b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * This is for all the tests related to logic bugs (e.g. bad dereferences, |
| 4 | * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and |
| 5 | * lockups) along with other things that don't fit well into existing LKDTM |
| 6 | * test source files. |
| 7 | */ |
| 8 | #include "lkdtm.h" |
| 9 | #include <linux/list.h> |
| 10 | #include <linux/sched.h> |
| 11 | #include <linux/sched/signal.h> |
| 12 | #include <linux/sched/task_stack.h> |
| 13 | #include <linux/uaccess.h> |
| 14 | #include <linux/slab.h> |
| 15 | |
| 16 | struct lkdtm_list { |
| 17 | struct list_head node; |
| 18 | }; |
| 19 | |
| 20 | /* |
| 21 | * Make sure our attempts to over run the kernel stack doesn't trigger |
| 22 | * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we |
| 23 | * recurse past the end of THREAD_SIZE by default. |
| 24 | */ |
| 25 | #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0) |
| 26 | #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2) |
| 27 | #else |
| 28 | #define REC_STACK_SIZE (THREAD_SIZE / 8) |
| 29 | #endif |
| 30 | #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2) |
| 31 | |
| 32 | static int recur_count = REC_NUM_DEFAULT; |
| 33 | |
| 34 | static DEFINE_SPINLOCK(lock_me_up); |
| 35 | |
| 36 | /* |
| 37 | * Make sure compiler does not optimize this function or stack frame away: |
| 38 | * - function marked noinline |
| 39 | * - stack variables are marked volatile |
| 40 | * - stack variables are written (memset()) and read (pr_info()) |
| 41 | * - function has external effects (pr_info()) |
| 42 | * */ |
| 43 | static int noinline recursive_loop(int remaining) |
| 44 | { |
| 45 | volatile char buf[REC_STACK_SIZE]; |
| 46 | |
| 47 | memset((void *)buf, remaining & 0xFF, sizeof(buf)); |
| 48 | pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)], |
| 49 | recur_count); |
| 50 | if (!remaining) |
| 51 | return 0; |
| 52 | else |
| 53 | return recursive_loop(remaining - 1); |
| 54 | } |
| 55 | |
| 56 | /* If the depth is negative, use the default, otherwise keep parameter. */ |
| 57 | void __init lkdtm_bugs_init(int *recur_param) |
| 58 | { |
| 59 | if (*recur_param < 0) |
| 60 | *recur_param = recur_count; |
| 61 | else |
| 62 | recur_count = *recur_param; |
| 63 | } |
| 64 | |
| 65 | void lkdtm_PANIC(void) |
| 66 | { |
| 67 | panic("dumptest"); |
| 68 | } |
| 69 | |
| 70 | void lkdtm_BUG(void) |
| 71 | { |
| 72 | BUG(); |
| 73 | } |
| 74 | |
| 75 | static int warn_counter; |
| 76 | |
| 77 | void lkdtm_WARNING(void) |
| 78 | { |
| 79 | WARN_ON(++warn_counter); |
| 80 | } |
| 81 | |
| 82 | void lkdtm_WARNING_MESSAGE(void) |
| 83 | { |
| 84 | WARN(1, "Warning message trigger count: %d\n", ++warn_counter); |
| 85 | } |
| 86 | |
| 87 | void lkdtm_EXCEPTION(void) |
| 88 | { |
| 89 | *((volatile int *) 0) = 0; |
| 90 | } |
| 91 | |
| 92 | void lkdtm_LOOP(void) |
| 93 | { |
| 94 | for (;;) |
| 95 | ; |
| 96 | } |
| 97 | |
| 98 | void lkdtm_EXHAUST_STACK(void) |
| 99 | { |
| 100 | pr_info("Calling function with %lu frame size to depth %d ...\n", |
| 101 | REC_STACK_SIZE, recur_count); |
| 102 | recursive_loop(recur_count); |
| 103 | pr_info("FAIL: survived without exhausting stack?!\n"); |
| 104 | } |
| 105 | |
| 106 | static noinline void __lkdtm_CORRUPT_STACK(void *stack) |
| 107 | { |
| 108 | memset(stack, '\xff', 64); |
| 109 | } |
| 110 | |
| 111 | /* This should trip the stack canary, not corrupt the return address. */ |
| 112 | noinline void lkdtm_CORRUPT_STACK(void) |
| 113 | { |
| 114 | /* Use default char array length that triggers stack protection. */ |
| 115 | char data[8] __aligned(sizeof(void *)); |
| 116 | |
| 117 | pr_info("Corrupting stack containing char array ...\n"); |
| 118 | __lkdtm_CORRUPT_STACK((void *)&data); |
| 119 | } |
| 120 | |
| 121 | /* Same as above but will only get a canary with -fstack-protector-strong */ |
| 122 | noinline void lkdtm_CORRUPT_STACK_STRONG(void) |
| 123 | { |
| 124 | union { |
| 125 | unsigned short shorts[4]; |
| 126 | unsigned long *ptr; |
| 127 | } data __aligned(sizeof(void *)); |
| 128 | |
| 129 | pr_info("Corrupting stack containing union ...\n"); |
| 130 | __lkdtm_CORRUPT_STACK((void *)&data); |
| 131 | } |
| 132 | |
| 133 | void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void) |
| 134 | { |
| 135 | static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5}; |
| 136 | u32 *p; |
| 137 | u32 val = 0x12345678; |
| 138 | |
| 139 | p = (u32 *)(data + 1); |
| 140 | if (*p == 0) |
| 141 | val = 0x87654321; |
| 142 | *p = val; |
| 143 | } |
| 144 | |
| 145 | void lkdtm_SOFTLOCKUP(void) |
| 146 | { |
| 147 | preempt_disable(); |
| 148 | for (;;) |
| 149 | cpu_relax(); |
| 150 | } |
| 151 | |
| 152 | void lkdtm_HARDLOCKUP(void) |
| 153 | { |
| 154 | local_irq_disable(); |
| 155 | for (;;) |
| 156 | cpu_relax(); |
| 157 | } |
| 158 | |
| 159 | void lkdtm_SPINLOCKUP(void) |
| 160 | { |
| 161 | /* Must be called twice to trigger. */ |
| 162 | spin_lock(&lock_me_up); |
| 163 | /* Let sparse know we intended to exit holding the lock. */ |
| 164 | __release(&lock_me_up); |
| 165 | } |
| 166 | |
| 167 | void lkdtm_HUNG_TASK(void) |
| 168 | { |
| 169 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 170 | schedule(); |
| 171 | } |
| 172 | |
| 173 | volatile unsigned int huge = INT_MAX - 2; |
| 174 | volatile unsigned int ignored; |
| 175 | |
| 176 | void lkdtm_OVERFLOW_SIGNED(void) |
| 177 | { |
| 178 | int value; |
| 179 | |
| 180 | value = huge; |
| 181 | pr_info("Normal signed addition ...\n"); |
| 182 | value += 1; |
| 183 | ignored = value; |
| 184 | |
| 185 | pr_info("Overflowing signed addition ...\n"); |
| 186 | value += 4; |
| 187 | ignored = value; |
| 188 | } |
| 189 | |
| 190 | |
| 191 | void lkdtm_OVERFLOW_UNSIGNED(void) |
| 192 | { |
| 193 | unsigned int value; |
| 194 | |
| 195 | value = huge; |
| 196 | pr_info("Normal unsigned addition ...\n"); |
| 197 | value += 1; |
| 198 | ignored = value; |
| 199 | |
| 200 | pr_info("Overflowing unsigned addition ...\n"); |
| 201 | value += 4; |
| 202 | ignored = value; |
| 203 | } |
| 204 | |
| 205 | /* Intentially using old-style flex array definition of 1 byte. */ |
| 206 | struct array_bounds_flex_array { |
| 207 | int one; |
| 208 | int two; |
| 209 | char data[1]; |
| 210 | }; |
| 211 | |
| 212 | struct array_bounds { |
| 213 | int one; |
| 214 | int two; |
| 215 | char data[8]; |
| 216 | int three; |
| 217 | }; |
| 218 | |
| 219 | void lkdtm_ARRAY_BOUNDS(void) |
| 220 | { |
| 221 | struct array_bounds_flex_array *not_checked; |
| 222 | struct array_bounds *checked; |
| 223 | volatile int i; |
| 224 | |
| 225 | not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL); |
| 226 | checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL); |
| 227 | |
| 228 | pr_info("Array access within bounds ...\n"); |
| 229 | /* For both, touch all bytes in the actual member size. */ |
| 230 | for (i = 0; i < sizeof(checked->data); i++) |
| 231 | checked->data[i] = 'A'; |
| 232 | /* |
| 233 | * For the uninstrumented flex array member, also touch 1 byte |
| 234 | * beyond to verify it is correctly uninstrumented. |
| 235 | */ |
| 236 | for (i = 0; i < sizeof(not_checked->data) + 1; i++) |
| 237 | not_checked->data[i] = 'A'; |
| 238 | |
| 239 | pr_info("Array access beyond bounds ...\n"); |
| 240 | for (i = 0; i < sizeof(checked->data) + 1; i++) |
| 241 | checked->data[i] = 'B'; |
| 242 | |
| 243 | kfree(not_checked); |
| 244 | kfree(checked); |
| 245 | } |
| 246 | |
| 247 | void lkdtm_CORRUPT_LIST_ADD(void) |
| 248 | { |
| 249 | /* |
| 250 | * Initially, an empty list via LIST_HEAD: |
| 251 | * test_head.next = &test_head |
| 252 | * test_head.prev = &test_head |
| 253 | */ |
| 254 | LIST_HEAD(test_head); |
| 255 | struct lkdtm_list good, bad; |
| 256 | void *target[2] = { }; |
| 257 | void *redirection = ⌖ |
| 258 | |
| 259 | pr_info("attempting good list addition\n"); |
| 260 | |
| 261 | /* |
| 262 | * Adding to the list performs these actions: |
| 263 | * test_head.next->prev = &good.node |
| 264 | * good.node.next = test_head.next |
| 265 | * good.node.prev = test_head |
| 266 | * test_head.next = good.node |
| 267 | */ |
| 268 | list_add(&good.node, &test_head); |
| 269 | |
| 270 | pr_info("attempting corrupted list addition\n"); |
| 271 | /* |
| 272 | * In simulating this "write what where" primitive, the "what" is |
| 273 | * the address of &bad.node, and the "where" is the address held |
| 274 | * by "redirection". |
| 275 | */ |
| 276 | test_head.next = redirection; |
| 277 | list_add(&bad.node, &test_head); |
| 278 | |
| 279 | if (target[0] == NULL && target[1] == NULL) |
| 280 | pr_err("Overwrite did not happen, but no BUG?!\n"); |
| 281 | else |
| 282 | pr_err("list_add() corruption not detected!\n"); |
| 283 | } |
| 284 | |
| 285 | void lkdtm_CORRUPT_LIST_DEL(void) |
| 286 | { |
| 287 | LIST_HEAD(test_head); |
| 288 | struct lkdtm_list item; |
| 289 | void *target[2] = { }; |
| 290 | void *redirection = ⌖ |
| 291 | |
| 292 | list_add(&item.node, &test_head); |
| 293 | |
| 294 | pr_info("attempting good list removal\n"); |
| 295 | list_del(&item.node); |
| 296 | |
| 297 | pr_info("attempting corrupted list removal\n"); |
| 298 | list_add(&item.node, &test_head); |
| 299 | |
| 300 | /* As with the list_add() test above, this corrupts "next". */ |
| 301 | item.node.next = redirection; |
| 302 | list_del(&item.node); |
| 303 | |
| 304 | if (target[0] == NULL && target[1] == NULL) |
| 305 | pr_err("Overwrite did not happen, but no BUG?!\n"); |
| 306 | else |
| 307 | pr_err("list_del() corruption not detected!\n"); |
| 308 | } |
| 309 | |
| 310 | /* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */ |
| 311 | void lkdtm_CORRUPT_USER_DS(void) |
| 312 | { |
| 313 | pr_info("setting bad task size limit\n"); |
| 314 | set_fs(KERNEL_DS); |
| 315 | |
| 316 | /* Make sure we do not keep running with a KERNEL_DS! */ |
| 317 | force_sig(SIGKILL); |
| 318 | } |
| 319 | |
| 320 | /* Test that VMAP_STACK is actually allocating with a leading guard page */ |
| 321 | void lkdtm_STACK_GUARD_PAGE_LEADING(void) |
| 322 | { |
| 323 | const unsigned char *stack = task_stack_page(current); |
| 324 | const unsigned char *ptr = stack - 1; |
| 325 | volatile unsigned char byte; |
| 326 | |
| 327 | pr_info("attempting bad read from page below current stack\n"); |
| 328 | |
| 329 | byte = *ptr; |
| 330 | |
| 331 | pr_err("FAIL: accessed page before stack!\n"); |
| 332 | } |
| 333 | |
| 334 | /* Test that VMAP_STACK is actually allocating with a trailing guard page */ |
| 335 | void lkdtm_STACK_GUARD_PAGE_TRAILING(void) |
| 336 | { |
| 337 | const unsigned char *stack = task_stack_page(current); |
| 338 | const unsigned char *ptr = stack + THREAD_SIZE; |
| 339 | volatile unsigned char byte; |
| 340 | |
| 341 | pr_info("attempting bad read from page above current stack\n"); |
| 342 | |
| 343 | byte = *ptr; |
| 344 | |
| 345 | pr_err("FAIL: accessed page after stack!\n"); |
| 346 | } |
| 347 | |
| 348 | void lkdtm_UNSET_SMEP(void) |
| 349 | { |
| 350 | #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML) |
| 351 | #define MOV_CR4_DEPTH 64 |
| 352 | void (*direct_write_cr4)(unsigned long val); |
| 353 | unsigned char *insn; |
| 354 | unsigned long cr4; |
| 355 | int i; |
| 356 | |
| 357 | cr4 = native_read_cr4(); |
| 358 | |
| 359 | if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) { |
| 360 | pr_err("FAIL: SMEP not in use\n"); |
| 361 | return; |
| 362 | } |
| 363 | cr4 &= ~(X86_CR4_SMEP); |
| 364 | |
| 365 | pr_info("trying to clear SMEP normally\n"); |
| 366 | native_write_cr4(cr4); |
| 367 | if (cr4 == native_read_cr4()) { |
| 368 | pr_err("FAIL: pinning SMEP failed!\n"); |
| 369 | cr4 |= X86_CR4_SMEP; |
| 370 | pr_info("restoring SMEP\n"); |
| 371 | native_write_cr4(cr4); |
| 372 | return; |
| 373 | } |
| 374 | pr_info("ok: SMEP did not get cleared\n"); |
| 375 | |
| 376 | /* |
| 377 | * To test the post-write pinning verification we need to call |
| 378 | * directly into the middle of native_write_cr4() where the |
| 379 | * cr4 write happens, skipping any pinning. This searches for |
| 380 | * the cr4 writing instruction. |
| 381 | */ |
| 382 | insn = (unsigned char *)native_write_cr4; |
| 383 | for (i = 0; i < MOV_CR4_DEPTH; i++) { |
| 384 | /* mov %rdi, %cr4 */ |
| 385 | if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7) |
| 386 | break; |
| 387 | /* mov %rdi,%rax; mov %rax, %cr4 */ |
| 388 | if (insn[i] == 0x48 && insn[i+1] == 0x89 && |
| 389 | insn[i+2] == 0xf8 && insn[i+3] == 0x0f && |
| 390 | insn[i+4] == 0x22 && insn[i+5] == 0xe0) |
| 391 | break; |
| 392 | } |
| 393 | if (i >= MOV_CR4_DEPTH) { |
| 394 | pr_info("ok: cannot locate cr4 writing call gadget\n"); |
| 395 | return; |
| 396 | } |
| 397 | direct_write_cr4 = (void *)(insn + i); |
| 398 | |
| 399 | pr_info("trying to clear SMEP with call gadget\n"); |
| 400 | direct_write_cr4(cr4); |
| 401 | if (native_read_cr4() & X86_CR4_SMEP) { |
| 402 | pr_info("ok: SMEP removal was reverted\n"); |
| 403 | } else { |
| 404 | pr_err("FAIL: cleared SMEP not detected!\n"); |
| 405 | cr4 |= X86_CR4_SMEP; |
| 406 | pr_info("restoring SMEP\n"); |
| 407 | native_write_cr4(cr4); |
| 408 | } |
| 409 | #else |
| 410 | pr_err("FAIL: this test is x86_64-only\n"); |
| 411 | #endif |
| 412 | } |