b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * ST Microelectronics |
| 4 | * Flexible Static Memory Controller (FSMC) |
| 5 | * Driver for NAND portions |
| 6 | * |
| 7 | * Copyright © 2010 ST Microelectronics |
| 8 | * Vipin Kumar <vipin.kumar@st.com> |
| 9 | * Ashish Priyadarshi |
| 10 | * |
| 11 | * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) |
| 12 | * Copyright © 2007 STMicroelectronics Pvt. Ltd. |
| 13 | * Copyright © 2009 Alessandro Rubini |
| 14 | */ |
| 15 | |
| 16 | #include <linux/clk.h> |
| 17 | #include <linux/completion.h> |
| 18 | #include <linux/delay.h> |
| 19 | #include <linux/dmaengine.h> |
| 20 | #include <linux/dma-direction.h> |
| 21 | #include <linux/dma-mapping.h> |
| 22 | #include <linux/err.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/resource.h> |
| 26 | #include <linux/sched.h> |
| 27 | #include <linux/types.h> |
| 28 | #include <linux/mtd/mtd.h> |
| 29 | #include <linux/mtd/rawnand.h> |
| 30 | #include <linux/mtd/nand_ecc.h> |
| 31 | #include <linux/platform_device.h> |
| 32 | #include <linux/of.h> |
| 33 | #include <linux/mtd/partitions.h> |
| 34 | #include <linux/io.h> |
| 35 | #include <linux/slab.h> |
| 36 | #include <linux/amba/bus.h> |
| 37 | #include <mtd/mtd-abi.h> |
| 38 | |
| 39 | /* fsmc controller registers for NOR flash */ |
| 40 | #define CTRL 0x0 |
| 41 | /* ctrl register definitions */ |
| 42 | #define BANK_ENABLE BIT(0) |
| 43 | #define MUXED BIT(1) |
| 44 | #define NOR_DEV (2 << 2) |
| 45 | #define WIDTH_16 BIT(4) |
| 46 | #define RSTPWRDWN BIT(6) |
| 47 | #define WPROT BIT(7) |
| 48 | #define WRT_ENABLE BIT(12) |
| 49 | #define WAIT_ENB BIT(13) |
| 50 | |
| 51 | #define CTRL_TIM 0x4 |
| 52 | /* ctrl_tim register definitions */ |
| 53 | |
| 54 | #define FSMC_NOR_BANK_SZ 0x8 |
| 55 | #define FSMC_NOR_REG_SIZE 0x40 |
| 56 | |
| 57 | #define FSMC_NOR_REG(base, bank, reg) ((base) + \ |
| 58 | (FSMC_NOR_BANK_SZ * (bank)) + \ |
| 59 | (reg)) |
| 60 | |
| 61 | /* fsmc controller registers for NAND flash */ |
| 62 | #define FSMC_PC 0x00 |
| 63 | /* pc register definitions */ |
| 64 | #define FSMC_RESET BIT(0) |
| 65 | #define FSMC_WAITON BIT(1) |
| 66 | #define FSMC_ENABLE BIT(2) |
| 67 | #define FSMC_DEVTYPE_NAND BIT(3) |
| 68 | #define FSMC_DEVWID_16 BIT(4) |
| 69 | #define FSMC_ECCEN BIT(6) |
| 70 | #define FSMC_ECCPLEN_256 BIT(7) |
| 71 | #define FSMC_TCLR_SHIFT (9) |
| 72 | #define FSMC_TCLR_MASK (0xF) |
| 73 | #define FSMC_TAR_SHIFT (13) |
| 74 | #define FSMC_TAR_MASK (0xF) |
| 75 | #define STS 0x04 |
| 76 | /* sts register definitions */ |
| 77 | #define FSMC_CODE_RDY BIT(15) |
| 78 | #define COMM 0x08 |
| 79 | /* comm register definitions */ |
| 80 | #define FSMC_TSET_SHIFT 0 |
| 81 | #define FSMC_TSET_MASK 0xFF |
| 82 | #define FSMC_TWAIT_SHIFT 8 |
| 83 | #define FSMC_TWAIT_MASK 0xFF |
| 84 | #define FSMC_THOLD_SHIFT 16 |
| 85 | #define FSMC_THOLD_MASK 0xFF |
| 86 | #define FSMC_THIZ_SHIFT 24 |
| 87 | #define FSMC_THIZ_MASK 0xFF |
| 88 | #define ATTRIB 0x0C |
| 89 | #define IOATA 0x10 |
| 90 | #define ECC1 0x14 |
| 91 | #define ECC2 0x18 |
| 92 | #define ECC3 0x1C |
| 93 | #define FSMC_NAND_BANK_SZ 0x20 |
| 94 | |
| 95 | #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) |
| 96 | |
| 97 | /* |
| 98 | * According to SPEAr300 Reference Manual (RM0082) |
| 99 | * TOUDEL = 7ns (Output delay from the flip-flops to the board) |
| 100 | * TINDEL = 5ns (Input delay from the board to the flipflop) |
| 101 | */ |
| 102 | #define TOUTDEL 7000 |
| 103 | #define TINDEL 5000 |
| 104 | |
| 105 | struct fsmc_nand_timings { |
| 106 | u8 tclr; |
| 107 | u8 tar; |
| 108 | u8 thiz; |
| 109 | u8 thold; |
| 110 | u8 twait; |
| 111 | u8 tset; |
| 112 | }; |
| 113 | |
| 114 | enum access_mode { |
| 115 | USE_DMA_ACCESS = 1, |
| 116 | USE_WORD_ACCESS, |
| 117 | }; |
| 118 | |
| 119 | /** |
| 120 | * struct fsmc_nand_data - structure for FSMC NAND device state |
| 121 | * |
| 122 | * @base: Inherit from the nand_controller struct |
| 123 | * @pid: Part ID on the AMBA PrimeCell format |
| 124 | * @nand: Chip related info for a NAND flash. |
| 125 | * |
| 126 | * @bank: Bank number for probed device. |
| 127 | * @dev: Parent device |
| 128 | * @mode: Access mode |
| 129 | * @clk: Clock structure for FSMC. |
| 130 | * |
| 131 | * @read_dma_chan: DMA channel for read access |
| 132 | * @write_dma_chan: DMA channel for write access to NAND |
| 133 | * @dma_access_complete: Completion structure |
| 134 | * |
| 135 | * @dev_timings: NAND timings |
| 136 | * |
| 137 | * @data_pa: NAND Physical port for Data. |
| 138 | * @data_va: NAND port for Data. |
| 139 | * @cmd_va: NAND port for Command. |
| 140 | * @addr_va: NAND port for Address. |
| 141 | * @regs_va: Registers base address for a given bank. |
| 142 | */ |
| 143 | struct fsmc_nand_data { |
| 144 | struct nand_controller base; |
| 145 | u32 pid; |
| 146 | struct nand_chip nand; |
| 147 | |
| 148 | unsigned int bank; |
| 149 | struct device *dev; |
| 150 | enum access_mode mode; |
| 151 | struct clk *clk; |
| 152 | |
| 153 | /* DMA related objects */ |
| 154 | struct dma_chan *read_dma_chan; |
| 155 | struct dma_chan *write_dma_chan; |
| 156 | struct completion dma_access_complete; |
| 157 | |
| 158 | struct fsmc_nand_timings *dev_timings; |
| 159 | |
| 160 | dma_addr_t data_pa; |
| 161 | void __iomem *data_va; |
| 162 | void __iomem *cmd_va; |
| 163 | void __iomem *addr_va; |
| 164 | void __iomem *regs_va; |
| 165 | }; |
| 166 | |
| 167 | static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, |
| 168 | struct mtd_oob_region *oobregion) |
| 169 | { |
| 170 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 171 | |
| 172 | if (section >= chip->ecc.steps) |
| 173 | return -ERANGE; |
| 174 | |
| 175 | oobregion->offset = (section * 16) + 2; |
| 176 | oobregion->length = 3; |
| 177 | |
| 178 | return 0; |
| 179 | } |
| 180 | |
| 181 | static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, |
| 182 | struct mtd_oob_region *oobregion) |
| 183 | { |
| 184 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 185 | |
| 186 | if (section >= chip->ecc.steps) |
| 187 | return -ERANGE; |
| 188 | |
| 189 | oobregion->offset = (section * 16) + 8; |
| 190 | |
| 191 | if (section < chip->ecc.steps - 1) |
| 192 | oobregion->length = 8; |
| 193 | else |
| 194 | oobregion->length = mtd->oobsize - oobregion->offset; |
| 195 | |
| 196 | return 0; |
| 197 | } |
| 198 | |
| 199 | static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { |
| 200 | .ecc = fsmc_ecc1_ooblayout_ecc, |
| 201 | .free = fsmc_ecc1_ooblayout_free, |
| 202 | }; |
| 203 | |
| 204 | /* |
| 205 | * ECC placement definitions in oobfree type format. |
| 206 | * There are 13 bytes of ecc for every 512 byte block and it has to be read |
| 207 | * consecutively and immediately after the 512 byte data block for hardware to |
| 208 | * generate the error bit offsets in 512 byte data. |
| 209 | */ |
| 210 | static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, |
| 211 | struct mtd_oob_region *oobregion) |
| 212 | { |
| 213 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 214 | |
| 215 | if (section >= chip->ecc.steps) |
| 216 | return -ERANGE; |
| 217 | |
| 218 | oobregion->length = chip->ecc.bytes; |
| 219 | |
| 220 | if (!section && mtd->writesize <= 512) |
| 221 | oobregion->offset = 0; |
| 222 | else |
| 223 | oobregion->offset = (section * 16) + 2; |
| 224 | |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, |
| 229 | struct mtd_oob_region *oobregion) |
| 230 | { |
| 231 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 232 | |
| 233 | if (section >= chip->ecc.steps) |
| 234 | return -ERANGE; |
| 235 | |
| 236 | oobregion->offset = (section * 16) + 15; |
| 237 | |
| 238 | if (section < chip->ecc.steps - 1) |
| 239 | oobregion->length = 3; |
| 240 | else |
| 241 | oobregion->length = mtd->oobsize - oobregion->offset; |
| 242 | |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { |
| 247 | .ecc = fsmc_ecc4_ooblayout_ecc, |
| 248 | .free = fsmc_ecc4_ooblayout_free, |
| 249 | }; |
| 250 | |
| 251 | static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip) |
| 252 | { |
| 253 | return container_of(chip, struct fsmc_nand_data, nand); |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine |
| 258 | * |
| 259 | * This routine initializes timing parameters related to NAND memory access in |
| 260 | * FSMC registers |
| 261 | */ |
| 262 | static void fsmc_nand_setup(struct fsmc_nand_data *host, |
| 263 | struct fsmc_nand_timings *tims) |
| 264 | { |
| 265 | u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; |
| 266 | u32 tclr, tar, thiz, thold, twait, tset; |
| 267 | |
| 268 | tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; |
| 269 | tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; |
| 270 | thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; |
| 271 | thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; |
| 272 | twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; |
| 273 | tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; |
| 274 | |
| 275 | if (host->nand.options & NAND_BUSWIDTH_16) |
| 276 | value |= FSMC_DEVWID_16; |
| 277 | |
| 278 | writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC); |
| 279 | writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM); |
| 280 | writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB); |
| 281 | } |
| 282 | |
| 283 | static int fsmc_calc_timings(struct fsmc_nand_data *host, |
| 284 | const struct nand_sdr_timings *sdrt, |
| 285 | struct fsmc_nand_timings *tims) |
| 286 | { |
| 287 | unsigned long hclk = clk_get_rate(host->clk); |
| 288 | unsigned long hclkn = NSEC_PER_SEC / hclk; |
| 289 | u32 thiz, thold, twait, tset, twait_min; |
| 290 | |
| 291 | if (sdrt->tRC_min < 30000) |
| 292 | return -EOPNOTSUPP; |
| 293 | |
| 294 | tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; |
| 295 | if (tims->tar > FSMC_TAR_MASK) |
| 296 | tims->tar = FSMC_TAR_MASK; |
| 297 | tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; |
| 298 | if (tims->tclr > FSMC_TCLR_MASK) |
| 299 | tims->tclr = FSMC_TCLR_MASK; |
| 300 | |
| 301 | thiz = sdrt->tCS_min - sdrt->tWP_min; |
| 302 | tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); |
| 303 | |
| 304 | thold = sdrt->tDH_min; |
| 305 | if (thold < sdrt->tCH_min) |
| 306 | thold = sdrt->tCH_min; |
| 307 | if (thold < sdrt->tCLH_min) |
| 308 | thold = sdrt->tCLH_min; |
| 309 | if (thold < sdrt->tWH_min) |
| 310 | thold = sdrt->tWH_min; |
| 311 | if (thold < sdrt->tALH_min) |
| 312 | thold = sdrt->tALH_min; |
| 313 | if (thold < sdrt->tREH_min) |
| 314 | thold = sdrt->tREH_min; |
| 315 | tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); |
| 316 | if (tims->thold == 0) |
| 317 | tims->thold = 1; |
| 318 | else if (tims->thold > FSMC_THOLD_MASK) |
| 319 | tims->thold = FSMC_THOLD_MASK; |
| 320 | |
| 321 | tset = max(sdrt->tCS_min - sdrt->tWP_min, |
| 322 | sdrt->tCEA_max - sdrt->tREA_max); |
| 323 | tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; |
| 324 | if (tims->tset == 0) |
| 325 | tims->tset = 1; |
| 326 | else if (tims->tset > FSMC_TSET_MASK) |
| 327 | tims->tset = FSMC_TSET_MASK; |
| 328 | |
| 329 | /* |
| 330 | * According to SPEAr300 Reference Manual (RM0082) which gives more |
| 331 | * information related to FSMSC timings than the SPEAr600 one (RM0305), |
| 332 | * twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL |
| 333 | */ |
| 334 | twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000) |
| 335 | + TOUTDEL + TINDEL; |
| 336 | twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min); |
| 337 | |
| 338 | tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; |
| 339 | if (tims->twait == 0) |
| 340 | tims->twait = 1; |
| 341 | else if (tims->twait > FSMC_TWAIT_MASK) |
| 342 | tims->twait = FSMC_TWAIT_MASK; |
| 343 | |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | static int fsmc_setup_data_interface(struct nand_chip *nand, int csline, |
| 348 | const struct nand_data_interface *conf) |
| 349 | { |
| 350 | struct fsmc_nand_data *host = nand_to_fsmc(nand); |
| 351 | struct fsmc_nand_timings tims; |
| 352 | const struct nand_sdr_timings *sdrt; |
| 353 | int ret; |
| 354 | |
| 355 | sdrt = nand_get_sdr_timings(conf); |
| 356 | if (IS_ERR(sdrt)) |
| 357 | return PTR_ERR(sdrt); |
| 358 | |
| 359 | ret = fsmc_calc_timings(host, sdrt, &tims); |
| 360 | if (ret) |
| 361 | return ret; |
| 362 | |
| 363 | if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| 364 | return 0; |
| 365 | |
| 366 | fsmc_nand_setup(host, &tims); |
| 367 | |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers |
| 373 | */ |
| 374 | static void fsmc_enable_hwecc(struct nand_chip *chip, int mode) |
| 375 | { |
| 376 | struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| 377 | |
| 378 | writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256, |
| 379 | host->regs_va + FSMC_PC); |
| 380 | writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN, |
| 381 | host->regs_va + FSMC_PC); |
| 382 | writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN, |
| 383 | host->regs_va + FSMC_PC); |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by |
| 388 | * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to |
| 389 | * max of 8-bits) |
| 390 | */ |
| 391 | static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data, |
| 392 | u8 *ecc) |
| 393 | { |
| 394 | struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| 395 | u32 ecc_tmp; |
| 396 | unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; |
| 397 | |
| 398 | do { |
| 399 | if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY) |
| 400 | break; |
| 401 | |
| 402 | cond_resched(); |
| 403 | } while (!time_after_eq(jiffies, deadline)); |
| 404 | |
| 405 | if (time_after_eq(jiffies, deadline)) { |
| 406 | dev_err(host->dev, "calculate ecc timed out\n"); |
| 407 | return -ETIMEDOUT; |
| 408 | } |
| 409 | |
| 410 | ecc_tmp = readl_relaxed(host->regs_va + ECC1); |
| 411 | ecc[0] = ecc_tmp; |
| 412 | ecc[1] = ecc_tmp >> 8; |
| 413 | ecc[2] = ecc_tmp >> 16; |
| 414 | ecc[3] = ecc_tmp >> 24; |
| 415 | |
| 416 | ecc_tmp = readl_relaxed(host->regs_va + ECC2); |
| 417 | ecc[4] = ecc_tmp; |
| 418 | ecc[5] = ecc_tmp >> 8; |
| 419 | ecc[6] = ecc_tmp >> 16; |
| 420 | ecc[7] = ecc_tmp >> 24; |
| 421 | |
| 422 | ecc_tmp = readl_relaxed(host->regs_va + ECC3); |
| 423 | ecc[8] = ecc_tmp; |
| 424 | ecc[9] = ecc_tmp >> 8; |
| 425 | ecc[10] = ecc_tmp >> 16; |
| 426 | ecc[11] = ecc_tmp >> 24; |
| 427 | |
| 428 | ecc_tmp = readl_relaxed(host->regs_va + STS); |
| 429 | ecc[12] = ecc_tmp >> 16; |
| 430 | |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | /* |
| 435 | * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by |
| 436 | * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to |
| 437 | * max of 1-bit) |
| 438 | */ |
| 439 | static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data, |
| 440 | u8 *ecc) |
| 441 | { |
| 442 | struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| 443 | u32 ecc_tmp; |
| 444 | |
| 445 | ecc_tmp = readl_relaxed(host->regs_va + ECC1); |
| 446 | ecc[0] = ecc_tmp; |
| 447 | ecc[1] = ecc_tmp >> 8; |
| 448 | ecc[2] = ecc_tmp >> 16; |
| 449 | |
| 450 | return 0; |
| 451 | } |
| 452 | |
| 453 | /* Count the number of 0's in buff upto a max of max_bits */ |
| 454 | static int count_written_bits(u8 *buff, int size, int max_bits) |
| 455 | { |
| 456 | int k, written_bits = 0; |
| 457 | |
| 458 | for (k = 0; k < size; k++) { |
| 459 | written_bits += hweight8(~buff[k]); |
| 460 | if (written_bits > max_bits) |
| 461 | break; |
| 462 | } |
| 463 | |
| 464 | return written_bits; |
| 465 | } |
| 466 | |
| 467 | static void dma_complete(void *param) |
| 468 | { |
| 469 | struct fsmc_nand_data *host = param; |
| 470 | |
| 471 | complete(&host->dma_access_complete); |
| 472 | } |
| 473 | |
| 474 | static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, |
| 475 | enum dma_data_direction direction) |
| 476 | { |
| 477 | struct dma_chan *chan; |
| 478 | struct dma_device *dma_dev; |
| 479 | struct dma_async_tx_descriptor *tx; |
| 480 | dma_addr_t dma_dst, dma_src, dma_addr; |
| 481 | dma_cookie_t cookie; |
| 482 | unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| 483 | int ret; |
| 484 | unsigned long time_left; |
| 485 | |
| 486 | if (direction == DMA_TO_DEVICE) |
| 487 | chan = host->write_dma_chan; |
| 488 | else if (direction == DMA_FROM_DEVICE) |
| 489 | chan = host->read_dma_chan; |
| 490 | else |
| 491 | return -EINVAL; |
| 492 | |
| 493 | dma_dev = chan->device; |
| 494 | dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); |
| 495 | |
| 496 | if (direction == DMA_TO_DEVICE) { |
| 497 | dma_src = dma_addr; |
| 498 | dma_dst = host->data_pa; |
| 499 | } else { |
| 500 | dma_src = host->data_pa; |
| 501 | dma_dst = dma_addr; |
| 502 | } |
| 503 | |
| 504 | tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, |
| 505 | len, flags); |
| 506 | if (!tx) { |
| 507 | dev_err(host->dev, "device_prep_dma_memcpy error\n"); |
| 508 | ret = -EIO; |
| 509 | goto unmap_dma; |
| 510 | } |
| 511 | |
| 512 | tx->callback = dma_complete; |
| 513 | tx->callback_param = host; |
| 514 | cookie = tx->tx_submit(tx); |
| 515 | |
| 516 | ret = dma_submit_error(cookie); |
| 517 | if (ret) { |
| 518 | dev_err(host->dev, "dma_submit_error %d\n", cookie); |
| 519 | goto unmap_dma; |
| 520 | } |
| 521 | |
| 522 | dma_async_issue_pending(chan); |
| 523 | |
| 524 | time_left = |
| 525 | wait_for_completion_timeout(&host->dma_access_complete, |
| 526 | msecs_to_jiffies(3000)); |
| 527 | if (time_left == 0) { |
| 528 | dmaengine_terminate_all(chan); |
| 529 | dev_err(host->dev, "wait_for_completion_timeout\n"); |
| 530 | ret = -ETIMEDOUT; |
| 531 | goto unmap_dma; |
| 532 | } |
| 533 | |
| 534 | ret = 0; |
| 535 | |
| 536 | unmap_dma: |
| 537 | dma_unmap_single(dma_dev->dev, dma_addr, len, direction); |
| 538 | |
| 539 | return ret; |
| 540 | } |
| 541 | |
| 542 | /* |
| 543 | * fsmc_write_buf - write buffer to chip |
| 544 | * @host: FSMC NAND controller |
| 545 | * @buf: data buffer |
| 546 | * @len: number of bytes to write |
| 547 | */ |
| 548 | static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf, |
| 549 | int len) |
| 550 | { |
| 551 | int i; |
| 552 | |
| 553 | if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && |
| 554 | IS_ALIGNED(len, sizeof(u32))) { |
| 555 | u32 *p = (u32 *)buf; |
| 556 | |
| 557 | len = len >> 2; |
| 558 | for (i = 0; i < len; i++) |
| 559 | writel_relaxed(p[i], host->data_va); |
| 560 | } else { |
| 561 | for (i = 0; i < len; i++) |
| 562 | writeb_relaxed(buf[i], host->data_va); |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * fsmc_read_buf - read chip data into buffer |
| 568 | * @host: FSMC NAND controller |
| 569 | * @buf: buffer to store date |
| 570 | * @len: number of bytes to read |
| 571 | */ |
| 572 | static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len) |
| 573 | { |
| 574 | int i; |
| 575 | |
| 576 | if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && |
| 577 | IS_ALIGNED(len, sizeof(u32))) { |
| 578 | u32 *p = (u32 *)buf; |
| 579 | |
| 580 | len = len >> 2; |
| 581 | for (i = 0; i < len; i++) |
| 582 | p[i] = readl_relaxed(host->data_va); |
| 583 | } else { |
| 584 | for (i = 0; i < len; i++) |
| 585 | buf[i] = readb_relaxed(host->data_va); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * fsmc_read_buf_dma - read chip data into buffer |
| 591 | * @host: FSMC NAND controller |
| 592 | * @buf: buffer to store date |
| 593 | * @len: number of bytes to read |
| 594 | */ |
| 595 | static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf, |
| 596 | int len) |
| 597 | { |
| 598 | dma_xfer(host, buf, len, DMA_FROM_DEVICE); |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * fsmc_write_buf_dma - write buffer to chip |
| 603 | * @host: FSMC NAND controller |
| 604 | * @buf: data buffer |
| 605 | * @len: number of bytes to write |
| 606 | */ |
| 607 | static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf, |
| 608 | int len) |
| 609 | { |
| 610 | dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * fsmc_exec_op - hook called by the core to execute NAND operations |
| 615 | * |
| 616 | * This controller is simple enough and thus does not need to use the parser |
| 617 | * provided by the core, instead, handle every situation here. |
| 618 | */ |
| 619 | static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op, |
| 620 | bool check_only) |
| 621 | { |
| 622 | struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| 623 | const struct nand_op_instr *instr = NULL; |
| 624 | int ret = 0; |
| 625 | unsigned int op_id; |
| 626 | int i; |
| 627 | |
| 628 | pr_debug("Executing operation [%d instructions]:\n", op->ninstrs); |
| 629 | |
| 630 | for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| 631 | instr = &op->instrs[op_id]; |
| 632 | |
| 633 | nand_op_trace(" ", instr); |
| 634 | |
| 635 | switch (instr->type) { |
| 636 | case NAND_OP_CMD_INSTR: |
| 637 | writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va); |
| 638 | break; |
| 639 | |
| 640 | case NAND_OP_ADDR_INSTR: |
| 641 | for (i = 0; i < instr->ctx.addr.naddrs; i++) |
| 642 | writeb_relaxed(instr->ctx.addr.addrs[i], |
| 643 | host->addr_va); |
| 644 | break; |
| 645 | |
| 646 | case NAND_OP_DATA_IN_INSTR: |
| 647 | if (host->mode == USE_DMA_ACCESS) |
| 648 | fsmc_read_buf_dma(host, instr->ctx.data.buf.in, |
| 649 | instr->ctx.data.len); |
| 650 | else |
| 651 | fsmc_read_buf(host, instr->ctx.data.buf.in, |
| 652 | instr->ctx.data.len); |
| 653 | break; |
| 654 | |
| 655 | case NAND_OP_DATA_OUT_INSTR: |
| 656 | if (host->mode == USE_DMA_ACCESS) |
| 657 | fsmc_write_buf_dma(host, |
| 658 | instr->ctx.data.buf.out, |
| 659 | instr->ctx.data.len); |
| 660 | else |
| 661 | fsmc_write_buf(host, instr->ctx.data.buf.out, |
| 662 | instr->ctx.data.len); |
| 663 | break; |
| 664 | |
| 665 | case NAND_OP_WAITRDY_INSTR: |
| 666 | ret = nand_soft_waitrdy(chip, |
| 667 | instr->ctx.waitrdy.timeout_ms); |
| 668 | break; |
| 669 | } |
| 670 | |
| 671 | if (instr->delay_ns) |
| 672 | ndelay(instr->delay_ns); |
| 673 | } |
| 674 | |
| 675 | return ret; |
| 676 | } |
| 677 | |
| 678 | /* |
| 679 | * fsmc_read_page_hwecc |
| 680 | * @chip: nand chip info structure |
| 681 | * @buf: buffer to store read data |
| 682 | * @oob_required: caller expects OOB data read to chip->oob_poi |
| 683 | * @page: page number to read |
| 684 | * |
| 685 | * This routine is needed for fsmc version 8 as reading from NAND chip has to be |
| 686 | * performed in a strict sequence as follows: |
| 687 | * data(512 byte) -> ecc(13 byte) |
| 688 | * After this read, fsmc hardware generates and reports error data bits(up to a |
| 689 | * max of 8 bits) |
| 690 | */ |
| 691 | static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf, |
| 692 | int oob_required, int page) |
| 693 | { |
| 694 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 695 | int i, j, s, stat, eccsize = chip->ecc.size; |
| 696 | int eccbytes = chip->ecc.bytes; |
| 697 | int eccsteps = chip->ecc.steps; |
| 698 | u8 *p = buf; |
| 699 | u8 *ecc_calc = chip->ecc.calc_buf; |
| 700 | u8 *ecc_code = chip->ecc.code_buf; |
| 701 | int off, len, ret, group = 0; |
| 702 | /* |
| 703 | * ecc_oob is intentionally taken as u16. In 16bit devices, we |
| 704 | * end up reading 14 bytes (7 words) from oob. The local array is |
| 705 | * to maintain word alignment |
| 706 | */ |
| 707 | u16 ecc_oob[7]; |
| 708 | u8 *oob = (u8 *)&ecc_oob[0]; |
| 709 | unsigned int max_bitflips = 0; |
| 710 | |
| 711 | for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { |
| 712 | nand_read_page_op(chip, page, s * eccsize, NULL, 0); |
| 713 | chip->ecc.hwctl(chip, NAND_ECC_READ); |
| 714 | ret = nand_read_data_op(chip, p, eccsize, false); |
| 715 | if (ret) |
| 716 | return ret; |
| 717 | |
| 718 | for (j = 0; j < eccbytes;) { |
| 719 | struct mtd_oob_region oobregion; |
| 720 | |
| 721 | ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); |
| 722 | if (ret) |
| 723 | return ret; |
| 724 | |
| 725 | off = oobregion.offset; |
| 726 | len = oobregion.length; |
| 727 | |
| 728 | /* |
| 729 | * length is intentionally kept a higher multiple of 2 |
| 730 | * to read at least 13 bytes even in case of 16 bit NAND |
| 731 | * devices |
| 732 | */ |
| 733 | if (chip->options & NAND_BUSWIDTH_16) |
| 734 | len = roundup(len, 2); |
| 735 | |
| 736 | nand_read_oob_op(chip, page, off, oob + j, len); |
| 737 | j += len; |
| 738 | } |
| 739 | |
| 740 | memcpy(&ecc_code[i], oob, chip->ecc.bytes); |
| 741 | chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| 742 | |
| 743 | stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); |
| 744 | if (stat < 0) { |
| 745 | mtd->ecc_stats.failed++; |
| 746 | } else { |
| 747 | mtd->ecc_stats.corrected += stat; |
| 748 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | return max_bitflips; |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * fsmc_bch8_correct_data |
| 757 | * @mtd: mtd info structure |
| 758 | * @dat: buffer of read data |
| 759 | * @read_ecc: ecc read from device spare area |
| 760 | * @calc_ecc: ecc calculated from read data |
| 761 | * |
| 762 | * calc_ecc is a 104 bit information containing maximum of 8 error |
| 763 | * offset information of 13 bits each in 512 bytes of read data. |
| 764 | */ |
| 765 | static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat, |
| 766 | u8 *read_ecc, u8 *calc_ecc) |
| 767 | { |
| 768 | struct fsmc_nand_data *host = nand_to_fsmc(chip); |
| 769 | u32 err_idx[8]; |
| 770 | u32 num_err, i; |
| 771 | u32 ecc1, ecc2, ecc3, ecc4; |
| 772 | |
| 773 | num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF; |
| 774 | |
| 775 | /* no bit flipping */ |
| 776 | if (likely(num_err == 0)) |
| 777 | return 0; |
| 778 | |
| 779 | /* too many errors */ |
| 780 | if (unlikely(num_err > 8)) { |
| 781 | /* |
| 782 | * This is a temporary erase check. A newly erased page read |
| 783 | * would result in an ecc error because the oob data is also |
| 784 | * erased to FF and the calculated ecc for an FF data is not |
| 785 | * FF..FF. |
| 786 | * This is a workaround to skip performing correction in case |
| 787 | * data is FF..FF |
| 788 | * |
| 789 | * Logic: |
| 790 | * For every page, each bit written as 0 is counted until these |
| 791 | * number of bits are greater than 8 (the maximum correction |
| 792 | * capability of FSMC for each 512 + 13 bytes) |
| 793 | */ |
| 794 | |
| 795 | int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); |
| 796 | int bits_data = count_written_bits(dat, chip->ecc.size, 8); |
| 797 | |
| 798 | if ((bits_ecc + bits_data) <= 8) { |
| 799 | if (bits_data) |
| 800 | memset(dat, 0xff, chip->ecc.size); |
| 801 | return bits_data; |
| 802 | } |
| 803 | |
| 804 | return -EBADMSG; |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * ------------------- calc_ecc[] bit wise -----------|--13 bits--| |
| 809 | * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| |
| 810 | * |
| 811 | * calc_ecc is a 104 bit information containing maximum of 8 error |
| 812 | * offset information of 13 bits each. calc_ecc is copied into a |
| 813 | * u64 array and error offset indexes are populated in err_idx |
| 814 | * array |
| 815 | */ |
| 816 | ecc1 = readl_relaxed(host->regs_va + ECC1); |
| 817 | ecc2 = readl_relaxed(host->regs_va + ECC2); |
| 818 | ecc3 = readl_relaxed(host->regs_va + ECC3); |
| 819 | ecc4 = readl_relaxed(host->regs_va + STS); |
| 820 | |
| 821 | err_idx[0] = (ecc1 >> 0) & 0x1FFF; |
| 822 | err_idx[1] = (ecc1 >> 13) & 0x1FFF; |
| 823 | err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); |
| 824 | err_idx[3] = (ecc2 >> 7) & 0x1FFF; |
| 825 | err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); |
| 826 | err_idx[5] = (ecc3 >> 1) & 0x1FFF; |
| 827 | err_idx[6] = (ecc3 >> 14) & 0x1FFF; |
| 828 | err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); |
| 829 | |
| 830 | i = 0; |
| 831 | while (num_err--) { |
| 832 | change_bit(0, (unsigned long *)&err_idx[i]); |
| 833 | change_bit(1, (unsigned long *)&err_idx[i]); |
| 834 | |
| 835 | if (err_idx[i] < chip->ecc.size * 8) { |
| 836 | change_bit(err_idx[i], (unsigned long *)dat); |
| 837 | i++; |
| 838 | } |
| 839 | } |
| 840 | return i; |
| 841 | } |
| 842 | |
| 843 | static bool filter(struct dma_chan *chan, void *slave) |
| 844 | { |
| 845 | chan->private = slave; |
| 846 | return true; |
| 847 | } |
| 848 | |
| 849 | static int fsmc_nand_probe_config_dt(struct platform_device *pdev, |
| 850 | struct fsmc_nand_data *host, |
| 851 | struct nand_chip *nand) |
| 852 | { |
| 853 | struct device_node *np = pdev->dev.of_node; |
| 854 | u32 val; |
| 855 | int ret; |
| 856 | |
| 857 | nand->options = 0; |
| 858 | |
| 859 | if (!of_property_read_u32(np, "bank-width", &val)) { |
| 860 | if (val == 2) { |
| 861 | nand->options |= NAND_BUSWIDTH_16; |
| 862 | } else if (val != 1) { |
| 863 | dev_err(&pdev->dev, "invalid bank-width %u\n", val); |
| 864 | return -EINVAL; |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | if (of_get_property(np, "nand-skip-bbtscan", NULL)) |
| 869 | nand->options |= NAND_SKIP_BBTSCAN; |
| 870 | |
| 871 | host->dev_timings = devm_kzalloc(&pdev->dev, |
| 872 | sizeof(*host->dev_timings), |
| 873 | GFP_KERNEL); |
| 874 | if (!host->dev_timings) |
| 875 | return -ENOMEM; |
| 876 | |
| 877 | ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, |
| 878 | sizeof(*host->dev_timings)); |
| 879 | if (ret) |
| 880 | host->dev_timings = NULL; |
| 881 | |
| 882 | /* Set default NAND bank to 0 */ |
| 883 | host->bank = 0; |
| 884 | if (!of_property_read_u32(np, "bank", &val)) { |
| 885 | if (val > 3) { |
| 886 | dev_err(&pdev->dev, "invalid bank %u\n", val); |
| 887 | return -EINVAL; |
| 888 | } |
| 889 | host->bank = val; |
| 890 | } |
| 891 | return 0; |
| 892 | } |
| 893 | |
| 894 | static int fsmc_nand_attach_chip(struct nand_chip *nand) |
| 895 | { |
| 896 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 897 | struct fsmc_nand_data *host = nand_to_fsmc(nand); |
| 898 | |
| 899 | if (AMBA_REV_BITS(host->pid) >= 8) { |
| 900 | switch (mtd->oobsize) { |
| 901 | case 16: |
| 902 | case 64: |
| 903 | case 128: |
| 904 | case 224: |
| 905 | case 256: |
| 906 | break; |
| 907 | default: |
| 908 | dev_warn(host->dev, |
| 909 | "No oob scheme defined for oobsize %d\n", |
| 910 | mtd->oobsize); |
| 911 | return -EINVAL; |
| 912 | } |
| 913 | |
| 914 | mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); |
| 915 | |
| 916 | return 0; |
| 917 | } |
| 918 | |
| 919 | switch (nand->ecc.mode) { |
| 920 | case NAND_ECC_HW: |
| 921 | dev_info(host->dev, "Using 1-bit HW ECC scheme\n"); |
| 922 | nand->ecc.calculate = fsmc_read_hwecc_ecc1; |
| 923 | nand->ecc.correct = nand_correct_data; |
| 924 | nand->ecc.bytes = 3; |
| 925 | nand->ecc.strength = 1; |
| 926 | nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; |
| 927 | break; |
| 928 | |
| 929 | case NAND_ECC_SOFT: |
| 930 | if (nand->ecc.algo == NAND_ECC_BCH) { |
| 931 | dev_info(host->dev, |
| 932 | "Using 4-bit SW BCH ECC scheme\n"); |
| 933 | break; |
| 934 | } |
| 935 | |
| 936 | case NAND_ECC_ON_DIE: |
| 937 | break; |
| 938 | |
| 939 | default: |
| 940 | dev_err(host->dev, "Unsupported ECC mode!\n"); |
| 941 | return -ENOTSUPP; |
| 942 | } |
| 943 | |
| 944 | /* |
| 945 | * Don't set layout for BCH4 SW ECC. This will be |
| 946 | * generated later in nand_bch_init() later. |
| 947 | */ |
| 948 | if (nand->ecc.mode == NAND_ECC_HW) { |
| 949 | switch (mtd->oobsize) { |
| 950 | case 16: |
| 951 | case 64: |
| 952 | case 128: |
| 953 | mtd_set_ooblayout(mtd, |
| 954 | &fsmc_ecc1_ooblayout_ops); |
| 955 | break; |
| 956 | default: |
| 957 | dev_warn(host->dev, |
| 958 | "No oob scheme defined for oobsize %d\n", |
| 959 | mtd->oobsize); |
| 960 | return -EINVAL; |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | return 0; |
| 965 | } |
| 966 | |
| 967 | static const struct nand_controller_ops fsmc_nand_controller_ops = { |
| 968 | .attach_chip = fsmc_nand_attach_chip, |
| 969 | .exec_op = fsmc_exec_op, |
| 970 | .setup_data_interface = fsmc_setup_data_interface, |
| 971 | }; |
| 972 | |
| 973 | /** |
| 974 | * fsmc_nand_disable() - Disables the NAND bank |
| 975 | * @host: The instance to disable |
| 976 | */ |
| 977 | static void fsmc_nand_disable(struct fsmc_nand_data *host) |
| 978 | { |
| 979 | u32 val; |
| 980 | |
| 981 | val = readl(host->regs_va + FSMC_PC); |
| 982 | val &= ~FSMC_ENABLE; |
| 983 | writel(val, host->regs_va + FSMC_PC); |
| 984 | } |
| 985 | |
| 986 | /* |
| 987 | * fsmc_nand_probe - Probe function |
| 988 | * @pdev: platform device structure |
| 989 | */ |
| 990 | static int __init fsmc_nand_probe(struct platform_device *pdev) |
| 991 | { |
| 992 | struct fsmc_nand_data *host; |
| 993 | struct mtd_info *mtd; |
| 994 | struct nand_chip *nand; |
| 995 | struct resource *res; |
| 996 | void __iomem *base; |
| 997 | dma_cap_mask_t mask; |
| 998 | int ret = 0; |
| 999 | u32 pid; |
| 1000 | int i; |
| 1001 | |
| 1002 | /* Allocate memory for the device structure (and zero it) */ |
| 1003 | host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); |
| 1004 | if (!host) |
| 1005 | return -ENOMEM; |
| 1006 | |
| 1007 | nand = &host->nand; |
| 1008 | |
| 1009 | ret = fsmc_nand_probe_config_dt(pdev, host, nand); |
| 1010 | if (ret) |
| 1011 | return ret; |
| 1012 | |
| 1013 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); |
| 1014 | host->data_va = devm_ioremap_resource(&pdev->dev, res); |
| 1015 | if (IS_ERR(host->data_va)) |
| 1016 | return PTR_ERR(host->data_va); |
| 1017 | |
| 1018 | host->data_pa = (dma_addr_t)res->start; |
| 1019 | |
| 1020 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); |
| 1021 | host->addr_va = devm_ioremap_resource(&pdev->dev, res); |
| 1022 | if (IS_ERR(host->addr_va)) |
| 1023 | return PTR_ERR(host->addr_va); |
| 1024 | |
| 1025 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); |
| 1026 | host->cmd_va = devm_ioremap_resource(&pdev->dev, res); |
| 1027 | if (IS_ERR(host->cmd_va)) |
| 1028 | return PTR_ERR(host->cmd_va); |
| 1029 | |
| 1030 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); |
| 1031 | base = devm_ioremap_resource(&pdev->dev, res); |
| 1032 | if (IS_ERR(base)) |
| 1033 | return PTR_ERR(base); |
| 1034 | |
| 1035 | host->regs_va = base + FSMC_NOR_REG_SIZE + |
| 1036 | (host->bank * FSMC_NAND_BANK_SZ); |
| 1037 | |
| 1038 | host->clk = devm_clk_get(&pdev->dev, NULL); |
| 1039 | if (IS_ERR(host->clk)) { |
| 1040 | dev_err(&pdev->dev, "failed to fetch block clock\n"); |
| 1041 | return PTR_ERR(host->clk); |
| 1042 | } |
| 1043 | |
| 1044 | ret = clk_prepare_enable(host->clk); |
| 1045 | if (ret) |
| 1046 | return ret; |
| 1047 | |
| 1048 | /* |
| 1049 | * This device ID is actually a common AMBA ID as used on the |
| 1050 | * AMBA PrimeCell bus. However it is not a PrimeCell. |
| 1051 | */ |
| 1052 | for (pid = 0, i = 0; i < 4; i++) |
| 1053 | pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & |
| 1054 | 255) << (i * 8); |
| 1055 | |
| 1056 | host->pid = pid; |
| 1057 | |
| 1058 | dev_info(&pdev->dev, |
| 1059 | "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n", |
| 1060 | AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), |
| 1061 | AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); |
| 1062 | |
| 1063 | host->dev = &pdev->dev; |
| 1064 | |
| 1065 | if (host->mode == USE_DMA_ACCESS) |
| 1066 | init_completion(&host->dma_access_complete); |
| 1067 | |
| 1068 | /* Link all private pointers */ |
| 1069 | mtd = nand_to_mtd(&host->nand); |
| 1070 | nand_set_flash_node(nand, pdev->dev.of_node); |
| 1071 | |
| 1072 | mtd->dev.parent = &pdev->dev; |
| 1073 | |
| 1074 | /* |
| 1075 | * Setup default ECC mode. nand_dt_init() called from nand_scan_ident() |
| 1076 | * can overwrite this value if the DT provides a different value. |
| 1077 | */ |
| 1078 | nand->ecc.mode = NAND_ECC_HW; |
| 1079 | nand->ecc.hwctl = fsmc_enable_hwecc; |
| 1080 | nand->ecc.size = 512; |
| 1081 | nand->badblockbits = 7; |
| 1082 | |
| 1083 | if (host->mode == USE_DMA_ACCESS) { |
| 1084 | dma_cap_zero(mask); |
| 1085 | dma_cap_set(DMA_MEMCPY, mask); |
| 1086 | host->read_dma_chan = dma_request_channel(mask, filter, NULL); |
| 1087 | if (!host->read_dma_chan) { |
| 1088 | dev_err(&pdev->dev, "Unable to get read dma channel\n"); |
| 1089 | ret = -ENODEV; |
| 1090 | goto disable_clk; |
| 1091 | } |
| 1092 | host->write_dma_chan = dma_request_channel(mask, filter, NULL); |
| 1093 | if (!host->write_dma_chan) { |
| 1094 | dev_err(&pdev->dev, "Unable to get write dma channel\n"); |
| 1095 | ret = -ENODEV; |
| 1096 | goto release_dma_read_chan; |
| 1097 | } |
| 1098 | } |
| 1099 | |
| 1100 | if (host->dev_timings) { |
| 1101 | fsmc_nand_setup(host, host->dev_timings); |
| 1102 | nand->options |= NAND_KEEP_TIMINGS; |
| 1103 | } |
| 1104 | |
| 1105 | if (AMBA_REV_BITS(host->pid) >= 8) { |
| 1106 | nand->ecc.read_page = fsmc_read_page_hwecc; |
| 1107 | nand->ecc.calculate = fsmc_read_hwecc_ecc4; |
| 1108 | nand->ecc.correct = fsmc_bch8_correct_data; |
| 1109 | nand->ecc.bytes = 13; |
| 1110 | nand->ecc.strength = 8; |
| 1111 | } |
| 1112 | |
| 1113 | nand_controller_init(&host->base); |
| 1114 | host->base.ops = &fsmc_nand_controller_ops; |
| 1115 | nand->controller = &host->base; |
| 1116 | |
| 1117 | /* |
| 1118 | * Scan to find existence of the device |
| 1119 | */ |
| 1120 | ret = nand_scan(nand, 1); |
| 1121 | if (ret) |
| 1122 | goto release_dma_write_chan; |
| 1123 | |
| 1124 | mtd->name = "nand"; |
| 1125 | ret = mtd_device_register(mtd, NULL, 0); |
| 1126 | if (ret) |
| 1127 | goto cleanup_nand; |
| 1128 | |
| 1129 | platform_set_drvdata(pdev, host); |
| 1130 | dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); |
| 1131 | |
| 1132 | return 0; |
| 1133 | |
| 1134 | cleanup_nand: |
| 1135 | nand_cleanup(nand); |
| 1136 | release_dma_write_chan: |
| 1137 | if (host->mode == USE_DMA_ACCESS) |
| 1138 | dma_release_channel(host->write_dma_chan); |
| 1139 | release_dma_read_chan: |
| 1140 | if (host->mode == USE_DMA_ACCESS) |
| 1141 | dma_release_channel(host->read_dma_chan); |
| 1142 | disable_clk: |
| 1143 | fsmc_nand_disable(host); |
| 1144 | clk_disable_unprepare(host->clk); |
| 1145 | |
| 1146 | return ret; |
| 1147 | } |
| 1148 | |
| 1149 | /* |
| 1150 | * Clean up routine |
| 1151 | */ |
| 1152 | static int fsmc_nand_remove(struct platform_device *pdev) |
| 1153 | { |
| 1154 | struct fsmc_nand_data *host = platform_get_drvdata(pdev); |
| 1155 | |
| 1156 | if (host) { |
| 1157 | nand_release(&host->nand); |
| 1158 | fsmc_nand_disable(host); |
| 1159 | |
| 1160 | if (host->mode == USE_DMA_ACCESS) { |
| 1161 | dma_release_channel(host->write_dma_chan); |
| 1162 | dma_release_channel(host->read_dma_chan); |
| 1163 | } |
| 1164 | clk_disable_unprepare(host->clk); |
| 1165 | } |
| 1166 | |
| 1167 | return 0; |
| 1168 | } |
| 1169 | |
| 1170 | #ifdef CONFIG_PM_SLEEP |
| 1171 | static int fsmc_nand_suspend(struct device *dev) |
| 1172 | { |
| 1173 | struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| 1174 | |
| 1175 | if (host) |
| 1176 | clk_disable_unprepare(host->clk); |
| 1177 | |
| 1178 | return 0; |
| 1179 | } |
| 1180 | |
| 1181 | static int fsmc_nand_resume(struct device *dev) |
| 1182 | { |
| 1183 | struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| 1184 | int ret; |
| 1185 | |
| 1186 | if (host) { |
| 1187 | ret = clk_prepare_enable(host->clk); |
| 1188 | if (ret) { |
| 1189 | dev_err(dev, "failed to enable clk\n"); |
| 1190 | return ret; |
| 1191 | } |
| 1192 | if (host->dev_timings) |
| 1193 | fsmc_nand_setup(host, host->dev_timings); |
| 1194 | nand_reset(&host->nand, 0); |
| 1195 | } |
| 1196 | |
| 1197 | return 0; |
| 1198 | } |
| 1199 | #endif |
| 1200 | |
| 1201 | static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); |
| 1202 | |
| 1203 | static const struct of_device_id fsmc_nand_id_table[] = { |
| 1204 | { .compatible = "st,spear600-fsmc-nand" }, |
| 1205 | { .compatible = "stericsson,fsmc-nand" }, |
| 1206 | {} |
| 1207 | }; |
| 1208 | MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); |
| 1209 | |
| 1210 | static struct platform_driver fsmc_nand_driver = { |
| 1211 | .remove = fsmc_nand_remove, |
| 1212 | .driver = { |
| 1213 | .name = "fsmc-nand", |
| 1214 | .of_match_table = fsmc_nand_id_table, |
| 1215 | .pm = &fsmc_nand_pm_ops, |
| 1216 | }, |
| 1217 | }; |
| 1218 | |
| 1219 | module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); |
| 1220 | |
| 1221 | MODULE_LICENSE("GPL v2"); |
| 1222 | MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); |
| 1223 | MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |