 | val = dib8000_read_word(state, 404); |
| 1951 | break; |
| 1952 | } |
| 1953 | if (val & 0x200) |
| 1954 | val -= 1024; |
| 1955 | |
| 1956 | return val; |
| 1957 | } |
| 1958 | |
| 1959 | static void dib8000_update_timf(struct dib8000_state *state) |
| 1960 | { |
| 1961 | u32 timf = state->timf = dib8000_read32(state, 435); |
| 1962 | |
| 1963 | dib8000_write_word(state, 29, (u16) (timf >> 16)); |
| 1964 | dib8000_write_word(state, 30, (u16) (timf & 0xffff)); |
| 1965 | dprintk("Updated timing frequency: %d (default: %d)\n", state->timf, state->timf_default); |
| 1966 | } |
| 1967 | |
| 1968 | static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf) |
| 1969 | { |
| 1970 | struct dib8000_state *state = fe->demodulator_priv; |
| 1971 | |
| 1972 | switch (op) { |
| 1973 | case DEMOD_TIMF_SET: |
| 1974 | state->timf = timf; |
| 1975 | break; |
| 1976 | case DEMOD_TIMF_UPDATE: |
| 1977 | dib8000_update_timf(state); |
| 1978 | break; |
| 1979 | case DEMOD_TIMF_GET: |
| 1980 | break; |
| 1981 | } |
| 1982 | dib8000_set_bandwidth(state->fe[0], 6000); |
| 1983 | |
| 1984 | return state->timf; |
| 1985 | } |
| 1986 | |
| 1987 | static const u16 adc_target_16dB[11] = { |
| 1988 | 7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574 |
| 1989 | }; |
| 1990 | |
| 1991 | static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 }; |
| 1992 | |
| 1993 | static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation) |
| 1994 | { |
| 1995 | u8 cr, constellation, time_intlv; |
| 1996 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 1997 | |
| 1998 | switch (c->layer[layer_index].modulation) { |
| 1999 | case DQPSK: |
| 2000 | constellation = 0; |
| 2001 | break; |
| 2002 | case QPSK: |
| 2003 | constellation = 1; |
| 2004 | break; |
| 2005 | case QAM_16: |
| 2006 | constellation = 2; |
| 2007 | break; |
| 2008 | case QAM_64: |
| 2009 | default: |
| 2010 | constellation = 3; |
| 2011 | break; |
| 2012 | } |
| 2013 | |
| 2014 | switch (c->layer[layer_index].fec) { |
| 2015 | case FEC_1_2: |
| 2016 | cr = 1; |
| 2017 | break; |
| 2018 | case FEC_2_3: |
| 2019 | cr = 2; |
| 2020 | break; |
| 2021 | case FEC_3_4: |
| 2022 | cr = 3; |
| 2023 | break; |
| 2024 | case FEC_5_6: |
| 2025 | cr = 5; |
| 2026 | break; |
| 2027 | case FEC_7_8: |
| 2028 | default: |
| 2029 | cr = 7; |
| 2030 | break; |
| 2031 | } |
| 2032 | |
| 2033 | time_intlv = fls(c->layer[layer_index].interleaving); |
| 2034 | if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1)) |
| 2035 | time_intlv = 0; |
| 2036 | |
| 2037 | dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv); |
| 2038 | if (c->layer[layer_index].segment_count > 0) { |
| 2039 | switch (max_constellation) { |
| 2040 | case DQPSK: |
| 2041 | case QPSK: |
| 2042 | if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64) |
| 2043 | max_constellation = c->layer[layer_index].modulation; |
| 2044 | break; |
| 2045 | case QAM_16: |
| 2046 | if (c->layer[layer_index].modulation == QAM_64) |
| 2047 | max_constellation = c->layer[layer_index].modulation; |
| 2048 | break; |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | return max_constellation; |
| 2053 | } |
| 2054 | |
| 2055 | static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */ |
| 2056 | static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */ |
| 2057 | static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */ |
| 2058 | static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation) |
| 2059 | { |
| 2060 | u16 i, ana_gain = 0; |
| 2061 | const u16 *adp; |
| 2062 | |
| 2063 | /* channel estimation fine configuration */ |
| 2064 | switch (max_constellation) { |
| 2065 | case QAM_64: |
| 2066 | ana_gain = 0x7; |
| 2067 | adp = &adp_Q64[0]; |
| 2068 | break; |
| 2069 | case QAM_16: |
| 2070 | ana_gain = 0x7; |
| 2071 | adp = &adp_Q16[0]; |
| 2072 | break; |
| 2073 | default: |
| 2074 | ana_gain = 0; |
| 2075 | adp = &adp_Qdefault[0]; |
| 2076 | break; |
| 2077 | } |
| 2078 | |
| 2079 | for (i = 0; i < 4; i++) |
| 2080 | dib8000_write_word(state, 215 + i, adp[i]); |
| 2081 | |
| 2082 | return ana_gain; |
| 2083 | } |
| 2084 | |
| 2085 | static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain) |
| 2086 | { |
| 2087 | u16 i; |
| 2088 | |
| 2089 | dib8000_write_word(state, 116, ana_gain); |
| 2090 | |
| 2091 | /* update ADC target depending on ana_gain */ |
| 2092 | if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */ |
| 2093 | for (i = 0; i < 10; i++) |
| 2094 | dib8000_write_word(state, 80 + i, adc_target_16dB[i]); |
| 2095 | } else { /* set -22dB ADC target for ana_gain=0 */ |
| 2096 | for (i = 0; i < 10; i++) |
| 2097 | dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355); |
| 2098 | } |
| 2099 | } |
| 2100 | |
| 2101 | static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe) |
| 2102 | { |
| 2103 | u16 mode = 0; |
| 2104 | |
| 2105 | if (state->isdbt_cfg_loaded == 0) |
| 2106 | for (mode = 0; mode < 24; mode++) |
| 2107 | dib8000_write_word(state, 117 + mode, ana_fe[mode]); |
| 2108 | } |
| 2109 | |
| 2110 | static const u16 lut_prbs_2k[13] = { |
| 2111 | 0x423, 0x009, 0x5C7, |
| 2112 | 0x7A6, 0x3D8, 0x527, |
| 2113 | 0x7FF, 0x79B, 0x3D6, |
| 2114 | 0x3A2, 0x53B, 0x2F4, |
| 2115 | 0x213 |
| 2116 | }; |
| 2117 | |
| 2118 | static const u16 lut_prbs_4k[13] = { |
| 2119 | 0x208, 0x0C3, 0x7B9, |
| 2120 | 0x423, 0x5C7, 0x3D8, |
| 2121 | 0x7FF, 0x3D6, 0x53B, |
| 2122 | 0x213, 0x029, 0x0D0, |
| 2123 | 0x48E |
| 2124 | }; |
| 2125 | |
| 2126 | static const u16 lut_prbs_8k[13] = { |
| 2127 | 0x740, 0x069, 0x7DD, |
| 2128 | 0x208, 0x7B9, 0x5C7, |
| 2129 | 0x7FF, 0x53B, 0x029, |
| 2130 | 0x48E, 0x4C4, 0x367, |
| 2131 | 0x684 |
| 2132 | }; |
| 2133 | |
| 2134 | static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel) |
| 2135 | { |
| 2136 | int sub_channel_prbs_group = 0; |
| 2137 | int prbs_group; |
| 2138 | |
| 2139 | sub_channel_prbs_group = subchannel / 3; |
| 2140 | if (sub_channel_prbs_group >= ARRAY_SIZE(lut_prbs_2k)) |
| 2141 | return 0; |
| 2142 | |
| 2143 | switch (state->fe[0]->dtv_property_cache.transmission_mode) { |
| 2144 | case TRANSMISSION_MODE_2K: |
| 2145 | prbs_group = lut_prbs_2k[sub_channel_prbs_group]; |
| 2146 | break; |
| 2147 | case TRANSMISSION_MODE_4K: |
| 2148 | prbs_group = lut_prbs_4k[sub_channel_prbs_group]; |
| 2149 | break; |
| 2150 | default: |
| 2151 | case TRANSMISSION_MODE_8K: |
| 2152 | prbs_group = lut_prbs_8k[sub_channel_prbs_group]; |
| 2153 | } |
| 2154 | |
| 2155 | dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n", |
| 2156 | sub_channel_prbs_group, subchannel, prbs_group); |
| 2157 | |
| 2158 | return prbs_group; |
| 2159 | } |
| 2160 | |
| 2161 | static void dib8000_set_13seg_channel(struct dib8000_state *state) |
| 2162 | { |
| 2163 | u16 i; |
| 2164 | u16 coff_pow = 0x2800; |
| 2165 | |
| 2166 | state->seg_mask = 0x1fff; /* All 13 segments enabled */ |
| 2167 | |
| 2168 | /* ---- COFF ---- Carloff, the most robust --- */ |
| 2169 | if (state->isdbt_cfg_loaded == 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */ |
| 2170 | dib8000_write_word(state, 180, (16 << 6) | 9); |
| 2171 | dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2); |
| 2172 | coff_pow = 0x2800; |
| 2173 | for (i = 0; i < 6; i++) |
| 2174 | dib8000_write_word(state, 181+i, coff_pow); |
| 2175 | |
| 2176 | /* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */ |
| 2177 | /* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */ |
| 2178 | dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1); |
| 2179 | |
| 2180 | /* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */ |
| 2181 | dib8000_write_word(state, 340, (8 << 6) | (6 << 0)); |
| 2182 | /* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */ |
| 2183 | dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); |
| 2184 | |
| 2185 | dib8000_write_word(state, 228, 0); /* default value */ |
| 2186 | dib8000_write_word(state, 265, 31); /* default value */ |
| 2187 | dib8000_write_word(state, 205, 0x200f); /* init value */ |
| 2188 | } |
| 2189 | |
| 2190 | /* |
| 2191 | * make the cpil_coff_lock more robust but slower p_coff_winlen |
| 2192 | * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) |
| 2193 | */ |
| 2194 | |
| 2195 | if (state->cfg.pll->ifreq == 0) |
| 2196 | dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */ |
| 2197 | |
| 2198 | dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg); |
| 2199 | } |
| 2200 | |
| 2201 | static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs) |
| 2202 | { |
| 2203 | u16 reg_1; |
| 2204 | |
| 2205 | reg_1 = dib8000_read_word(state, 1); |
| 2206 | dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */ |
| 2207 | } |
| 2208 | |
| 2209 | static void dib8000_small_fine_tune(struct dib8000_state *state) |
| 2210 | { |
| 2211 | u16 i; |
| 2212 | const s16 *ncoeff; |
| 2213 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 2214 | |
| 2215 | dib8000_write_word(state, 352, state->seg_diff_mask); |
| 2216 | dib8000_write_word(state, 353, state->seg_mask); |
| 2217 | |
| 2218 | /* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */ |
| 2219 | dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5); |
| 2220 | |
| 2221 | if (c->isdbt_sb_mode) { |
| 2222 | /* ---- SMALL ---- */ |
| 2223 | switch (c->transmission_mode) { |
| 2224 | case TRANSMISSION_MODE_2K: |
| 2225 | if (c->isdbt_partial_reception == 0) { /* 1-seg */ |
| 2226 | if (c->layer[0].modulation == DQPSK) /* DQPSK */ |
| 2227 | ncoeff = coeff_2k_sb_1seg_dqpsk; |
| 2228 | else /* QPSK or QAM */ |
| 2229 | ncoeff = coeff_2k_sb_1seg; |
| 2230 | } else { /* 3-segments */ |
| 2231 | if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ |
| 2232 | if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| 2233 | ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk; |
| 2234 | else /* QPSK or QAM on external segments */ |
| 2235 | ncoeff = coeff_2k_sb_3seg_0dqpsk; |
| 2236 | } else { /* QPSK or QAM on central segment */ |
| 2237 | if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| 2238 | ncoeff = coeff_2k_sb_3seg_1dqpsk; |
| 2239 | else /* QPSK or QAM on external segments */ |
| 2240 | ncoeff = coeff_2k_sb_3seg; |
| 2241 | } |
| 2242 | } |
| 2243 | break; |
| 2244 | case TRANSMISSION_MODE_4K: |
| 2245 | if (c->isdbt_partial_reception == 0) { /* 1-seg */ |
| 2246 | if (c->layer[0].modulation == DQPSK) /* DQPSK */ |
| 2247 | ncoeff = coeff_4k_sb_1seg_dqpsk; |
| 2248 | else /* QPSK or QAM */ |
| 2249 | ncoeff = coeff_4k_sb_1seg; |
| 2250 | } else { /* 3-segments */ |
| 2251 | if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ |
| 2252 | if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| 2253 | ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk; |
| 2254 | else /* QPSK or QAM on external segments */ |
| 2255 | ncoeff = coeff_4k_sb_3seg_0dqpsk; |
| 2256 | } else { /* QPSK or QAM on central segment */ |
| 2257 | if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| 2258 | ncoeff = coeff_4k_sb_3seg_1dqpsk; |
| 2259 | else /* QPSK or QAM on external segments */ |
| 2260 | ncoeff = coeff_4k_sb_3seg; |
| 2261 | } |
| 2262 | } |
| 2263 | break; |
| 2264 | case TRANSMISSION_MODE_AUTO: |
| 2265 | case TRANSMISSION_MODE_8K: |
| 2266 | default: |
| 2267 | if (c->isdbt_partial_reception == 0) { /* 1-seg */ |
| 2268 | if (c->layer[0].modulation == DQPSK) /* DQPSK */ |
| 2269 | ncoeff = coeff_8k_sb_1seg_dqpsk; |
| 2270 | else /* QPSK or QAM */ |
| 2271 | ncoeff = coeff_8k_sb_1seg; |
| 2272 | } else { /* 3-segments */ |
| 2273 | if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ |
| 2274 | if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| 2275 | ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk; |
| 2276 | else /* QPSK or QAM on external segments */ |
| 2277 | ncoeff = coeff_8k_sb_3seg_0dqpsk; |
| 2278 | } else { /* QPSK or QAM on central segment */ |
| 2279 | if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| 2280 | ncoeff = coeff_8k_sb_3seg_1dqpsk; |
| 2281 | else /* QPSK or QAM on external segments */ |
| 2282 | ncoeff = coeff_8k_sb_3seg; |
| 2283 | } |
| 2284 | } |
| 2285 | break; |
| 2286 | } |
| 2287 | |
| 2288 | for (i = 0; i < 8; i++) |
| 2289 | dib8000_write_word(state, 343 + i, ncoeff[i]); |
| 2290 | } |
| 2291 | } |
| 2292 | |
| 2293 | static const u16 coff_thres_1seg[3] = {300, 150, 80}; |
| 2294 | static const u16 coff_thres_3seg[3] = {350, 300, 250}; |
| 2295 | static void dib8000_set_sb_channel(struct dib8000_state *state) |
| 2296 | { |
| 2297 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 2298 | const u16 *coff; |
| 2299 | u16 i; |
| 2300 | |
| 2301 | if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) { |
| 2302 | dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */ |
| 2303 | dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */ |
| 2304 | } else { |
| 2305 | dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */ |
| 2306 | dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */ |
| 2307 | } |
| 2308 | |
| 2309 | if (c->isdbt_partial_reception == 1) /* 3-segments */ |
| 2310 | state->seg_mask = 0x00E0; |
| 2311 | else /* 1-segment */ |
| 2312 | state->seg_mask = 0x0040; |
| 2313 | |
| 2314 | dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); |
| 2315 | |
| 2316 | /* ---- COFF ---- Carloff, the most robust --- */ |
| 2317 | /* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */ |
| 2318 | dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3); |
| 2319 | |
| 2320 | dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */ |
| 2321 | dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */ |
| 2322 | |
| 2323 | /* Sound Broadcasting mode 1 seg */ |
| 2324 | if (c->isdbt_partial_reception == 0) { |
| 2325 | /* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */ |
| 2326 | if (state->mode == 3) |
| 2327 | dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14)); |
| 2328 | else |
| 2329 | dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14)); |
| 2330 | |
| 2331 | /* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */ |
| 2332 | dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4); |
| 2333 | coff = &coff_thres_1seg[0]; |
| 2334 | } else { /* Sound Broadcasting mode 3 seg */ |
| 2335 | dib8000_write_word(state, 180, 0x1fcf | (1 << 14)); |
| 2336 | /* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */ |
| 2337 | dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4); |
| 2338 | coff = &coff_thres_3seg[0]; |
| 2339 | } |
| 2340 | |
| 2341 | dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */ |
| 2342 | dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */ |
| 2343 | |
| 2344 | if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K) |
| 2345 | dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */ |
| 2346 | |
| 2347 | /* Write COFF thres */ |
| 2348 | for (i = 0 ; i < 3; i++) { |
| 2349 | dib8000_write_word(state, 181+i, coff[i]); |
| 2350 | dib8000_write_word(state, 184+i, coff[i]); |
| 2351 | } |
| 2352 | |
| 2353 | /* |
| 2354 | * make the cpil_coff_lock more robust but slower p_coff_winlen |
| 2355 | * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) |
| 2356 | */ |
| 2357 | |
| 2358 | dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */ |
| 2359 | |
| 2360 | if (c->isdbt_partial_reception == 0) |
| 2361 | dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */ |
| 2362 | else |
| 2363 | dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ |
| 2364 | } |
| 2365 | |
| 2366 | static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching) |
| 2367 | { |
| 2368 | u16 p_cfr_left_edge = 0, p_cfr_right_edge = 0; |
| 2369 | u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ; |
| 2370 | u16 max_constellation = DQPSK; |
| 2371 | int init_prbs; |
| 2372 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 2373 | |
| 2374 | if (autosearching) |
| 2375 | c->isdbt_partial_reception = 1; |
| 2376 | |
| 2377 | /* P_mode */ |
| 2378 | dib8000_write_word(state, 10, (seq << 4)); |
| 2379 | |
| 2380 | /* init mode */ |
| 2381 | state->mode = fft_to_mode(state); |
| 2382 | |
| 2383 | /* set guard */ |
| 2384 | tmp = dib8000_read_word(state, 1); |
| 2385 | dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3)); |
| 2386 | |
| 2387 | dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4)); |
| 2388 | |
| 2389 | /* signal optimization parameter */ |
| 2390 | if (c->isdbt_partial_reception) { |
| 2391 | state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0]; |
| 2392 | for (i = 1; i < 3; i++) |
| 2393 | nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; |
| 2394 | for (i = 0; i < nbseg_diff; i++) |
| 2395 | state->seg_diff_mask |= 1 << permu_seg[i+1]; |
| 2396 | } else { |
| 2397 | for (i = 0; i < 3; i++) |
| 2398 | nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; |
| 2399 | for (i = 0; i < nbseg_diff; i++) |
| 2400 | state->seg_diff_mask |= 1 << permu_seg[i]; |
| 2401 | } |
| 2402 | |
| 2403 | if (state->seg_diff_mask) |
| 2404 | dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); |
| 2405 | else |
| 2406 | dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */ |
| 2407 | |
| 2408 | for (i = 0; i < 3; i++) |
| 2409 | max_constellation = dib8000_set_layer(state, i, max_constellation); |
| 2410 | if (autosearching == 0) { |
| 2411 | state->layer_b_nb_seg = c->layer[1].segment_count; |
| 2412 | state->layer_c_nb_seg = c->layer[2].segment_count; |
| 2413 | } |
| 2414 | |
| 2415 | /* WRITE: Mode & Diff mask */ |
| 2416 | dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask); |
| 2417 | |
| 2418 | state->differential_constellation = (state->seg_diff_mask != 0); |
| 2419 | |
| 2420 | /* channel estimation fine configuration */ |
| 2421 | ana_gain = dib8000_adp_fine_tune(state, max_constellation); |
| 2422 | |
| 2423 | /* update ana_gain depending on max constellation */ |
| 2424 | dib8000_update_ana_gain(state, ana_gain); |
| 2425 | |
| 2426 | /* ---- ANA_FE ---- */ |
| 2427 | if (c->isdbt_partial_reception) /* 3-segments */ |
| 2428 | dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg); |
| 2429 | else |
| 2430 | dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */ |
| 2431 | |
| 2432 | /* TSB or ISDBT ? apply it now */ |
| 2433 | if (c->isdbt_sb_mode) { |
| 2434 | dib8000_set_sb_channel(state); |
| 2435 | init_prbs = dib8000_get_init_prbs(state, |
| 2436 | c->isdbt_sb_subchannel); |
| 2437 | } else { |
| 2438 | dib8000_set_13seg_channel(state); |
| 2439 | init_prbs = 0xfff; |
| 2440 | } |
| 2441 | |
| 2442 | /* SMALL */ |
| 2443 | dib8000_small_fine_tune(state); |
| 2444 | |
| 2445 | dib8000_set_subchannel_prbs(state, init_prbs); |
| 2446 | |
| 2447 | /* ---- CHAN_BLK ---- */ |
| 2448 | for (i = 0; i < 13; i++) { |
| 2449 | if ((((~state->seg_diff_mask) >> i) & 1) == 1) { |
| 2450 | p_cfr_left_edge += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0)); |
| 2451 | p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0)); |
| 2452 | } |
| 2453 | } |
| 2454 | dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */ |
| 2455 | dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */ |
| 2456 | /* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */ |
| 2457 | |
| 2458 | dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */ |
| 2459 | dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */ |
| 2460 | dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */ |
| 2461 | |
| 2462 | if (!autosearching) |
| 2463 | dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */ |
| 2464 | else |
| 2465 | dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */ |
| 2466 | |
| 2467 | dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */ |
| 2468 | dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */ |
| 2469 | |
| 2470 | dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ |
| 2471 | |
| 2472 | /* ---- TMCC ---- */ |
| 2473 | for (i = 0; i < 3; i++) |
| 2474 | tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ; |
| 2475 | |
| 2476 | /* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */ |
| 2477 | /* Threshold is set at 1/4 of max power. */ |
| 2478 | tmcc_pow *= (1 << (9-2)); |
| 2479 | dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */ |
| 2480 | dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */ |
| 2481 | dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */ |
| 2482 | /*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */ |
| 2483 | |
| 2484 | /* ---- PHA3 ---- */ |
| 2485 | if (state->isdbt_cfg_loaded == 0) |
| 2486 | dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */ |
| 2487 | |
| 2488 | state->isdbt_cfg_loaded = 0; |
| 2489 | } |
| 2490 | |
| 2491 | static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal, |
| 2492 | u32 wait0_ms, u32 wait1_ms, u32 wait2_ms) |
| 2493 | { |
| 2494 | u32 value = 0; /* P_search_end0 wait time */ |
| 2495 | u16 reg = 11; /* P_search_end0 start addr */ |
| 2496 | |
| 2497 | for (reg = 11; reg < 16; reg += 2) { |
| 2498 | if (reg == 11) { |
| 2499 | if (state->revision == 0x8090) |
| 2500 | value = internal * wait1_ms; |
| 2501 | else |
| 2502 | value = internal * wait0_ms; |
| 2503 | } else if (reg == 13) |
| 2504 | value = internal * wait1_ms; |
| 2505 | else if (reg == 15) |
| 2506 | value = internal * wait2_ms; |
| 2507 | dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff)); |
| 2508 | dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff)); |
| 2509 | } |
| 2510 | return value; |
| 2511 | } |
| 2512 | |
| 2513 | static int dib8000_autosearch_start(struct dvb_frontend *fe) |
| 2514 | { |
| 2515 | struct dib8000_state *state = fe->demodulator_priv; |
| 2516 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 2517 | u8 slist = 0; |
| 2518 | u32 value, internal = state->cfg.pll->internal; |
| 2519 | |
| 2520 | if (state->revision == 0x8090) |
| 2521 | internal = dib8000_read32(state, 23) / 1000; |
| 2522 | |
| 2523 | if ((state->revision >= 0x8002) && |
| 2524 | (state->autosearch_state == AS_SEARCHING_FFT)) { |
| 2525 | dib8000_write_word(state, 37, 0x0065); /* P_ctrl_pha_off_max default values */ |
| 2526 | dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */ |
| 2527 | |
| 2528 | dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */ |
| 2529 | dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */ |
| 2530 | dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */ |
| 2531 | dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */ |
| 2532 | dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */ |
| 2533 | dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */ |
| 2534 | |
| 2535 | if (state->revision == 0x8090) |
| 2536 | value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| 2537 | else |
| 2538 | value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| 2539 | |
| 2540 | dib8000_write_word(state, 17, 0); |
| 2541 | dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */ |
| 2542 | dib8000_write_word(state, 19, 0); |
| 2543 | dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */ |
| 2544 | dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */ |
| 2545 | dib8000_write_word(state, 22, value & 0xffff); |
| 2546 | |
| 2547 | if (state->revision == 0x8090) |
| 2548 | dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */ |
| 2549 | else |
| 2550 | dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */ |
| 2551 | dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */ |
| 2552 | |
| 2553 | /* P_search_param_select = (1 | 1<<4 | 1 << 8) */ |
| 2554 | dib8000_write_word(state, 356, 0); |
| 2555 | dib8000_write_word(state, 357, 0x111); |
| 2556 | |
| 2557 | dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */ |
| 2558 | dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */ |
| 2559 | dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */ |
| 2560 | } else if ((state->revision >= 0x8002) && |
| 2561 | (state->autosearch_state == AS_SEARCHING_GUARD)) { |
| 2562 | c->transmission_mode = TRANSMISSION_MODE_8K; |
| 2563 | c->guard_interval = GUARD_INTERVAL_1_8; |
| 2564 | c->inversion = 0; |
| 2565 | c->layer[0].modulation = QAM_64; |
| 2566 | c->layer[0].fec = FEC_2_3; |
| 2567 | c->layer[0].interleaving = 0; |
| 2568 | c->layer[0].segment_count = 13; |
| 2569 | |
| 2570 | slist = 16; |
| 2571 | c->transmission_mode = state->found_nfft; |
| 2572 | |
| 2573 | dib8000_set_isdbt_common_channel(state, slist, 1); |
| 2574 | |
| 2575 | /* set lock_mask values */ |
| 2576 | dib8000_write_word(state, 6, 0x4); |
| 2577 | if (state->revision == 0x8090) |
| 2578 | dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */ |
| 2579 | else |
| 2580 | dib8000_write_word(state, 7, 0x8); |
| 2581 | dib8000_write_word(state, 8, 0x1000); |
| 2582 | |
| 2583 | /* set lock_mask wait time values */ |
| 2584 | if (state->revision == 0x8090) |
| 2585 | dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| 2586 | else |
| 2587 | dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| 2588 | |
| 2589 | dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */ |
| 2590 | |
| 2591 | /* P_search_param_select = 0xf; look for the 4 different guard intervals */ |
| 2592 | dib8000_write_word(state, 356, 0); |
| 2593 | dib8000_write_word(state, 357, 0xf); |
| 2594 | |
| 2595 | value = dib8000_read_word(state, 0); |
| 2596 | dib8000_write_word(state, 0, (u16)((1 << 15) | value)); |
| 2597 | dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */ |
| 2598 | dib8000_write_word(state, 0, (u16)value); |
| 2599 | } else { |
| 2600 | c->inversion = 0; |
| 2601 | c->layer[0].modulation = QAM_64; |
| 2602 | c->layer[0].fec = FEC_2_3; |
| 2603 | c->layer[0].interleaving = 0; |
| 2604 | c->layer[0].segment_count = 13; |
| 2605 | if (!c->isdbt_sb_mode) |
| 2606 | c->layer[0].segment_count = 13; |
| 2607 | |
| 2608 | /* choose the right list, in sb, always do everything */ |
| 2609 | if (c->isdbt_sb_mode) { |
| 2610 | slist = 7; |
| 2611 | dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); |
| 2612 | } else { |
| 2613 | if (c->guard_interval == GUARD_INTERVAL_AUTO) { |
| 2614 | if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { |
| 2615 | c->transmission_mode = TRANSMISSION_MODE_8K; |
| 2616 | c->guard_interval = GUARD_INTERVAL_1_8; |
| 2617 | slist = 7; |
| 2618 | dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */ |
| 2619 | } else { |
| 2620 | c->guard_interval = GUARD_INTERVAL_1_8; |
| 2621 | slist = 3; |
| 2622 | } |
| 2623 | } else { |
| 2624 | if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { |
| 2625 | c->transmission_mode = TRANSMISSION_MODE_8K; |
| 2626 | slist = 2; |
| 2627 | dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */ |
| 2628 | } else |
| 2629 | slist = 0; |
| 2630 | } |
| 2631 | } |
| 2632 | dprintk("Using list for autosearch : %d\n", slist); |
| 2633 | |
| 2634 | dib8000_set_isdbt_common_channel(state, slist, 1); |
| 2635 | |
| 2636 | /* set lock_mask values */ |
| 2637 | dib8000_write_word(state, 6, 0x4); |
| 2638 | if (state->revision == 0x8090) |
| 2639 | dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10)); |
| 2640 | else |
| 2641 | dib8000_write_word(state, 7, 0x8); |
| 2642 | dib8000_write_word(state, 8, 0x1000); |
| 2643 | |
| 2644 | /* set lock_mask wait time values */ |
| 2645 | if (state->revision == 0x8090) |
| 2646 | dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| 2647 | else |
| 2648 | dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| 2649 | |
| 2650 | value = dib8000_read_word(state, 0); |
| 2651 | dib8000_write_word(state, 0, (u16)((1 << 15) | value)); |
| 2652 | dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */ |
| 2653 | dib8000_write_word(state, 0, (u16)value); |
| 2654 | } |
| 2655 | return 0; |
| 2656 | } |
| 2657 | |
| 2658 | static int dib8000_autosearch_irq(struct dvb_frontend *fe) |
| 2659 | { |
| 2660 | struct dib8000_state *state = fe->demodulator_priv; |
| 2661 | u16 irq_pending = dib8000_read_word(state, 1284); |
| 2662 | |
| 2663 | if ((state->revision >= 0x8002) && |
| 2664 | (state->autosearch_state == AS_SEARCHING_FFT)) { |
| 2665 | if (irq_pending & 0x1) { |
| 2666 | dprintk("dib8000_autosearch_irq: max correlation result available\n"); |
| 2667 | return 3; |
| 2668 | } |
| 2669 | } else { |
| 2670 | if (irq_pending & 0x1) { /* failed */ |
| 2671 | dprintk("dib8000_autosearch_irq failed\n"); |
| 2672 | return 1; |
| 2673 | } |
| 2674 | |
| 2675 | if (irq_pending & 0x2) { /* succeeded */ |
| 2676 | dprintk("dib8000_autosearch_irq succeeded\n"); |
| 2677 | return 2; |
| 2678 | } |
| 2679 | } |
| 2680 | |
| 2681 | return 0; // still pending |
| 2682 | } |
| 2683 | |
| 2684 | static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff) |
| 2685 | { |
| 2686 | u16 tmp; |
| 2687 | |
| 2688 | tmp = dib8000_read_word(state, 771); |
| 2689 | if (onoff) /* start P_restart_chd : channel_decoder */ |
| 2690 | dib8000_write_word(state, 771, tmp & 0xfffd); |
| 2691 | else /* stop P_restart_chd : channel_decoder */ |
| 2692 | dib8000_write_word(state, 771, tmp | (1<<1)); |
| 2693 | } |
| 2694 | |
| 2695 | static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz) |
| 2696 | { |
| 2697 | s16 unit_khz_dds_val; |
| 2698 | u32 abs_offset_khz = abs(offset_khz); |
| 2699 | u32 dds = state->cfg.pll->ifreq & 0x1ffffff; |
| 2700 | u8 invert = !!(state->cfg.pll->ifreq & (1 << 25)); |
| 2701 | u8 ratio; |
| 2702 | |
| 2703 | if (state->revision == 0x8090) { |
| 2704 | ratio = 4; |
| 2705 | unit_khz_dds_val = (1<<26) / (dib8000_read32(state, 23) / 1000); |
| 2706 | if (offset_khz < 0) |
| 2707 | dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val); |
| 2708 | else |
| 2709 | dds = (abs_offset_khz * unit_khz_dds_val); |
| 2710 | |
| 2711 | if (invert) |
| 2712 | dds = (1<<26) - dds; |
| 2713 | } else { |
| 2714 | ratio = 2; |
| 2715 | unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal); |
| 2716 | |
| 2717 | if (offset_khz < 0) |
| 2718 | unit_khz_dds_val *= -1; |
| 2719 | |
| 2720 | /* IF tuner */ |
| 2721 | if (invert) |
| 2722 | dds -= abs_offset_khz * unit_khz_dds_val; |
| 2723 | else |
| 2724 | dds += abs_offset_khz * unit_khz_dds_val; |
| 2725 | } |
| 2726 | |
| 2727 | dprintk("setting a DDS frequency offset of %c%dkHz\n", invert ? '-' : ' ', dds / unit_khz_dds_val); |
| 2728 | |
| 2729 | if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) { |
| 2730 | /* Max dds offset is the half of the demod freq */ |
| 2731 | dib8000_write_word(state, 26, invert); |
| 2732 | dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff); |
| 2733 | dib8000_write_word(state, 28, (u16)(dds & 0xffff)); |
| 2734 | } |
| 2735 | } |
| 2736 | |
| 2737 | static void dib8000_set_frequency_offset(struct dib8000_state *state) |
| 2738 | { |
| 2739 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 2740 | int i; |
| 2741 | u32 current_rf; |
| 2742 | int total_dds_offset_khz; |
| 2743 | |
| 2744 | if (state->fe[0]->ops.tuner_ops.get_frequency) |
| 2745 | state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], ¤t_rf); |
| 2746 | else |
| 2747 | current_rf = c->frequency; |
| 2748 | current_rf /= 1000; |
| 2749 | total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000; |
| 2750 | |
| 2751 | if (c->isdbt_sb_mode) { |
| 2752 | state->subchannel = c->isdbt_sb_subchannel; |
| 2753 | |
| 2754 | i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */ |
| 2755 | dib8000_write_word(state, 26, c->inversion ^ i); |
| 2756 | |
| 2757 | if (state->cfg.pll->ifreq == 0) { /* low if tuner */ |
| 2758 | if ((c->inversion ^ i) == 0) |
| 2759 | dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1); |
| 2760 | } else { |
| 2761 | if ((c->inversion ^ i) == 0) |
| 2762 | total_dds_offset_khz *= -1; |
| 2763 | } |
| 2764 | } |
| 2765 | |
| 2766 | dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz); |
| 2767 | |
| 2768 | /* apply dds offset now */ |
| 2769 | dib8000_set_dds(state, total_dds_offset_khz); |
| 2770 | } |
| 2771 | |
| 2772 | static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 }; |
| 2773 | |
| 2774 | static u32 dib8000_get_symbol_duration(struct dib8000_state *state) |
| 2775 | { |
| 2776 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 2777 | u16 i; |
| 2778 | |
| 2779 | switch (c->transmission_mode) { |
| 2780 | case TRANSMISSION_MODE_2K: |
| 2781 | i = 0; |
| 2782 | break; |
| 2783 | case TRANSMISSION_MODE_4K: |
| 2784 | i = 2; |
| 2785 | break; |
| 2786 | default: |
| 2787 | case TRANSMISSION_MODE_AUTO: |
| 2788 | case TRANSMISSION_MODE_8K: |
| 2789 | i = 1; |
| 2790 | break; |
| 2791 | } |
| 2792 | |
| 2793 | return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1; |
| 2794 | } |
| 2795 | |
| 2796 | static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step) |
| 2797 | { |
| 2798 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 2799 | u16 reg_32 = 0, reg_37 = 0; |
| 2800 | |
| 2801 | switch (loop_step) { |
| 2802 | case LOOP_TUNE_1: |
| 2803 | if (c->isdbt_sb_mode) { |
| 2804 | if (c->isdbt_partial_reception == 0) { |
| 2805 | reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */ |
| 2806 | reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */ |
| 2807 | } else { /* Sound Broadcasting mode 3 seg */ |
| 2808 | reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */ |
| 2809 | reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */ |
| 2810 | } |
| 2811 | } else { /* 13-seg start conf offset loop parameters */ |
| 2812 | reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */ |
| 2813 | reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */ |
| 2814 | } |
| 2815 | break; |
| 2816 | case LOOP_TUNE_2: |
| 2817 | if (c->isdbt_sb_mode) { |
| 2818 | if (c->isdbt_partial_reception == 0) { /* Sound Broadcasting mode 1 seg */ |
| 2819 | reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/ |
| 2820 | reg_37 = (12-state->mode) | ((5 + state->mode) << 5); |
| 2821 | } else { /* Sound Broadcasting mode 3 seg */ |
| 2822 | reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */ |
| 2823 | reg_37 = (11-state->mode) | ((5 + state->mode) << 5); |
| 2824 | } |
| 2825 | } else { /* 13 seg */ |
| 2826 | reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */ |
| 2827 | reg_37 = ((5+state->mode) << 5) | (10 - state->mode); |
| 2828 | } |
| 2829 | break; |
| 2830 | } |
| 2831 | dib8000_write_word(state, 32, reg_32); |
| 2832 | dib8000_write_word(state, 37, reg_37); |
| 2833 | } |
| 2834 | |
| 2835 | static void dib8000_demod_restart(struct dib8000_state *state) |
| 2836 | { |
| 2837 | dib8000_write_word(state, 770, 0x4000); |
| 2838 | dib8000_write_word(state, 770, 0x0000); |
| 2839 | return; |
| 2840 | } |
| 2841 | |
| 2842 | static void dib8000_set_sync_wait(struct dib8000_state *state) |
| 2843 | { |
| 2844 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 2845 | u16 sync_wait = 64; |
| 2846 | |
| 2847 | /* P_dvsy_sync_wait - reuse mode */ |
| 2848 | switch (c->transmission_mode) { |
| 2849 | case TRANSMISSION_MODE_8K: |
| 2850 | sync_wait = 256; |
| 2851 | break; |
| 2852 | case TRANSMISSION_MODE_4K: |
| 2853 | sync_wait = 128; |
| 2854 | break; |
| 2855 | default: |
| 2856 | case TRANSMISSION_MODE_2K: |
| 2857 | sync_wait = 64; |
| 2858 | break; |
| 2859 | } |
| 2860 | |
| 2861 | if (state->cfg.diversity_delay == 0) |
| 2862 | sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */ |
| 2863 | else |
| 2864 | sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */ |
| 2865 | |
| 2866 | dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4)); |
| 2867 | } |
| 2868 | |
| 2869 | static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode) |
| 2870 | { |
| 2871 | if (mode == SYMBOL_DEPENDENT_ON) |
| 2872 | delay *= state->symbol_duration; |
| 2873 | |
| 2874 | return jiffies + usecs_to_jiffies(delay * 100); |
| 2875 | } |
| 2876 | |
| 2877 | static s32 dib8000_get_status(struct dvb_frontend *fe) |
| 2878 | { |
| 2879 | struct dib8000_state *state = fe->demodulator_priv; |
| 2880 | return state->status; |
| 2881 | } |
| 2882 | |
| 2883 | static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe) |
| 2884 | { |
| 2885 | struct dib8000_state *state = fe->demodulator_priv; |
| 2886 | return state->tune_state; |
| 2887 | } |
| 2888 | |
| 2889 | static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) |
| 2890 | { |
| 2891 | struct dib8000_state *state = fe->demodulator_priv; |
| 2892 | |
| 2893 | state->tune_state = tune_state; |
| 2894 | return 0; |
| 2895 | } |
| 2896 | |
| 2897 | static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe) |
| 2898 | { |
| 2899 | struct dib8000_state *state = fe->demodulator_priv; |
| 2900 | |
| 2901 | state->status = FE_STATUS_TUNE_PENDING; |
| 2902 | state->tune_state = CT_DEMOD_START; |
| 2903 | return 0; |
| 2904 | } |
| 2905 | |
| 2906 | static u16 dib8000_read_lock(struct dvb_frontend *fe) |
| 2907 | { |
| 2908 | struct dib8000_state *state = fe->demodulator_priv; |
| 2909 | |
| 2910 | if (state->revision == 0x8090) |
| 2911 | return dib8000_read_word(state, 570); |
| 2912 | return dib8000_read_word(state, 568); |
| 2913 | } |
| 2914 | |
| 2915 | static int dib8090p_init_sdram(struct dib8000_state *state) |
| 2916 | { |
| 2917 | u16 reg = 0; |
| 2918 | dprintk("init sdram\n"); |
| 2919 | |
| 2920 | reg = dib8000_read_word(state, 274) & 0xfff0; |
| 2921 | dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */ |
| 2922 | |
| 2923 | dib8000_write_word(state, 1803, (7 << 2)); |
| 2924 | |
| 2925 | reg = dib8000_read_word(state, 1280); |
| 2926 | dib8000_write_word(state, 1280, reg | (1 << 2)); /* force restart P_restart_sdram */ |
| 2927 | dib8000_write_word(state, 1280, reg); /* release restart P_restart_sdram */ |
| 2928 | |
| 2929 | return 0; |
| 2930 | } |
| 2931 | |
| 2932 | /** |
| 2933 | * is_manual_mode - Check if TMCC should be used for parameters settings |
| 2934 | * @c: struct dvb_frontend_properties |
| 2935 | * |
| 2936 | * By default, TMCC table should be used for parameter settings on most |
| 2937 | * usercases. However, sometimes it is desirable to lock the demod to |
| 2938 | * use the manual parameters. |
| 2939 | * |
| 2940 | * On manual mode, the current dib8000_tune state machine is very restrict: |
| 2941 | * It requires that both per-layer and per-transponder parameters to be |
| 2942 | * properly specified, otherwise the device won't lock. |
| 2943 | * |
| 2944 | * Check if all those conditions are properly satisfied before allowing |
| 2945 | * the device to use the manual frequency lock mode. |
| 2946 | */ |
| 2947 | static int is_manual_mode(struct dtv_frontend_properties *c) |
| 2948 | { |
| 2949 | int i, n_segs = 0; |
| 2950 | |
| 2951 | /* Use auto mode on DVB-T compat mode */ |
| 2952 | if (c->delivery_system != SYS_ISDBT) |
| 2953 | return 0; |
| 2954 | |
| 2955 | /* |
| 2956 | * Transmission mode is only detected on auto mode, currently |
| 2957 | */ |
| 2958 | if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { |
| 2959 | dprintk("transmission mode auto\n"); |
| 2960 | return 0; |
| 2961 | } |
| 2962 | |
| 2963 | /* |
| 2964 | * Guard interval is only detected on auto mode, currently |
| 2965 | */ |
| 2966 | if (c->guard_interval == GUARD_INTERVAL_AUTO) { |
| 2967 | dprintk("guard interval auto\n"); |
| 2968 | return 0; |
| 2969 | } |
| 2970 | |
| 2971 | /* |
| 2972 | * If no layer is enabled, assume auto mode, as at least one |
| 2973 | * layer should be enabled |
| 2974 | */ |
| 2975 | if (!c->isdbt_layer_enabled) { |
| 2976 | dprintk("no layer modulation specified\n"); |
| 2977 | return 0; |
| 2978 | } |
| 2979 | |
| 2980 | /* |
| 2981 | * Check if the per-layer parameters aren't auto and |
| 2982 | * disable a layer if segment count is 0 or invalid. |
| 2983 | */ |
| 2984 | for (i = 0; i < 3; i++) { |
| 2985 | if (!(c->isdbt_layer_enabled & 1 << i)) |
| 2986 | continue; |
| 2987 | |
| 2988 | if ((c->layer[i].segment_count > 13) || |
| 2989 | (c->layer[i].segment_count == 0)) { |
| 2990 | c->isdbt_layer_enabled &= ~(1 << i); |
| 2991 | continue; |
| 2992 | } |
| 2993 | |
| 2994 | n_segs += c->layer[i].segment_count; |
| 2995 | |
| 2996 | if ((c->layer[i].modulation == QAM_AUTO) || |
| 2997 | (c->layer[i].fec == FEC_AUTO)) { |
| 2998 | dprintk("layer %c has either modulation or FEC auto\n", |
| 2999 | 'A' + i); |
| 3000 | return 0; |
| 3001 | } |
| 3002 | } |
| 3003 | |
| 3004 | /* |
| 3005 | * Userspace specified a wrong number of segments. |
| 3006 | * fallback to auto mode. |
| 3007 | */ |
| 3008 | if (n_segs == 0 || n_segs > 13) { |
| 3009 | dprintk("number of segments is invalid\n"); |
| 3010 | return 0; |
| 3011 | } |
| 3012 | |
| 3013 | /* Everything looks ok for manual mode */ |
| 3014 | return 1; |
| 3015 | } |
| 3016 | |
| 3017 | static int dib8000_tune(struct dvb_frontend *fe) |
| 3018 | { |
| 3019 | struct dib8000_state *state = fe->demodulator_priv; |
| 3020 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 3021 | enum frontend_tune_state *tune_state = &state->tune_state; |
| 3022 | |
| 3023 | u16 locks, deeper_interleaver = 0, i; |
| 3024 | int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */ |
| 3025 | |
| 3026 | unsigned long *timeout = &state->timeout; |
| 3027 | unsigned long now = jiffies; |
| 3028 | u16 init_prbs; |
| 3029 | #ifdef DIB8000_AGC_FREEZE |
| 3030 | u16 agc1, agc2; |
| 3031 | #endif |
| 3032 | |
| 3033 | u32 corm[4] = {0, 0, 0, 0}; |
| 3034 | u8 find_index, max_value; |
| 3035 | |
| 3036 | #if 0 |
| 3037 | if (*tune_state < CT_DEMOD_STOP) |
| 3038 | dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n", |
| 3039 | state->channel_parameters_set, *tune_state, state->autosearch_state, now); |
| 3040 | #endif |
| 3041 | |
| 3042 | switch (*tune_state) { |
| 3043 | case CT_DEMOD_START: /* 30 */ |
| 3044 | dib8000_reset_stats(fe); |
| 3045 | |
| 3046 | if (state->revision == 0x8090) |
| 3047 | dib8090p_init_sdram(state); |
| 3048 | state->status = FE_STATUS_TUNE_PENDING; |
| 3049 | state->channel_parameters_set = is_manual_mode(c); |
| 3050 | |
| 3051 | dprintk("Tuning channel on %s search mode\n", |
| 3052 | state->channel_parameters_set ? "manual" : "auto"); |
| 3053 | |
| 3054 | dib8000_viterbi_state(state, 0); /* force chan dec in restart */ |
| 3055 | |
| 3056 | /* Layer monitor */ |
| 3057 | dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60); |
| 3058 | |
| 3059 | dib8000_set_frequency_offset(state); |
| 3060 | dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000); |
| 3061 | |
| 3062 | if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */ |
| 3063 | #ifdef DIB8000_AGC_FREEZE |
| 3064 | if (state->revision != 0x8090) { |
| 3065 | state->agc1_max = dib8000_read_word(state, 108); |
| 3066 | state->agc1_min = dib8000_read_word(state, 109); |
| 3067 | state->agc2_max = dib8000_read_word(state, 110); |
| 3068 | state->agc2_min = dib8000_read_word(state, 111); |
| 3069 | agc1 = dib8000_read_word(state, 388); |
| 3070 | agc2 = dib8000_read_word(state, 389); |
| 3071 | dib8000_write_word(state, 108, agc1); |
| 3072 | dib8000_write_word(state, 109, agc1); |
| 3073 | dib8000_write_word(state, 110, agc2); |
| 3074 | dib8000_write_word(state, 111, agc2); |
| 3075 | } |
| 3076 | #endif |
| 3077 | state->autosearch_state = AS_SEARCHING_FFT; |
| 3078 | state->found_nfft = TRANSMISSION_MODE_AUTO; |
| 3079 | state->found_guard = GUARD_INTERVAL_AUTO; |
| 3080 | *tune_state = CT_DEMOD_SEARCH_NEXT; |
| 3081 | } else { /* we already know the channel struct so TUNE only ! */ |
| 3082 | state->autosearch_state = AS_DONE; |
| 3083 | *tune_state = CT_DEMOD_STEP_3; |
| 3084 | } |
| 3085 | state->symbol_duration = dib8000_get_symbol_duration(state); |
| 3086 | break; |
| 3087 | |
| 3088 | case CT_DEMOD_SEARCH_NEXT: /* 51 */ |
| 3089 | dib8000_autosearch_start(fe); |
| 3090 | if (state->revision == 0x8090) |
| 3091 | ret = 50; |
| 3092 | else |
| 3093 | ret = 15; |
| 3094 | *tune_state = CT_DEMOD_STEP_1; |
| 3095 | break; |
| 3096 | |
| 3097 | case CT_DEMOD_STEP_1: /* 31 */ |
| 3098 | switch (dib8000_autosearch_irq(fe)) { |
| 3099 | case 1: /* fail */ |
| 3100 | state->status = FE_STATUS_TUNE_FAILED; |
| 3101 | state->autosearch_state = AS_DONE; |
| 3102 | *tune_state = CT_DEMOD_STOP; /* else we are done here */ |
| 3103 | break; |
| 3104 | case 2: /* Success */ |
| 3105 | state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */ |
| 3106 | *tune_state = CT_DEMOD_STEP_3; |
| 3107 | if (state->autosearch_state == AS_SEARCHING_GUARD) |
| 3108 | *tune_state = CT_DEMOD_STEP_2; |
| 3109 | else |
| 3110 | state->autosearch_state = AS_DONE; |
| 3111 | break; |
| 3112 | case 3: /* Autosearch FFT max correlation endded */ |
| 3113 | *tune_state = CT_DEMOD_STEP_2; |
| 3114 | break; |
| 3115 | } |
| 3116 | break; |
| 3117 | |
| 3118 | case CT_DEMOD_STEP_2: |
| 3119 | switch (state->autosearch_state) { |
| 3120 | case AS_SEARCHING_FFT: |
| 3121 | /* searching for the correct FFT */ |
| 3122 | if (state->revision == 0x8090) { |
| 3123 | corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); |
| 3124 | corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); |
| 3125 | corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601)); |
| 3126 | } else { |
| 3127 | corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595)); |
| 3128 | corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); |
| 3129 | corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); |
| 3130 | } |
| 3131 | /* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */ |
| 3132 | |
| 3133 | max_value = 0; |
| 3134 | for (find_index = 1 ; find_index < 3 ; find_index++) { |
| 3135 | if (corm[max_value] < corm[find_index]) |
| 3136 | max_value = find_index ; |
| 3137 | } |
| 3138 | |
| 3139 | switch (max_value) { |
| 3140 | case 0: |
| 3141 | state->found_nfft = TRANSMISSION_MODE_2K; |
| 3142 | break; |
| 3143 | case 1: |
| 3144 | state->found_nfft = TRANSMISSION_MODE_4K; |
| 3145 | break; |
| 3146 | case 2: |
| 3147 | default: |
| 3148 | state->found_nfft = TRANSMISSION_MODE_8K; |
| 3149 | break; |
| 3150 | } |
| 3151 | /* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */ |
| 3152 | |
| 3153 | *tune_state = CT_DEMOD_SEARCH_NEXT; |
| 3154 | state->autosearch_state = AS_SEARCHING_GUARD; |
| 3155 | if (state->revision == 0x8090) |
| 3156 | ret = 50; |
| 3157 | else |
| 3158 | ret = 10; |
| 3159 | break; |
| 3160 | case AS_SEARCHING_GUARD: |
| 3161 | /* searching for the correct guard interval */ |
| 3162 | if (state->revision == 0x8090) |
| 3163 | state->found_guard = dib8000_read_word(state, 572) & 0x3; |
| 3164 | else |
| 3165 | state->found_guard = dib8000_read_word(state, 570) & 0x3; |
| 3166 | /* dprintk("guard interval found=%i\n", state->found_guard); */ |
| 3167 | |
| 3168 | *tune_state = CT_DEMOD_STEP_3; |
| 3169 | break; |
| 3170 | default: |
| 3171 | /* the demod should never be in this state */ |
| 3172 | state->status = FE_STATUS_TUNE_FAILED; |
| 3173 | state->autosearch_state = AS_DONE; |
| 3174 | *tune_state = CT_DEMOD_STOP; /* else we are done here */ |
| 3175 | break; |
| 3176 | } |
| 3177 | break; |
| 3178 | |
| 3179 | case CT_DEMOD_STEP_3: /* 33 */ |
| 3180 | dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1); |
| 3181 | dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */ |
| 3182 | *tune_state = CT_DEMOD_STEP_4; |
| 3183 | break; |
| 3184 | |
| 3185 | case CT_DEMOD_STEP_4: /* (34) */ |
| 3186 | dib8000_demod_restart(state); |
| 3187 | |
| 3188 | dib8000_set_sync_wait(state); |
| 3189 | dib8000_set_diversity_in(state->fe[0], state->diversity_onoff); |
| 3190 | |
| 3191 | locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */ |
| 3192 | /* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */ |
| 3193 | *timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON); |
| 3194 | *tune_state = CT_DEMOD_STEP_5; |
| 3195 | break; |
| 3196 | |
| 3197 | case CT_DEMOD_STEP_5: /* (35) */ |
| 3198 | locks = dib8000_read_lock(fe); |
| 3199 | if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */ |
| 3200 | dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */ |
| 3201 | if (!state->differential_constellation) { |
| 3202 | /* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */ |
| 3203 | *timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON); |
| 3204 | *tune_state = CT_DEMOD_STEP_7; |
| 3205 | } else { |
| 3206 | *tune_state = CT_DEMOD_STEP_8; |
| 3207 | } |
| 3208 | } else if (time_after(now, *timeout)) { |
| 3209 | *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ |
| 3210 | } |
| 3211 | break; |
| 3212 | |
| 3213 | case CT_DEMOD_STEP_6: /* (36) if there is an input (diversity) */ |
| 3214 | if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) { |
| 3215 | /* if there is a diversity fe in input and this fe is has not already failed : wait here until this this fe has succedeed or failed */ |
| 3216 | if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */ |
| 3217 | *tune_state = CT_DEMOD_STEP_8; /* go for mpeg */ |
| 3218 | else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failed also, break the current one */ |
| 3219 | *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ |
| 3220 | dib8000_viterbi_state(state, 1); /* start viterbi chandec */ |
| 3221 | dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); |
| 3222 | state->status = FE_STATUS_TUNE_FAILED; |
| 3223 | } |
| 3224 | } else { |
| 3225 | dib8000_viterbi_state(state, 1); /* start viterbi chandec */ |
| 3226 | dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); |
| 3227 | *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ |
| 3228 | state->status = FE_STATUS_TUNE_FAILED; |
| 3229 | } |
| 3230 | break; |
| 3231 | |
| 3232 | case CT_DEMOD_STEP_7: /* 37 */ |
| 3233 | locks = dib8000_read_lock(fe); |
| 3234 | if (locks & (1<<10)) { /* lmod4_lock */ |
| 3235 | ret = 14; /* wait for 14 symbols */ |
| 3236 | *tune_state = CT_DEMOD_STEP_8; |
| 3237 | } else if (time_after(now, *timeout)) |
| 3238 | *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ |
| 3239 | break; |
| 3240 | |
| 3241 | case CT_DEMOD_STEP_8: /* 38 */ |
| 3242 | dib8000_viterbi_state(state, 1); /* start viterbi chandec */ |
| 3243 | dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); |
| 3244 | |
| 3245 | /* mpeg will never lock on this condition because init_prbs is not set : search for it !*/ |
| 3246 | if (c->isdbt_sb_mode |
| 3247 | && c->isdbt_sb_subchannel < 14 |
| 3248 | && !state->differential_constellation) { |
| 3249 | state->subchannel = 0; |
| 3250 | *tune_state = CT_DEMOD_STEP_11; |
| 3251 | } else { |
| 3252 | *tune_state = CT_DEMOD_STEP_9; |
| 3253 | state->status = FE_STATUS_LOCKED; |
| 3254 | } |
| 3255 | break; |
| 3256 | |
| 3257 | case CT_DEMOD_STEP_9: /* 39 */ |
| 3258 | if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */ |
| 3259 | /* defines timeout for mpeg lock depending on interleaver length of longest layer */ |
| 3260 | for (i = 0; i < 3; i++) { |
| 3261 | if (c->layer[i].interleaving >= deeper_interleaver) { |
| 3262 | dprintk("layer%i: time interleaver = %d\n", i, c->layer[i].interleaving); |
| 3263 | if (c->layer[i].segment_count > 0) { /* valid layer */ |
| 3264 | deeper_interleaver = c->layer[0].interleaving; |
| 3265 | state->longest_intlv_layer = i; |
| 3266 | } |
| 3267 | } |
| 3268 | } |
| 3269 | |
| 3270 | if (deeper_interleaver == 0) |
| 3271 | locks = 2; /* locks is the tmp local variable name */ |
| 3272 | else if (deeper_interleaver == 3) |
| 3273 | locks = 8; |
| 3274 | else |
| 3275 | locks = 2 * deeper_interleaver; |
| 3276 | |
| 3277 | if (state->diversity_onoff != 0) /* because of diversity sync */ |
| 3278 | locks *= 2; |
| 3279 | |
| 3280 | *timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */ |
| 3281 | dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n", |
| 3282 | deeper_interleaver, state->longest_intlv_layer, locks, *timeout); |
| 3283 | |
| 3284 | *tune_state = CT_DEMOD_STEP_10; |
| 3285 | } else |
| 3286 | *tune_state = CT_DEMOD_STOP; |
| 3287 | break; |
| 3288 | |
| 3289 | case CT_DEMOD_STEP_10: /* 40 */ |
| 3290 | locks = dib8000_read_lock(fe); |
| 3291 | if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */ |
| 3292 | dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n", |
| 3293 | c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", |
| 3294 | c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", |
| 3295 | c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); |
| 3296 | if (c->isdbt_sb_mode |
| 3297 | && c->isdbt_sb_subchannel < 14 |
| 3298 | && !state->differential_constellation) |
| 3299 | /* signal to the upper layer, that there was a channel found and the parameters can be read */ |
| 3300 | state->status = FE_STATUS_DEMOD_SUCCESS; |
| 3301 | else |
| 3302 | state->status = FE_STATUS_DATA_LOCKED; |
| 3303 | *tune_state = CT_DEMOD_STOP; |
| 3304 | } else if (time_after(now, *timeout)) { |
| 3305 | if (c->isdbt_sb_mode |
| 3306 | && c->isdbt_sb_subchannel < 14 |
| 3307 | && !state->differential_constellation) { /* continue to try init prbs autosearch */ |
| 3308 | state->subchannel += 3; |
| 3309 | *tune_state = CT_DEMOD_STEP_11; |
| 3310 | } else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */ |
| 3311 | if (locks & (0x7 << 5)) { |
| 3312 | dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n", |
| 3313 | jiffies_to_msecs(now - *timeout), |
| 3314 | c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", |
| 3315 | c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", |
| 3316 | c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); |
| 3317 | |
| 3318 | state->status = FE_STATUS_DATA_LOCKED; |
| 3319 | } else |
| 3320 | state->status = FE_STATUS_TUNE_FAILED; |
| 3321 | *tune_state = CT_DEMOD_STOP; |
| 3322 | } |
| 3323 | } |
| 3324 | break; |
| 3325 | |
| 3326 | case CT_DEMOD_STEP_11: /* 41 : init prbs autosearch */ |
| 3327 | init_prbs = dib8000_get_init_prbs(state, state->subchannel); |
| 3328 | |
| 3329 | if (init_prbs) { |
| 3330 | dib8000_set_subchannel_prbs(state, init_prbs); |
| 3331 | *tune_state = CT_DEMOD_STEP_9; |
| 3332 | } else { |
| 3333 | *tune_state = CT_DEMOD_STOP; |
| 3334 | state->status = FE_STATUS_TUNE_FAILED; |
| 3335 | } |
| 3336 | break; |
| 3337 | |
| 3338 | default: |
| 3339 | break; |
| 3340 | } |
| 3341 | |
| 3342 | /* tuning is finished - cleanup the demod */ |
| 3343 | switch (*tune_state) { |
| 3344 | case CT_DEMOD_STOP: /* (42) */ |
| 3345 | #ifdef DIB8000_AGC_FREEZE |
| 3346 | if ((state->revision != 0x8090) && (state->agc1_max != 0)) { |
| 3347 | dib8000_write_word(state, 108, state->agc1_max); |
| 3348 | dib8000_write_word(state, 109, state->agc1_min); |
| 3349 | dib8000_write_word(state, 110, state->agc2_max); |
| 3350 | dib8000_write_word(state, 111, state->agc2_min); |
| 3351 | state->agc1_max = 0; |
| 3352 | state->agc1_min = 0; |
| 3353 | state->agc2_max = 0; |
| 3354 | state->agc2_min = 0; |
| 3355 | } |
| 3356 | #endif |
| 3357 | ret = 0; |
| 3358 | break; |
| 3359 | default: |
| 3360 | break; |
| 3361 | } |
| 3362 | |
| 3363 | if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3)) |
| 3364 | return ret * state->symbol_duration; |
| 3365 | if ((ret > 0) && (ret < state->symbol_duration)) |
| 3366 | return state->symbol_duration; /* at least one symbol */ |
| 3367 | return ret; |
| 3368 | } |
| 3369 | |
| 3370 | static int dib8000_wakeup(struct dvb_frontend *fe) |
| 3371 | { |
| 3372 | struct dib8000_state *state = fe->demodulator_priv; |
| 3373 | u8 index_frontend; |
| 3374 | int ret; |
| 3375 | |
| 3376 | dib8000_set_power_mode(state, DIB8000_POWER_ALL); |
| 3377 | dib8000_set_adc_state(state, DIBX000_ADC_ON); |
| 3378 | if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) |
| 3379 | dprintk("could not start Slow ADC\n"); |
| 3380 | |
| 3381 | if (state->revision == 0x8090) |
| 3382 | dib8000_sad_calib(state); |
| 3383 | |
| 3384 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3385 | ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]); |
| 3386 | if (ret < 0) |
| 3387 | return ret; |
| 3388 | } |
| 3389 | |
| 3390 | return 0; |
| 3391 | } |
| 3392 | |
| 3393 | static int dib8000_sleep(struct dvb_frontend *fe) |
| 3394 | { |
| 3395 | struct dib8000_state *state = fe->demodulator_priv; |
| 3396 | u8 index_frontend; |
| 3397 | int ret; |
| 3398 | |
| 3399 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3400 | ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); |
| 3401 | if (ret < 0) |
| 3402 | return ret; |
| 3403 | } |
| 3404 | |
| 3405 | if (state->revision != 0x8090) |
| 3406 | dib8000_set_output_mode(fe, OUTMODE_HIGH_Z); |
| 3407 | dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); |
| 3408 | return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF); |
| 3409 | } |
| 3410 | |
| 3411 | static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat); |
| 3412 | |
| 3413 | static int dib8000_get_frontend(struct dvb_frontend *fe, |
| 3414 | struct dtv_frontend_properties *c) |
| 3415 | { |
| 3416 | struct dib8000_state *state = fe->demodulator_priv; |
| 3417 | u16 i, val = 0; |
| 3418 | enum fe_status stat = 0; |
| 3419 | u8 index_frontend, sub_index_frontend; |
| 3420 | |
| 3421 | c->bandwidth_hz = 6000000; |
| 3422 | |
| 3423 | /* |
| 3424 | * If called to early, get_frontend makes dib8000_tune to either |
| 3425 | * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail. |
| 3426 | * So, let's just return if frontend 0 has not locked. |
| 3427 | */ |
| 3428 | dib8000_read_status(fe, &stat); |
| 3429 | if (!(stat & FE_HAS_SYNC)) |
| 3430 | return 0; |
| 3431 | |
| 3432 | dprintk("dib8000_get_frontend: TMCC lock\n"); |
| 3433 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3434 | state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); |
| 3435 | if (stat&FE_HAS_SYNC) { |
| 3436 | dprintk("TMCC lock on the slave%i\n", index_frontend); |
| 3437 | /* synchronize the cache with the other frontends */ |
| 3438 | state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c); |
| 3439 | for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) { |
| 3440 | if (sub_index_frontend != index_frontend) { |
| 3441 | state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; |
| 3442 | state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; |
| 3443 | state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; |
| 3444 | state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; |
| 3445 | state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; |
| 3446 | for (i = 0; i < 3; i++) { |
| 3447 | state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; |
| 3448 | state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; |
| 3449 | state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; |
| 3450 | state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; |
| 3451 | } |
| 3452 | } |
| 3453 | } |
| 3454 | return 0; |
| 3455 | } |
| 3456 | } |
| 3457 | |
| 3458 | c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1; |
| 3459 | |
| 3460 | if (state->revision == 0x8090) |
| 3461 | val = dib8000_read_word(state, 572); |
| 3462 | else |
| 3463 | val = dib8000_read_word(state, 570); |
| 3464 | c->inversion = (val & 0x40) >> 6; |
| 3465 | switch ((val & 0x30) >> 4) { |
| 3466 | case 1: |
| 3467 | c->transmission_mode = TRANSMISSION_MODE_2K; |
| 3468 | dprintk("dib8000_get_frontend: transmission mode 2K\n"); |
| 3469 | break; |
| 3470 | case 2: |
| 3471 | c->transmission_mode = TRANSMISSION_MODE_4K; |
| 3472 | dprintk("dib8000_get_frontend: transmission mode 4K\n"); |
| 3473 | break; |
| 3474 | case 3: |
| 3475 | default: |
| 3476 | c->transmission_mode = TRANSMISSION_MODE_8K; |
| 3477 | dprintk("dib8000_get_frontend: transmission mode 8K\n"); |
| 3478 | break; |
| 3479 | } |
| 3480 | |
| 3481 | switch (val & 0x3) { |
| 3482 | case 0: |
| 3483 | c->guard_interval = GUARD_INTERVAL_1_32; |
| 3484 | dprintk("dib8000_get_frontend: Guard Interval = 1/32\n"); |
| 3485 | break; |
| 3486 | case 1: |
| 3487 | c->guard_interval = GUARD_INTERVAL_1_16; |
| 3488 | dprintk("dib8000_get_frontend: Guard Interval = 1/16\n"); |
| 3489 | break; |
| 3490 | case 2: |
| 3491 | dprintk("dib8000_get_frontend: Guard Interval = 1/8\n"); |
| 3492 | c->guard_interval = GUARD_INTERVAL_1_8; |
| 3493 | break; |
| 3494 | case 3: |
| 3495 | dprintk("dib8000_get_frontend: Guard Interval = 1/4\n"); |
| 3496 | c->guard_interval = GUARD_INTERVAL_1_4; |
| 3497 | break; |
| 3498 | } |
| 3499 | |
| 3500 | val = dib8000_read_word(state, 505); |
| 3501 | c->isdbt_partial_reception = val & 1; |
| 3502 | dprintk("dib8000_get_frontend: partial_reception = %d\n", c->isdbt_partial_reception); |
| 3503 | |
| 3504 | for (i = 0; i < 3; i++) { |
| 3505 | int show; |
| 3506 | |
| 3507 | val = dib8000_read_word(state, 493 + i) & 0x0f; |
| 3508 | c->layer[i].segment_count = val; |
| 3509 | |
| 3510 | if (val == 0 || val > 13) |
| 3511 | show = 0; |
| 3512 | else |
| 3513 | show = 1; |
| 3514 | |
| 3515 | if (show) |
| 3516 | dprintk("dib8000_get_frontend: Layer %d segments = %d\n", |
| 3517 | i, c->layer[i].segment_count); |
| 3518 | |
| 3519 | val = dib8000_read_word(state, 499 + i) & 0x3; |
| 3520 | /* Interleaving can be 0, 1, 2 or 4 */ |
| 3521 | if (val == 3) |
| 3522 | val = 4; |
| 3523 | c->layer[i].interleaving = val; |
| 3524 | if (show) |
| 3525 | dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n", |
| 3526 | i, c->layer[i].interleaving); |
| 3527 | |
| 3528 | val = dib8000_read_word(state, 481 + i); |
| 3529 | switch (val & 0x7) { |
| 3530 | case 1: |
| 3531 | c->layer[i].fec = FEC_1_2; |
| 3532 | if (show) |
| 3533 | dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i); |
| 3534 | break; |
| 3535 | case 2: |
| 3536 | c->layer[i].fec = FEC_2_3; |
| 3537 | if (show) |
| 3538 | dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i); |
| 3539 | break; |
| 3540 | case 3: |
| 3541 | c->layer[i].fec = FEC_3_4; |
| 3542 | if (show) |
| 3543 | dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i); |
| 3544 | break; |
| 3545 | case 5: |
| 3546 | c->layer[i].fec = FEC_5_6; |
| 3547 | if (show) |
| 3548 | dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i); |
| 3549 | break; |
| 3550 | default: |
| 3551 | c->layer[i].fec = FEC_7_8; |
| 3552 | if (show) |
| 3553 | dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i); |
| 3554 | break; |
| 3555 | } |
| 3556 | |
| 3557 | val = dib8000_read_word(state, 487 + i); |
| 3558 | switch (val & 0x3) { |
| 3559 | case 0: |
| 3560 | c->layer[i].modulation = DQPSK; |
| 3561 | if (show) |
| 3562 | dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i); |
| 3563 | break; |
| 3564 | case 1: |
| 3565 | c->layer[i].modulation = QPSK; |
| 3566 | if (show) |
| 3567 | dprintk("dib8000_get_frontend: Layer %d QPSK\n", i); |
| 3568 | break; |
| 3569 | case 2: |
| 3570 | c->layer[i].modulation = QAM_16; |
| 3571 | if (show) |
| 3572 | dprintk("dib8000_get_frontend: Layer %d QAM16\n", i); |
| 3573 | break; |
| 3574 | case 3: |
| 3575 | default: |
| 3576 | c->layer[i].modulation = QAM_64; |
| 3577 | if (show) |
| 3578 | dprintk("dib8000_get_frontend: Layer %d QAM64\n", i); |
| 3579 | break; |
| 3580 | } |
| 3581 | } |
| 3582 | |
| 3583 | /* synchronize the cache with the other frontends */ |
| 3584 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3585 | state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode; |
| 3586 | state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion; |
| 3587 | state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode; |
| 3588 | state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval; |
| 3589 | state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception; |
| 3590 | for (i = 0; i < 3; i++) { |
| 3591 | state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count; |
| 3592 | state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving; |
| 3593 | state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec; |
| 3594 | state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation; |
| 3595 | } |
| 3596 | } |
| 3597 | return 0; |
| 3598 | } |
| 3599 | |
| 3600 | static int dib8000_set_frontend(struct dvb_frontend *fe) |
| 3601 | { |
| 3602 | struct dib8000_state *state = fe->demodulator_priv; |
| 3603 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 3604 | int l, i, active, time, time_slave = 0; |
| 3605 | u8 exit_condition, index_frontend; |
| 3606 | unsigned long delay, callback_time; |
| 3607 | |
| 3608 | if (c->frequency == 0) { |
| 3609 | dprintk("dib8000: must at least specify frequency\n"); |
| 3610 | return 0; |
| 3611 | } |
| 3612 | |
| 3613 | if (c->bandwidth_hz == 0) { |
| 3614 | dprintk("dib8000: no bandwidth specified, set to default\n"); |
| 3615 | c->bandwidth_hz = 6000000; |
| 3616 | } |
| 3617 | |
| 3618 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3619 | /* synchronization of the cache */ |
| 3620 | state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT; |
| 3621 | memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); |
| 3622 | |
| 3623 | /* set output mode and diversity input */ |
| 3624 | if (state->revision != 0x8090) { |
| 3625 | dib8000_set_diversity_in(state->fe[index_frontend], 1); |
| 3626 | if (index_frontend != 0) |
| 3627 | dib8000_set_output_mode(state->fe[index_frontend], |
| 3628 | OUTMODE_DIVERSITY); |
| 3629 | else |
| 3630 | dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); |
| 3631 | } else { |
| 3632 | dib8096p_set_diversity_in(state->fe[index_frontend], 1); |
| 3633 | if (index_frontend != 0) |
| 3634 | dib8096p_set_output_mode(state->fe[index_frontend], |
| 3635 | OUTMODE_DIVERSITY); |
| 3636 | else |
| 3637 | dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); |
| 3638 | } |
| 3639 | |
| 3640 | /* tune the tuner */ |
| 3641 | if (state->fe[index_frontend]->ops.tuner_ops.set_params) |
| 3642 | state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]); |
| 3643 | |
| 3644 | dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START); |
| 3645 | } |
| 3646 | |
| 3647 | /* turn off the diversity of the last chip */ |
| 3648 | if (state->revision != 0x8090) |
| 3649 | dib8000_set_diversity_in(state->fe[index_frontend - 1], 0); |
| 3650 | else |
| 3651 | dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0); |
| 3652 | |
| 3653 | /* start up the AGC */ |
| 3654 | do { |
| 3655 | time = dib8000_agc_startup(state->fe[0]); |
| 3656 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3657 | time_slave = dib8000_agc_startup(state->fe[index_frontend]); |
| 3658 | if (time == 0) |
| 3659 | time = time_slave; |
| 3660 | else if ((time_slave != 0) && (time_slave > time)) |
| 3661 | time = time_slave; |
| 3662 | } |
| 3663 | if (time == 0) |
| 3664 | break; |
| 3665 | |
| 3666 | /* |
| 3667 | * Despite dib8000_agc_startup returns time at a 0.1 ms range, |
| 3668 | * the actual sleep time depends on CONFIG_HZ. The worse case |
| 3669 | * is when CONFIG_HZ=100. In such case, the minimum granularity |
| 3670 | * is 10ms. On some real field tests, the tuner sometimes don't |
| 3671 | * lock when this timer is lower than 10ms. So, enforce a 10ms |
| 3672 | * granularity. |
| 3673 | */ |
| 3674 | time = 10 * (time + 99)/100; |
| 3675 | usleep_range(time * 1000, (time + 1) * 1000); |
| 3676 | exit_condition = 1; |
| 3677 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3678 | if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) { |
| 3679 | exit_condition = 0; |
| 3680 | break; |
| 3681 | } |
| 3682 | } |
| 3683 | } while (exit_condition == 0); |
| 3684 | |
| 3685 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| 3686 | dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); |
| 3687 | |
| 3688 | active = 1; |
| 3689 | do { |
| 3690 | callback_time = 0; |
| 3691 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3692 | delay = dib8000_tune(state->fe[index_frontend]); |
| 3693 | if (delay != 0) { |
| 3694 | delay = jiffies + usecs_to_jiffies(100 * delay); |
| 3695 | if (!callback_time || delay < callback_time) |
| 3696 | callback_time = delay; |
| 3697 | } |
| 3698 | |
| 3699 | /* we are in autosearch */ |
| 3700 | if (state->channel_parameters_set == 0) { /* searching */ |
| 3701 | if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) { |
| 3702 | dprintk("autosearch succeeded on fe%i\n", index_frontend); |
| 3703 | dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */ |
| 3704 | state->channel_parameters_set = 1; |
| 3705 | |
| 3706 | for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) { |
| 3707 | if (l != index_frontend) { /* and for all frontend except the successful one */ |
| 3708 | dprintk("Restarting frontend %d\n", l); |
| 3709 | dib8000_tune_restart_from_demod(state->fe[l]); |
| 3710 | |
| 3711 | state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; |
| 3712 | state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; |
| 3713 | state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; |
| 3714 | state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; |
| 3715 | state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; |
| 3716 | for (i = 0; i < 3; i++) { |
| 3717 | state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; |
| 3718 | state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; |
| 3719 | state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; |
| 3720 | state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; |
| 3721 | } |
| 3722 | |
| 3723 | } |
| 3724 | } |
| 3725 | } |
| 3726 | } |
| 3727 | } |
| 3728 | /* tuning is done when the master frontend is done (failed or success) */ |
| 3729 | if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED || |
| 3730 | dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED || |
| 3731 | dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) { |
| 3732 | active = 0; |
| 3733 | /* we need to wait for all frontends to be finished */ |
| 3734 | for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3735 | if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP) |
| 3736 | active = 1; |
| 3737 | } |
| 3738 | if (active == 0) |
| 3739 | dprintk("tuning done with status %d\n", dib8000_get_status(state->fe[0])); |
| 3740 | } |
| 3741 | |
| 3742 | if ((active == 1) && (callback_time == 0)) { |
| 3743 | dprintk("strange callback time something went wrong\n"); |
| 3744 | active = 0; |
| 3745 | } |
| 3746 | |
| 3747 | while ((active == 1) && (time_before(jiffies, callback_time))) |
| 3748 | msleep(100); |
| 3749 | } while (active); |
| 3750 | |
| 3751 | /* set output mode */ |
| 3752 | if (state->revision != 0x8090) |
| 3753 | dib8000_set_output_mode(state->fe[0], state->cfg.output_mode); |
| 3754 | else { |
| 3755 | dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode); |
| 3756 | if (state->cfg.enMpegOutput == 0) { |
| 3757 | dib8096p_setDibTxMux(state, MPEG_ON_DIBTX); |
| 3758 | dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| 3759 | } |
| 3760 | } |
| 3761 | |
| 3762 | return 0; |
| 3763 | } |
| 3764 | |
| 3765 | static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat); |
| 3766 | |
| 3767 | static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat) |
| 3768 | { |
| 3769 | struct dib8000_state *state = fe->demodulator_priv; |
| 3770 | u16 lock_slave = 0, lock; |
| 3771 | u8 index_frontend; |
| 3772 | |
| 3773 | lock = dib8000_read_lock(fe); |
| 3774 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| 3775 | lock_slave |= dib8000_read_lock(state->fe[index_frontend]); |
| 3776 | |
| 3777 | *stat = 0; |
| 3778 | |
| 3779 | if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1)) |
| 3780 | *stat |= FE_HAS_SIGNAL; |
| 3781 | |
| 3782 | if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */ |
| 3783 | *stat |= FE_HAS_CARRIER; |
| 3784 | |
| 3785 | if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */ |
| 3786 | *stat |= FE_HAS_SYNC; |
| 3787 | |
| 3788 | if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */ |
| 3789 | *stat |= FE_HAS_LOCK; |
| 3790 | |
| 3791 | if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) { |
| 3792 | lock = dib8000_read_word(state, 554); /* Viterbi Layer A */ |
| 3793 | if (lock & 0x01) |
| 3794 | *stat |= FE_HAS_VITERBI; |
| 3795 | |
| 3796 | lock = dib8000_read_word(state, 555); /* Viterbi Layer B */ |
| 3797 | if (lock & 0x01) |
| 3798 | *stat |= FE_HAS_VITERBI; |
| 3799 | |
| 3800 | lock = dib8000_read_word(state, 556); /* Viterbi Layer C */ |
| 3801 | if (lock & 0x01) |
| 3802 | *stat |= FE_HAS_VITERBI; |
| 3803 | } |
| 3804 | dib8000_get_stats(fe, *stat); |
| 3805 | |
| 3806 | return 0; |
| 3807 | } |
| 3808 | |
| 3809 | static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber) |
| 3810 | { |
| 3811 | struct dib8000_state *state = fe->demodulator_priv; |
| 3812 | |
| 3813 | /* 13 segments */ |
| 3814 | if (state->revision == 0x8090) |
| 3815 | *ber = (dib8000_read_word(state, 562) << 16) | |
| 3816 | dib8000_read_word(state, 563); |
| 3817 | else |
| 3818 | *ber = (dib8000_read_word(state, 560) << 16) | |
| 3819 | dib8000_read_word(state, 561); |
| 3820 | return 0; |
| 3821 | } |
| 3822 | |
| 3823 | static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) |
| 3824 | { |
| 3825 | struct dib8000_state *state = fe->demodulator_priv; |
| 3826 | |
| 3827 | /* packet error on 13 seg */ |
| 3828 | if (state->revision == 0x8090) |
| 3829 | *unc = dib8000_read_word(state, 567); |
| 3830 | else |
| 3831 | *unc = dib8000_read_word(state, 565); |
| 3832 | return 0; |
| 3833 | } |
| 3834 | |
| 3835 | static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) |
| 3836 | { |
| 3837 | struct dib8000_state *state = fe->demodulator_priv; |
| 3838 | u8 index_frontend; |
| 3839 | u16 val; |
| 3840 | |
| 3841 | *strength = 0; |
| 3842 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| 3843 | state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); |
| 3844 | if (val > 65535 - *strength) |
| 3845 | *strength = 65535; |
| 3846 | else |
| 3847 | *strength += val; |
| 3848 | } |
| 3849 | |
| 3850 | val = 65535 - dib8000_read_word(state, 390); |
| 3851 | if (val > 65535 - *strength) |
| 3852 | *strength = 65535; |
| 3853 | else |
| 3854 | *strength += val; |
| 3855 | return 0; |
| 3856 | } |
| 3857 | |
| 3858 | static u32 dib8000_get_snr(struct dvb_frontend *fe) |
| 3859 | { |
| 3860 | struct dib8000_state *state = fe->demodulator_priv; |
| 3861 | u32 n, s, exp; |
| 3862 | u16 val; |
| 3863 | |
| 3864 | if (state->revision != 0x8090) |
| 3865 | val = dib8000_read_word(state, 542); |
| 3866 | else |
| 3867 | val = dib8000_read_word(state, 544); |
| 3868 | n = (val >> 6) & 0xff; |
| 3869 | exp = (val & 0x3f); |
| 3870 | if ((exp & 0x20) != 0) |
| 3871 | exp -= 0x40; |
| 3872 | n <<= exp+16; |
| 3873 | |
| 3874 | if (state->revision != 0x8090) |
| 3875 | val = dib8000_read_word(state, 543); |
| 3876 | else |
| 3877 | val = dib8000_read_word(state, 545); |
| 3878 | s = (val >> 6) & 0xff; |
| 3879 | exp = (val & 0x3f); |
| 3880 | if ((exp & 0x20) != 0) |
| 3881 | exp -= 0x40; |
| 3882 | s <<= exp+16; |
| 3883 | |
| 3884 | if (n > 0) { |
| 3885 | u32 t = (s/n) << 16; |
| 3886 | return t + ((s << 16) - n*t) / n; |
| 3887 | } |
| 3888 | return 0xffffffff; |
| 3889 | } |
| 3890 | |
| 3891 | static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr) |
| 3892 | { |
| 3893 | struct dib8000_state *state = fe->demodulator_priv; |
| 3894 | u8 index_frontend; |
| 3895 | u32 snr_master; |
| 3896 | |
| 3897 | snr_master = dib8000_get_snr(fe); |
| 3898 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| 3899 | snr_master += dib8000_get_snr(state->fe[index_frontend]); |
| 3900 | |
| 3901 | if ((snr_master >> 16) != 0) { |
| 3902 | snr_master = 10*intlog10(snr_master>>16); |
| 3903 | *snr = snr_master / ((1 << 24) / 10); |
| 3904 | } |
| 3905 | else |
| 3906 | *snr = 0; |
| 3907 | |
| 3908 | return 0; |
| 3909 | } |
| 3910 | |
| 3911 | struct per_layer_regs { |
| 3912 | u16 lock, ber, per; |
| 3913 | }; |
| 3914 | |
| 3915 | static const struct per_layer_regs per_layer_regs[] = { |
| 3916 | { 554, 560, 562 }, |
| 3917 | { 555, 576, 578 }, |
| 3918 | { 556, 581, 583 }, |
| 3919 | }; |
| 3920 | |
| 3921 | struct linear_segments { |
| 3922 | unsigned x; |
| 3923 | signed y; |
| 3924 | }; |
| 3925 | |
| 3926 | /* |
| 3927 | * Table to estimate signal strength in dBm. |
| 3928 | * This table was empirically determinated by measuring the signal |
| 3929 | * strength generated by a DTA-2111 RF generator directly connected into |
| 3930 | * a dib8076 device (a PixelView PV-D231U stick), using a good quality |
| 3931 | * 3 meters RC6 cable and good RC6 connectors. |
| 3932 | * The real value can actually be different on other devices, depending |
| 3933 | * on several factors, like if LNA is enabled or not, if diversity is |
| 3934 | * enabled, type of connectors, etc. |
| 3935 | * Yet, it is better to use this measure in dB than a random non-linear |
| 3936 | * percentage value, especially for antenna adjustments. |
| 3937 | * On my tests, the precision of the measure using this table is about |
| 3938 | * 0.5 dB, with sounds reasonable enough. |
| 3939 | */ |
| 3940 | static struct linear_segments strength_to_db_table[] = { |
| 3941 | { 55953, 108500 }, /* -22.5 dBm */ |
| 3942 | { 55394, 108000 }, |
| 3943 | { 53834, 107000 }, |
| 3944 | { 52863, 106000 }, |
| 3945 | { 52239, 105000 }, |
| 3946 | { 52012, 104000 }, |
| 3947 | { 51803, 103000 }, |
| 3948 | { 51566, 102000 }, |
| 3949 | { 51356, 101000 }, |
| 3950 | { 51112, 100000 }, |
| 3951 | { 50869, 99000 }, |
| 3952 | { 50600, 98000 }, |
| 3953 | { 50363, 97000 }, |
| 3954 | { 50117, 96000 }, /* -35 dBm */ |
| 3955 | { 49889, 95000 }, |
| 3956 | { 49680, 94000 }, |
| 3957 | { 49493, 93000 }, |
| 3958 | { 49302, 92000 }, |
| 3959 | { 48929, 91000 }, |
| 3960 | { 48416, 90000 }, |
| 3961 | { 48035, 89000 }, |
| 3962 | { 47593, 88000 }, |
| 3963 | { 47282, 87000 }, |
| 3964 | { 46953, 86000 }, |
| 3965 | { 46698, 85000 }, |
| 3966 | { 45617, 84000 }, |
| 3967 | { 44773, 83000 }, |
| 3968 | { 43845, 82000 }, |
| 3969 | { 43020, 81000 }, |
| 3970 | { 42010, 80000 }, /* -51 dBm */ |
| 3971 | { 0, 0 }, |
| 3972 | }; |
| 3973 | |
| 3974 | static u32 interpolate_value(u32 value, struct linear_segments *segments, |
| 3975 | unsigned len) |
| 3976 | { |
| 3977 | u64 tmp64; |
| 3978 | u32 dx; |
| 3979 | s32 dy; |
| 3980 | int i, ret; |
| 3981 | |
| 3982 | if (value >= segments[0].x) |
| 3983 | return segments[0].y; |
| 3984 | if (value < segments[len-1].x) |
| 3985 | return segments[len-1].y; |
| 3986 | |
| 3987 | for (i = 1; i < len - 1; i++) { |
| 3988 | /* If value is identical, no need to interpolate */ |
| 3989 | if (value == segments[i].x) |
| 3990 | return segments[i].y; |
| 3991 | if (value > segments[i].x) |
| 3992 | break; |
| 3993 | } |
| 3994 | |
| 3995 | /* Linear interpolation between the two (x,y) points */ |
| 3996 | dy = segments[i - 1].y - segments[i].y; |
| 3997 | dx = segments[i - 1].x - segments[i].x; |
| 3998 | |
| 3999 | tmp64 = value - segments[i].x; |
| 4000 | tmp64 *= dy; |
| 4001 | do_div(tmp64, dx); |
| 4002 | ret = segments[i].y + tmp64; |
| 4003 | |
| 4004 | return ret; |
| 4005 | } |
| 4006 | |
| 4007 | static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer) |
| 4008 | { |
| 4009 | struct dib8000_state *state = fe->demodulator_priv; |
| 4010 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 4011 | int ini_layer, end_layer, i; |
| 4012 | u64 time_us, tmp64; |
| 4013 | u32 tmp, denom; |
| 4014 | int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs; |
| 4015 | int interleaving = 0, fft_div; |
| 4016 | |
| 4017 | if (layer >= 0) { |
| 4018 | ini_layer = layer; |
| 4019 | end_layer = layer + 1; |
| 4020 | } else { |
| 4021 | ini_layer = 0; |
| 4022 | end_layer = 3; |
| 4023 | } |
| 4024 | |
| 4025 | switch (c->guard_interval) { |
| 4026 | case GUARD_INTERVAL_1_4: |
| 4027 | guard = 4; |
| 4028 | break; |
| 4029 | case GUARD_INTERVAL_1_8: |
| 4030 | guard = 8; |
| 4031 | break; |
| 4032 | case GUARD_INTERVAL_1_16: |
| 4033 | guard = 16; |
| 4034 | break; |
| 4035 | default: |
| 4036 | case GUARD_INTERVAL_1_32: |
| 4037 | guard = 32; |
| 4038 | break; |
| 4039 | } |
| 4040 | |
| 4041 | switch (c->transmission_mode) { |
| 4042 | case TRANSMISSION_MODE_2K: |
| 4043 | fft_div = 4; |
| 4044 | break; |
| 4045 | case TRANSMISSION_MODE_4K: |
| 4046 | fft_div = 2; |
| 4047 | break; |
| 4048 | default: |
| 4049 | case TRANSMISSION_MODE_8K: |
| 4050 | fft_div = 1; |
| 4051 | break; |
| 4052 | } |
| 4053 | |
| 4054 | denom = 0; |
| 4055 | for (i = ini_layer; i < end_layer; i++) { |
| 4056 | nsegs = c->layer[i].segment_count; |
| 4057 | if (nsegs == 0 || nsegs > 13) |
| 4058 | continue; |
| 4059 | |
| 4060 | switch (c->layer[i].modulation) { |
| 4061 | case DQPSK: |
| 4062 | case QPSK: |
| 4063 | bits_per_symbol = 2; |
| 4064 | break; |
| 4065 | case QAM_16: |
| 4066 | bits_per_symbol = 4; |
| 4067 | break; |
| 4068 | default: |
| 4069 | case QAM_64: |
| 4070 | bits_per_symbol = 6; |
| 4071 | break; |
| 4072 | } |
| 4073 | |
| 4074 | switch (c->layer[i].fec) { |
| 4075 | case FEC_1_2: |
| 4076 | rate_num = 1; |
| 4077 | rate_denum = 2; |
| 4078 | break; |
| 4079 | case FEC_2_3: |
| 4080 | rate_num = 2; |
| 4081 | rate_denum = 3; |
| 4082 | break; |
| 4083 | case FEC_3_4: |
| 4084 | rate_num = 3; |
| 4085 | rate_denum = 4; |
| 4086 | break; |
| 4087 | case FEC_5_6: |
| 4088 | rate_num = 5; |
| 4089 | rate_denum = 6; |
| 4090 | break; |
| 4091 | default: |
| 4092 | case FEC_7_8: |
| 4093 | rate_num = 7; |
| 4094 | rate_denum = 8; |
| 4095 | break; |
| 4096 | } |
| 4097 | |
| 4098 | interleaving = c->layer[i].interleaving; |
| 4099 | |
| 4100 | denom += bits_per_symbol * rate_num * fft_div * nsegs * 384; |
| 4101 | } |
| 4102 | |
| 4103 | /* If all goes wrong, wait for 1s for the next stats */ |
| 4104 | if (!denom) |
| 4105 | return 0; |
| 4106 | |
| 4107 | /* Estimate the period for the total bit rate */ |
| 4108 | time_us = rate_denum * (1008 * 1562500L); |
| 4109 | tmp64 = time_us; |
| 4110 | do_div(tmp64, guard); |
| 4111 | time_us = time_us + tmp64; |
| 4112 | time_us += denom / 2; |
| 4113 | do_div(time_us, denom); |
| 4114 | |
| 4115 | tmp = 1008 * 96 * interleaving; |
| 4116 | time_us += tmp + tmp / guard; |
| 4117 | |
| 4118 | return time_us; |
| 4119 | } |
| 4120 | |
| 4121 | static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat) |
| 4122 | { |
| 4123 | struct dib8000_state *state = fe->demodulator_priv; |
| 4124 | struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| 4125 | int i; |
| 4126 | int show_per_stats = 0; |
| 4127 | u32 time_us = 0, snr, val; |
| 4128 | u64 blocks; |
| 4129 | s32 db; |
| 4130 | u16 strength; |
| 4131 | |
| 4132 | /* Get Signal strength */ |
| 4133 | dib8000_read_signal_strength(fe, &strength); |
| 4134 | val = strength; |
| 4135 | db = interpolate_value(val, |
| 4136 | strength_to_db_table, |
| 4137 | ARRAY_SIZE(strength_to_db_table)) - 131000; |
| 4138 | c->strength.stat[0].svalue = db; |
| 4139 | |
| 4140 | /* UCB/BER/CNR measures require lock */ |
| 4141 | if (!(stat & FE_HAS_LOCK)) { |
| 4142 | c->cnr.len = 1; |
| 4143 | c->block_count.len = 1; |
| 4144 | c->block_error.len = 1; |
| 4145 | c->post_bit_error.len = 1; |
| 4146 | c->post_bit_count.len = 1; |
| 4147 | c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 4148 | c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 4149 | c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 4150 | c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 4151 | c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 4152 | return 0; |
| 4153 | } |
| 4154 | |
| 4155 | /* Check if time for stats was elapsed */ |
| 4156 | if (time_after(jiffies, state->per_jiffies_stats)) { |
| 4157 | state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); |
| 4158 | |
| 4159 | /* Get SNR */ |
| 4160 | snr = dib8000_get_snr(fe); |
| 4161 | for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) { |
| 4162 | if (state->fe[i]) |
| 4163 | snr += dib8000_get_snr(state->fe[i]); |
| 4164 | } |
| 4165 | snr = snr >> 16; |
| 4166 | |
| 4167 | if (snr) { |
| 4168 | snr = 10 * intlog10(snr); |
| 4169 | snr = (1000L * snr) >> 24; |
| 4170 | } else { |
| 4171 | snr = 0; |
| 4172 | } |
| 4173 | c->cnr.stat[0].svalue = snr; |
| 4174 | c->cnr.stat[0].scale = FE_SCALE_DECIBEL; |
| 4175 | |
| 4176 | /* Get UCB measures */ |
| 4177 | dib8000_read_unc_blocks(fe, &val); |
| 4178 | if (val < state->init_ucb) |
| 4179 | state->init_ucb += 0x100000000LL; |
| 4180 | |
| 4181 | c->block_error.stat[0].scale = FE_SCALE_COUNTER; |
| 4182 | c->block_error.stat[0].uvalue = val + state->init_ucb; |
| 4183 | |
| 4184 | /* Estimate the number of packets based on bitrate */ |
| 4185 | if (!time_us) |
| 4186 | time_us = dib8000_get_time_us(fe, -1); |
| 4187 | |
| 4188 | if (time_us) { |
| 4189 | blocks = 1250000ULL * 1000000ULL; |
| 4190 | do_div(blocks, time_us * 8 * 204); |
| 4191 | c->block_count.stat[0].scale = FE_SCALE_COUNTER; |
| 4192 | c->block_count.stat[0].uvalue += blocks; |
| 4193 | } |
| 4194 | |
| 4195 | show_per_stats = 1; |
| 4196 | } |
| 4197 | |
| 4198 | /* Get post-BER measures */ |
| 4199 | if (time_after(jiffies, state->ber_jiffies_stats)) { |
| 4200 | time_us = dib8000_get_time_us(fe, -1); |
| 4201 | state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); |
| 4202 | |
| 4203 | dprintk("Next all layers stats available in %u us.\n", time_us); |
| 4204 | |
| 4205 | dib8000_read_ber(fe, &val); |
| 4206 | c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; |
| 4207 | c->post_bit_error.stat[0].uvalue += val; |
| 4208 | |
| 4209 | c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; |
| 4210 | c->post_bit_count.stat[0].uvalue += 100000000; |
| 4211 | } |
| 4212 | |
| 4213 | if (state->revision < 0x8002) |
| 4214 | return 0; |
| 4215 | |
| 4216 | c->block_error.len = 4; |
| 4217 | c->post_bit_error.len = 4; |
| 4218 | c->post_bit_count.len = 4; |
| 4219 | |
| 4220 | for (i = 0; i < 3; i++) { |
| 4221 | unsigned nsegs = c->layer[i].segment_count; |
| 4222 | |
| 4223 | if (nsegs == 0 || nsegs > 13) |
| 4224 | continue; |
| 4225 | |
| 4226 | time_us = 0; |
| 4227 | |
| 4228 | if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) { |
| 4229 | time_us = dib8000_get_time_us(fe, i); |
| 4230 | |
| 4231 | state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000); |
| 4232 | dprintk("Next layer %c stats will be available in %u us\n", |
| 4233 | 'A' + i, time_us); |
| 4234 | |
| 4235 | val = dib8000_read_word(state, per_layer_regs[i].ber); |
| 4236 | c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER; |
| 4237 | c->post_bit_error.stat[1 + i].uvalue += val; |
| 4238 | |
| 4239 | c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER; |
| 4240 | c->post_bit_count.stat[1 + i].uvalue += 100000000; |
| 4241 | } |
| 4242 | |
| 4243 | if (show_per_stats) { |
| 4244 | val = dib8000_read_word(state, per_layer_regs[i].per); |
| 4245 | |
| 4246 | c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER; |
| 4247 | c->block_error.stat[1 + i].uvalue += val; |
| 4248 | |
| 4249 | if (!time_us) |
| 4250 | time_us = dib8000_get_time_us(fe, i); |
| 4251 | if (time_us) { |
| 4252 | blocks = 1250000ULL * 1000000ULL; |
| 4253 | do_div(blocks, time_us * 8 * 204); |
| 4254 | c->block_count.stat[0].scale = FE_SCALE_COUNTER; |
| 4255 | c->block_count.stat[0].uvalue += blocks; |
| 4256 | } |
| 4257 | } |
| 4258 | } |
| 4259 | return 0; |
| 4260 | } |
| 4261 | |
| 4262 | static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) |
| 4263 | { |
| 4264 | struct dib8000_state *state = fe->demodulator_priv; |
| 4265 | u8 index_frontend = 1; |
| 4266 | |
| 4267 | while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) |
| 4268 | index_frontend++; |
| 4269 | if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { |
| 4270 | dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend); |
| 4271 | state->fe[index_frontend] = fe_slave; |
| 4272 | return 0; |
| 4273 | } |
| 4274 | |
| 4275 | dprintk("too many slave frontend\n"); |
| 4276 | return -ENOMEM; |
| 4277 | } |
| 4278 | |
| 4279 | static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) |
| 4280 | { |
| 4281 | struct dib8000_state *state = fe->demodulator_priv; |
| 4282 | |
| 4283 | if (slave_index >= MAX_NUMBER_OF_FRONTENDS) |
| 4284 | return NULL; |
| 4285 | return state->fe[slave_index]; |
| 4286 | } |
| 4287 | |
| 4288 | static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, |
| 4289 | u8 default_addr, u8 first_addr, u8 is_dib8096p) |
| 4290 | { |
| 4291 | int k = 0, ret = 0; |
| 4292 | u8 new_addr = 0; |
| 4293 | struct i2c_device client = {.adap = host }; |
| 4294 | |
| 4295 | client.i2c_write_buffer = kzalloc(4, GFP_KERNEL); |
| 4296 | if (!client.i2c_write_buffer) { |
| 4297 | dprintk("%s: not enough memory\n", __func__); |
| 4298 | return -ENOMEM; |
| 4299 | } |
| 4300 | client.i2c_read_buffer = kzalloc(4, GFP_KERNEL); |
| 4301 | if (!client.i2c_read_buffer) { |
| 4302 | dprintk("%s: not enough memory\n", __func__); |
| 4303 | ret = -ENOMEM; |
| 4304 | goto error_memory_read; |
| 4305 | } |
| 4306 | client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL); |
| 4307 | if (!client.i2c_buffer_lock) { |
| 4308 | dprintk("%s: not enough memory\n", __func__); |
| 4309 | ret = -ENOMEM; |
| 4310 | goto error_memory_lock; |
| 4311 | } |
| 4312 | mutex_init(client.i2c_buffer_lock); |
| 4313 | |
| 4314 | for (k = no_of_demods - 1; k >= 0; k--) { |
| 4315 | /* designated i2c address */ |
| 4316 | new_addr = first_addr + (k << 1); |
| 4317 | |
| 4318 | client.addr = new_addr; |
| 4319 | if (!is_dib8096p) |
| 4320 | dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */ |
| 4321 | if (dib8000_identify(&client) == 0) { |
| 4322 | /* sram lead in, rdy */ |
| 4323 | if (!is_dib8096p) |
| 4324 | dib8000_i2c_write16(&client, 1287, 0x0003); |
| 4325 | client.addr = default_addr; |
| 4326 | if (dib8000_identify(&client) == 0) { |
| 4327 | dprintk("#%d: not identified\n", k); |
| 4328 | ret = -EINVAL; |
| 4329 | goto error; |
| 4330 | } |
| 4331 | } |
| 4332 | |
| 4333 | /* start diversity to pull_down div_str - just for i2c-enumeration */ |
| 4334 | dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6)); |
| 4335 | |
| 4336 | /* set new i2c address and force divstart */ |
| 4337 | dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2); |
| 4338 | client.addr = new_addr; |
| 4339 | dib8000_identify(&client); |
| 4340 | |
| 4341 | dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); |
| 4342 | } |
| 4343 | |
| 4344 | for (k = 0; k < no_of_demods; k++) { |
| 4345 | new_addr = first_addr | (k << 1); |
| 4346 | client.addr = new_addr; |
| 4347 | |
| 4348 | // unforce divstr |
| 4349 | dib8000_i2c_write16(&client, 1285, new_addr << 2); |
| 4350 | |
| 4351 | /* deactivate div - it was just for i2c-enumeration */ |
| 4352 | dib8000_i2c_write16(&client, 1286, 0); |
| 4353 | } |
| 4354 | |
| 4355 | error: |
| 4356 | kfree(client.i2c_buffer_lock); |
| 4357 | error_memory_lock: |
| 4358 | kfree(client.i2c_read_buffer); |
| 4359 | error_memory_read: |
| 4360 | kfree(client.i2c_write_buffer); |
| 4361 | |
| 4362 | return ret; |
| 4363 | } |
| 4364 | |
| 4365 | static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) |
| 4366 | { |
| 4367 | tune->min_delay_ms = 1000; |
| 4368 | tune->step_size = 0; |
| 4369 | tune->max_drift = 0; |
| 4370 | return 0; |
| 4371 | } |
| 4372 | |
| 4373 | static void dib8000_release(struct dvb_frontend *fe) |
| 4374 | { |
| 4375 | struct dib8000_state *st = fe->demodulator_priv; |
| 4376 | u8 index_frontend; |
| 4377 | |
| 4378 | for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) |
| 4379 | dvb_frontend_detach(st->fe[index_frontend]); |
| 4380 | |
| 4381 | dibx000_exit_i2c_master(&st->i2c_master); |
| 4382 | i2c_del_adapter(&st->dib8096p_tuner_adap); |
| 4383 | kfree(st->fe[0]); |
| 4384 | kfree(st); |
| 4385 | } |
| 4386 | |
| 4387 | static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) |
| 4388 | { |
| 4389 | struct dib8000_state *st = fe->demodulator_priv; |
| 4390 | return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); |
| 4391 | } |
| 4392 | |
| 4393 | static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) |
| 4394 | { |
| 4395 | struct dib8000_state *st = fe->demodulator_priv; |
| 4396 | u16 val = dib8000_read_word(st, 299) & 0xffef; |
| 4397 | val |= (onoff & 0x1) << 4; |
| 4398 | |
| 4399 | dprintk("pid filter enabled %d\n", onoff); |
| 4400 | return dib8000_write_word(st, 299, val); |
| 4401 | } |
| 4402 | |
| 4403 | static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) |
| 4404 | { |
| 4405 | struct dib8000_state *st = fe->demodulator_priv; |
| 4406 | dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff); |
| 4407 | return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0); |
| 4408 | } |
| 4409 | |
| 4410 | static const struct dvb_frontend_ops dib8000_ops = { |
| 4411 | .delsys = { SYS_ISDBT }, |
| 4412 | .info = { |
| 4413 | .name = "DiBcom 8000 ISDB-T", |
| 4414 | .frequency_min_hz = 44250 * kHz, |
| 4415 | .frequency_max_hz = 867250 * kHz, |
| 4416 | .frequency_stepsize_hz = 62500, |
| 4417 | .caps = FE_CAN_INVERSION_AUTO | |
| 4418 | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| 4419 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| 4420 | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| 4421 | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, |
| 4422 | }, |
| 4423 | |
| 4424 | .release = dib8000_release, |
| 4425 | |
| 4426 | .init = dib8000_wakeup, |
| 4427 | .sleep = dib8000_sleep, |
| 4428 | |
| 4429 | .set_frontend = dib8000_set_frontend, |
| 4430 | .get_tune_settings = dib8000_fe_get_tune_settings, |
| 4431 | .get_frontend = dib8000_get_frontend, |
| 4432 | |
| 4433 | .read_status = dib8000_read_status, |
| 4434 | .read_ber = dib8000_read_ber, |
| 4435 | .read_signal_strength = dib8000_read_signal_strength, |
| 4436 | .read_snr = dib8000_read_snr, |
| 4437 | .read_ucblocks = dib8000_read_unc_blocks, |
| 4438 | }; |
| 4439 | |
| 4440 | static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg) |
| 4441 | { |
| 4442 | struct dvb_frontend *fe; |
| 4443 | struct dib8000_state *state; |
| 4444 | |
| 4445 | dprintk("dib8000_init\n"); |
| 4446 | |
| 4447 | state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL); |
| 4448 | if (state == NULL) |
| 4449 | return NULL; |
| 4450 | fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); |
| 4451 | if (fe == NULL) |
| 4452 | goto error; |
| 4453 | |
| 4454 | memcpy(&state->cfg, cfg, sizeof(struct dib8000_config)); |
| 4455 | state->i2c.adap = i2c_adap; |
| 4456 | state->i2c.addr = i2c_addr; |
| 4457 | state->i2c.i2c_write_buffer = state->i2c_write_buffer; |
| 4458 | state->i2c.i2c_read_buffer = state->i2c_read_buffer; |
| 4459 | mutex_init(&state->i2c_buffer_lock); |
| 4460 | state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock; |
| 4461 | state->gpio_val = cfg->gpio_val; |
| 4462 | state->gpio_dir = cfg->gpio_dir; |
| 4463 | |
| 4464 | /* Ensure the output mode remains at the previous default if it's |
| 4465 | * not specifically set by the caller. |
| 4466 | */ |
| 4467 | if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) |
| 4468 | state->cfg.output_mode = OUTMODE_MPEG2_FIFO; |
| 4469 | |
| 4470 | state->fe[0] = fe; |
| 4471 | fe->demodulator_priv = state; |
| 4472 | memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops)); |
| 4473 | |
| 4474 | state->timf_default = cfg->pll->timf; |
| 4475 | |
| 4476 | if (dib8000_identify(&state->i2c) == 0) { |
| 4477 | kfree(fe); |
| 4478 | goto error; |
| 4479 | } |
| 4480 | |
| 4481 | dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr); |
| 4482 | |
| 4483 | /* init 8096p tuner adapter */ |
| 4484 | strscpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface", |
| 4485 | sizeof(state->dib8096p_tuner_adap.name)); |
| 4486 | state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo; |
| 4487 | state->dib8096p_tuner_adap.algo_data = NULL; |
| 4488 | state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent; |
| 4489 | i2c_set_adapdata(&state->dib8096p_tuner_adap, state); |
| 4490 | i2c_add_adapter(&state->dib8096p_tuner_adap); |
| 4491 | |
| 4492 | dib8000_reset(fe); |
| 4493 | |
| 4494 | dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */ |
| 4495 | state->current_demod_bw = 6000; |
| 4496 | |
| 4497 | return fe; |
| 4498 | |
| 4499 | error: |
| 4500 | kfree(state); |
| 4501 | return NULL; |
| 4502 | } |
| 4503 | |
| 4504 | void *dib8000_attach(struct dib8000_ops *ops) |
| 4505 | { |
| 4506 | if (!ops) |
| 4507 | return NULL; |
| 4508 | |
| 4509 | ops->pwm_agc_reset = dib8000_pwm_agc_reset; |
| 4510 | ops->get_dc_power = dib8090p_get_dc_power; |
| 4511 | ops->set_gpio = dib8000_set_gpio; |
| 4512 | ops->get_slave_frontend = dib8000_get_slave_frontend; |
| 4513 | ops->set_tune_state = dib8000_set_tune_state; |
| 4514 | ops->pid_filter_ctrl = dib8000_pid_filter_ctrl; |
| 4515 | ops->get_adc_power = dib8000_get_adc_power; |
| 4516 | ops->update_pll = dib8000_update_pll; |
| 4517 | ops->tuner_sleep = dib8096p_tuner_sleep; |
| 4518 | ops->get_tune_state = dib8000_get_tune_state; |
| 4519 | ops->get_i2c_tuner = dib8096p_get_i2c_tuner; |
| 4520 | ops->set_slave_frontend = dib8000_set_slave_frontend; |
| 4521 | ops->pid_filter = dib8000_pid_filter; |
| 4522 | ops->ctrl_timf = dib8000_ctrl_timf; |
| 4523 | ops->init = dib8000_init; |
| 4524 | ops->get_i2c_master = dib8000_get_i2c_master; |
| 4525 | ops->i2c_enumeration = dib8000_i2c_enumeration; |
| 4526 | ops->set_wbd_ref = dib8000_set_wbd_ref; |
| 4527 | |
| 4528 | return ops; |
| 4529 | } |
| 4530 | EXPORT_SYMBOL_GPL(dib8000_attach); |
| 4531 | |
| 4532 | MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>"); |
| 4533 | MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator"); |
| 4534 | MODULE_LICENSE("GPL"); |