blob: f1f2ad9ff0b344d15242e2dcdf477d04deb533ba [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DB8500 PRCM Unit driver
4 *
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
7 *
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11 *
12 * U8500 PRCM Unit interface driver
13 */
14#include <linux/init.h>
15#include <linux/export.h>
16#include <linux/kernel.h>
17#include <linux/delay.h>
18#include <linux/errno.h>
19#include <linux/err.h>
20#include <linux/spinlock.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/mutex.h>
24#include <linux/completion.h>
25#include <linux/irq.h>
26#include <linux/jiffies.h>
27#include <linux/bitops.h>
28#include <linux/fs.h>
29#include <linux/of.h>
30#include <linux/of_irq.h>
31#include <linux/platform_device.h>
32#include <linux/uaccess.h>
33#include <linux/mfd/core.h>
34#include <linux/mfd/dbx500-prcmu.h>
35#include <linux/mfd/abx500/ab8500.h>
36#include <linux/regulator/db8500-prcmu.h>
37#include <linux/regulator/machine.h>
38#include <linux/platform_data/ux500_wdt.h>
39#include "dbx500-prcmu-regs.h"
40
41/* Index of different voltages to be used when accessing AVSData */
42#define PRCM_AVS_BASE 0x2FC
43#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56
57#define PRCM_AVS_VOLTAGE 0
58#define PRCM_AVS_VOLTAGE_MASK 0x3f
59#define PRCM_AVS_ISSLOWSTARTUP 6
60#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61#define PRCM_AVS_ISMODEENABLE 7
62#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63
64#define PRCM_BOOT_STATUS 0xFFF
65#define PRCM_ROMCODE_A2P 0xFFE
66#define PRCM_ROMCODE_P2A 0xFFD
67#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68
69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79
80/* Req Mailboxes */
81#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87
88/* Ack Mailboxes */
89#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96/* Mailbox 0 headers */
97#define MB0H_POWER_STATE_TRANS 0
98#define MB0H_CONFIG_WAKEUPS_EXE 1
99#define MB0H_READ_WAKEUP_ACK 3
100#define MB0H_CONFIG_WAKEUPS_SLEEP 4
101
102#define MB0H_WAKEUP_EXE 2
103#define MB0H_WAKEUP_SLEEP 5
104
105/* Mailbox 0 REQs */
106#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112
113/* Mailbox 0 ACKs */
114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122/* Mailbox 1 headers */
123#define MB1H_ARM_APE_OPP 0x0
124#define MB1H_RESET_MODEM 0x2
125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127#define MB1H_RELEASE_USB_WAKEUP 0x5
128#define MB1H_PLL_ON_OFF 0x6
129
130/* Mailbox 1 Requests */
131#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134#define PLL_SOC0_OFF 0x1
135#define PLL_SOC0_ON 0x2
136#define PLL_SOC1_OFF 0x4
137#define PLL_SOC1_ON 0x8
138
139/* Mailbox 1 ACKs */
140#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144
145/* Mailbox 2 headers */
146#define MB2H_DPS 0x0
147#define MB2H_AUTO_PWR 0x1
148
149/* Mailbox 2 REQs */
150#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160
161/* Mailbox 2 ACKs */
162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163#define HWACC_PWR_ST_OK 0xFE
164
165/* Mailbox 3 headers */
166#define MB3H_ANC 0x0
167#define MB3H_SIDETONE 0x1
168#define MB3H_SYSCLK 0xE
169
170/* Mailbox 3 Requests */
171#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178
179/* Mailbox 4 headers */
180#define MB4H_DDR_INIT 0x0
181#define MB4H_MEM_ST 0x1
182#define MB4H_HOTDOG 0x12
183#define MB4H_HOTMON 0x13
184#define MB4H_HOT_PERIOD 0x14
185#define MB4H_A9WDOG_CONF 0x16
186#define MB4H_A9WDOG_EN 0x17
187#define MB4H_A9WDOG_DIS 0x18
188#define MB4H_A9WDOG_LOAD 0x19
189#define MB4H_A9WDOG_KICK 0x20
190
191/* Mailbox 4 Requests */
192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200#define HOTMON_CONFIG_LOW BIT(0)
201#define HOTMON_CONFIG_HIGH BIT(1)
202#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206#define A9WDOG_AUTO_OFF_EN BIT(7)
207#define A9WDOG_AUTO_OFF_DIS 0
208#define A9WDOG_ID_MASK 0xf
209
210/* Mailbox 5 Requests */
211#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217#define PRCMU_I2C_STOP_EN BIT(3)
218
219/* Mailbox 5 ACKs */
220#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222#define I2C_WR_OK 0x1
223#define I2C_RD_OK 0x2
224
225#define NUM_MB 8
226#define MBOX_BIT BIT
227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229/*
230 * Wakeups/IRQs
231 */
232
233#define WAKEUP_BIT_RTC BIT(0)
234#define WAKEUP_BIT_RTT0 BIT(1)
235#define WAKEUP_BIT_RTT1 BIT(2)
236#define WAKEUP_BIT_HSI0 BIT(3)
237#define WAKEUP_BIT_HSI1 BIT(4)
238#define WAKEUP_BIT_CA_WAKE BIT(5)
239#define WAKEUP_BIT_USB BIT(6)
240#define WAKEUP_BIT_ABB BIT(7)
241#define WAKEUP_BIT_ABB_FIFO BIT(8)
242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
243#define WAKEUP_BIT_CA_SLEEP BIT(10)
244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246#define WAKEUP_BIT_ANC_OK BIT(13)
247#define WAKEUP_BIT_SW_ERROR BIT(14)
248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249#define WAKEUP_BIT_ARM BIT(17)
250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253#define WAKEUP_BIT_GPIO0 BIT(23)
254#define WAKEUP_BIT_GPIO1 BIT(24)
255#define WAKEUP_BIT_GPIO2 BIT(25)
256#define WAKEUP_BIT_GPIO3 BIT(26)
257#define WAKEUP_BIT_GPIO4 BIT(27)
258#define WAKEUP_BIT_GPIO5 BIT(28)
259#define WAKEUP_BIT_GPIO6 BIT(29)
260#define WAKEUP_BIT_GPIO7 BIT(30)
261#define WAKEUP_BIT_GPIO8 BIT(31)
262
263static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266} fw_info;
267
268static struct irq_domain *db8500_irq_domain;
269
270/*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281#define IRQ_PRCMU_RTC 0
282#define IRQ_PRCMU_RTT0 1
283#define IRQ_PRCMU_RTT1 2
284#define IRQ_PRCMU_HSI0 3
285#define IRQ_PRCMU_HSI1 4
286#define IRQ_PRCMU_CA_WAKE 5
287#define IRQ_PRCMU_USB 6
288#define IRQ_PRCMU_ABB 7
289#define IRQ_PRCMU_ABB_FIFO 8
290#define IRQ_PRCMU_ARM 9
291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292#define IRQ_PRCMU_GPIO0 11
293#define IRQ_PRCMU_GPIO1 12
294#define IRQ_PRCMU_GPIO2 13
295#define IRQ_PRCMU_GPIO3 14
296#define IRQ_PRCMU_GPIO4 15
297#define IRQ_PRCMU_GPIO5 16
298#define IRQ_PRCMU_GPIO6 17
299#define IRQ_PRCMU_GPIO7 18
300#define IRQ_PRCMU_GPIO8 19
301#define IRQ_PRCMU_CA_SLEEP 20
302#define IRQ_PRCMU_HOTMON_LOW 21
303#define IRQ_PRCMU_HOTMON_HIGH 22
304#define NUM_PRCMU_WAKEUPS 23
305
306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
330};
331
332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
344};
345
346/*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
353 */
354static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365} mb0_transfer;
366
367/*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
373 */
374static struct {
375 struct mutex lock;
376 struct completion work;
377 u8 ape_opp;
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384} mb1_transfer;
385
386/*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
394 */
395static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403} mb2_transfer;
404
405/*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
410 */
411static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415} mb3_transfer;
416
417/*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
421 */
422static struct {
423 struct mutex lock;
424 struct completion work;
425} mb4_transfer;
426
427/*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
432 */
433static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440} mb5_transfer;
441
442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444/* Spinlocks */
445static DEFINE_SPINLOCK(prcmu_lock);
446static DEFINE_SPINLOCK(clkout_lock);
447
448/* Global var to runtime determine TCDM base for v2 or v1 */
449static __iomem void *tcdm_base;
450static __iomem void *prcmu_base;
451
452struct clk_mgt {
453 u32 offset;
454 u32 pllsw;
455 int branch;
456 bool clk38div;
457};
458
459enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
463};
464
465static DEFINE_SPINLOCK(clk_mgt_lock);
466
467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499};
500
501struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505};
506
507static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518};
519
520struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524};
525
526static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
542};
543
544
545/*
546* Used by MCDE to setup all necessary PRCMU registers
547*/
548#define PRCMU_RESET_DSIPLL 0x00004000
549#define PRCMU_UNCLAMP_DSIPLL 0x00400800
550
551#define PRCMU_CLK_PLL_DIV_SHIFT 0
552#define PRCMU_CLK_PLL_SW_SHIFT 5
553#define PRCMU_CLK_38 (1 << 9)
554#define PRCMU_CLK_38_SRC (1 << 10)
555#define PRCMU_CLK_38_DIV (1 << 11)
556
557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
558#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559
560/* DPI 50000000 Hz */
561#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564
565/* D=101, N=1, R=4, SELDIV2=0 */
566#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567
568#define PRCMU_ENABLE_PLLDSI 0x00000001
569#define PRCMU_DISABLE_PLLDSI 0x00000000
570#define PRCMU_RELEASE_RESET_DSS 0x0000400C
571#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572/* ESC clk, div0=1, div1=1, div2=3 */
573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575#define PRCMU_DSI_RESET_SW 0x00000007
576
577#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578
579int db8500_prcmu_enable_dsipll(void)
580{
581 int i;
582
583 /* Clear DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 /* Unclamp DSIPLL in/out */
586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587
588 /* Set DSI PLL FREQ */
589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 /* Enable Escape clocks */
592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593
594 /* Start DSI PLL */
595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 /* Reset DSI PLL */
597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 for (i = 0; i < 10; i++) {
599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
603 }
604 /* Set DSIPLL_RESETN */
605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 return 0;
607}
608
609int db8500_prcmu_disable_dsipll(void)
610{
611 /* Disable dsi pll */
612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 /* Disable escapeclock */
614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 return 0;
616}
617
618int db8500_prcmu_set_display_clocks(void)
619{
620 unsigned long flags;
621
622 spin_lock_irqsave(&clk_mgt_lock, flags);
623
624 /* Grab the HW semaphore. */
625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 cpu_relax();
627
628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631
632 /* Release the HW semaphore. */
633 writel(0, PRCM_SEM);
634
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637 return 0;
638}
639
640u32 db8500_prcmu_read(unsigned int reg)
641{
642 return readl(prcmu_base + reg);
643}
644
645void db8500_prcmu_write(unsigned int reg, u32 value)
646{
647 unsigned long flags;
648
649 spin_lock_irqsave(&prcmu_lock, flags);
650 writel(value, (prcmu_base + reg));
651 spin_unlock_irqrestore(&prcmu_lock, flags);
652}
653
654void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655{
656 u32 val;
657 unsigned long flags;
658
659 spin_lock_irqsave(&prcmu_lock, flags);
660 val = readl(prcmu_base + reg);
661 val = ((val & ~mask) | (value & mask));
662 writel(val, (prcmu_base + reg));
663 spin_unlock_irqrestore(&prcmu_lock, flags);
664}
665
666struct prcmu_fw_version *prcmu_get_fw_version(void)
667{
668 return fw_info.valid ? &fw_info.version : NULL;
669}
670
671bool prcmu_has_arm_maxopp(void)
672{
673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675}
676
677/**
678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
679 * @val: Value to be set, i.e. transition requested
680 * Returns: 0 on success, -EINVAL on invalid argument
681 *
682 * This function is used to run the following power state sequences -
683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684 */
685int prcmu_set_rc_a2p(enum romcode_write val)
686{
687 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688 return -EINVAL;
689 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690 return 0;
691}
692
693/**
694 * prcmu_get_rc_p2a - This function is used to get power state sequences
695 * Returns: the power transition that has last happened
696 *
697 * This function can return the following transitions-
698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699 */
700enum romcode_read prcmu_get_rc_p2a(void)
701{
702 return readb(tcdm_base + PRCM_ROMCODE_P2A);
703}
704
705/**
706 * prcmu_get_current_mode - Return the current XP70 power mode
707 * Returns: Returns the current AP(ARM) power mode: init,
708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709 */
710enum ap_pwrst prcmu_get_xp70_current_state(void)
711{
712 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713}
714
715/**
716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
717 * @clkout: The CLKOUT number (0 or 1).
718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
719 * @div: The divider to be applied.
720 *
721 * Configures one of the programmable clock outputs (CLKOUTs).
722 * @div should be in the range [1,63] to request a configuration, or 0 to
723 * inform that the configuration is no longer requested.
724 */
725int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726{
727 static int requests[2];
728 int r = 0;
729 unsigned long flags;
730 u32 val;
731 u32 bits;
732 u32 mask;
733 u32 div_mask;
734
735 BUG_ON(clkout > 1);
736 BUG_ON(div > 63);
737 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738
739 if (!div && !requests[clkout])
740 return -EINVAL;
741
742 if (clkout == 0) {
743 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
744 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
745 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
746 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
747 } else {
748 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
749 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
750 PRCM_CLKOCR_CLK1TYPE);
751 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
752 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
753 }
754 bits &= mask;
755
756 spin_lock_irqsave(&clkout_lock, flags);
757
758 val = readl(PRCM_CLKOCR);
759 if (val & div_mask) {
760 if (div) {
761 if ((val & mask) != bits) {
762 r = -EBUSY;
763 goto unlock_and_return;
764 }
765 } else {
766 if ((val & mask & ~div_mask) != bits) {
767 r = -EINVAL;
768 goto unlock_and_return;
769 }
770 }
771 }
772 writel((bits | (val & ~mask)), PRCM_CLKOCR);
773 requests[clkout] += (div ? 1 : -1);
774
775unlock_and_return:
776 spin_unlock_irqrestore(&clkout_lock, flags);
777
778 return r;
779}
780
781int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
782{
783 unsigned long flags;
784
785 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
786
787 spin_lock_irqsave(&mb0_transfer.lock, flags);
788
789 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
790 cpu_relax();
791
792 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
793 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
794 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
795 writeb((keep_ulp_clk ? 1 : 0),
796 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
797 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
798 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
799
800 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
801
802 return 0;
803}
804
805u8 db8500_prcmu_get_power_state_result(void)
806{
807 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
808}
809
810/* This function should only be called while mb0_transfer.lock is held. */
811static void config_wakeups(void)
812{
813 const u8 header[2] = {
814 MB0H_CONFIG_WAKEUPS_EXE,
815 MB0H_CONFIG_WAKEUPS_SLEEP
816 };
817 static u32 last_dbb_events;
818 static u32 last_abb_events;
819 u32 dbb_events;
820 u32 abb_events;
821 unsigned int i;
822
823 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
824 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
825
826 abb_events = mb0_transfer.req.abb_events;
827
828 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
829 return;
830
831 for (i = 0; i < 2; i++) {
832 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
833 cpu_relax();
834 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
835 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
836 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
837 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
838 }
839 last_dbb_events = dbb_events;
840 last_abb_events = abb_events;
841}
842
843void db8500_prcmu_enable_wakeups(u32 wakeups)
844{
845 unsigned long flags;
846 u32 bits;
847 int i;
848
849 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
850
851 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
852 if (wakeups & BIT(i))
853 bits |= prcmu_wakeup_bit[i];
854 }
855
856 spin_lock_irqsave(&mb0_transfer.lock, flags);
857
858 mb0_transfer.req.dbb_wakeups = bits;
859 config_wakeups();
860
861 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
862}
863
864void db8500_prcmu_config_abb_event_readout(u32 abb_events)
865{
866 unsigned long flags;
867
868 spin_lock_irqsave(&mb0_transfer.lock, flags);
869
870 mb0_transfer.req.abb_events = abb_events;
871 config_wakeups();
872
873 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874}
875
876void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
877{
878 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
879 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
880 else
881 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
882}
883
884/**
885 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886 * @opp: The new ARM operating point to which transition is to be made
887 * Returns: 0 on success, non-zero on failure
888 *
889 * This function sets the the operating point of the ARM.
890 */
891int db8500_prcmu_set_arm_opp(u8 opp)
892{
893 int r;
894
895 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
896 return -EINVAL;
897
898 r = 0;
899
900 mutex_lock(&mb1_transfer.lock);
901
902 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
903 cpu_relax();
904
905 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
906 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
907 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
908
909 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
910 wait_for_completion(&mb1_transfer.work);
911
912 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
913 (mb1_transfer.ack.arm_opp != opp))
914 r = -EIO;
915
916 mutex_unlock(&mb1_transfer.lock);
917
918 return r;
919}
920
921/**
922 * db8500_prcmu_get_arm_opp - get the current ARM OPP
923 *
924 * Returns: the current ARM OPP
925 */
926int db8500_prcmu_get_arm_opp(void)
927{
928 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
929}
930
931/**
932 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933 *
934 * Returns: the current DDR OPP
935 */
936int db8500_prcmu_get_ddr_opp(void)
937{
938 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
939}
940
941/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
942static void request_even_slower_clocks(bool enable)
943{
944 u32 clock_reg[] = {
945 PRCM_ACLK_MGT,
946 PRCM_DMACLK_MGT
947 };
948 unsigned long flags;
949 unsigned int i;
950
951 spin_lock_irqsave(&clk_mgt_lock, flags);
952
953 /* Grab the HW semaphore. */
954 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
955 cpu_relax();
956
957 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
958 u32 val;
959 u32 div;
960
961 val = readl(prcmu_base + clock_reg[i]);
962 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
963 if (enable) {
964 if ((div <= 1) || (div > 15)) {
965 pr_err("prcmu: Bad clock divider %d in %s\n",
966 div, __func__);
967 goto unlock_and_return;
968 }
969 div <<= 1;
970 } else {
971 if (div <= 2)
972 goto unlock_and_return;
973 div >>= 1;
974 }
975 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
976 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
977 writel(val, prcmu_base + clock_reg[i]);
978 }
979
980unlock_and_return:
981 /* Release the HW semaphore. */
982 writel(0, PRCM_SEM);
983
984 spin_unlock_irqrestore(&clk_mgt_lock, flags);
985}
986
987/**
988 * db8500_set_ape_opp - set the appropriate APE OPP
989 * @opp: The new APE operating point to which transition is to be made
990 * Returns: 0 on success, non-zero on failure
991 *
992 * This function sets the operating point of the APE.
993 */
994int db8500_prcmu_set_ape_opp(u8 opp)
995{
996 int r = 0;
997
998 if (opp == mb1_transfer.ape_opp)
999 return 0;
1000
1001 mutex_lock(&mb1_transfer.lock);
1002
1003 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1004 request_even_slower_clocks(false);
1005
1006 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1007 goto skip_message;
1008
1009 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1010 cpu_relax();
1011
1012 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1014 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1015 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1016
1017 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1018 wait_for_completion(&mb1_transfer.work);
1019
1020 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1021 (mb1_transfer.ack.ape_opp != opp))
1022 r = -EIO;
1023
1024skip_message:
1025 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1026 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1027 request_even_slower_clocks(true);
1028 if (!r)
1029 mb1_transfer.ape_opp = opp;
1030
1031 mutex_unlock(&mb1_transfer.lock);
1032
1033 return r;
1034}
1035
1036/**
1037 * db8500_prcmu_get_ape_opp - get the current APE OPP
1038 *
1039 * Returns: the current APE OPP
1040 */
1041int db8500_prcmu_get_ape_opp(void)
1042{
1043 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1044}
1045
1046/**
1047 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1048 * @enable: true to request the higher voltage, false to drop a request.
1049 *
1050 * Calls to this function to enable and disable requests must be balanced.
1051 */
1052int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1053{
1054 int r = 0;
1055 u8 header;
1056 static unsigned int requests;
1057
1058 mutex_lock(&mb1_transfer.lock);
1059
1060 if (enable) {
1061 if (0 != requests++)
1062 goto unlock_and_return;
1063 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1064 } else {
1065 if (requests == 0) {
1066 r = -EIO;
1067 goto unlock_and_return;
1068 } else if (1 != requests--) {
1069 goto unlock_and_return;
1070 }
1071 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1072 }
1073
1074 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1075 cpu_relax();
1076
1077 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1078
1079 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1080 wait_for_completion(&mb1_transfer.work);
1081
1082 if ((mb1_transfer.ack.header != header) ||
1083 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1084 r = -EIO;
1085
1086unlock_and_return:
1087 mutex_unlock(&mb1_transfer.lock);
1088
1089 return r;
1090}
1091
1092/**
1093 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1094 *
1095 * This function releases the power state requirements of a USB wakeup.
1096 */
1097int prcmu_release_usb_wakeup_state(void)
1098{
1099 int r = 0;
1100
1101 mutex_lock(&mb1_transfer.lock);
1102
1103 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1104 cpu_relax();
1105
1106 writeb(MB1H_RELEASE_USB_WAKEUP,
1107 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108
1109 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110 wait_for_completion(&mb1_transfer.work);
1111
1112 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1113 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114 r = -EIO;
1115
1116 mutex_unlock(&mb1_transfer.lock);
1117
1118 return r;
1119}
1120
1121static int request_pll(u8 clock, bool enable)
1122{
1123 int r = 0;
1124
1125 if (clock == PRCMU_PLLSOC0)
1126 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1127 else if (clock == PRCMU_PLLSOC1)
1128 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1129 else
1130 return -EINVAL;
1131
1132 mutex_lock(&mb1_transfer.lock);
1133
1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135 cpu_relax();
1136
1137 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1139
1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 wait_for_completion(&mb1_transfer.work);
1142
1143 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1144 r = -EIO;
1145
1146 mutex_unlock(&mb1_transfer.lock);
1147
1148 return r;
1149}
1150
1151/**
1152 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1153 * @epod_id: The EPOD to set
1154 * @epod_state: The new EPOD state
1155 *
1156 * This function sets the state of a EPOD (power domain). It may not be called
1157 * from interrupt context.
1158 */
1159int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1160{
1161 int r = 0;
1162 bool ram_retention = false;
1163 int i;
1164
1165 /* check argument */
1166 BUG_ON(epod_id >= NUM_EPOD_ID);
1167
1168 /* set flag if retention is possible */
1169 switch (epod_id) {
1170 case EPOD_ID_SVAMMDSP:
1171 case EPOD_ID_SIAMMDSP:
1172 case EPOD_ID_ESRAM12:
1173 case EPOD_ID_ESRAM34:
1174 ram_retention = true;
1175 break;
1176 }
1177
1178 /* check argument */
1179 BUG_ON(epod_state > EPOD_STATE_ON);
1180 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1181
1182 /* get lock */
1183 mutex_lock(&mb2_transfer.lock);
1184
1185 /* wait for mailbox */
1186 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1187 cpu_relax();
1188
1189 /* fill in mailbox */
1190 for (i = 0; i < NUM_EPOD_ID; i++)
1191 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1192 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1193
1194 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1195
1196 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1197
1198 /*
1199 * The current firmware version does not handle errors correctly,
1200 * and we cannot recover if there is an error.
1201 * This is expected to change when the firmware is updated.
1202 */
1203 if (!wait_for_completion_timeout(&mb2_transfer.work,
1204 msecs_to_jiffies(20000))) {
1205 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1206 __func__);
1207 r = -EIO;
1208 goto unlock_and_return;
1209 }
1210
1211 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1212 r = -EIO;
1213
1214unlock_and_return:
1215 mutex_unlock(&mb2_transfer.lock);
1216 return r;
1217}
1218
1219/**
1220 * prcmu_configure_auto_pm - Configure autonomous power management.
1221 * @sleep: Configuration for ApSleep.
1222 * @idle: Configuration for ApIdle.
1223 */
1224void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1225 struct prcmu_auto_pm_config *idle)
1226{
1227 u32 sleep_cfg;
1228 u32 idle_cfg;
1229 unsigned long flags;
1230
1231 BUG_ON((sleep == NULL) || (idle == NULL));
1232
1233 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1234 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1235 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1236 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1237 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1238 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1239
1240 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1241 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1242 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1243 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1244 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1245 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1246
1247 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1248
1249 /*
1250 * The autonomous power management configuration is done through
1251 * fields in mailbox 2, but these fields are only used as shared
1252 * variables - i.e. there is no need to send a message.
1253 */
1254 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1255 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1256
1257 mb2_transfer.auto_pm_enabled =
1258 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1262
1263 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1264}
1265EXPORT_SYMBOL(prcmu_configure_auto_pm);
1266
1267bool prcmu_is_auto_pm_enabled(void)
1268{
1269 return mb2_transfer.auto_pm_enabled;
1270}
1271
1272static int request_sysclk(bool enable)
1273{
1274 int r;
1275 unsigned long flags;
1276
1277 r = 0;
1278
1279 mutex_lock(&mb3_transfer.sysclk_lock);
1280
1281 spin_lock_irqsave(&mb3_transfer.lock, flags);
1282
1283 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1284 cpu_relax();
1285
1286 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1287
1288 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1289 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1290
1291 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1292
1293 /*
1294 * The firmware only sends an ACK if we want to enable the
1295 * SysClk, and it succeeds.
1296 */
1297 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1298 msecs_to_jiffies(20000))) {
1299 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1300 __func__);
1301 r = -EIO;
1302 }
1303
1304 mutex_unlock(&mb3_transfer.sysclk_lock);
1305
1306 return r;
1307}
1308
1309static int request_timclk(bool enable)
1310{
1311 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1312
1313 if (!enable)
1314 val |= PRCM_TCR_STOP_TIMERS;
1315 writel(val, PRCM_TCR);
1316
1317 return 0;
1318}
1319
1320static int request_clock(u8 clock, bool enable)
1321{
1322 u32 val;
1323 unsigned long flags;
1324
1325 spin_lock_irqsave(&clk_mgt_lock, flags);
1326
1327 /* Grab the HW semaphore. */
1328 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1329 cpu_relax();
1330
1331 val = readl(prcmu_base + clk_mgt[clock].offset);
1332 if (enable) {
1333 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1334 } else {
1335 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1336 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1337 }
1338 writel(val, prcmu_base + clk_mgt[clock].offset);
1339
1340 /* Release the HW semaphore. */
1341 writel(0, PRCM_SEM);
1342
1343 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1344
1345 return 0;
1346}
1347
1348static int request_sga_clock(u8 clock, bool enable)
1349{
1350 u32 val;
1351 int ret;
1352
1353 if (enable) {
1354 val = readl(PRCM_CGATING_BYPASS);
1355 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1356 }
1357
1358 ret = request_clock(clock, enable);
1359
1360 if (!ret && !enable) {
1361 val = readl(PRCM_CGATING_BYPASS);
1362 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1363 }
1364
1365 return ret;
1366}
1367
1368static inline bool plldsi_locked(void)
1369{
1370 return (readl(PRCM_PLLDSI_LOCKP) &
1371 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1372 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1373 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1374 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1375}
1376
1377static int request_plldsi(bool enable)
1378{
1379 int r = 0;
1380 u32 val;
1381
1382 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1383 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1384 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1385
1386 val = readl(PRCM_PLLDSI_ENABLE);
1387 if (enable)
1388 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1389 else
1390 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1391 writel(val, PRCM_PLLDSI_ENABLE);
1392
1393 if (enable) {
1394 unsigned int i;
1395 bool locked = plldsi_locked();
1396
1397 for (i = 10; !locked && (i > 0); --i) {
1398 udelay(100);
1399 locked = plldsi_locked();
1400 }
1401 if (locked) {
1402 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1403 PRCM_APE_RESETN_SET);
1404 } else {
1405 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1406 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1407 PRCM_MMIP_LS_CLAMP_SET);
1408 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1409 writel(val, PRCM_PLLDSI_ENABLE);
1410 r = -EAGAIN;
1411 }
1412 } else {
1413 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1414 }
1415 return r;
1416}
1417
1418static int request_dsiclk(u8 n, bool enable)
1419{
1420 u32 val;
1421
1422 val = readl(PRCM_DSI_PLLOUT_SEL);
1423 val &= ~dsiclk[n].divsel_mask;
1424 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1425 dsiclk[n].divsel_shift);
1426 writel(val, PRCM_DSI_PLLOUT_SEL);
1427 return 0;
1428}
1429
1430static int request_dsiescclk(u8 n, bool enable)
1431{
1432 u32 val;
1433
1434 val = readl(PRCM_DSITVCLK_DIV);
1435 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1436 writel(val, PRCM_DSITVCLK_DIV);
1437 return 0;
1438}
1439
1440/**
1441 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1442 * @clock: The clock for which the request is made.
1443 * @enable: Whether the clock should be enabled (true) or disabled (false).
1444 *
1445 * This function should only be used by the clock implementation.
1446 * Do not use it from any other place!
1447 */
1448int db8500_prcmu_request_clock(u8 clock, bool enable)
1449{
1450 if (clock == PRCMU_SGACLK)
1451 return request_sga_clock(clock, enable);
1452 else if (clock < PRCMU_NUM_REG_CLOCKS)
1453 return request_clock(clock, enable);
1454 else if (clock == PRCMU_TIMCLK)
1455 return request_timclk(enable);
1456 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1457 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1458 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1459 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1460 else if (clock == PRCMU_PLLDSI)
1461 return request_plldsi(enable);
1462 else if (clock == PRCMU_SYSCLK)
1463 return request_sysclk(enable);
1464 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1465 return request_pll(clock, enable);
1466 else
1467 return -EINVAL;
1468}
1469
1470static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1471 int branch)
1472{
1473 u64 rate;
1474 u32 val;
1475 u32 d;
1476 u32 div = 1;
1477
1478 val = readl(reg);
1479
1480 rate = src_rate;
1481 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1482
1483 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1484 if (d > 1)
1485 div *= d;
1486
1487 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1488 if (d > 1)
1489 div *= d;
1490
1491 if (val & PRCM_PLL_FREQ_SELDIV2)
1492 div *= 2;
1493
1494 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1495 (val & PRCM_PLL_FREQ_DIV2EN) &&
1496 ((reg == PRCM_PLLSOC0_FREQ) ||
1497 (reg == PRCM_PLLARM_FREQ) ||
1498 (reg == PRCM_PLLDDR_FREQ))))
1499 div *= 2;
1500
1501 (void)do_div(rate, div);
1502
1503 return (unsigned long)rate;
1504}
1505
1506#define ROOT_CLOCK_RATE 38400000
1507
1508static unsigned long clock_rate(u8 clock)
1509{
1510 u32 val;
1511 u32 pllsw;
1512 unsigned long rate = ROOT_CLOCK_RATE;
1513
1514 val = readl(prcmu_base + clk_mgt[clock].offset);
1515
1516 if (val & PRCM_CLK_MGT_CLK38) {
1517 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1518 rate /= 2;
1519 return rate;
1520 }
1521
1522 val |= clk_mgt[clock].pllsw;
1523 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1524
1525 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1526 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1527 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1528 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1529 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1530 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1531 else
1532 return 0;
1533
1534 if ((clock == PRCMU_SGACLK) &&
1535 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1536 u64 r = (rate * 10);
1537
1538 (void)do_div(r, 25);
1539 return (unsigned long)r;
1540 }
1541 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1542 if (val)
1543 return rate / val;
1544 else
1545 return 0;
1546}
1547
1548static unsigned long armss_rate(void)
1549{
1550 u32 r;
1551 unsigned long rate;
1552
1553 r = readl(PRCM_ARM_CHGCLKREQ);
1554
1555 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1556 /* External ARMCLKFIX clock */
1557
1558 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1559
1560 /* Check PRCM_ARM_CHGCLKREQ divider */
1561 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1562 rate /= 2;
1563
1564 /* Check PRCM_ARMCLKFIX_MGT divider */
1565 r = readl(PRCM_ARMCLKFIX_MGT);
1566 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1567 rate /= r;
1568
1569 } else {/* ARM PLL */
1570 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1571 }
1572
1573 return rate;
1574}
1575
1576static unsigned long dsiclk_rate(u8 n)
1577{
1578 u32 divsel;
1579 u32 div = 1;
1580
1581 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1582 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1583
1584 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1585 divsel = dsiclk[n].divsel;
1586 else
1587 dsiclk[n].divsel = divsel;
1588
1589 switch (divsel) {
1590 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1591 div *= 2;
1592 /* Fall through */
1593 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1594 div *= 2;
1595 /* Fall through */
1596 case PRCM_DSI_PLLOUT_SEL_PHI:
1597 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1598 PLL_RAW) / div;
1599 default:
1600 return 0;
1601 }
1602}
1603
1604static unsigned long dsiescclk_rate(u8 n)
1605{
1606 u32 div;
1607
1608 div = readl(PRCM_DSITVCLK_DIV);
1609 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1610 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1611}
1612
1613unsigned long prcmu_clock_rate(u8 clock)
1614{
1615 if (clock < PRCMU_NUM_REG_CLOCKS)
1616 return clock_rate(clock);
1617 else if (clock == PRCMU_TIMCLK)
1618 return ROOT_CLOCK_RATE / 16;
1619 else if (clock == PRCMU_SYSCLK)
1620 return ROOT_CLOCK_RATE;
1621 else if (clock == PRCMU_PLLSOC0)
1622 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1623 else if (clock == PRCMU_PLLSOC1)
1624 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1625 else if (clock == PRCMU_ARMSS)
1626 return armss_rate();
1627 else if (clock == PRCMU_PLLDDR)
1628 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1629 else if (clock == PRCMU_PLLDSI)
1630 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1631 PLL_RAW);
1632 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1633 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1634 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1635 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1636 else
1637 return 0;
1638}
1639
1640static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1641{
1642 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1643 return ROOT_CLOCK_RATE;
1644 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1645 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1646 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1647 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1648 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1649 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1650 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1651 else
1652 return 0;
1653}
1654
1655static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1656{
1657 u32 div;
1658
1659 div = (src_rate / rate);
1660 if (div == 0)
1661 return 1;
1662 if (rate < (src_rate / div))
1663 div++;
1664 return div;
1665}
1666
1667static long round_clock_rate(u8 clock, unsigned long rate)
1668{
1669 u32 val;
1670 u32 div;
1671 unsigned long src_rate;
1672 long rounded_rate;
1673
1674 val = readl(prcmu_base + clk_mgt[clock].offset);
1675 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1676 clk_mgt[clock].branch);
1677 div = clock_divider(src_rate, rate);
1678 if (val & PRCM_CLK_MGT_CLK38) {
1679 if (clk_mgt[clock].clk38div) {
1680 if (div > 2)
1681 div = 2;
1682 } else {
1683 div = 1;
1684 }
1685 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1686 u64 r = (src_rate * 10);
1687
1688 (void)do_div(r, 25);
1689 if (r <= rate)
1690 return (unsigned long)r;
1691 }
1692 rounded_rate = (src_rate / min(div, (u32)31));
1693
1694 return rounded_rate;
1695}
1696
1697static const unsigned long db8500_armss_freqs[] = {
1698 199680000,
1699 399360000,
1700 798720000,
1701 998400000
1702};
1703
1704/* The DB8520 has slightly higher ARMSS max frequency */
1705static const unsigned long db8520_armss_freqs[] = {
1706 199680000,
1707 399360000,
1708 798720000,
1709 1152000000
1710};
1711
1712static long round_armss_rate(unsigned long rate)
1713{
1714 unsigned long freq = 0;
1715 const unsigned long *freqs;
1716 int nfreqs;
1717 int i;
1718
1719 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1720 freqs = db8520_armss_freqs;
1721 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1722 } else {
1723 freqs = db8500_armss_freqs;
1724 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1725 }
1726
1727 /* Find the corresponding arm opp from the cpufreq table. */
1728 for (i = 0; i < nfreqs; i++) {
1729 freq = freqs[i];
1730 if (rate <= freq)
1731 break;
1732 }
1733
1734 /* Return the last valid value, even if a match was not found. */
1735 return freq;
1736}
1737
1738#define MIN_PLL_VCO_RATE 600000000ULL
1739#define MAX_PLL_VCO_RATE 1680640000ULL
1740
1741static long round_plldsi_rate(unsigned long rate)
1742{
1743 long rounded_rate = 0;
1744 unsigned long src_rate;
1745 unsigned long rem;
1746 u32 r;
1747
1748 src_rate = clock_rate(PRCMU_HDMICLK);
1749 rem = rate;
1750
1751 for (r = 7; (rem > 0) && (r > 0); r--) {
1752 u64 d;
1753
1754 d = (r * rate);
1755 (void)do_div(d, src_rate);
1756 if (d < 6)
1757 d = 6;
1758 else if (d > 255)
1759 d = 255;
1760 d *= src_rate;
1761 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1762 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1763 continue;
1764 (void)do_div(d, r);
1765 if (rate < d) {
1766 if (rounded_rate == 0)
1767 rounded_rate = (long)d;
1768 break;
1769 }
1770 if ((rate - d) < rem) {
1771 rem = (rate - d);
1772 rounded_rate = (long)d;
1773 }
1774 }
1775 return rounded_rate;
1776}
1777
1778static long round_dsiclk_rate(unsigned long rate)
1779{
1780 u32 div;
1781 unsigned long src_rate;
1782 long rounded_rate;
1783
1784 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1785 PLL_RAW);
1786 div = clock_divider(src_rate, rate);
1787 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1788
1789 return rounded_rate;
1790}
1791
1792static long round_dsiescclk_rate(unsigned long rate)
1793{
1794 u32 div;
1795 unsigned long src_rate;
1796 long rounded_rate;
1797
1798 src_rate = clock_rate(PRCMU_TVCLK);
1799 div = clock_divider(src_rate, rate);
1800 rounded_rate = (src_rate / min(div, (u32)255));
1801
1802 return rounded_rate;
1803}
1804
1805long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1806{
1807 if (clock < PRCMU_NUM_REG_CLOCKS)
1808 return round_clock_rate(clock, rate);
1809 else if (clock == PRCMU_ARMSS)
1810 return round_armss_rate(rate);
1811 else if (clock == PRCMU_PLLDSI)
1812 return round_plldsi_rate(rate);
1813 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1814 return round_dsiclk_rate(rate);
1815 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1816 return round_dsiescclk_rate(rate);
1817 else
1818 return (long)prcmu_clock_rate(clock);
1819}
1820
1821static void set_clock_rate(u8 clock, unsigned long rate)
1822{
1823 u32 val;
1824 u32 div;
1825 unsigned long src_rate;
1826 unsigned long flags;
1827
1828 spin_lock_irqsave(&clk_mgt_lock, flags);
1829
1830 /* Grab the HW semaphore. */
1831 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1832 cpu_relax();
1833
1834 val = readl(prcmu_base + clk_mgt[clock].offset);
1835 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1836 clk_mgt[clock].branch);
1837 div = clock_divider(src_rate, rate);
1838 if (val & PRCM_CLK_MGT_CLK38) {
1839 if (clk_mgt[clock].clk38div) {
1840 if (div > 1)
1841 val |= PRCM_CLK_MGT_CLK38DIV;
1842 else
1843 val &= ~PRCM_CLK_MGT_CLK38DIV;
1844 }
1845 } else if (clock == PRCMU_SGACLK) {
1846 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1847 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1848 if (div == 3) {
1849 u64 r = (src_rate * 10);
1850
1851 (void)do_div(r, 25);
1852 if (r <= rate) {
1853 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1854 div = 0;
1855 }
1856 }
1857 val |= min(div, (u32)31);
1858 } else {
1859 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1860 val |= min(div, (u32)31);
1861 }
1862 writel(val, prcmu_base + clk_mgt[clock].offset);
1863
1864 /* Release the HW semaphore. */
1865 writel(0, PRCM_SEM);
1866
1867 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1868}
1869
1870static int set_armss_rate(unsigned long rate)
1871{
1872 unsigned long freq;
1873 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1874 const unsigned long *freqs;
1875 int nfreqs;
1876 int i;
1877
1878 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1879 freqs = db8520_armss_freqs;
1880 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1881 } else {
1882 freqs = db8500_armss_freqs;
1883 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1884 }
1885
1886 /* Find the corresponding arm opp from the cpufreq table. */
1887 for (i = 0; i < nfreqs; i++) {
1888 freq = freqs[i];
1889 if (rate == freq)
1890 break;
1891 }
1892
1893 if (rate != freq)
1894 return -EINVAL;
1895
1896 /* Set the new arm opp. */
1897 pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1898 return db8500_prcmu_set_arm_opp(opps[i]);
1899}
1900
1901static int set_plldsi_rate(unsigned long rate)
1902{
1903 unsigned long src_rate;
1904 unsigned long rem;
1905 u32 pll_freq = 0;
1906 u32 r;
1907
1908 src_rate = clock_rate(PRCMU_HDMICLK);
1909 rem = rate;
1910
1911 for (r = 7; (rem > 0) && (r > 0); r--) {
1912 u64 d;
1913 u64 hwrate;
1914
1915 d = (r * rate);
1916 (void)do_div(d, src_rate);
1917 if (d < 6)
1918 d = 6;
1919 else if (d > 255)
1920 d = 255;
1921 hwrate = (d * src_rate);
1922 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1923 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1924 continue;
1925 (void)do_div(hwrate, r);
1926 if (rate < hwrate) {
1927 if (pll_freq == 0)
1928 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1929 (r << PRCM_PLL_FREQ_R_SHIFT));
1930 break;
1931 }
1932 if ((rate - hwrate) < rem) {
1933 rem = (rate - hwrate);
1934 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1935 (r << PRCM_PLL_FREQ_R_SHIFT));
1936 }
1937 }
1938 if (pll_freq == 0)
1939 return -EINVAL;
1940
1941 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1942 writel(pll_freq, PRCM_PLLDSI_FREQ);
1943
1944 return 0;
1945}
1946
1947static void set_dsiclk_rate(u8 n, unsigned long rate)
1948{
1949 u32 val;
1950 u32 div;
1951
1952 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1953 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1954
1955 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1956 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1957 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1958
1959 val = readl(PRCM_DSI_PLLOUT_SEL);
1960 val &= ~dsiclk[n].divsel_mask;
1961 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1962 writel(val, PRCM_DSI_PLLOUT_SEL);
1963}
1964
1965static void set_dsiescclk_rate(u8 n, unsigned long rate)
1966{
1967 u32 val;
1968 u32 div;
1969
1970 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1971 val = readl(PRCM_DSITVCLK_DIV);
1972 val &= ~dsiescclk[n].div_mask;
1973 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1974 writel(val, PRCM_DSITVCLK_DIV);
1975}
1976
1977int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1978{
1979 if (clock < PRCMU_NUM_REG_CLOCKS)
1980 set_clock_rate(clock, rate);
1981 else if (clock == PRCMU_ARMSS)
1982 return set_armss_rate(rate);
1983 else if (clock == PRCMU_PLLDSI)
1984 return set_plldsi_rate(rate);
1985 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1986 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1987 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1988 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1989 return 0;
1990}
1991
1992int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1993{
1994 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1995 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1996 return -EINVAL;
1997
1998 mutex_lock(&mb4_transfer.lock);
1999
2000 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2001 cpu_relax();
2002
2003 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2004 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2005 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2006 writeb(DDR_PWR_STATE_ON,
2007 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2008 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2009
2010 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2011 wait_for_completion(&mb4_transfer.work);
2012
2013 mutex_unlock(&mb4_transfer.lock);
2014
2015 return 0;
2016}
2017
2018int db8500_prcmu_config_hotdog(u8 threshold)
2019{
2020 mutex_lock(&mb4_transfer.lock);
2021
2022 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023 cpu_relax();
2024
2025 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2026 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2027
2028 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2029 wait_for_completion(&mb4_transfer.work);
2030
2031 mutex_unlock(&mb4_transfer.lock);
2032
2033 return 0;
2034}
2035
2036int db8500_prcmu_config_hotmon(u8 low, u8 high)
2037{
2038 mutex_lock(&mb4_transfer.lock);
2039
2040 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2041 cpu_relax();
2042
2043 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2044 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2045 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2046 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2047 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2048
2049 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2050 wait_for_completion(&mb4_transfer.work);
2051
2052 mutex_unlock(&mb4_transfer.lock);
2053
2054 return 0;
2055}
2056EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2057
2058static int config_hot_period(u16 val)
2059{
2060 mutex_lock(&mb4_transfer.lock);
2061
2062 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2063 cpu_relax();
2064
2065 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2066 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2067
2068 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2069 wait_for_completion(&mb4_transfer.work);
2070
2071 mutex_unlock(&mb4_transfer.lock);
2072
2073 return 0;
2074}
2075
2076int db8500_prcmu_start_temp_sense(u16 cycles32k)
2077{
2078 if (cycles32k == 0xFFFF)
2079 return -EINVAL;
2080
2081 return config_hot_period(cycles32k);
2082}
2083EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2084
2085int db8500_prcmu_stop_temp_sense(void)
2086{
2087 return config_hot_period(0xFFFF);
2088}
2089EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2090
2091static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2092{
2093
2094 mutex_lock(&mb4_transfer.lock);
2095
2096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2097 cpu_relax();
2098
2099 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2100 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2101 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2102 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2103
2104 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2105
2106 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2107 wait_for_completion(&mb4_transfer.work);
2108
2109 mutex_unlock(&mb4_transfer.lock);
2110
2111 return 0;
2112
2113}
2114
2115int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2116{
2117 BUG_ON(num == 0 || num > 0xf);
2118 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2119 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2120 A9WDOG_AUTO_OFF_DIS);
2121}
2122EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2123
2124int db8500_prcmu_enable_a9wdog(u8 id)
2125{
2126 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2127}
2128EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2129
2130int db8500_prcmu_disable_a9wdog(u8 id)
2131{
2132 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2133}
2134EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2135
2136int db8500_prcmu_kick_a9wdog(u8 id)
2137{
2138 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2139}
2140EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2141
2142/*
2143 * timeout is 28 bit, in ms.
2144 */
2145int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2146{
2147 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2148 (id & A9WDOG_ID_MASK) |
2149 /*
2150 * Put the lowest 28 bits of timeout at
2151 * offset 4. Four first bits are used for id.
2152 */
2153 (u8)((timeout << 4) & 0xf0),
2154 (u8)((timeout >> 4) & 0xff),
2155 (u8)((timeout >> 12) & 0xff),
2156 (u8)((timeout >> 20) & 0xff));
2157}
2158EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2159
2160/**
2161 * prcmu_abb_read() - Read register value(s) from the ABB.
2162 * @slave: The I2C slave address.
2163 * @reg: The (start) register address.
2164 * @value: The read out value(s).
2165 * @size: The number of registers to read.
2166 *
2167 * Reads register value(s) from the ABB.
2168 * @size has to be 1 for the current firmware version.
2169 */
2170int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2171{
2172 int r;
2173
2174 if (size != 1)
2175 return -EINVAL;
2176
2177 mutex_lock(&mb5_transfer.lock);
2178
2179 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2180 cpu_relax();
2181
2182 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2183 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2184 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2185 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2186 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2187
2188 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2189
2190 if (!wait_for_completion_timeout(&mb5_transfer.work,
2191 msecs_to_jiffies(20000))) {
2192 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2193 __func__);
2194 r = -EIO;
2195 } else {
2196 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2197 }
2198
2199 if (!r)
2200 *value = mb5_transfer.ack.value;
2201
2202 mutex_unlock(&mb5_transfer.lock);
2203
2204 return r;
2205}
2206
2207/**
2208 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2209 * @slave: The I2C slave address.
2210 * @reg: The (start) register address.
2211 * @value: The value(s) to write.
2212 * @mask: The mask(s) to use.
2213 * @size: The number of registers to write.
2214 *
2215 * Writes masked register value(s) to the ABB.
2216 * For each @value, only the bits set to 1 in the corresponding @mask
2217 * will be written. The other bits are not changed.
2218 * @size has to be 1 for the current firmware version.
2219 */
2220int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2221{
2222 int r;
2223
2224 if (size != 1)
2225 return -EINVAL;
2226
2227 mutex_lock(&mb5_transfer.lock);
2228
2229 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2230 cpu_relax();
2231
2232 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2233 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2234 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2235 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2236 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2237
2238 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2239
2240 if (!wait_for_completion_timeout(&mb5_transfer.work,
2241 msecs_to_jiffies(20000))) {
2242 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2243 __func__);
2244 r = -EIO;
2245 } else {
2246 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2247 }
2248
2249 mutex_unlock(&mb5_transfer.lock);
2250
2251 return r;
2252}
2253
2254/**
2255 * prcmu_abb_write() - Write register value(s) to the ABB.
2256 * @slave: The I2C slave address.
2257 * @reg: The (start) register address.
2258 * @value: The value(s) to write.
2259 * @size: The number of registers to write.
2260 *
2261 * Writes register value(s) to the ABB.
2262 * @size has to be 1 for the current firmware version.
2263 */
2264int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2265{
2266 u8 mask = ~0;
2267
2268 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2269}
2270
2271/**
2272 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2273 */
2274int prcmu_ac_wake_req(void)
2275{
2276 u32 val;
2277 int ret = 0;
2278
2279 mutex_lock(&mb0_transfer.ac_wake_lock);
2280
2281 val = readl(PRCM_HOSTACCESS_REQ);
2282 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2283 goto unlock_and_return;
2284
2285 atomic_set(&ac_wake_req_state, 1);
2286
2287 /*
2288 * Force Modem Wake-up before hostaccess_req ping-pong.
2289 * It prevents Modem to enter in Sleep while acking the hostaccess
2290 * request. The 31us delay has been calculated by HWI.
2291 */
2292 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2293 writel(val, PRCM_HOSTACCESS_REQ);
2294
2295 udelay(31);
2296
2297 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2298 writel(val, PRCM_HOSTACCESS_REQ);
2299
2300 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2301 msecs_to_jiffies(5000))) {
2302 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2303 __func__);
2304 ret = -EFAULT;
2305 }
2306
2307unlock_and_return:
2308 mutex_unlock(&mb0_transfer.ac_wake_lock);
2309 return ret;
2310}
2311
2312/**
2313 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2314 */
2315void prcmu_ac_sleep_req(void)
2316{
2317 u32 val;
2318
2319 mutex_lock(&mb0_transfer.ac_wake_lock);
2320
2321 val = readl(PRCM_HOSTACCESS_REQ);
2322 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2323 goto unlock_and_return;
2324
2325 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2326 PRCM_HOSTACCESS_REQ);
2327
2328 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2329 msecs_to_jiffies(5000))) {
2330 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2331 __func__);
2332 }
2333
2334 atomic_set(&ac_wake_req_state, 0);
2335
2336unlock_and_return:
2337 mutex_unlock(&mb0_transfer.ac_wake_lock);
2338}
2339
2340bool db8500_prcmu_is_ac_wake_requested(void)
2341{
2342 return (atomic_read(&ac_wake_req_state) != 0);
2343}
2344
2345/**
2346 * db8500_prcmu_system_reset - System reset
2347 *
2348 * Saves the reset reason code and then sets the APE_SOFTRST register which
2349 * fires interrupt to fw
2350 */
2351void db8500_prcmu_system_reset(u16 reset_code)
2352{
2353 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2354 writel(1, PRCM_APE_SOFTRST);
2355}
2356
2357/**
2358 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2359 *
2360 * Retrieves the reset reason code stored by prcmu_system_reset() before
2361 * last restart.
2362 */
2363u16 db8500_prcmu_get_reset_code(void)
2364{
2365 return readw(tcdm_base + PRCM_SW_RST_REASON);
2366}
2367
2368/**
2369 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2370 */
2371void db8500_prcmu_modem_reset(void)
2372{
2373 mutex_lock(&mb1_transfer.lock);
2374
2375 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2376 cpu_relax();
2377
2378 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2379 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2380 wait_for_completion(&mb1_transfer.work);
2381
2382 /*
2383 * No need to check return from PRCMU as modem should go in reset state
2384 * This state is already managed by upper layer
2385 */
2386
2387 mutex_unlock(&mb1_transfer.lock);
2388}
2389
2390static void ack_dbb_wakeup(void)
2391{
2392 unsigned long flags;
2393
2394 spin_lock_irqsave(&mb0_transfer.lock, flags);
2395
2396 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2397 cpu_relax();
2398
2399 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2400 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2401
2402 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2403}
2404
2405static inline void print_unknown_header_warning(u8 n, u8 header)
2406{
2407 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2408 header, n);
2409}
2410
2411static bool read_mailbox_0(void)
2412{
2413 bool r;
2414 u32 ev;
2415 unsigned int n;
2416 u8 header;
2417
2418 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2419 switch (header) {
2420 case MB0H_WAKEUP_EXE:
2421 case MB0H_WAKEUP_SLEEP:
2422 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2423 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2424 else
2425 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2426
2427 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2428 complete(&mb0_transfer.ac_wake_work);
2429 if (ev & WAKEUP_BIT_SYSCLK_OK)
2430 complete(&mb3_transfer.sysclk_work);
2431
2432 ev &= mb0_transfer.req.dbb_irqs;
2433
2434 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2435 if (ev & prcmu_irq_bit[n])
2436 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2437 }
2438 r = true;
2439 break;
2440 default:
2441 print_unknown_header_warning(0, header);
2442 r = false;
2443 break;
2444 }
2445 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2446 return r;
2447}
2448
2449static bool read_mailbox_1(void)
2450{
2451 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2452 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2453 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2454 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2455 PRCM_ACK_MB1_CURRENT_APE_OPP);
2456 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2457 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2458 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2459 complete(&mb1_transfer.work);
2460 return false;
2461}
2462
2463static bool read_mailbox_2(void)
2464{
2465 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2466 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2467 complete(&mb2_transfer.work);
2468 return false;
2469}
2470
2471static bool read_mailbox_3(void)
2472{
2473 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2474 return false;
2475}
2476
2477static bool read_mailbox_4(void)
2478{
2479 u8 header;
2480 bool do_complete = true;
2481
2482 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2483 switch (header) {
2484 case MB4H_MEM_ST:
2485 case MB4H_HOTDOG:
2486 case MB4H_HOTMON:
2487 case MB4H_HOT_PERIOD:
2488 case MB4H_A9WDOG_CONF:
2489 case MB4H_A9WDOG_EN:
2490 case MB4H_A9WDOG_DIS:
2491 case MB4H_A9WDOG_LOAD:
2492 case MB4H_A9WDOG_KICK:
2493 break;
2494 default:
2495 print_unknown_header_warning(4, header);
2496 do_complete = false;
2497 break;
2498 }
2499
2500 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2501
2502 if (do_complete)
2503 complete(&mb4_transfer.work);
2504
2505 return false;
2506}
2507
2508static bool read_mailbox_5(void)
2509{
2510 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2511 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2512 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2513 complete(&mb5_transfer.work);
2514 return false;
2515}
2516
2517static bool read_mailbox_6(void)
2518{
2519 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2520 return false;
2521}
2522
2523static bool read_mailbox_7(void)
2524{
2525 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2526 return false;
2527}
2528
2529static bool (* const read_mailbox[NUM_MB])(void) = {
2530 read_mailbox_0,
2531 read_mailbox_1,
2532 read_mailbox_2,
2533 read_mailbox_3,
2534 read_mailbox_4,
2535 read_mailbox_5,
2536 read_mailbox_6,
2537 read_mailbox_7
2538};
2539
2540static irqreturn_t prcmu_irq_handler(int irq, void *data)
2541{
2542 u32 bits;
2543 u8 n;
2544 irqreturn_t r;
2545
2546 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2547 if (unlikely(!bits))
2548 return IRQ_NONE;
2549
2550 r = IRQ_HANDLED;
2551 for (n = 0; bits; n++) {
2552 if (bits & MBOX_BIT(n)) {
2553 bits -= MBOX_BIT(n);
2554 if (read_mailbox[n]())
2555 r = IRQ_WAKE_THREAD;
2556 }
2557 }
2558 return r;
2559}
2560
2561static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2562{
2563 ack_dbb_wakeup();
2564 return IRQ_HANDLED;
2565}
2566
2567static void prcmu_mask_work(struct work_struct *work)
2568{
2569 unsigned long flags;
2570
2571 spin_lock_irqsave(&mb0_transfer.lock, flags);
2572
2573 config_wakeups();
2574
2575 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2576}
2577
2578static void prcmu_irq_mask(struct irq_data *d)
2579{
2580 unsigned long flags;
2581
2582 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2583
2584 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2585
2586 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2587
2588 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2589 schedule_work(&mb0_transfer.mask_work);
2590}
2591
2592static void prcmu_irq_unmask(struct irq_data *d)
2593{
2594 unsigned long flags;
2595
2596 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2597
2598 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2599
2600 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2601
2602 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2603 schedule_work(&mb0_transfer.mask_work);
2604}
2605
2606static void noop(struct irq_data *d)
2607{
2608}
2609
2610static struct irq_chip prcmu_irq_chip = {
2611 .name = "prcmu",
2612 .irq_disable = prcmu_irq_mask,
2613 .irq_ack = noop,
2614 .irq_mask = prcmu_irq_mask,
2615 .irq_unmask = prcmu_irq_unmask,
2616};
2617
2618static char *fw_project_name(u32 project)
2619{
2620 switch (project) {
2621 case PRCMU_FW_PROJECT_U8500:
2622 return "U8500";
2623 case PRCMU_FW_PROJECT_U8400:
2624 return "U8400";
2625 case PRCMU_FW_PROJECT_U9500:
2626 return "U9500";
2627 case PRCMU_FW_PROJECT_U8500_MBB:
2628 return "U8500 MBB";
2629 case PRCMU_FW_PROJECT_U8500_C1:
2630 return "U8500 C1";
2631 case PRCMU_FW_PROJECT_U8500_C2:
2632 return "U8500 C2";
2633 case PRCMU_FW_PROJECT_U8500_C3:
2634 return "U8500 C3";
2635 case PRCMU_FW_PROJECT_U8500_C4:
2636 return "U8500 C4";
2637 case PRCMU_FW_PROJECT_U9500_MBL:
2638 return "U9500 MBL";
2639 case PRCMU_FW_PROJECT_U8500_MBL:
2640 return "U8500 MBL";
2641 case PRCMU_FW_PROJECT_U8500_MBL2:
2642 return "U8500 MBL2";
2643 case PRCMU_FW_PROJECT_U8520:
2644 return "U8520 MBL";
2645 case PRCMU_FW_PROJECT_U8420:
2646 return "U8420";
2647 case PRCMU_FW_PROJECT_U9540:
2648 return "U9540";
2649 case PRCMU_FW_PROJECT_A9420:
2650 return "A9420";
2651 case PRCMU_FW_PROJECT_L8540:
2652 return "L8540";
2653 case PRCMU_FW_PROJECT_L8580:
2654 return "L8580";
2655 default:
2656 return "Unknown";
2657 }
2658}
2659
2660static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2661 irq_hw_number_t hwirq)
2662{
2663 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2664 handle_simple_irq);
2665
2666 return 0;
2667}
2668
2669static const struct irq_domain_ops db8500_irq_ops = {
2670 .map = db8500_irq_map,
2671 .xlate = irq_domain_xlate_twocell,
2672};
2673
2674static int db8500_irq_init(struct device_node *np)
2675{
2676 int i;
2677
2678 db8500_irq_domain = irq_domain_add_simple(
2679 np, NUM_PRCMU_WAKEUPS, 0,
2680 &db8500_irq_ops, NULL);
2681
2682 if (!db8500_irq_domain) {
2683 pr_err("Failed to create irqdomain\n");
2684 return -ENOSYS;
2685 }
2686
2687 /* All wakeups will be used, so create mappings for all */
2688 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2689 irq_create_mapping(db8500_irq_domain, i);
2690
2691 return 0;
2692}
2693
2694static void dbx500_fw_version_init(struct platform_device *pdev,
2695 u32 version_offset)
2696{
2697 struct resource *res;
2698 void __iomem *tcpm_base;
2699 u32 version;
2700
2701 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2702 "prcmu-tcpm");
2703 if (!res) {
2704 dev_err(&pdev->dev,
2705 "Error: no prcmu tcpm memory region provided\n");
2706 return;
2707 }
2708 tcpm_base = ioremap(res->start, resource_size(res));
2709 if (!tcpm_base) {
2710 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2711 return;
2712 }
2713
2714 version = readl(tcpm_base + version_offset);
2715 fw_info.version.project = (version & 0xFF);
2716 fw_info.version.api_version = (version >> 8) & 0xFF;
2717 fw_info.version.func_version = (version >> 16) & 0xFF;
2718 fw_info.version.errata = (version >> 24) & 0xFF;
2719 strncpy(fw_info.version.project_name,
2720 fw_project_name(fw_info.version.project),
2721 PRCMU_FW_PROJECT_NAME_LEN);
2722 fw_info.valid = true;
2723 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2724 fw_info.version.project_name,
2725 fw_info.version.project,
2726 fw_info.version.api_version,
2727 fw_info.version.func_version,
2728 fw_info.version.errata);
2729 iounmap(tcpm_base);
2730}
2731
2732void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2733{
2734 /*
2735 * This is a temporary remap to bring up the clocks. It is
2736 * subsequently replaces with a real remap. After the merge of
2737 * the mailbox subsystem all of this early code goes away, and the
2738 * clock driver can probe independently. An early initcall will
2739 * still be needed, but it can be diverted into drivers/clk/ux500.
2740 */
2741 prcmu_base = ioremap(phy_base, size);
2742 if (!prcmu_base)
2743 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2744
2745 spin_lock_init(&mb0_transfer.lock);
2746 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2747 mutex_init(&mb0_transfer.ac_wake_lock);
2748 init_completion(&mb0_transfer.ac_wake_work);
2749 mutex_init(&mb1_transfer.lock);
2750 init_completion(&mb1_transfer.work);
2751 mb1_transfer.ape_opp = APE_NO_CHANGE;
2752 mutex_init(&mb2_transfer.lock);
2753 init_completion(&mb2_transfer.work);
2754 spin_lock_init(&mb2_transfer.auto_pm_lock);
2755 spin_lock_init(&mb3_transfer.lock);
2756 mutex_init(&mb3_transfer.sysclk_lock);
2757 init_completion(&mb3_transfer.sysclk_work);
2758 mutex_init(&mb4_transfer.lock);
2759 init_completion(&mb4_transfer.work);
2760 mutex_init(&mb5_transfer.lock);
2761 init_completion(&mb5_transfer.work);
2762
2763 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2764}
2765
2766static void init_prcm_registers(void)
2767{
2768 u32 val;
2769
2770 val = readl(PRCM_A9PL_FORCE_CLKEN);
2771 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2772 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2773 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2774}
2775
2776/*
2777 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2778 */
2779static struct regulator_consumer_supply db8500_vape_consumers[] = {
2780 REGULATOR_SUPPLY("v-ape", NULL),
2781 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2782 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2783 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2784 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2785 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2786 /* "v-mmc" changed to "vcore" in the mainline kernel */
2787 REGULATOR_SUPPLY("vcore", "sdi0"),
2788 REGULATOR_SUPPLY("vcore", "sdi1"),
2789 REGULATOR_SUPPLY("vcore", "sdi2"),
2790 REGULATOR_SUPPLY("vcore", "sdi3"),
2791 REGULATOR_SUPPLY("vcore", "sdi4"),
2792 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2793 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2794 /* "v-uart" changed to "vcore" in the mainline kernel */
2795 REGULATOR_SUPPLY("vcore", "uart0"),
2796 REGULATOR_SUPPLY("vcore", "uart1"),
2797 REGULATOR_SUPPLY("vcore", "uart2"),
2798 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2799 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2800 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2801};
2802
2803static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2804 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2805 /* AV8100 regulator */
2806 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2807};
2808
2809static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2810 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2811 REGULATOR_SUPPLY("vsupply", "mcde"),
2812};
2813
2814/* SVA MMDSP regulator switch */
2815static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2816 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2817};
2818
2819/* SVA pipe regulator switch */
2820static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2821 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2822};
2823
2824/* SIA MMDSP regulator switch */
2825static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2826 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2827};
2828
2829/* SIA pipe regulator switch */
2830static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2831 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2832};
2833
2834static struct regulator_consumer_supply db8500_sga_consumers[] = {
2835 REGULATOR_SUPPLY("v-mali", NULL),
2836};
2837
2838/* ESRAM1 and 2 regulator switch */
2839static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2840 REGULATOR_SUPPLY("esram12", "cm_control"),
2841};
2842
2843/* ESRAM3 and 4 regulator switch */
2844static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2845 REGULATOR_SUPPLY("v-esram34", "mcde"),
2846 REGULATOR_SUPPLY("esram34", "cm_control"),
2847 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2848};
2849
2850static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2851 [DB8500_REGULATOR_VAPE] = {
2852 .constraints = {
2853 .name = "db8500-vape",
2854 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855 .always_on = true,
2856 },
2857 .consumer_supplies = db8500_vape_consumers,
2858 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2859 },
2860 [DB8500_REGULATOR_VARM] = {
2861 .constraints = {
2862 .name = "db8500-varm",
2863 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2864 },
2865 },
2866 [DB8500_REGULATOR_VMODEM] = {
2867 .constraints = {
2868 .name = "db8500-vmodem",
2869 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870 },
2871 },
2872 [DB8500_REGULATOR_VPLL] = {
2873 .constraints = {
2874 .name = "db8500-vpll",
2875 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2876 },
2877 },
2878 [DB8500_REGULATOR_VSMPS1] = {
2879 .constraints = {
2880 .name = "db8500-vsmps1",
2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 },
2883 },
2884 [DB8500_REGULATOR_VSMPS2] = {
2885 .constraints = {
2886 .name = "db8500-vsmps2",
2887 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2888 },
2889 .consumer_supplies = db8500_vsmps2_consumers,
2890 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2891 },
2892 [DB8500_REGULATOR_VSMPS3] = {
2893 .constraints = {
2894 .name = "db8500-vsmps3",
2895 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2896 },
2897 },
2898 [DB8500_REGULATOR_VRF1] = {
2899 .constraints = {
2900 .name = "db8500-vrf1",
2901 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2902 },
2903 },
2904 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2905 /* dependency to u8500-vape is handled outside regulator framework */
2906 .constraints = {
2907 .name = "db8500-sva-mmdsp",
2908 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2909 },
2910 .consumer_supplies = db8500_svammdsp_consumers,
2911 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2912 },
2913 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2914 .constraints = {
2915 /* "ret" means "retention" */
2916 .name = "db8500-sva-mmdsp-ret",
2917 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918 },
2919 },
2920 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2921 /* dependency to u8500-vape is handled outside regulator framework */
2922 .constraints = {
2923 .name = "db8500-sva-pipe",
2924 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2925 },
2926 .consumer_supplies = db8500_svapipe_consumers,
2927 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2928 },
2929 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2930 /* dependency to u8500-vape is handled outside regulator framework */
2931 .constraints = {
2932 .name = "db8500-sia-mmdsp",
2933 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2934 },
2935 .consumer_supplies = db8500_siammdsp_consumers,
2936 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2937 },
2938 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2939 .constraints = {
2940 .name = "db8500-sia-mmdsp-ret",
2941 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942 },
2943 },
2944 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2945 /* dependency to u8500-vape is handled outside regulator framework */
2946 .constraints = {
2947 .name = "db8500-sia-pipe",
2948 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2949 },
2950 .consumer_supplies = db8500_siapipe_consumers,
2951 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2952 },
2953 [DB8500_REGULATOR_SWITCH_SGA] = {
2954 .supply_regulator = "db8500-vape",
2955 .constraints = {
2956 .name = "db8500-sga",
2957 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2958 },
2959 .consumer_supplies = db8500_sga_consumers,
2960 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2961
2962 },
2963 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2964 .supply_regulator = "db8500-vape",
2965 .constraints = {
2966 .name = "db8500-b2r2-mcde",
2967 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2968 },
2969 .consumer_supplies = db8500_b2r2_mcde_consumers,
2970 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2971 },
2972 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2973 /*
2974 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2975 * no need to hold Vape
2976 */
2977 .constraints = {
2978 .name = "db8500-esram12",
2979 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980 },
2981 .consumer_supplies = db8500_esram12_consumers,
2982 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2983 },
2984 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2985 .constraints = {
2986 .name = "db8500-esram12-ret",
2987 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2988 },
2989 },
2990 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2991 /*
2992 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2993 * no need to hold Vape
2994 */
2995 .constraints = {
2996 .name = "db8500-esram34",
2997 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2998 },
2999 .consumer_supplies = db8500_esram34_consumers,
3000 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3001 },
3002 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3003 .constraints = {
3004 .name = "db8500-esram34-ret",
3005 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3006 },
3007 },
3008};
3009
3010static struct ux500_wdt_data db8500_wdt_pdata = {
3011 .timeout = 600, /* 10 minutes */
3012 .has_28_bits_resolution = true,
3013};
3014
3015static const struct mfd_cell common_prcmu_devs[] = {
3016 {
3017 .name = "ux500_wdt",
3018 .platform_data = &db8500_wdt_pdata,
3019 .pdata_size = sizeof(db8500_wdt_pdata),
3020 .id = -1,
3021 },
3022};
3023
3024static const struct mfd_cell db8500_prcmu_devs[] = {
3025 {
3026 .name = "db8500-prcmu-regulators",
3027 .of_compatible = "stericsson,db8500-prcmu-regulator",
3028 .platform_data = &db8500_regulators,
3029 .pdata_size = sizeof(db8500_regulators),
3030 },
3031 {
3032 .name = "cpuidle-dbx500",
3033 .of_compatible = "stericsson,cpuidle-dbx500",
3034 },
3035 {
3036 .name = "db8500-thermal",
3037 .of_compatible = "stericsson,db8500-thermal",
3038 },
3039};
3040
3041static int db8500_prcmu_register_ab8500(struct device *parent)
3042{
3043 struct device_node *np;
3044 struct resource ab8500_resource;
3045 const struct mfd_cell ab8500_cell = {
3046 .name = "ab8500-core",
3047 .of_compatible = "stericsson,ab8500",
3048 .id = AB8500_VERSION_AB8500,
3049 .resources = &ab8500_resource,
3050 .num_resources = 1,
3051 };
3052
3053 if (!parent->of_node)
3054 return -ENODEV;
3055
3056 /* Look up the device node, sneak the IRQ out of it */
3057 for_each_child_of_node(parent->of_node, np) {
3058 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3059 break;
3060 }
3061 if (!np) {
3062 dev_info(parent, "could not find AB8500 node in the device tree\n");
3063 return -ENODEV;
3064 }
3065 of_irq_to_resource_table(np, &ab8500_resource, 1);
3066
3067 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3068}
3069
3070/**
3071 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3072 *
3073 */
3074static int db8500_prcmu_probe(struct platform_device *pdev)
3075{
3076 struct device_node *np = pdev->dev.of_node;
3077 int irq = 0, err = 0;
3078 struct resource *res;
3079
3080 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3081 if (!res) {
3082 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3083 return -EINVAL;
3084 }
3085 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3086 if (!prcmu_base) {
3087 dev_err(&pdev->dev,
3088 "failed to ioremap prcmu register memory\n");
3089 return -ENOMEM;
3090 }
3091 init_prcm_registers();
3092 dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3093 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3094 if (!res) {
3095 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3096 return -EINVAL;
3097 }
3098 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3099 resource_size(res));
3100 if (!tcdm_base) {
3101 dev_err(&pdev->dev,
3102 "failed to ioremap prcmu-tcdm register memory\n");
3103 return -ENOMEM;
3104 }
3105
3106 /* Clean up the mailbox interrupts after pre-kernel code. */
3107 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3108
3109 irq = platform_get_irq(pdev, 0);
3110 if (irq <= 0)
3111 return irq;
3112
3113 err = request_threaded_irq(irq, prcmu_irq_handler,
3114 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3115 if (err < 0) {
3116 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3117 return err;
3118 }
3119
3120 db8500_irq_init(np);
3121
3122 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3123
3124 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3125 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3126 if (err) {
3127 pr_err("prcmu: Failed to add subdevices\n");
3128 return err;
3129 }
3130
3131 /* TODO: Remove restriction when clk definitions are available. */
3132 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3133 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3134 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3135 db8500_irq_domain);
3136 if (err) {
3137 mfd_remove_devices(&pdev->dev);
3138 pr_err("prcmu: Failed to add subdevices\n");
3139 return err;
3140 }
3141 }
3142
3143 err = db8500_prcmu_register_ab8500(&pdev->dev);
3144 if (err) {
3145 mfd_remove_devices(&pdev->dev);
3146 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3147 return err;
3148 }
3149
3150 pr_info("DB8500 PRCMU initialized\n");
3151 return err;
3152}
3153static const struct of_device_id db8500_prcmu_match[] = {
3154 { .compatible = "stericsson,db8500-prcmu"},
3155 { },
3156};
3157
3158static struct platform_driver db8500_prcmu_driver = {
3159 .driver = {
3160 .name = "db8500-prcmu",
3161 .of_match_table = db8500_prcmu_match,
3162 },
3163 .probe = db8500_prcmu_probe,
3164};
3165
3166static int __init db8500_prcmu_init(void)
3167{
3168 return platform_driver_register(&db8500_prcmu_driver);
3169}
3170core_initcall(db8500_prcmu_init);