blob: 8930dbd13c65803fb0bc16869e5412c10a5f23d5 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
4 *
5 * Copyright (c) 2016 BayLibre, SAS.
6 * Author: Kevin Hilman <khilman@baylibre.com>
7 */
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/iopoll.h>
14#include <linux/of_device.h>
15#include <linux/platform_device.h>
16#include <linux/ioport.h>
17#include <linux/dma-mapping.h>
18#include <linux/mmc/host.h>
19#include <linux/mmc/mmc.h>
20#include <linux/mmc/sdio.h>
21#include <linux/mmc/slot-gpio.h>
22#include <linux/io.h>
23#include <linux/clk.h>
24#include <linux/clk-provider.h>
25#include <linux/regulator/consumer.h>
26#include <linux/reset.h>
27#include <linux/interrupt.h>
28#include <linux/bitfield.h>
29#include <linux/pinctrl/consumer.h>
30
31#define DRIVER_NAME "meson-gx-mmc"
32
33#define SD_EMMC_CLOCK 0x0
34#define CLK_DIV_MASK GENMASK(5, 0)
35#define CLK_SRC_MASK GENMASK(7, 6)
36#define CLK_CORE_PHASE_MASK GENMASK(9, 8)
37#define CLK_TX_PHASE_MASK GENMASK(11, 10)
38#define CLK_RX_PHASE_MASK GENMASK(13, 12)
39#define CLK_PHASE_0 0
40#define CLK_PHASE_180 2
41#define CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
42#define CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
43#define CLK_V2_ALWAYS_ON BIT(24)
44
45#define CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
46#define CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
47#define CLK_V3_ALWAYS_ON BIT(28)
48
49#define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask)
50#define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask)
51#define CLK_ALWAYS_ON(h) (h->data->always_on)
52
53#define SD_EMMC_DELAY 0x4
54#define SD_EMMC_ADJUST 0x8
55#define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
56#define ADJUST_DS_EN BIT(15)
57#define ADJUST_ADJ_EN BIT(13)
58
59#define SD_EMMC_DELAY1 0x4
60#define SD_EMMC_DELAY2 0x8
61#define SD_EMMC_V3_ADJUST 0xc
62
63#define SD_EMMC_CALOUT 0x10
64#define SD_EMMC_START 0x40
65#define START_DESC_INIT BIT(0)
66#define START_DESC_BUSY BIT(1)
67#define START_DESC_ADDR_MASK GENMASK(31, 2)
68
69#define SD_EMMC_CFG 0x44
70#define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
71#define CFG_BUS_WIDTH_1 0x0
72#define CFG_BUS_WIDTH_4 0x1
73#define CFG_BUS_WIDTH_8 0x2
74#define CFG_DDR BIT(2)
75#define CFG_BLK_LEN_MASK GENMASK(7, 4)
76#define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
77#define CFG_RC_CC_MASK GENMASK(15, 12)
78#define CFG_STOP_CLOCK BIT(22)
79#define CFG_CLK_ALWAYS_ON BIT(18)
80#define CFG_CHK_DS BIT(20)
81#define CFG_AUTO_CLK BIT(23)
82#define CFG_ERR_ABORT BIT(27)
83
84#define SD_EMMC_STATUS 0x48
85#define STATUS_BUSY BIT(31)
86#define STATUS_DESC_BUSY BIT(30)
87#define STATUS_DATI GENMASK(23, 16)
88
89#define SD_EMMC_IRQ_EN 0x4c
90#define IRQ_RXD_ERR_MASK GENMASK(7, 0)
91#define IRQ_TXD_ERR BIT(8)
92#define IRQ_DESC_ERR BIT(9)
93#define IRQ_RESP_ERR BIT(10)
94#define IRQ_CRC_ERR \
95 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
96#define IRQ_RESP_TIMEOUT BIT(11)
97#define IRQ_DESC_TIMEOUT BIT(12)
98#define IRQ_TIMEOUTS \
99 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
100#define IRQ_END_OF_CHAIN BIT(13)
101#define IRQ_RESP_STATUS BIT(14)
102#define IRQ_SDIO BIT(15)
103#define IRQ_EN_MASK \
104 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
105 IRQ_SDIO)
106
107#define SD_EMMC_CMD_CFG 0x50
108#define SD_EMMC_CMD_ARG 0x54
109#define SD_EMMC_CMD_DAT 0x58
110#define SD_EMMC_CMD_RSP 0x5c
111#define SD_EMMC_CMD_RSP1 0x60
112#define SD_EMMC_CMD_RSP2 0x64
113#define SD_EMMC_CMD_RSP3 0x68
114
115#define SD_EMMC_RXD 0x94
116#define SD_EMMC_TXD 0x94
117#define SD_EMMC_LAST_REG SD_EMMC_TXD
118
119#define SD_EMMC_SRAM_DATA_BUF_LEN 1536
120#define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
121
122#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
123#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
124#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
125#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
126#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
127#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
128
129#define SD_EMMC_PRE_REQ_DONE BIT(0)
130#define SD_EMMC_DESC_CHAIN_MODE BIT(1)
131
132#define MUX_CLK_NUM_PARENTS 2
133
134struct meson_mmc_data {
135 unsigned int tx_delay_mask;
136 unsigned int rx_delay_mask;
137 unsigned int always_on;
138 unsigned int adjust;
139};
140
141struct sd_emmc_desc {
142 u32 cmd_cfg;
143 u32 cmd_arg;
144 u32 cmd_data;
145 u32 cmd_resp;
146};
147
148struct meson_host {
149 struct device *dev;
150 struct meson_mmc_data *data;
151 struct mmc_host *mmc;
152 struct mmc_command *cmd;
153
154 void __iomem *regs;
155 struct clk *core_clk;
156 struct clk *mux_clk;
157 struct clk *mmc_clk;
158 unsigned long req_rate;
159 bool ddr;
160
161 bool dram_access_quirk;
162
163 struct pinctrl *pinctrl;
164 struct pinctrl_state *pins_default;
165 struct pinctrl_state *pins_clk_gate;
166
167 unsigned int bounce_buf_size;
168 void *bounce_buf;
169 void __iomem *bounce_iomem_buf;
170 dma_addr_t bounce_dma_addr;
171 struct sd_emmc_desc *descs;
172 dma_addr_t descs_dma_addr;
173
174 int irq;
175
176 bool vqmmc_enabled;
177 bool needs_pre_post_req;
178
179};
180
181#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
182#define CMD_CFG_BLOCK_MODE BIT(9)
183#define CMD_CFG_R1B BIT(10)
184#define CMD_CFG_END_OF_CHAIN BIT(11)
185#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
186#define CMD_CFG_NO_RESP BIT(16)
187#define CMD_CFG_NO_CMD BIT(17)
188#define CMD_CFG_DATA_IO BIT(18)
189#define CMD_CFG_DATA_WR BIT(19)
190#define CMD_CFG_RESP_NOCRC BIT(20)
191#define CMD_CFG_RESP_128 BIT(21)
192#define CMD_CFG_RESP_NUM BIT(22)
193#define CMD_CFG_DATA_NUM BIT(23)
194#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
195#define CMD_CFG_ERROR BIT(30)
196#define CMD_CFG_OWNER BIT(31)
197
198#define CMD_DATA_MASK GENMASK(31, 2)
199#define CMD_DATA_BIG_ENDIAN BIT(1)
200#define CMD_DATA_SRAM BIT(0)
201#define CMD_RESP_MASK GENMASK(31, 1)
202#define CMD_RESP_SRAM BIT(0)
203
204static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
205{
206 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
207
208 if (!timeout)
209 return SD_EMMC_CMD_TIMEOUT_DATA;
210
211 timeout = roundup_pow_of_two(timeout);
212
213 return min(timeout, 32768U); /* max. 2^15 ms */
214}
215
216static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
217{
218 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
219 return cmd->mrq->cmd;
220 else if (mmc_op_multi(cmd->opcode) &&
221 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
222 return cmd->mrq->stop;
223 else
224 return NULL;
225}
226
227static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
228 struct mmc_request *mrq)
229{
230 struct meson_host *host = mmc_priv(mmc);
231 struct mmc_data *data = mrq->data;
232 struct scatterlist *sg;
233 int i;
234 bool use_desc_chain_mode = true;
235
236 /*
237 * When Controller DMA cannot directly access DDR memory, disable
238 * support for Chain Mode to directly use the internal SRAM using
239 * the bounce buffer mode.
240 */
241 if (host->dram_access_quirk)
242 return;
243
244 /*
245 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
246 * reported. For some strange reason this occurs in descriptor
247 * chain mode only. So let's fall back to bounce buffer mode
248 * for command SD_IO_RW_EXTENDED.
249 */
250 if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
251 return;
252
253 for_each_sg(data->sg, sg, data->sg_len, i)
254 /* check for 8 byte alignment */
255 if (sg->offset & 7) {
256 WARN_ONCE(1, "unaligned scatterlist buffer\n");
257 use_desc_chain_mode = false;
258 break;
259 }
260
261 if (use_desc_chain_mode)
262 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
263}
264
265static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
266{
267 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
268}
269
270static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
271{
272 return data && data->flags & MMC_DATA_READ &&
273 !meson_mmc_desc_chain_mode(data);
274}
275
276static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
277{
278 struct mmc_data *data = mrq->data;
279
280 if (!data)
281 return;
282
283 meson_mmc_get_transfer_mode(mmc, mrq);
284 data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
285
286 if (!meson_mmc_desc_chain_mode(data))
287 return;
288
289 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
290 mmc_get_dma_dir(data));
291 if (!data->sg_count)
292 dev_err(mmc_dev(mmc), "dma_map_sg failed");
293}
294
295static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
296 int err)
297{
298 struct mmc_data *data = mrq->data;
299
300 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
301 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
302 mmc_get_dma_dir(data));
303}
304
305/*
306 * Gating the clock on this controller is tricky. It seems the mmc clock
307 * is also used by the controller. It may crash during some operation if the
308 * clock is stopped. The safest thing to do, whenever possible, is to keep
309 * clock running at stop it at the pad using the pinmux.
310 */
311static void meson_mmc_clk_gate(struct meson_host *host)
312{
313 u32 cfg;
314
315 if (host->pins_clk_gate) {
316 pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
317 } else {
318 /*
319 * If the pinmux is not provided - default to the classic and
320 * unsafe method
321 */
322 cfg = readl(host->regs + SD_EMMC_CFG);
323 cfg |= CFG_STOP_CLOCK;
324 writel(cfg, host->regs + SD_EMMC_CFG);
325 }
326}
327
328static void meson_mmc_clk_ungate(struct meson_host *host)
329{
330 u32 cfg;
331
332 if (host->pins_clk_gate)
333 pinctrl_select_state(host->pinctrl, host->pins_default);
334
335 /* Make sure the clock is not stopped in the controller */
336 cfg = readl(host->regs + SD_EMMC_CFG);
337 cfg &= ~CFG_STOP_CLOCK;
338 writel(cfg, host->regs + SD_EMMC_CFG);
339}
340
341static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
342 bool ddr)
343{
344 struct mmc_host *mmc = host->mmc;
345 int ret;
346 u32 cfg;
347
348 /* Same request - bail-out */
349 if (host->ddr == ddr && host->req_rate == rate)
350 return 0;
351
352 /* stop clock */
353 meson_mmc_clk_gate(host);
354 host->req_rate = 0;
355 mmc->actual_clock = 0;
356
357 /* return with clock being stopped */
358 if (!rate)
359 return 0;
360
361 /* Stop the clock during rate change to avoid glitches */
362 cfg = readl(host->regs + SD_EMMC_CFG);
363 cfg |= CFG_STOP_CLOCK;
364 writel(cfg, host->regs + SD_EMMC_CFG);
365
366 if (ddr) {
367 /* DDR modes require higher module clock */
368 rate <<= 1;
369 cfg |= CFG_DDR;
370 } else {
371 cfg &= ~CFG_DDR;
372 }
373 writel(cfg, host->regs + SD_EMMC_CFG);
374 host->ddr = ddr;
375
376 ret = clk_set_rate(host->mmc_clk, rate);
377 if (ret) {
378 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
379 rate, ret);
380 return ret;
381 }
382
383 host->req_rate = rate;
384 mmc->actual_clock = clk_get_rate(host->mmc_clk);
385
386 /* We should report the real output frequency of the controller */
387 if (ddr) {
388 host->req_rate >>= 1;
389 mmc->actual_clock >>= 1;
390 }
391
392 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
393 if (rate != mmc->actual_clock)
394 dev_dbg(host->dev, "requested rate was %lu\n", rate);
395
396 /* (re)start clock */
397 meson_mmc_clk_ungate(host);
398
399 return 0;
400}
401
402/*
403 * The SD/eMMC IP block has an internal mux and divider used for
404 * generating the MMC clock. Use the clock framework to create and
405 * manage these clocks.
406 */
407static int meson_mmc_clk_init(struct meson_host *host)
408{
409 struct clk_init_data init;
410 struct clk_mux *mux;
411 struct clk_divider *div;
412 char clk_name[32];
413 int i, ret = 0;
414 const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
415 const char *clk_parent[1];
416 u32 clk_reg;
417
418 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
419 clk_reg = CLK_ALWAYS_ON(host);
420 clk_reg |= CLK_DIV_MASK;
421 clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
422 clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
423 clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
424 writel(clk_reg, host->regs + SD_EMMC_CLOCK);
425
426 /* get the mux parents */
427 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
428 struct clk *clk;
429 char name[16];
430
431 snprintf(name, sizeof(name), "clkin%d", i);
432 clk = devm_clk_get(host->dev, name);
433 if (IS_ERR(clk)) {
434 if (clk != ERR_PTR(-EPROBE_DEFER))
435 dev_err(host->dev, "Missing clock %s\n", name);
436 return PTR_ERR(clk);
437 }
438
439 mux_parent_names[i] = __clk_get_name(clk);
440 }
441
442 /* create the mux */
443 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
444 if (!mux)
445 return -ENOMEM;
446
447 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
448 init.name = clk_name;
449 init.ops = &clk_mux_ops;
450 init.flags = 0;
451 init.parent_names = mux_parent_names;
452 init.num_parents = MUX_CLK_NUM_PARENTS;
453
454 mux->reg = host->regs + SD_EMMC_CLOCK;
455 mux->shift = __ffs(CLK_SRC_MASK);
456 mux->mask = CLK_SRC_MASK >> mux->shift;
457 mux->hw.init = &init;
458
459 host->mux_clk = devm_clk_register(host->dev, &mux->hw);
460 if (WARN_ON(IS_ERR(host->mux_clk)))
461 return PTR_ERR(host->mux_clk);
462
463 /* create the divider */
464 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
465 if (!div)
466 return -ENOMEM;
467
468 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
469 init.name = clk_name;
470 init.ops = &clk_divider_ops;
471 init.flags = CLK_SET_RATE_PARENT;
472 clk_parent[0] = __clk_get_name(host->mux_clk);
473 init.parent_names = clk_parent;
474 init.num_parents = 1;
475
476 div->reg = host->regs + SD_EMMC_CLOCK;
477 div->shift = __ffs(CLK_DIV_MASK);
478 div->width = __builtin_popcountl(CLK_DIV_MASK);
479 div->hw.init = &init;
480 div->flags = CLK_DIVIDER_ONE_BASED;
481
482 host->mmc_clk = devm_clk_register(host->dev, &div->hw);
483 if (WARN_ON(IS_ERR(host->mmc_clk)))
484 return PTR_ERR(host->mmc_clk);
485
486 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
487 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
488 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
489 if (ret)
490 return ret;
491
492 return clk_prepare_enable(host->mmc_clk);
493}
494
495static void meson_mmc_disable_resampling(struct meson_host *host)
496{
497 unsigned int val = readl(host->regs + host->data->adjust);
498
499 val &= ~ADJUST_ADJ_EN;
500 writel(val, host->regs + host->data->adjust);
501}
502
503static void meson_mmc_reset_resampling(struct meson_host *host)
504{
505 unsigned int val;
506
507 meson_mmc_disable_resampling(host);
508
509 val = readl(host->regs + host->data->adjust);
510 val &= ~ADJUST_ADJ_DELAY_MASK;
511 writel(val, host->regs + host->data->adjust);
512}
513
514static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
515{
516 struct meson_host *host = mmc_priv(mmc);
517 unsigned int val, dly, max_dly, i;
518 int ret;
519
520 /* Resampling is done using the source clock */
521 max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
522 clk_get_rate(host->mmc_clk));
523
524 val = readl(host->regs + host->data->adjust);
525 val |= ADJUST_ADJ_EN;
526 writel(val, host->regs + host->data->adjust);
527
528 if (mmc->doing_retune)
529 dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
530 else
531 dly = 0;
532
533 for (i = 0; i < max_dly; i++) {
534 val &= ~ADJUST_ADJ_DELAY_MASK;
535 val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
536 writel(val, host->regs + host->data->adjust);
537
538 ret = mmc_send_tuning(mmc, opcode, NULL);
539 if (!ret) {
540 dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
541 (dly + i) % max_dly);
542 return 0;
543 }
544 }
545
546 meson_mmc_reset_resampling(host);
547 return -EIO;
548}
549
550static int meson_mmc_prepare_ios_clock(struct meson_host *host,
551 struct mmc_ios *ios)
552{
553 bool ddr;
554
555 switch (ios->timing) {
556 case MMC_TIMING_MMC_DDR52:
557 case MMC_TIMING_UHS_DDR50:
558 ddr = true;
559 break;
560
561 default:
562 ddr = false;
563 break;
564 }
565
566 return meson_mmc_clk_set(host, ios->clock, ddr);
567}
568
569static void meson_mmc_check_resampling(struct meson_host *host,
570 struct mmc_ios *ios)
571{
572 switch (ios->timing) {
573 case MMC_TIMING_LEGACY:
574 case MMC_TIMING_MMC_HS:
575 case MMC_TIMING_SD_HS:
576 case MMC_TIMING_MMC_DDR52:
577 meson_mmc_disable_resampling(host);
578 break;
579 }
580}
581
582static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
583{
584 struct meson_host *host = mmc_priv(mmc);
585 u32 bus_width, val;
586 int err;
587
588 /*
589 * GPIO regulator, only controls switching between 1v8 and
590 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
591 */
592 switch (ios->power_mode) {
593 case MMC_POWER_OFF:
594 if (!IS_ERR(mmc->supply.vmmc))
595 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
596
597 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
598 regulator_disable(mmc->supply.vqmmc);
599 host->vqmmc_enabled = false;
600 }
601
602 break;
603
604 case MMC_POWER_UP:
605 if (!IS_ERR(mmc->supply.vmmc))
606 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
607
608 break;
609
610 case MMC_POWER_ON:
611 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
612 int ret = regulator_enable(mmc->supply.vqmmc);
613
614 if (ret < 0)
615 dev_err(host->dev,
616 "failed to enable vqmmc regulator\n");
617 else
618 host->vqmmc_enabled = true;
619 }
620
621 break;
622 }
623
624 /* Bus width */
625 switch (ios->bus_width) {
626 case MMC_BUS_WIDTH_1:
627 bus_width = CFG_BUS_WIDTH_1;
628 break;
629 case MMC_BUS_WIDTH_4:
630 bus_width = CFG_BUS_WIDTH_4;
631 break;
632 case MMC_BUS_WIDTH_8:
633 bus_width = CFG_BUS_WIDTH_8;
634 break;
635 default:
636 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
637 ios->bus_width);
638 bus_width = CFG_BUS_WIDTH_4;
639 }
640
641 val = readl(host->regs + SD_EMMC_CFG);
642 val &= ~CFG_BUS_WIDTH_MASK;
643 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
644 writel(val, host->regs + SD_EMMC_CFG);
645
646 meson_mmc_check_resampling(host, ios);
647 err = meson_mmc_prepare_ios_clock(host, ios);
648 if (err)
649 dev_err(host->dev, "Failed to set clock: %d\n,", err);
650
651 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
652}
653
654static void meson_mmc_request_done(struct mmc_host *mmc,
655 struct mmc_request *mrq)
656{
657 struct meson_host *host = mmc_priv(mmc);
658
659 host->cmd = NULL;
660 if (host->needs_pre_post_req)
661 meson_mmc_post_req(mmc, mrq, 0);
662 mmc_request_done(host->mmc, mrq);
663}
664
665static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
666{
667 struct meson_host *host = mmc_priv(mmc);
668 u32 cfg, blksz_old;
669
670 cfg = readl(host->regs + SD_EMMC_CFG);
671 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
672
673 if (!is_power_of_2(blksz))
674 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
675
676 blksz = ilog2(blksz);
677
678 /* check if block-size matches, if not update */
679 if (blksz == blksz_old)
680 return;
681
682 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
683 blksz_old, blksz);
684
685 cfg &= ~CFG_BLK_LEN_MASK;
686 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
687 writel(cfg, host->regs + SD_EMMC_CFG);
688}
689
690static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
691{
692 if (cmd->flags & MMC_RSP_PRESENT) {
693 if (cmd->flags & MMC_RSP_136)
694 *cmd_cfg |= CMD_CFG_RESP_128;
695 *cmd_cfg |= CMD_CFG_RESP_NUM;
696
697 if (!(cmd->flags & MMC_RSP_CRC))
698 *cmd_cfg |= CMD_CFG_RESP_NOCRC;
699
700 if (cmd->flags & MMC_RSP_BUSY)
701 *cmd_cfg |= CMD_CFG_R1B;
702 } else {
703 *cmd_cfg |= CMD_CFG_NO_RESP;
704 }
705}
706
707static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
708{
709 struct meson_host *host = mmc_priv(mmc);
710 struct sd_emmc_desc *desc = host->descs;
711 struct mmc_data *data = host->cmd->data;
712 struct scatterlist *sg;
713 u32 start;
714 int i;
715
716 if (data->flags & MMC_DATA_WRITE)
717 cmd_cfg |= CMD_CFG_DATA_WR;
718
719 if (data->blocks > 1) {
720 cmd_cfg |= CMD_CFG_BLOCK_MODE;
721 meson_mmc_set_blksz(mmc, data->blksz);
722 }
723
724 for_each_sg(data->sg, sg, data->sg_count, i) {
725 unsigned int len = sg_dma_len(sg);
726
727 if (data->blocks > 1)
728 len /= data->blksz;
729
730 desc[i].cmd_cfg = cmd_cfg;
731 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
732 if (i > 0)
733 desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
734 desc[i].cmd_arg = host->cmd->arg;
735 desc[i].cmd_resp = 0;
736 desc[i].cmd_data = sg_dma_address(sg);
737 }
738 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
739
740 dma_wmb(); /* ensure descriptor is written before kicked */
741 start = host->descs_dma_addr | START_DESC_BUSY;
742 writel(start, host->regs + SD_EMMC_START);
743}
744
745/* local sg copy for dram_access_quirk */
746static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data,
747 size_t buflen, bool to_buffer)
748{
749 unsigned int sg_flags = SG_MITER_ATOMIC;
750 struct scatterlist *sgl = data->sg;
751 unsigned int nents = data->sg_len;
752 struct sg_mapping_iter miter;
753 unsigned int offset = 0;
754
755 if (to_buffer)
756 sg_flags |= SG_MITER_FROM_SG;
757 else
758 sg_flags |= SG_MITER_TO_SG;
759
760 sg_miter_start(&miter, sgl, nents, sg_flags);
761
762 while ((offset < buflen) && sg_miter_next(&miter)) {
763 unsigned int buf_offset = 0;
764 unsigned int len, left;
765 u32 *buf = miter.addr;
766
767 len = min(miter.length, buflen - offset);
768 left = len;
769
770 if (to_buffer) {
771 do {
772 writel(*buf++, host->bounce_iomem_buf + offset + buf_offset);
773
774 buf_offset += 4;
775 left -= 4;
776 } while (left);
777 } else {
778 do {
779 *buf++ = readl(host->bounce_iomem_buf + offset + buf_offset);
780
781 buf_offset += 4;
782 left -= 4;
783 } while (left);
784 }
785
786 offset += len;
787 }
788
789 sg_miter_stop(&miter);
790}
791
792static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
793{
794 struct meson_host *host = mmc_priv(mmc);
795 struct mmc_data *data = cmd->data;
796 u32 cmd_cfg = 0, cmd_data = 0;
797 unsigned int xfer_bytes = 0;
798
799 /* Setup descriptors */
800 dma_rmb();
801
802 host->cmd = cmd;
803
804 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
805 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
806
807 meson_mmc_set_response_bits(cmd, &cmd_cfg);
808
809 /* data? */
810 if (data) {
811 data->bytes_xfered = 0;
812 cmd_cfg |= CMD_CFG_DATA_IO;
813 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
814 ilog2(meson_mmc_get_timeout_msecs(data)));
815
816 if (meson_mmc_desc_chain_mode(data)) {
817 meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
818 return;
819 }
820
821 if (data->blocks > 1) {
822 cmd_cfg |= CMD_CFG_BLOCK_MODE;
823 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
824 data->blocks);
825 meson_mmc_set_blksz(mmc, data->blksz);
826 } else {
827 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
828 }
829
830 xfer_bytes = data->blksz * data->blocks;
831 if (data->flags & MMC_DATA_WRITE) {
832 cmd_cfg |= CMD_CFG_DATA_WR;
833 WARN_ON(xfer_bytes > host->bounce_buf_size);
834 if (host->dram_access_quirk)
835 meson_mmc_copy_buffer(host, data, xfer_bytes, true);
836 else
837 sg_copy_to_buffer(data->sg, data->sg_len,
838 host->bounce_buf, xfer_bytes);
839 dma_wmb();
840 }
841
842 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
843 } else {
844 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
845 ilog2(SD_EMMC_CMD_TIMEOUT));
846 }
847
848 /* Last descriptor */
849 cmd_cfg |= CMD_CFG_END_OF_CHAIN;
850 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
851 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
852 writel(0, host->regs + SD_EMMC_CMD_RSP);
853 wmb(); /* ensure descriptor is written before kicked */
854 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
855}
856
857static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data)
858{
859 struct scatterlist *sg;
860 int i;
861
862 /* Reject request if any element offset or size is not 32bit aligned */
863 for_each_sg(data->sg, sg, data->sg_len, i) {
864 if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
865 !IS_ALIGNED(sg->length, sizeof(u32))) {
866 dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n",
867 data->sg->offset, data->sg->length);
868 return -EINVAL;
869 }
870 }
871
872 return 0;
873}
874
875static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
876{
877 struct meson_host *host = mmc_priv(mmc);
878 host->needs_pre_post_req = mrq->data &&
879 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
880
881 /*
882 * The memory at the end of the controller used as bounce buffer for
883 * the dram_access_quirk only accepts 32bit read/write access,
884 * check the aligment and length of the data before starting the request.
885 */
886 if (host->dram_access_quirk && mrq->data) {
887 mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data);
888 if (mrq->cmd->error) {
889 mmc_request_done(mmc, mrq);
890 return;
891 }
892 }
893
894 if (host->needs_pre_post_req) {
895 meson_mmc_get_transfer_mode(mmc, mrq);
896 if (!meson_mmc_desc_chain_mode(mrq->data))
897 host->needs_pre_post_req = false;
898 }
899
900 if (host->needs_pre_post_req)
901 meson_mmc_pre_req(mmc, mrq);
902
903 /* Stop execution */
904 writel(0, host->regs + SD_EMMC_START);
905
906 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
907}
908
909static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
910{
911 struct meson_host *host = mmc_priv(mmc);
912
913 if (cmd->flags & MMC_RSP_136) {
914 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
915 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
916 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
917 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
918 } else if (cmd->flags & MMC_RSP_PRESENT) {
919 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
920 }
921}
922
923static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
924{
925 struct meson_host *host = dev_id;
926 struct mmc_command *cmd;
927 struct mmc_data *data;
928 u32 irq_en, status, raw_status;
929 irqreturn_t ret = IRQ_NONE;
930
931 irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
932 raw_status = readl(host->regs + SD_EMMC_STATUS);
933 status = raw_status & irq_en;
934
935 if (!status) {
936 dev_dbg(host->dev,
937 "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
938 irq_en, raw_status);
939 return IRQ_NONE;
940 }
941
942 if (WARN_ON(!host) || WARN_ON(!host->cmd))
943 return IRQ_NONE;
944
945 /* ack all raised interrupts */
946 writel(status, host->regs + SD_EMMC_STATUS);
947
948 cmd = host->cmd;
949 data = cmd->data;
950 cmd->error = 0;
951 if (status & IRQ_CRC_ERR) {
952 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
953 cmd->error = -EILSEQ;
954 ret = IRQ_WAKE_THREAD;
955 goto out;
956 }
957
958 if (status & IRQ_TIMEOUTS) {
959 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
960 cmd->error = -ETIMEDOUT;
961 ret = IRQ_WAKE_THREAD;
962 goto out;
963 }
964
965 meson_mmc_read_resp(host->mmc, cmd);
966
967 if (status & IRQ_SDIO) {
968 dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
969 ret = IRQ_HANDLED;
970 }
971
972 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
973 if (data && !cmd->error)
974 data->bytes_xfered = data->blksz * data->blocks;
975
976 return IRQ_WAKE_THREAD;
977 }
978
979out:
980 if (cmd->error) {
981 /* Stop desc in case of errors */
982 u32 start = readl(host->regs + SD_EMMC_START);
983
984 start &= ~START_DESC_BUSY;
985 writel(start, host->regs + SD_EMMC_START);
986 }
987
988 return ret;
989}
990
991static int meson_mmc_wait_desc_stop(struct meson_host *host)
992{
993 u32 status;
994
995 /*
996 * It may sometimes take a while for it to actually halt. Here, we
997 * are giving it 5ms to comply
998 *
999 * If we don't confirm the descriptor is stopped, it might raise new
1000 * IRQs after we have called mmc_request_done() which is bad.
1001 */
1002
1003 return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
1004 !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
1005 100, 5000);
1006}
1007
1008static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
1009{
1010 struct meson_host *host = dev_id;
1011 struct mmc_command *next_cmd, *cmd = host->cmd;
1012 struct mmc_data *data;
1013 unsigned int xfer_bytes;
1014
1015 if (WARN_ON(!cmd))
1016 return IRQ_NONE;
1017
1018 if (cmd->error) {
1019 meson_mmc_wait_desc_stop(host);
1020 meson_mmc_request_done(host->mmc, cmd->mrq);
1021
1022 return IRQ_HANDLED;
1023 }
1024
1025 data = cmd->data;
1026 if (meson_mmc_bounce_buf_read(data)) {
1027 xfer_bytes = data->blksz * data->blocks;
1028 WARN_ON(xfer_bytes > host->bounce_buf_size);
1029 if (host->dram_access_quirk)
1030 meson_mmc_copy_buffer(host, data, xfer_bytes, false);
1031 else
1032 sg_copy_from_buffer(data->sg, data->sg_len,
1033 host->bounce_buf, xfer_bytes);
1034 }
1035
1036 next_cmd = meson_mmc_get_next_command(cmd);
1037 if (next_cmd)
1038 meson_mmc_start_cmd(host->mmc, next_cmd);
1039 else
1040 meson_mmc_request_done(host->mmc, cmd->mrq);
1041
1042 return IRQ_HANDLED;
1043}
1044
1045/*
1046 * NOTE: we only need this until the GPIO/pinctrl driver can handle
1047 * interrupts. For now, the MMC core will use this for polling.
1048 */
1049static int meson_mmc_get_cd(struct mmc_host *mmc)
1050{
1051 int status = mmc_gpio_get_cd(mmc);
1052
1053 if (status == -ENOSYS)
1054 return 1; /* assume present */
1055
1056 return status;
1057}
1058
1059static void meson_mmc_cfg_init(struct meson_host *host)
1060{
1061 u32 cfg = 0;
1062
1063 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
1064 ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
1065 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
1066 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1067
1068 /* abort chain on R/W errors */
1069 cfg |= CFG_ERR_ABORT;
1070
1071 writel(cfg, host->regs + SD_EMMC_CFG);
1072}
1073
1074static int meson_mmc_card_busy(struct mmc_host *mmc)
1075{
1076 struct meson_host *host = mmc_priv(mmc);
1077 u32 regval;
1078
1079 regval = readl(host->regs + SD_EMMC_STATUS);
1080
1081 /* We are only interrested in lines 0 to 3, so mask the other ones */
1082 return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1083}
1084
1085static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1086{
1087 /* vqmmc regulator is available */
1088 if (!IS_ERR(mmc->supply.vqmmc)) {
1089 /*
1090 * The usual amlogic setup uses a GPIO to switch from one
1091 * regulator to the other. While the voltage ramp up is
1092 * pretty fast, care must be taken when switching from 3.3v
1093 * to 1.8v. Please make sure the regulator framework is aware
1094 * of your own regulator constraints
1095 */
1096 return mmc_regulator_set_vqmmc(mmc, ios);
1097 }
1098
1099 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1100 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1101 return 0;
1102
1103 return -EINVAL;
1104}
1105
1106static const struct mmc_host_ops meson_mmc_ops = {
1107 .request = meson_mmc_request,
1108 .set_ios = meson_mmc_set_ios,
1109 .get_cd = meson_mmc_get_cd,
1110 .pre_req = meson_mmc_pre_req,
1111 .post_req = meson_mmc_post_req,
1112 .execute_tuning = meson_mmc_resampling_tuning,
1113 .card_busy = meson_mmc_card_busy,
1114 .start_signal_voltage_switch = meson_mmc_voltage_switch,
1115};
1116
1117static int meson_mmc_probe(struct platform_device *pdev)
1118{
1119 struct resource *res;
1120 struct meson_host *host;
1121 struct mmc_host *mmc;
1122 int ret;
1123
1124 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1125 if (!mmc)
1126 return -ENOMEM;
1127 host = mmc_priv(mmc);
1128 host->mmc = mmc;
1129 host->dev = &pdev->dev;
1130 dev_set_drvdata(&pdev->dev, host);
1131
1132 /* The G12A SDIO Controller needs an SRAM bounce buffer */
1133 host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1134 "amlogic,dram-access-quirk");
1135
1136 /* Get regulators and the supported OCR mask */
1137 host->vqmmc_enabled = false;
1138 ret = mmc_regulator_get_supply(mmc);
1139 if (ret)
1140 goto free_host;
1141
1142 ret = mmc_of_parse(mmc);
1143 if (ret) {
1144 if (ret != -EPROBE_DEFER)
1145 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1146 goto free_host;
1147 }
1148
1149 host->data = (struct meson_mmc_data *)
1150 of_device_get_match_data(&pdev->dev);
1151 if (!host->data) {
1152 ret = -EINVAL;
1153 goto free_host;
1154 }
1155
1156 ret = device_reset_optional(&pdev->dev);
1157 if (ret) {
1158 if (ret != -EPROBE_DEFER)
1159 dev_err(&pdev->dev, "device reset failed: %d\n", ret);
1160
1161 return ret;
1162 }
1163
1164 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1165 host->regs = devm_ioremap_resource(&pdev->dev, res);
1166 if (IS_ERR(host->regs)) {
1167 ret = PTR_ERR(host->regs);
1168 goto free_host;
1169 }
1170
1171 host->irq = platform_get_irq(pdev, 0);
1172 if (host->irq <= 0) {
1173 ret = -EINVAL;
1174 goto free_host;
1175 }
1176
1177 host->pinctrl = devm_pinctrl_get(&pdev->dev);
1178 if (IS_ERR(host->pinctrl)) {
1179 ret = PTR_ERR(host->pinctrl);
1180 goto free_host;
1181 }
1182
1183 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1184 PINCTRL_STATE_DEFAULT);
1185 if (IS_ERR(host->pins_default)) {
1186 ret = PTR_ERR(host->pins_default);
1187 goto free_host;
1188 }
1189
1190 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1191 "clk-gate");
1192 if (IS_ERR(host->pins_clk_gate)) {
1193 dev_warn(&pdev->dev,
1194 "can't get clk-gate pinctrl, using clk_stop bit\n");
1195 host->pins_clk_gate = NULL;
1196 }
1197
1198 host->core_clk = devm_clk_get(&pdev->dev, "core");
1199 if (IS_ERR(host->core_clk)) {
1200 ret = PTR_ERR(host->core_clk);
1201 goto free_host;
1202 }
1203
1204 ret = clk_prepare_enable(host->core_clk);
1205 if (ret)
1206 goto free_host;
1207
1208 ret = meson_mmc_clk_init(host);
1209 if (ret)
1210 goto err_core_clk;
1211
1212 /* set config to sane default */
1213 meson_mmc_cfg_init(host);
1214
1215 /* Stop execution */
1216 writel(0, host->regs + SD_EMMC_START);
1217
1218 /* clear, ack and enable interrupts */
1219 writel(0, host->regs + SD_EMMC_IRQ_EN);
1220 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1221 host->regs + SD_EMMC_STATUS);
1222 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1223 host->regs + SD_EMMC_IRQ_EN);
1224
1225 ret = request_threaded_irq(host->irq, meson_mmc_irq,
1226 meson_mmc_irq_thread, IRQF_ONESHOT,
1227 dev_name(&pdev->dev), host);
1228 if (ret)
1229 goto err_init_clk;
1230
1231 mmc->caps |= MMC_CAP_CMD23;
1232 if (host->dram_access_quirk) {
1233 /* Limit segments to 1 due to low available sram memory */
1234 mmc->max_segs = 1;
1235 /* Limit to the available sram memory */
1236 mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
1237 mmc->max_blk_size;
1238 } else {
1239 mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1240 mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1241 sizeof(struct sd_emmc_desc);
1242 }
1243 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1244 mmc->max_seg_size = mmc->max_req_size;
1245
1246 /*
1247 * At the moment, we don't know how to reliably enable HS400.
1248 * From the different datasheets, it is not even clear if this mode
1249 * is officially supported by any of the SoCs
1250 */
1251 mmc->caps2 &= ~MMC_CAP2_HS400;
1252
1253 if (host->dram_access_quirk) {
1254 /*
1255 * The MMC Controller embeds 1,5KiB of internal SRAM
1256 * that can be used to be used as bounce buffer.
1257 * In the case of the G12A SDIO controller, use these
1258 * instead of the DDR memory
1259 */
1260 host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1261 host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1262 host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1263 } else {
1264 /* data bounce buffer */
1265 host->bounce_buf_size = mmc->max_req_size;
1266 host->bounce_buf =
1267 dma_alloc_coherent(host->dev, host->bounce_buf_size,
1268 &host->bounce_dma_addr, GFP_KERNEL);
1269 if (host->bounce_buf == NULL) {
1270 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1271 ret = -ENOMEM;
1272 goto err_free_irq;
1273 }
1274 }
1275
1276 host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1277 &host->descs_dma_addr, GFP_KERNEL);
1278 if (!host->descs) {
1279 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1280 ret = -ENOMEM;
1281 goto err_bounce_buf;
1282 }
1283
1284 mmc->ops = &meson_mmc_ops;
1285 ret = mmc_add_host(mmc);
1286 if (ret)
1287 goto err_free_irq;
1288
1289 return 0;
1290
1291err_bounce_buf:
1292 if (!host->dram_access_quirk)
1293 dma_free_coherent(host->dev, host->bounce_buf_size,
1294 host->bounce_buf, host->bounce_dma_addr);
1295err_free_irq:
1296 free_irq(host->irq, host);
1297err_init_clk:
1298 clk_disable_unprepare(host->mmc_clk);
1299err_core_clk:
1300 clk_disable_unprepare(host->core_clk);
1301free_host:
1302 mmc_free_host(mmc);
1303 return ret;
1304}
1305
1306static int meson_mmc_remove(struct platform_device *pdev)
1307{
1308 struct meson_host *host = dev_get_drvdata(&pdev->dev);
1309
1310 mmc_remove_host(host->mmc);
1311
1312 /* disable interrupts */
1313 writel(0, host->regs + SD_EMMC_IRQ_EN);
1314 free_irq(host->irq, host);
1315
1316 dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1317 host->descs, host->descs_dma_addr);
1318
1319 if (!host->dram_access_quirk)
1320 dma_free_coherent(host->dev, host->bounce_buf_size,
1321 host->bounce_buf, host->bounce_dma_addr);
1322
1323 clk_disable_unprepare(host->mmc_clk);
1324 clk_disable_unprepare(host->core_clk);
1325
1326 mmc_free_host(host->mmc);
1327 return 0;
1328}
1329
1330static const struct meson_mmc_data meson_gx_data = {
1331 .tx_delay_mask = CLK_V2_TX_DELAY_MASK,
1332 .rx_delay_mask = CLK_V2_RX_DELAY_MASK,
1333 .always_on = CLK_V2_ALWAYS_ON,
1334 .adjust = SD_EMMC_ADJUST,
1335};
1336
1337static const struct meson_mmc_data meson_axg_data = {
1338 .tx_delay_mask = CLK_V3_TX_DELAY_MASK,
1339 .rx_delay_mask = CLK_V3_RX_DELAY_MASK,
1340 .always_on = CLK_V3_ALWAYS_ON,
1341 .adjust = SD_EMMC_V3_ADJUST,
1342};
1343
1344static const struct of_device_id meson_mmc_of_match[] = {
1345 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data },
1346 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data },
1347 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data },
1348 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data },
1349 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data },
1350 {}
1351};
1352MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1353
1354static struct platform_driver meson_mmc_driver = {
1355 .probe = meson_mmc_probe,
1356 .remove = meson_mmc_remove,
1357 .driver = {
1358 .name = DRIVER_NAME,
1359 .of_match_table = of_match_ptr(meson_mmc_of_match),
1360 },
1361};
1362
1363module_platform_driver(meson_mmc_driver);
1364
1365MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1366MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1367MODULE_LICENSE("GPL v2");