blob: e8937d8166fb45f50a94cc339f5a425a9ef720e6 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/dma-mapping.h>
19#include <linux/crc7.h>
20#include <linux/crc-itu-t.h>
21#include <linux/scatterlist.h>
22
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25#include <linux/mmc/slot-gpio.h>
26
27#include <linux/spi/spi.h>
28#include <linux/spi/mmc_spi.h>
29
30#include <asm/unaligned.h>
31
32
33/* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
39 *
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
48 *
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
58 */
59
60
61/*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65/* Response tokens used to ack each block written: */
66#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70
71/* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77
78#define MMC_SPI_BLOCKSIZE 512
79
80
81/* These fixed timeouts come from the latest SD specs, which say to ignore
82 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
83 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
84 * reads which takes nowhere near that long. Older cards may be able to use
85 * shorter timeouts ... but why bother?
86 */
87#define r1b_timeout (HZ * 3)
88
89/* One of the critical speed parameters is the amount of data which may
90 * be transferred in one command. If this value is too low, the SD card
91 * controller has to do multiple partial block writes (argggh!). With
92 * today (2008) SD cards there is little speed gain if we transfer more
93 * than 64 KBytes at a time. So use this value until there is any indication
94 * that we should do more here.
95 */
96#define MMC_SPI_BLOCKSATONCE 128
97
98/****************************************************************************/
99
100/*
101 * Local Data Structures
102 */
103
104/* "scratch" is per-{command,block} data exchanged with the card */
105struct scratch {
106 u8 status[29];
107 u8 data_token;
108 __be16 crc_val;
109};
110
111struct mmc_spi_host {
112 struct mmc_host *mmc;
113 struct spi_device *spi;
114
115 unsigned char power_mode;
116 u16 powerup_msecs;
117
118 struct mmc_spi_platform_data *pdata;
119
120 /* for bulk data transfers */
121 struct spi_transfer token, t, crc, early_status;
122 struct spi_message m;
123
124 /* for status readback */
125 struct spi_transfer status;
126 struct spi_message readback;
127
128 /* underlying DMA-aware controller, or null */
129 struct device *dma_dev;
130
131 /* buffer used for commands and for message "overhead" */
132 struct scratch *data;
133 dma_addr_t data_dma;
134
135 /* Specs say to write ones most of the time, even when the card
136 * has no need to read its input data; and many cards won't care.
137 * This is our source of those ones.
138 */
139 void *ones;
140 dma_addr_t ones_dma;
141};
142
143
144/****************************************************************************/
145
146/*
147 * MMC-over-SPI protocol glue, used by the MMC stack interface
148 */
149
150static inline int mmc_cs_off(struct mmc_spi_host *host)
151{
152 /* chipselect will always be inactive after setup() */
153 return spi_setup(host->spi);
154}
155
156static int
157mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
158{
159 int status;
160
161 if (len > sizeof(*host->data)) {
162 WARN_ON(1);
163 return -EIO;
164 }
165
166 host->status.len = len;
167
168 if (host->dma_dev)
169 dma_sync_single_for_device(host->dma_dev,
170 host->data_dma, sizeof(*host->data),
171 DMA_FROM_DEVICE);
172
173 status = spi_sync_locked(host->spi, &host->readback);
174
175 if (host->dma_dev)
176 dma_sync_single_for_cpu(host->dma_dev,
177 host->data_dma, sizeof(*host->data),
178 DMA_FROM_DEVICE);
179
180 return status;
181}
182
183static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
184 unsigned n, u8 byte)
185{
186 u8 *cp = host->data->status;
187 unsigned long start = jiffies;
188
189 while (1) {
190 int status;
191 unsigned i;
192
193 status = mmc_spi_readbytes(host, n);
194 if (status < 0)
195 return status;
196
197 for (i = 0; i < n; i++) {
198 if (cp[i] != byte)
199 return cp[i];
200 }
201
202 if (time_is_before_jiffies(start + timeout))
203 break;
204
205 /* If we need long timeouts, we may release the CPU.
206 * We use jiffies here because we want to have a relation
207 * between elapsed time and the blocking of the scheduler.
208 */
209 if (time_is_before_jiffies(start + 1))
210 schedule();
211 }
212 return -ETIMEDOUT;
213}
214
215static inline int
216mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
217{
218 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
219}
220
221static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
222{
223 return mmc_spi_skip(host, timeout, 1, 0xff);
224}
225
226
227/*
228 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
229 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
230 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
231 *
232 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
233 * newer cards R7 (IF_COND).
234 */
235
236static char *maptype(struct mmc_command *cmd)
237{
238 switch (mmc_spi_resp_type(cmd)) {
239 case MMC_RSP_SPI_R1: return "R1";
240 case MMC_RSP_SPI_R1B: return "R1B";
241 case MMC_RSP_SPI_R2: return "R2/R5";
242 case MMC_RSP_SPI_R3: return "R3/R4/R7";
243 default: return "?";
244 }
245}
246
247/* return zero, else negative errno after setting cmd->error */
248static int mmc_spi_response_get(struct mmc_spi_host *host,
249 struct mmc_command *cmd, int cs_on)
250{
251 u8 *cp = host->data->status;
252 u8 *end = cp + host->t.len;
253 int value = 0;
254 int bitshift;
255 u8 leftover = 0;
256 unsigned short rotator;
257 int i;
258
259 /* Except for data block reads, the whole response will already
260 * be stored in the scratch buffer. It's somewhere after the
261 * command and the first byte we read after it. We ignore that
262 * first byte. After STOP_TRANSMISSION command it may include
263 * two data bits, but otherwise it's all ones.
264 */
265 cp += 8;
266 while (cp < end && *cp == 0xff)
267 cp++;
268
269 /* Data block reads (R1 response types) may need more data... */
270 if (cp == end) {
271 cp = host->data->status;
272 end = cp+1;
273
274 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
275 * status byte ... and we already scanned 2 bytes.
276 *
277 * REVISIT block read paths use nasty byte-at-a-time I/O
278 * so it can always DMA directly into the target buffer.
279 * It'd probably be better to memcpy() the first chunk and
280 * avoid extra i/o calls...
281 *
282 * Note we check for more than 8 bytes, because in practice,
283 * some SD cards are slow...
284 */
285 for (i = 2; i < 16; i++) {
286 value = mmc_spi_readbytes(host, 1);
287 if (value < 0)
288 goto done;
289 if (*cp != 0xff)
290 goto checkstatus;
291 }
292 value = -ETIMEDOUT;
293 goto done;
294 }
295
296checkstatus:
297 bitshift = 0;
298 if (*cp & 0x80) {
299 /* Houston, we have an ugly card with a bit-shifted response */
300 rotator = *cp++ << 8;
301 /* read the next byte */
302 if (cp == end) {
303 value = mmc_spi_readbytes(host, 1);
304 if (value < 0)
305 goto done;
306 cp = host->data->status;
307 end = cp+1;
308 }
309 rotator |= *cp++;
310 while (rotator & 0x8000) {
311 bitshift++;
312 rotator <<= 1;
313 }
314 cmd->resp[0] = rotator >> 8;
315 leftover = rotator;
316 } else {
317 cmd->resp[0] = *cp++;
318 }
319 cmd->error = 0;
320
321 /* Status byte: the entire seven-bit R1 response. */
322 if (cmd->resp[0] != 0) {
323 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
324 & cmd->resp[0])
325 value = -EFAULT; /* Bad address */
326 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
327 value = -ENOSYS; /* Function not implemented */
328 else if (R1_SPI_COM_CRC & cmd->resp[0])
329 value = -EILSEQ; /* Illegal byte sequence */
330 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
331 & cmd->resp[0])
332 value = -EIO; /* I/O error */
333 /* else R1_SPI_IDLE, "it's resetting" */
334 }
335
336 switch (mmc_spi_resp_type(cmd)) {
337
338 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
339 * and less-common stuff like various erase operations.
340 */
341 case MMC_RSP_SPI_R1B:
342 /* maybe we read all the busy tokens already */
343 while (cp < end && *cp == 0)
344 cp++;
345 if (cp == end)
346 mmc_spi_wait_unbusy(host, r1b_timeout);
347 break;
348
349 /* SPI R2 == R1 + second status byte; SEND_STATUS
350 * SPI R5 == R1 + data byte; IO_RW_DIRECT
351 */
352 case MMC_RSP_SPI_R2:
353 /* read the next byte */
354 if (cp == end) {
355 value = mmc_spi_readbytes(host, 1);
356 if (value < 0)
357 goto done;
358 cp = host->data->status;
359 end = cp+1;
360 }
361 if (bitshift) {
362 rotator = leftover << 8;
363 rotator |= *cp << bitshift;
364 cmd->resp[0] |= (rotator & 0xFF00);
365 } else {
366 cmd->resp[0] |= *cp << 8;
367 }
368 break;
369
370 /* SPI R3, R4, or R7 == R1 + 4 bytes */
371 case MMC_RSP_SPI_R3:
372 rotator = leftover << 8;
373 cmd->resp[1] = 0;
374 for (i = 0; i < 4; i++) {
375 cmd->resp[1] <<= 8;
376 /* read the next byte */
377 if (cp == end) {
378 value = mmc_spi_readbytes(host, 1);
379 if (value < 0)
380 goto done;
381 cp = host->data->status;
382 end = cp+1;
383 }
384 if (bitshift) {
385 rotator |= *cp++ << bitshift;
386 cmd->resp[1] |= (rotator >> 8);
387 rotator <<= 8;
388 } else {
389 cmd->resp[1] |= *cp++;
390 }
391 }
392 break;
393
394 /* SPI R1 == just one status byte */
395 case MMC_RSP_SPI_R1:
396 break;
397
398 default:
399 dev_dbg(&host->spi->dev, "bad response type %04x\n",
400 mmc_spi_resp_type(cmd));
401 if (value >= 0)
402 value = -EINVAL;
403 goto done;
404 }
405
406 if (value < 0)
407 dev_dbg(&host->spi->dev,
408 " ... CMD%d response SPI_%s: resp %04x %08x\n",
409 cmd->opcode, maptype(cmd), cmd->resp[0], cmd->resp[1]);
410
411 /* disable chipselect on errors and some success cases */
412 if (value >= 0 && cs_on)
413 return value;
414done:
415 if (value < 0)
416 cmd->error = value;
417 mmc_cs_off(host);
418 return value;
419}
420
421/* Issue command and read its response.
422 * Returns zero on success, negative for error.
423 *
424 * On error, caller must cope with mmc core retry mechanism. That
425 * means immediate low-level resubmit, which affects the bus lock...
426 */
427static int
428mmc_spi_command_send(struct mmc_spi_host *host,
429 struct mmc_request *mrq,
430 struct mmc_command *cmd, int cs_on)
431{
432 struct scratch *data = host->data;
433 u8 *cp = data->status;
434 int status;
435 struct spi_transfer *t;
436
437 /* We can handle most commands (except block reads) in one full
438 * duplex I/O operation before either starting the next transfer
439 * (data block or command) or else deselecting the card.
440 *
441 * First, write 7 bytes:
442 * - an all-ones byte to ensure the card is ready
443 * - opcode byte (plus start and transmission bits)
444 * - four bytes of big-endian argument
445 * - crc7 (plus end bit) ... always computed, it's cheap
446 *
447 * We init the whole buffer to all-ones, which is what we need
448 * to write while we're reading (later) response data.
449 */
450 memset(cp, 0xff, sizeof(data->status));
451
452 cp[1] = 0x40 | cmd->opcode;
453 put_unaligned_be32(cmd->arg, cp + 2);
454 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
455 cp += 7;
456
457 /* Then, read up to 13 bytes (while writing all-ones):
458 * - N(CR) (== 1..8) bytes of all-ones
459 * - status byte (for all response types)
460 * - the rest of the response, either:
461 * + nothing, for R1 or R1B responses
462 * + second status byte, for R2 responses
463 * + four data bytes, for R3 and R7 responses
464 *
465 * Finally, read some more bytes ... in the nice cases we know in
466 * advance how many, and reading 1 more is always OK:
467 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
468 * - N(RC) (== 1..N) bytes of all-ones, before next command
469 * - N(WR) (== 1..N) bytes of all-ones, before data write
470 *
471 * So in those cases one full duplex I/O of at most 21 bytes will
472 * handle the whole command, leaving the card ready to receive a
473 * data block or new command. We do that whenever we can, shaving
474 * CPU and IRQ costs (especially when using DMA or FIFOs).
475 *
476 * There are two other cases, where it's not generally practical
477 * to rely on a single I/O:
478 *
479 * - R1B responses need at least N(EC) bytes of all-zeroes.
480 *
481 * In this case we can *try* to fit it into one I/O, then
482 * maybe read more data later.
483 *
484 * - Data block reads are more troublesome, since a variable
485 * number of padding bytes precede the token and data.
486 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
487 * + N(AC) (== 1..many) bytes of all-ones
488 *
489 * In this case we currently only have minimal speedups here:
490 * when N(CR) == 1 we can avoid I/O in response_get().
491 */
492 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
493 cp += 2; /* min(N(CR)) + status */
494 /* R1 */
495 } else {
496 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
497 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
498 cp++;
499 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
500 cp += 4;
501 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
502 cp = data->status + sizeof(data->status);
503 /* else: R1 (most commands) */
504 }
505
506 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
507 cmd->opcode, maptype(cmd));
508
509 /* send command, leaving chipselect active */
510 spi_message_init(&host->m);
511
512 t = &host->t;
513 memset(t, 0, sizeof(*t));
514 t->tx_buf = t->rx_buf = data->status;
515 t->tx_dma = t->rx_dma = host->data_dma;
516 t->len = cp - data->status;
517 t->cs_change = 1;
518 spi_message_add_tail(t, &host->m);
519
520 if (host->dma_dev) {
521 host->m.is_dma_mapped = 1;
522 dma_sync_single_for_device(host->dma_dev,
523 host->data_dma, sizeof(*host->data),
524 DMA_BIDIRECTIONAL);
525 }
526 status = spi_sync_locked(host->spi, &host->m);
527
528 if (host->dma_dev)
529 dma_sync_single_for_cpu(host->dma_dev,
530 host->data_dma, sizeof(*host->data),
531 DMA_BIDIRECTIONAL);
532 if (status < 0) {
533 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
534 cmd->error = status;
535 return status;
536 }
537
538 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
539 return mmc_spi_response_get(host, cmd, cs_on);
540}
541
542/* Build data message with up to four separate transfers. For TX, we
543 * start by writing the data token. And in most cases, we finish with
544 * a status transfer.
545 *
546 * We always provide TX data for data and CRC. The MMC/SD protocol
547 * requires us to write ones; but Linux defaults to writing zeroes;
548 * so we explicitly initialize it to all ones on RX paths.
549 *
550 * We also handle DMA mapping, so the underlying SPI controller does
551 * not need to (re)do it for each message.
552 */
553static void
554mmc_spi_setup_data_message(
555 struct mmc_spi_host *host,
556 int multiple,
557 enum dma_data_direction direction)
558{
559 struct spi_transfer *t;
560 struct scratch *scratch = host->data;
561 dma_addr_t dma = host->data_dma;
562
563 spi_message_init(&host->m);
564 if (dma)
565 host->m.is_dma_mapped = 1;
566
567 /* for reads, readblock() skips 0xff bytes before finding
568 * the token; for writes, this transfer issues that token.
569 */
570 if (direction == DMA_TO_DEVICE) {
571 t = &host->token;
572 memset(t, 0, sizeof(*t));
573 t->len = 1;
574 if (multiple)
575 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
576 else
577 scratch->data_token = SPI_TOKEN_SINGLE;
578 t->tx_buf = &scratch->data_token;
579 if (dma)
580 t->tx_dma = dma + offsetof(struct scratch, data_token);
581 spi_message_add_tail(t, &host->m);
582 }
583
584 /* Body of transfer is buffer, then CRC ...
585 * either TX-only, or RX with TX-ones.
586 */
587 t = &host->t;
588 memset(t, 0, sizeof(*t));
589 t->tx_buf = host->ones;
590 t->tx_dma = host->ones_dma;
591 /* length and actual buffer info are written later */
592 spi_message_add_tail(t, &host->m);
593
594 t = &host->crc;
595 memset(t, 0, sizeof(*t));
596 t->len = 2;
597 if (direction == DMA_TO_DEVICE) {
598 /* the actual CRC may get written later */
599 t->tx_buf = &scratch->crc_val;
600 if (dma)
601 t->tx_dma = dma + offsetof(struct scratch, crc_val);
602 } else {
603 t->tx_buf = host->ones;
604 t->tx_dma = host->ones_dma;
605 t->rx_buf = &scratch->crc_val;
606 if (dma)
607 t->rx_dma = dma + offsetof(struct scratch, crc_val);
608 }
609 spi_message_add_tail(t, &host->m);
610
611 /*
612 * A single block read is followed by N(EC) [0+] all-ones bytes
613 * before deselect ... don't bother.
614 *
615 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
616 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
617 * collect that single byte, so readblock() doesn't need to.
618 *
619 * For a write, the one-byte data response follows immediately, then
620 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
621 * Then single block reads may deselect, and multiblock ones issue
622 * the next token (next data block, or STOP_TRAN). We can try to
623 * minimize I/O ops by using a single read to collect end-of-busy.
624 */
625 if (multiple || direction == DMA_TO_DEVICE) {
626 t = &host->early_status;
627 memset(t, 0, sizeof(*t));
628 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
629 t->tx_buf = host->ones;
630 t->tx_dma = host->ones_dma;
631 t->rx_buf = scratch->status;
632 if (dma)
633 t->rx_dma = dma + offsetof(struct scratch, status);
634 t->cs_change = 1;
635 spi_message_add_tail(t, &host->m);
636 }
637}
638
639/*
640 * Write one block:
641 * - caller handled preceding N(WR) [1+] all-ones bytes
642 * - data block
643 * + token
644 * + data bytes
645 * + crc16
646 * - an all-ones byte ... card writes a data-response byte
647 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
648 *
649 * Return negative errno, else success.
650 */
651static int
652mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
653 unsigned long timeout)
654{
655 struct spi_device *spi = host->spi;
656 int status, i;
657 struct scratch *scratch = host->data;
658 u32 pattern;
659
660 if (host->mmc->use_spi_crc)
661 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
662 if (host->dma_dev)
663 dma_sync_single_for_device(host->dma_dev,
664 host->data_dma, sizeof(*scratch),
665 DMA_BIDIRECTIONAL);
666
667 status = spi_sync_locked(spi, &host->m);
668
669 if (status != 0) {
670 dev_dbg(&spi->dev, "write error (%d)\n", status);
671 return status;
672 }
673
674 if (host->dma_dev)
675 dma_sync_single_for_cpu(host->dma_dev,
676 host->data_dma, sizeof(*scratch),
677 DMA_BIDIRECTIONAL);
678
679 /*
680 * Get the transmission data-response reply. It must follow
681 * immediately after the data block we transferred. This reply
682 * doesn't necessarily tell whether the write operation succeeded;
683 * it just says if the transmission was ok and whether *earlier*
684 * writes succeeded; see the standard.
685 *
686 * In practice, there are (even modern SDHC-)cards which are late
687 * in sending the response, and miss the time frame by a few bits,
688 * so we have to cope with this situation and check the response
689 * bit-by-bit. Arggh!!!
690 */
691 pattern = get_unaligned_be32(scratch->status);
692
693 /* First 3 bit of pattern are undefined */
694 pattern |= 0xE0000000;
695
696 /* left-adjust to leading 0 bit */
697 while (pattern & 0x80000000)
698 pattern <<= 1;
699 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
700 pattern >>= 27;
701
702 switch (pattern) {
703 case SPI_RESPONSE_ACCEPTED:
704 status = 0;
705 break;
706 case SPI_RESPONSE_CRC_ERR:
707 /* host shall then issue MMC_STOP_TRANSMISSION */
708 status = -EILSEQ;
709 break;
710 case SPI_RESPONSE_WRITE_ERR:
711 /* host shall then issue MMC_STOP_TRANSMISSION,
712 * and should MMC_SEND_STATUS to sort it out
713 */
714 status = -EIO;
715 break;
716 default:
717 status = -EPROTO;
718 break;
719 }
720 if (status != 0) {
721 dev_dbg(&spi->dev, "write error %02x (%d)\n",
722 scratch->status[0], status);
723 return status;
724 }
725
726 t->tx_buf += t->len;
727 if (host->dma_dev)
728 t->tx_dma += t->len;
729
730 /* Return when not busy. If we didn't collect that status yet,
731 * we'll need some more I/O.
732 */
733 for (i = 4; i < sizeof(scratch->status); i++) {
734 /* card is non-busy if the most recent bit is 1 */
735 if (scratch->status[i] & 0x01)
736 return 0;
737 }
738 return mmc_spi_wait_unbusy(host, timeout);
739}
740
741/*
742 * Read one block:
743 * - skip leading all-ones bytes ... either
744 * + N(AC) [1..f(clock,CSD)] usually, else
745 * + N(CX) [0..8] when reading CSD or CID
746 * - data block
747 * + token ... if error token, no data or crc
748 * + data bytes
749 * + crc16
750 *
751 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
752 * before dropping chipselect.
753 *
754 * For multiblock reads, caller either reads the next block or issues a
755 * STOP_TRANSMISSION command.
756 */
757static int
758mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
759 unsigned long timeout)
760{
761 struct spi_device *spi = host->spi;
762 int status;
763 struct scratch *scratch = host->data;
764 unsigned int bitshift;
765 u8 leftover;
766
767 /* At least one SD card sends an all-zeroes byte when N(CX)
768 * applies, before the all-ones bytes ... just cope with that.
769 */
770 status = mmc_spi_readbytes(host, 1);
771 if (status < 0)
772 return status;
773 status = scratch->status[0];
774 if (status == 0xff || status == 0)
775 status = mmc_spi_readtoken(host, timeout);
776
777 if (status < 0) {
778 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
779 return status;
780 }
781
782 /* The token may be bit-shifted...
783 * the first 0-bit precedes the data stream.
784 */
785 bitshift = 7;
786 while (status & 0x80) {
787 status <<= 1;
788 bitshift--;
789 }
790 leftover = status << 1;
791
792 if (host->dma_dev) {
793 dma_sync_single_for_device(host->dma_dev,
794 host->data_dma, sizeof(*scratch),
795 DMA_BIDIRECTIONAL);
796 dma_sync_single_for_device(host->dma_dev,
797 t->rx_dma, t->len,
798 DMA_FROM_DEVICE);
799 }
800
801 status = spi_sync_locked(spi, &host->m);
802 if (status < 0) {
803 dev_dbg(&spi->dev, "read error %d\n", status);
804 return status;
805 }
806
807 if (host->dma_dev) {
808 dma_sync_single_for_cpu(host->dma_dev,
809 host->data_dma, sizeof(*scratch),
810 DMA_BIDIRECTIONAL);
811 dma_sync_single_for_cpu(host->dma_dev,
812 t->rx_dma, t->len,
813 DMA_FROM_DEVICE);
814 }
815
816 if (bitshift) {
817 /* Walk through the data and the crc and do
818 * all the magic to get byte-aligned data.
819 */
820 u8 *cp = t->rx_buf;
821 unsigned int len;
822 unsigned int bitright = 8 - bitshift;
823 u8 temp;
824 for (len = t->len; len; len--) {
825 temp = *cp;
826 *cp++ = leftover | (temp >> bitshift);
827 leftover = temp << bitright;
828 }
829 cp = (u8 *) &scratch->crc_val;
830 temp = *cp;
831 *cp++ = leftover | (temp >> bitshift);
832 leftover = temp << bitright;
833 temp = *cp;
834 *cp = leftover | (temp >> bitshift);
835 }
836
837 if (host->mmc->use_spi_crc) {
838 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
839
840 be16_to_cpus(&scratch->crc_val);
841 if (scratch->crc_val != crc) {
842 dev_dbg(&spi->dev,
843 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
844 scratch->crc_val, crc, t->len);
845 return -EILSEQ;
846 }
847 }
848
849 t->rx_buf += t->len;
850 if (host->dma_dev)
851 t->rx_dma += t->len;
852
853 return 0;
854}
855
856/*
857 * An MMC/SD data stage includes one or more blocks, optional CRCs,
858 * and inline handshaking. That handhaking makes it unlike most
859 * other SPI protocol stacks.
860 */
861static void
862mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
863 struct mmc_data *data, u32 blk_size)
864{
865 struct spi_device *spi = host->spi;
866 struct device *dma_dev = host->dma_dev;
867 struct spi_transfer *t;
868 enum dma_data_direction direction;
869 struct scatterlist *sg;
870 unsigned n_sg;
871 int multiple = (data->blocks > 1);
872 u32 clock_rate;
873 unsigned long timeout;
874
875 direction = mmc_get_dma_dir(data);
876 mmc_spi_setup_data_message(host, multiple, direction);
877 t = &host->t;
878
879 if (t->speed_hz)
880 clock_rate = t->speed_hz;
881 else
882 clock_rate = spi->max_speed_hz;
883
884 timeout = data->timeout_ns +
885 data->timeout_clks * 1000000 / clock_rate;
886 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
887
888 /* Handle scatterlist segments one at a time, with synch for
889 * each 512-byte block
890 */
891 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
892 int status = 0;
893 dma_addr_t dma_addr = 0;
894 void *kmap_addr;
895 unsigned length = sg->length;
896 enum dma_data_direction dir = direction;
897
898 /* set up dma mapping for controller drivers that might
899 * use DMA ... though they may fall back to PIO
900 */
901 if (dma_dev) {
902 /* never invalidate whole *shared* pages ... */
903 if ((sg->offset != 0 || length != PAGE_SIZE)
904 && dir == DMA_FROM_DEVICE)
905 dir = DMA_BIDIRECTIONAL;
906
907 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
908 PAGE_SIZE, dir);
909 if (dma_mapping_error(dma_dev, dma_addr)) {
910 data->error = -EFAULT;
911 break;
912 }
913 if (direction == DMA_TO_DEVICE)
914 t->tx_dma = dma_addr + sg->offset;
915 else
916 t->rx_dma = dma_addr + sg->offset;
917 }
918
919 /* allow pio too; we don't allow highmem */
920 kmap_addr = kmap(sg_page(sg));
921 if (direction == DMA_TO_DEVICE)
922 t->tx_buf = kmap_addr + sg->offset;
923 else
924 t->rx_buf = kmap_addr + sg->offset;
925
926 /* transfer each block, and update request status */
927 while (length) {
928 t->len = min(length, blk_size);
929
930 dev_dbg(&host->spi->dev,
931 " mmc_spi: %s block, %d bytes\n",
932 (direction == DMA_TO_DEVICE) ? "write" : "read",
933 t->len);
934
935 if (direction == DMA_TO_DEVICE)
936 status = mmc_spi_writeblock(host, t, timeout);
937 else
938 status = mmc_spi_readblock(host, t, timeout);
939 if (status < 0)
940 break;
941
942 data->bytes_xfered += t->len;
943 length -= t->len;
944
945 if (!multiple)
946 break;
947 }
948
949 /* discard mappings */
950 if (direction == DMA_FROM_DEVICE)
951 flush_kernel_dcache_page(sg_page(sg));
952 kunmap(sg_page(sg));
953 if (dma_dev)
954 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
955
956 if (status < 0) {
957 data->error = status;
958 dev_dbg(&spi->dev, "%s status %d\n",
959 (direction == DMA_TO_DEVICE) ? "write" : "read",
960 status);
961 break;
962 }
963 }
964
965 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
966 * can be issued before multiblock writes. Unlike its more widely
967 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
968 * that can affect the STOP_TRAN logic. Complete (and current)
969 * MMC specs should sort that out before Linux starts using CMD23.
970 */
971 if (direction == DMA_TO_DEVICE && multiple) {
972 struct scratch *scratch = host->data;
973 int tmp;
974 const unsigned statlen = sizeof(scratch->status);
975
976 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
977
978 /* Tweak the per-block message we set up earlier by morphing
979 * it to hold single buffer with the token followed by some
980 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
981 * "not busy any longer" status, and leave chip selected.
982 */
983 INIT_LIST_HEAD(&host->m.transfers);
984 list_add(&host->early_status.transfer_list,
985 &host->m.transfers);
986
987 memset(scratch->status, 0xff, statlen);
988 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
989
990 host->early_status.tx_buf = host->early_status.rx_buf;
991 host->early_status.tx_dma = host->early_status.rx_dma;
992 host->early_status.len = statlen;
993
994 if (host->dma_dev)
995 dma_sync_single_for_device(host->dma_dev,
996 host->data_dma, sizeof(*scratch),
997 DMA_BIDIRECTIONAL);
998
999 tmp = spi_sync_locked(spi, &host->m);
1000
1001 if (host->dma_dev)
1002 dma_sync_single_for_cpu(host->dma_dev,
1003 host->data_dma, sizeof(*scratch),
1004 DMA_BIDIRECTIONAL);
1005
1006 if (tmp < 0) {
1007 if (!data->error)
1008 data->error = tmp;
1009 return;
1010 }
1011
1012 /* Ideally we collected "not busy" status with one I/O,
1013 * avoiding wasteful byte-at-a-time scanning... but more
1014 * I/O is often needed.
1015 */
1016 for (tmp = 2; tmp < statlen; tmp++) {
1017 if (scratch->status[tmp] != 0)
1018 return;
1019 }
1020 tmp = mmc_spi_wait_unbusy(host, timeout);
1021 if (tmp < 0 && !data->error)
1022 data->error = tmp;
1023 }
1024}
1025
1026/****************************************************************************/
1027
1028/*
1029 * MMC driver implementation -- the interface to the MMC stack
1030 */
1031
1032static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1033{
1034 struct mmc_spi_host *host = mmc_priv(mmc);
1035 int status = -EINVAL;
1036 int crc_retry = 5;
1037 struct mmc_command stop;
1038
1039#ifdef DEBUG
1040 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1041 {
1042 struct mmc_command *cmd;
1043 int invalid = 0;
1044
1045 cmd = mrq->cmd;
1046 if (!mmc_spi_resp_type(cmd)) {
1047 dev_dbg(&host->spi->dev, "bogus command\n");
1048 cmd->error = -EINVAL;
1049 invalid = 1;
1050 }
1051
1052 cmd = mrq->stop;
1053 if (cmd && !mmc_spi_resp_type(cmd)) {
1054 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1055 cmd->error = -EINVAL;
1056 invalid = 1;
1057 }
1058
1059 if (invalid) {
1060 dump_stack();
1061 mmc_request_done(host->mmc, mrq);
1062 return;
1063 }
1064 }
1065#endif
1066
1067 /* request exclusive bus access */
1068 spi_bus_lock(host->spi->master);
1069
1070crc_recover:
1071 /* issue command; then optionally data and stop */
1072 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1073 if (status == 0 && mrq->data) {
1074 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1075
1076 /*
1077 * The SPI bus is not always reliable for large data transfers.
1078 * If an occasional crc error is reported by the SD device with
1079 * data read/write over SPI, it may be recovered by repeating
1080 * the last SD command again. The retry count is set to 5 to
1081 * ensure the driver passes stress tests.
1082 */
1083 if (mrq->data->error == -EILSEQ && crc_retry) {
1084 stop.opcode = MMC_STOP_TRANSMISSION;
1085 stop.arg = 0;
1086 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1087 status = mmc_spi_command_send(host, mrq, &stop, 0);
1088 crc_retry--;
1089 mrq->data->error = 0;
1090 goto crc_recover;
1091 }
1092
1093 if (mrq->stop)
1094 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1095 else
1096 mmc_cs_off(host);
1097 }
1098
1099 /* release the bus */
1100 spi_bus_unlock(host->spi->master);
1101
1102 mmc_request_done(host->mmc, mrq);
1103}
1104
1105/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1106 *
1107 * NOTE that here we can't know that the card has just been powered up;
1108 * not all MMC/SD sockets support power switching.
1109 *
1110 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1111 * this doesn't seem to do the right thing at all...
1112 */
1113static void mmc_spi_initsequence(struct mmc_spi_host *host)
1114{
1115 /* Try to be very sure any previous command has completed;
1116 * wait till not-busy, skip debris from any old commands.
1117 */
1118 mmc_spi_wait_unbusy(host, r1b_timeout);
1119 mmc_spi_readbytes(host, 10);
1120
1121 /*
1122 * Do a burst with chipselect active-high. We need to do this to
1123 * meet the requirement of 74 clock cycles with both chipselect
1124 * and CMD (MOSI) high before CMD0 ... after the card has been
1125 * powered up to Vdd(min), and so is ready to take commands.
1126 *
1127 * Some cards are particularly needy of this (e.g. Viking "SD256")
1128 * while most others don't seem to care.
1129 *
1130 * Note that this is one of the places MMC/SD plays games with the
1131 * SPI protocol. Another is that when chipselect is released while
1132 * the card returns BUSY status, the clock must issue several cycles
1133 * with chipselect high before the card will stop driving its output.
1134 *
1135 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1136 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1137 * inverted by gpiolib, so if we want to ascertain to drive it high
1138 * we should toggle the default with an XOR as we do here.
1139 */
1140 host->spi->mode ^= SPI_CS_HIGH;
1141 if (spi_setup(host->spi) != 0) {
1142 /* Just warn; most cards work without it. */
1143 dev_warn(&host->spi->dev,
1144 "can't change chip-select polarity\n");
1145 host->spi->mode ^= SPI_CS_HIGH;
1146 } else {
1147 mmc_spi_readbytes(host, 18);
1148
1149 host->spi->mode ^= SPI_CS_HIGH;
1150 if (spi_setup(host->spi) != 0) {
1151 /* Wot, we can't get the same setup we had before? */
1152 dev_err(&host->spi->dev,
1153 "can't restore chip-select polarity\n");
1154 }
1155 }
1156}
1157
1158static char *mmc_powerstring(u8 power_mode)
1159{
1160 switch (power_mode) {
1161 case MMC_POWER_OFF: return "off";
1162 case MMC_POWER_UP: return "up";
1163 case MMC_POWER_ON: return "on";
1164 }
1165 return "?";
1166}
1167
1168static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1169{
1170 struct mmc_spi_host *host = mmc_priv(mmc);
1171
1172 if (host->power_mode != ios->power_mode) {
1173 int canpower;
1174
1175 canpower = host->pdata && host->pdata->setpower;
1176
1177 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1178 mmc_powerstring(ios->power_mode),
1179 ios->vdd,
1180 canpower ? ", can switch" : "");
1181
1182 /* switch power on/off if possible, accounting for
1183 * max 250msec powerup time if needed.
1184 */
1185 if (canpower) {
1186 switch (ios->power_mode) {
1187 case MMC_POWER_OFF:
1188 case MMC_POWER_UP:
1189 host->pdata->setpower(&host->spi->dev,
1190 ios->vdd);
1191 if (ios->power_mode == MMC_POWER_UP)
1192 msleep(host->powerup_msecs);
1193 }
1194 }
1195
1196 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1197 if (ios->power_mode == MMC_POWER_ON)
1198 mmc_spi_initsequence(host);
1199
1200 /* If powering down, ground all card inputs to avoid power
1201 * delivery from data lines! On a shared SPI bus, this
1202 * will probably be temporary; 6.4.2 of the simplified SD
1203 * spec says this must last at least 1msec.
1204 *
1205 * - Clock low means CPOL 0, e.g. mode 0
1206 * - MOSI low comes from writing zero
1207 * - Chipselect is usually active low...
1208 */
1209 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1210 int mres;
1211 u8 nullbyte = 0;
1212
1213 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1214 mres = spi_setup(host->spi);
1215 if (mres < 0)
1216 dev_dbg(&host->spi->dev,
1217 "switch to SPI mode 0 failed\n");
1218
1219 if (spi_write(host->spi, &nullbyte, 1) < 0)
1220 dev_dbg(&host->spi->dev,
1221 "put spi signals to low failed\n");
1222
1223 /*
1224 * Now clock should be low due to spi mode 0;
1225 * MOSI should be low because of written 0x00;
1226 * chipselect should be low (it is active low)
1227 * power supply is off, so now MMC is off too!
1228 *
1229 * FIXME no, chipselect can be high since the
1230 * device is inactive and SPI_CS_HIGH is clear...
1231 */
1232 msleep(10);
1233 if (mres == 0) {
1234 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1235 mres = spi_setup(host->spi);
1236 if (mres < 0)
1237 dev_dbg(&host->spi->dev,
1238 "switch back to SPI mode 3 failed\n");
1239 }
1240 }
1241
1242 host->power_mode = ios->power_mode;
1243 }
1244
1245 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1246 int status;
1247
1248 host->spi->max_speed_hz = ios->clock;
1249 status = spi_setup(host->spi);
1250 dev_dbg(&host->spi->dev,
1251 "mmc_spi: clock to %d Hz, %d\n",
1252 host->spi->max_speed_hz, status);
1253 }
1254}
1255
1256static const struct mmc_host_ops mmc_spi_ops = {
1257 .request = mmc_spi_request,
1258 .set_ios = mmc_spi_set_ios,
1259 .get_ro = mmc_gpio_get_ro,
1260 .get_cd = mmc_gpio_get_cd,
1261};
1262
1263
1264/****************************************************************************/
1265
1266/*
1267 * SPI driver implementation
1268 */
1269
1270static irqreturn_t
1271mmc_spi_detect_irq(int irq, void *mmc)
1272{
1273 struct mmc_spi_host *host = mmc_priv(mmc);
1274 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1275
1276 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1277 return IRQ_HANDLED;
1278}
1279
1280static int mmc_spi_probe(struct spi_device *spi)
1281{
1282 void *ones;
1283 struct mmc_host *mmc;
1284 struct mmc_spi_host *host;
1285 int status;
1286 bool has_ro = false;
1287
1288 /* We rely on full duplex transfers, mostly to reduce
1289 * per-transfer overheads (by making fewer transfers).
1290 */
1291 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1292 return -EINVAL;
1293
1294 /* MMC and SD specs only seem to care that sampling is on the
1295 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1296 * should be legit. We'll use mode 0 since the steady state is 0,
1297 * which is appropriate for hotplugging, unless the platform data
1298 * specify mode 3 (if hardware is not compatible to mode 0).
1299 */
1300 if (spi->mode != SPI_MODE_3)
1301 spi->mode = SPI_MODE_0;
1302 spi->bits_per_word = 8;
1303
1304 status = spi_setup(spi);
1305 if (status < 0) {
1306 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1307 spi->mode, spi->max_speed_hz / 1000,
1308 status);
1309 return status;
1310 }
1311
1312 /* We need a supply of ones to transmit. This is the only time
1313 * the CPU touches these, so cache coherency isn't a concern.
1314 *
1315 * NOTE if many systems use more than one MMC-over-SPI connector
1316 * it'd save some memory to share this. That's evidently rare.
1317 */
1318 status = -ENOMEM;
1319 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1320 if (!ones)
1321 goto nomem;
1322 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1323
1324 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1325 if (!mmc)
1326 goto nomem;
1327
1328 mmc->ops = &mmc_spi_ops;
1329 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1330 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1331 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1332 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1333
1334 mmc->caps = MMC_CAP_SPI;
1335
1336 /* SPI doesn't need the lowspeed device identification thing for
1337 * MMC or SD cards, since it never comes up in open drain mode.
1338 * That's good; some SPI masters can't handle very low speeds!
1339 *
1340 * However, low speed SDIO cards need not handle over 400 KHz;
1341 * that's the only reason not to use a few MHz for f_min (until
1342 * the upper layer reads the target frequency from the CSD).
1343 */
1344 mmc->f_min = 400000;
1345 mmc->f_max = spi->max_speed_hz;
1346
1347 host = mmc_priv(mmc);
1348 host->mmc = mmc;
1349 host->spi = spi;
1350
1351 host->ones = ones;
1352
1353 /* Platform data is used to hook up things like card sensing
1354 * and power switching gpios.
1355 */
1356 host->pdata = mmc_spi_get_pdata(spi);
1357 if (host->pdata)
1358 mmc->ocr_avail = host->pdata->ocr_mask;
1359 if (!mmc->ocr_avail) {
1360 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1361 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1362 }
1363 if (host->pdata && host->pdata->setpower) {
1364 host->powerup_msecs = host->pdata->powerup_msecs;
1365 if (!host->powerup_msecs || host->powerup_msecs > 250)
1366 host->powerup_msecs = 250;
1367 }
1368
1369 dev_set_drvdata(&spi->dev, mmc);
1370
1371 /* preallocate dma buffers */
1372 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1373 if (!host->data)
1374 goto fail_nobuf1;
1375
1376 if (spi->master->dev.parent->dma_mask) {
1377 struct device *dev = spi->master->dev.parent;
1378
1379 host->dma_dev = dev;
1380 host->ones_dma = dma_map_single(dev, ones,
1381 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1382 if (dma_mapping_error(dev, host->ones_dma))
1383 goto fail_ones_dma;
1384 host->data_dma = dma_map_single(dev, host->data,
1385 sizeof(*host->data), DMA_BIDIRECTIONAL);
1386 if (dma_mapping_error(dev, host->data_dma))
1387 goto fail_data_dma;
1388
1389 dma_sync_single_for_cpu(host->dma_dev,
1390 host->data_dma, sizeof(*host->data),
1391 DMA_BIDIRECTIONAL);
1392 }
1393
1394 /* setup message for status/busy readback */
1395 spi_message_init(&host->readback);
1396 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1397
1398 spi_message_add_tail(&host->status, &host->readback);
1399 host->status.tx_buf = host->ones;
1400 host->status.tx_dma = host->ones_dma;
1401 host->status.rx_buf = &host->data->status;
1402 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1403 host->status.cs_change = 1;
1404
1405 /* register card detect irq */
1406 if (host->pdata && host->pdata->init) {
1407 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1408 if (status != 0)
1409 goto fail_glue_init;
1410 }
1411
1412 /* pass platform capabilities, if any */
1413 if (host->pdata) {
1414 mmc->caps |= host->pdata->caps;
1415 mmc->caps2 |= host->pdata->caps2;
1416 }
1417
1418 status = mmc_add_host(mmc);
1419 if (status != 0)
1420 goto fail_glue_init;
1421
1422 /*
1423 * Index 0 is card detect
1424 * Old boardfiles were specifying 1 ms as debounce
1425 */
1426 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1, NULL);
1427 if (status == -EPROBE_DEFER)
1428 goto fail_gpiod_request;
1429 if (!status) {
1430 /*
1431 * The platform has a CD GPIO signal that may support
1432 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1433 * if polling is needed or not.
1434 */
1435 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1436 mmc_gpiod_request_cd_irq(mmc);
1437 }
1438 mmc_detect_change(mmc, 0);
1439
1440 /* Index 1 is write protect/read only */
1441 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0, NULL);
1442 if (status == -EPROBE_DEFER)
1443 goto fail_gpiod_request;
1444 if (!status)
1445 has_ro = true;
1446
1447 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1448 dev_name(&mmc->class_dev),
1449 host->dma_dev ? "" : ", no DMA",
1450 has_ro ? "" : ", no WP",
1451 (host->pdata && host->pdata->setpower)
1452 ? "" : ", no poweroff",
1453 (mmc->caps & MMC_CAP_NEEDS_POLL)
1454 ? ", cd polling" : "");
1455 return 0;
1456
1457fail_gpiod_request:
1458 mmc_remove_host(mmc);
1459fail_glue_init:
1460 if (host->dma_dev)
1461 dma_unmap_single(host->dma_dev, host->data_dma,
1462 sizeof(*host->data), DMA_BIDIRECTIONAL);
1463fail_data_dma:
1464 if (host->dma_dev)
1465 dma_unmap_single(host->dma_dev, host->ones_dma,
1466 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1467fail_ones_dma:
1468 kfree(host->data);
1469
1470fail_nobuf1:
1471 mmc_free_host(mmc);
1472 mmc_spi_put_pdata(spi);
1473
1474nomem:
1475 kfree(ones);
1476 return status;
1477}
1478
1479
1480static int mmc_spi_remove(struct spi_device *spi)
1481{
1482 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1483 struct mmc_spi_host *host = mmc_priv(mmc);
1484
1485 /* prevent new mmc_detect_change() calls */
1486 if (host->pdata && host->pdata->exit)
1487 host->pdata->exit(&spi->dev, mmc);
1488
1489 mmc_remove_host(mmc);
1490
1491 if (host->dma_dev) {
1492 dma_unmap_single(host->dma_dev, host->ones_dma,
1493 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1494 dma_unmap_single(host->dma_dev, host->data_dma,
1495 sizeof(*host->data), DMA_BIDIRECTIONAL);
1496 }
1497
1498 kfree(host->data);
1499 kfree(host->ones);
1500
1501 spi->max_speed_hz = mmc->f_max;
1502 mmc_free_host(mmc);
1503 mmc_spi_put_pdata(spi);
1504 return 0;
1505}
1506
1507static const struct of_device_id mmc_spi_of_match_table[] = {
1508 { .compatible = "mmc-spi-slot", },
1509 {},
1510};
1511MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1512
1513static struct spi_driver mmc_spi_driver = {
1514 .driver = {
1515 .name = "mmc_spi",
1516 .of_match_table = mmc_spi_of_match_table,
1517 },
1518 .probe = mmc_spi_probe,
1519 .remove = mmc_spi_remove,
1520};
1521
1522module_spi_driver(mmc_spi_driver);
1523
1524MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1525MODULE_DESCRIPTION("SPI SD/MMC host driver");
1526MODULE_LICENSE("GPL");
1527MODULE_ALIAS("spi:mmc_spi");