b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Overview: |
| 4 | * This is the generic MTD driver for NAND flash devices. It should be |
| 5 | * capable of working with almost all NAND chips currently available. |
| 6 | * |
| 7 | * Additional technical information is available on |
| 8 | * http://www.linux-mtd.infradead.org/doc/nand.html |
| 9 | * |
| 10 | * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) |
| 11 | * 2002-2006 Thomas Gleixner (tglx@linutronix.de) |
| 12 | * |
| 13 | * Credits: |
| 14 | * David Woodhouse for adding multichip support |
| 15 | * |
| 16 | * Aleph One Ltd. and Toby Churchill Ltd. for supporting the |
| 17 | * rework for 2K page size chips |
| 18 | * |
| 19 | * TODO: |
| 20 | * Enable cached programming for 2k page size chips |
| 21 | * Check, if mtd->ecctype should be set to MTD_ECC_HW |
| 22 | * if we have HW ECC support. |
| 23 | * BBT table is not serialized, has to be fixed |
| 24 | */ |
| 25 | |
| 26 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 27 | |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <linux/errno.h> |
| 31 | #include <linux/err.h> |
| 32 | #include <linux/sched.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/mm.h> |
| 35 | #include <linux/types.h> |
| 36 | #include <linux/mtd/mtd.h> |
| 37 | #include <linux/mtd/nand_ecc.h> |
| 38 | #include <linux/mtd/nand_bch.h> |
| 39 | #include <linux/interrupt.h> |
| 40 | #include <linux/bitops.h> |
| 41 | #include <linux/io.h> |
| 42 | #include <linux/mtd/partitions.h> |
| 43 | #include <linux/of.h> |
| 44 | #include <linux/gpio/consumer.h> |
| 45 | |
| 46 | #include "internals.h" |
| 47 | |
| 48 | /* Define default oob placement schemes for large and small page devices */ |
| 49 | static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, |
| 50 | struct mtd_oob_region *oobregion) |
| 51 | { |
| 52 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 53 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 54 | |
| 55 | if (section > 1) |
| 56 | return -ERANGE; |
| 57 | |
| 58 | if (!section) { |
| 59 | oobregion->offset = 0; |
| 60 | if (mtd->oobsize == 16) |
| 61 | oobregion->length = 4; |
| 62 | else |
| 63 | oobregion->length = 3; |
| 64 | } else { |
| 65 | if (mtd->oobsize == 8) |
| 66 | return -ERANGE; |
| 67 | |
| 68 | oobregion->offset = 6; |
| 69 | oobregion->length = ecc->total - 4; |
| 70 | } |
| 71 | |
| 72 | return 0; |
| 73 | } |
| 74 | |
| 75 | static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, |
| 76 | struct mtd_oob_region *oobregion) |
| 77 | { |
| 78 | if (section > 1) |
| 79 | return -ERANGE; |
| 80 | |
| 81 | if (mtd->oobsize == 16) { |
| 82 | if (section) |
| 83 | return -ERANGE; |
| 84 | |
| 85 | oobregion->length = 8; |
| 86 | oobregion->offset = 8; |
| 87 | } else { |
| 88 | oobregion->length = 2; |
| 89 | if (!section) |
| 90 | oobregion->offset = 3; |
| 91 | else |
| 92 | oobregion->offset = 6; |
| 93 | } |
| 94 | |
| 95 | return 0; |
| 96 | } |
| 97 | |
| 98 | const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { |
| 99 | .ecc = nand_ooblayout_ecc_sp, |
| 100 | .free = nand_ooblayout_free_sp, |
| 101 | }; |
| 102 | EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); |
| 103 | |
| 104 | static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, |
| 105 | struct mtd_oob_region *oobregion) |
| 106 | { |
| 107 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 108 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 109 | |
| 110 | if (section || !ecc->total) |
| 111 | return -ERANGE; |
| 112 | |
| 113 | oobregion->length = ecc->total; |
| 114 | oobregion->offset = mtd->oobsize - oobregion->length; |
| 115 | |
| 116 | return 0; |
| 117 | } |
| 118 | |
| 119 | static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, |
| 120 | struct mtd_oob_region *oobregion) |
| 121 | { |
| 122 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 123 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 124 | |
| 125 | if (section) |
| 126 | return -ERANGE; |
| 127 | |
| 128 | oobregion->length = mtd->oobsize - ecc->total - 2; |
| 129 | oobregion->offset = 2; |
| 130 | |
| 131 | return 0; |
| 132 | } |
| 133 | |
| 134 | const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { |
| 135 | .ecc = nand_ooblayout_ecc_lp, |
| 136 | .free = nand_ooblayout_free_lp, |
| 137 | }; |
| 138 | EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); |
| 139 | |
| 140 | /* |
| 141 | * Support the old "large page" layout used for 1-bit Hamming ECC where ECC |
| 142 | * are placed at a fixed offset. |
| 143 | */ |
| 144 | static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, |
| 145 | struct mtd_oob_region *oobregion) |
| 146 | { |
| 147 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 148 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 149 | |
| 150 | if (section) |
| 151 | return -ERANGE; |
| 152 | |
| 153 | switch (mtd->oobsize) { |
| 154 | case 64: |
| 155 | oobregion->offset = 40; |
| 156 | break; |
| 157 | case 128: |
| 158 | oobregion->offset = 80; |
| 159 | break; |
| 160 | default: |
| 161 | return -EINVAL; |
| 162 | } |
| 163 | |
| 164 | oobregion->length = ecc->total; |
| 165 | if (oobregion->offset + oobregion->length > mtd->oobsize) |
| 166 | return -ERANGE; |
| 167 | |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, |
| 172 | struct mtd_oob_region *oobregion) |
| 173 | { |
| 174 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 175 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 176 | int ecc_offset = 0; |
| 177 | |
| 178 | if (section < 0 || section > 1) |
| 179 | return -ERANGE; |
| 180 | |
| 181 | switch (mtd->oobsize) { |
| 182 | case 64: |
| 183 | ecc_offset = 40; |
| 184 | break; |
| 185 | case 128: |
| 186 | ecc_offset = 80; |
| 187 | break; |
| 188 | default: |
| 189 | return -EINVAL; |
| 190 | } |
| 191 | |
| 192 | if (section == 0) { |
| 193 | oobregion->offset = 2; |
| 194 | oobregion->length = ecc_offset - 2; |
| 195 | } else { |
| 196 | oobregion->offset = ecc_offset + ecc->total; |
| 197 | oobregion->length = mtd->oobsize - oobregion->offset; |
| 198 | } |
| 199 | |
| 200 | return 0; |
| 201 | } |
| 202 | |
| 203 | static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { |
| 204 | .ecc = nand_ooblayout_ecc_lp_hamming, |
| 205 | .free = nand_ooblayout_free_lp_hamming, |
| 206 | }; |
| 207 | |
| 208 | static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) |
| 209 | { |
| 210 | int ret = 0; |
| 211 | |
| 212 | /* Start address must align on block boundary */ |
| 213 | if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { |
| 214 | pr_debug("%s: unaligned address\n", __func__); |
| 215 | ret = -EINVAL; |
| 216 | } |
| 217 | |
| 218 | /* Length must align on block boundary */ |
| 219 | if (len & ((1ULL << chip->phys_erase_shift) - 1)) { |
| 220 | pr_debug("%s: length not block aligned\n", __func__); |
| 221 | ret = -EINVAL; |
| 222 | } |
| 223 | |
| 224 | return ret; |
| 225 | } |
| 226 | |
| 227 | /** |
| 228 | * nand_select_target() - Select a NAND target (A.K.A. die) |
| 229 | * @chip: NAND chip object |
| 230 | * @cs: the CS line to select. Note that this CS id is always from the chip |
| 231 | * PoV, not the controller one |
| 232 | * |
| 233 | * Select a NAND target so that further operations executed on @chip go to the |
| 234 | * selected NAND target. |
| 235 | */ |
| 236 | void nand_select_target(struct nand_chip *chip, unsigned int cs) |
| 237 | { |
| 238 | /* |
| 239 | * cs should always lie between 0 and nanddev_ntargets(), when that's |
| 240 | * not the case it's a bug and the caller should be fixed. |
| 241 | */ |
| 242 | if (WARN_ON(cs > nanddev_ntargets(&chip->base))) |
| 243 | return; |
| 244 | |
| 245 | chip->cur_cs = cs; |
| 246 | |
| 247 | if (chip->legacy.select_chip) |
| 248 | chip->legacy.select_chip(chip, cs); |
| 249 | } |
| 250 | EXPORT_SYMBOL_GPL(nand_select_target); |
| 251 | |
| 252 | /** |
| 253 | * nand_deselect_target() - Deselect the currently selected target |
| 254 | * @chip: NAND chip object |
| 255 | * |
| 256 | * Deselect the currently selected NAND target. The result of operations |
| 257 | * executed on @chip after the target has been deselected is undefined. |
| 258 | */ |
| 259 | void nand_deselect_target(struct nand_chip *chip) |
| 260 | { |
| 261 | if (chip->legacy.select_chip) |
| 262 | chip->legacy.select_chip(chip, -1); |
| 263 | |
| 264 | chip->cur_cs = -1; |
| 265 | } |
| 266 | EXPORT_SYMBOL_GPL(nand_deselect_target); |
| 267 | |
| 268 | /** |
| 269 | * nand_release_device - [GENERIC] release chip |
| 270 | * @chip: NAND chip object |
| 271 | * |
| 272 | * Release chip lock and wake up anyone waiting on the device. |
| 273 | */ |
| 274 | static void nand_release_device(struct nand_chip *chip) |
| 275 | { |
| 276 | /* Release the controller and the chip */ |
| 277 | mutex_unlock(&chip->controller->lock); |
| 278 | mutex_unlock(&chip->lock); |
| 279 | } |
| 280 | |
| 281 | /** |
| 282 | * nand_bbm_get_next_page - Get the next page for bad block markers |
| 283 | * @chip: NAND chip object |
| 284 | * @page: First page to start checking for bad block marker usage |
| 285 | * |
| 286 | * Returns an integer that corresponds to the page offset within a block, for |
| 287 | * a page that is used to store bad block markers. If no more pages are |
| 288 | * available, -EINVAL is returned. |
| 289 | */ |
| 290 | int nand_bbm_get_next_page(struct nand_chip *chip, int page) |
| 291 | { |
| 292 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 293 | int last_page = ((mtd->erasesize - mtd->writesize) >> |
| 294 | chip->page_shift) & chip->pagemask; |
| 295 | unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE |
| 296 | | NAND_BBM_LASTPAGE; |
| 297 | |
| 298 | if (page == 0 && !(chip->options & bbm_flags)) |
| 299 | return 0; |
| 300 | if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) |
| 301 | return 0; |
| 302 | if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) |
| 303 | return 1; |
| 304 | if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) |
| 305 | return last_page; |
| 306 | |
| 307 | return -EINVAL; |
| 308 | } |
| 309 | |
| 310 | /** |
| 311 | * nand_block_bad - [DEFAULT] Read bad block marker from the chip |
| 312 | * @chip: NAND chip object |
| 313 | * @ofs: offset from device start |
| 314 | * |
| 315 | * Check, if the block is bad. |
| 316 | */ |
| 317 | static int nand_block_bad(struct nand_chip *chip, loff_t ofs) |
| 318 | { |
| 319 | int first_page, page_offset; |
| 320 | int res; |
| 321 | u8 bad; |
| 322 | |
| 323 | first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| 324 | page_offset = nand_bbm_get_next_page(chip, 0); |
| 325 | |
| 326 | while (page_offset >= 0) { |
| 327 | res = chip->ecc.read_oob(chip, first_page + page_offset); |
| 328 | if (res < 0) |
| 329 | return res; |
| 330 | |
| 331 | bad = chip->oob_poi[chip->badblockpos]; |
| 332 | |
| 333 | if (likely(chip->badblockbits == 8)) |
| 334 | res = bad != 0xFF; |
| 335 | else |
| 336 | res = hweight8(bad) < chip->badblockbits; |
| 337 | if (res) |
| 338 | return res; |
| 339 | |
| 340 | page_offset = nand_bbm_get_next_page(chip, page_offset + 1); |
| 341 | } |
| 342 | |
| 343 | return 0; |
| 344 | } |
| 345 | |
| 346 | static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) |
| 347 | { |
| 348 | if (chip->legacy.block_bad) |
| 349 | return chip->legacy.block_bad(chip, ofs); |
| 350 | |
| 351 | return nand_block_bad(chip, ofs); |
| 352 | } |
| 353 | |
| 354 | /** |
| 355 | * nand_get_device - [GENERIC] Get chip for selected access |
| 356 | * @chip: NAND chip structure |
| 357 | * |
| 358 | * Lock the device and its controller for exclusive access |
| 359 | * |
| 360 | * Return: -EBUSY if the chip has been suspended, 0 otherwise |
| 361 | */ |
| 362 | static void nand_get_device(struct nand_chip *chip) |
| 363 | { |
| 364 | /* Wait until the device is resumed. */ |
| 365 | while (1) { |
| 366 | mutex_lock(&chip->lock); |
| 367 | if (!chip->suspended) { |
| 368 | mutex_lock(&chip->controller->lock); |
| 369 | return; |
| 370 | } |
| 371 | mutex_unlock(&chip->lock); |
| 372 | |
| 373 | wait_event(chip->resume_wq, !chip->suspended); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | /** |
| 378 | * nand_check_wp - [GENERIC] check if the chip is write protected |
| 379 | * @chip: NAND chip object |
| 380 | * |
| 381 | * Check, if the device is write protected. The function expects, that the |
| 382 | * device is already selected. |
| 383 | */ |
| 384 | static int nand_check_wp(struct nand_chip *chip) |
| 385 | { |
| 386 | u8 status; |
| 387 | int ret; |
| 388 | |
| 389 | /* Broken xD cards report WP despite being writable */ |
| 390 | if (chip->options & NAND_BROKEN_XD) |
| 391 | return 0; |
| 392 | |
| 393 | /* Check the WP bit */ |
| 394 | ret = nand_status_op(chip, &status); |
| 395 | if (ret) |
| 396 | return ret; |
| 397 | |
| 398 | return status & NAND_STATUS_WP ? 0 : 1; |
| 399 | } |
| 400 | |
| 401 | /** |
| 402 | * nand_fill_oob - [INTERN] Transfer client buffer to oob |
| 403 | * @chip: NAND chip object |
| 404 | * @oob: oob data buffer |
| 405 | * @len: oob data write length |
| 406 | * @ops: oob ops structure |
| 407 | */ |
| 408 | static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, |
| 409 | struct mtd_oob_ops *ops) |
| 410 | { |
| 411 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 412 | int ret; |
| 413 | |
| 414 | /* |
| 415 | * Initialise to all 0xFF, to avoid the possibility of left over OOB |
| 416 | * data from a previous OOB read. |
| 417 | */ |
| 418 | memset(chip->oob_poi, 0xff, mtd->oobsize); |
| 419 | |
| 420 | switch (ops->mode) { |
| 421 | |
| 422 | case MTD_OPS_PLACE_OOB: |
| 423 | case MTD_OPS_RAW: |
| 424 | memcpy(chip->oob_poi + ops->ooboffs, oob, len); |
| 425 | return oob + len; |
| 426 | |
| 427 | case MTD_OPS_AUTO_OOB: |
| 428 | ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, |
| 429 | ops->ooboffs, len); |
| 430 | BUG_ON(ret); |
| 431 | return oob + len; |
| 432 | |
| 433 | default: |
| 434 | BUG(); |
| 435 | } |
| 436 | return NULL; |
| 437 | } |
| 438 | |
| 439 | /** |
| 440 | * nand_do_write_oob - [MTD Interface] NAND write out-of-band |
| 441 | * @chip: NAND chip object |
| 442 | * @to: offset to write to |
| 443 | * @ops: oob operation description structure |
| 444 | * |
| 445 | * NAND write out-of-band. |
| 446 | */ |
| 447 | static int nand_do_write_oob(struct nand_chip *chip, loff_t to, |
| 448 | struct mtd_oob_ops *ops) |
| 449 | { |
| 450 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 451 | int chipnr, page, status, len, ret; |
| 452 | |
| 453 | pr_debug("%s: to = 0x%08x, len = %i\n", |
| 454 | __func__, (unsigned int)to, (int)ops->ooblen); |
| 455 | |
| 456 | len = mtd_oobavail(mtd, ops); |
| 457 | |
| 458 | /* Do not allow write past end of page */ |
| 459 | if ((ops->ooboffs + ops->ooblen) > len) { |
| 460 | pr_debug("%s: attempt to write past end of page\n", |
| 461 | __func__); |
| 462 | return -EINVAL; |
| 463 | } |
| 464 | |
| 465 | chipnr = (int)(to >> chip->chip_shift); |
| 466 | |
| 467 | /* |
| 468 | * Reset the chip. Some chips (like the Toshiba TC5832DC found in one |
| 469 | * of my DiskOnChip 2000 test units) will clear the whole data page too |
| 470 | * if we don't do this. I have no clue why, but I seem to have 'fixed' |
| 471 | * it in the doc2000 driver in August 1999. dwmw2. |
| 472 | */ |
| 473 | ret = nand_reset(chip, chipnr); |
| 474 | if (ret) |
| 475 | return ret; |
| 476 | |
| 477 | nand_select_target(chip, chipnr); |
| 478 | |
| 479 | /* Shift to get page */ |
| 480 | page = (int)(to >> chip->page_shift); |
| 481 | |
| 482 | /* Check, if it is write protected */ |
| 483 | if (nand_check_wp(chip)) { |
| 484 | nand_deselect_target(chip); |
| 485 | return -EROFS; |
| 486 | } |
| 487 | |
| 488 | /* Invalidate the page cache, if we write to the cached page */ |
| 489 | if (page == chip->pagecache.page) |
| 490 | chip->pagecache.page = -1; |
| 491 | |
| 492 | nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); |
| 493 | |
| 494 | if (ops->mode == MTD_OPS_RAW) |
| 495 | status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); |
| 496 | else |
| 497 | status = chip->ecc.write_oob(chip, page & chip->pagemask); |
| 498 | |
| 499 | nand_deselect_target(chip); |
| 500 | |
| 501 | if (status) |
| 502 | return status; |
| 503 | |
| 504 | ops->oobretlen = ops->ooblen; |
| 505 | |
| 506 | return 0; |
| 507 | } |
| 508 | |
| 509 | /** |
| 510 | * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker |
| 511 | * @chip: NAND chip object |
| 512 | * @ofs: offset from device start |
| 513 | * |
| 514 | * This is the default implementation, which can be overridden by a hardware |
| 515 | * specific driver. It provides the details for writing a bad block marker to a |
| 516 | * block. |
| 517 | */ |
| 518 | static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) |
| 519 | { |
| 520 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 521 | struct mtd_oob_ops ops; |
| 522 | uint8_t buf[2] = { 0, 0 }; |
| 523 | int ret = 0, res, page_offset; |
| 524 | |
| 525 | memset(&ops, 0, sizeof(ops)); |
| 526 | ops.oobbuf = buf; |
| 527 | ops.ooboffs = chip->badblockpos; |
| 528 | if (chip->options & NAND_BUSWIDTH_16) { |
| 529 | ops.ooboffs &= ~0x01; |
| 530 | ops.len = ops.ooblen = 2; |
| 531 | } else { |
| 532 | ops.len = ops.ooblen = 1; |
| 533 | } |
| 534 | ops.mode = MTD_OPS_PLACE_OOB; |
| 535 | |
| 536 | page_offset = nand_bbm_get_next_page(chip, 0); |
| 537 | |
| 538 | while (page_offset >= 0) { |
| 539 | res = nand_do_write_oob(chip, |
| 540 | ofs + (page_offset * mtd->writesize), |
| 541 | &ops); |
| 542 | |
| 543 | if (!ret) |
| 544 | ret = res; |
| 545 | |
| 546 | page_offset = nand_bbm_get_next_page(chip, page_offset + 1); |
| 547 | } |
| 548 | |
| 549 | return ret; |
| 550 | } |
| 551 | |
| 552 | /** |
| 553 | * nand_markbad_bbm - mark a block by updating the BBM |
| 554 | * @chip: NAND chip object |
| 555 | * @ofs: offset of the block to mark bad |
| 556 | */ |
| 557 | int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) |
| 558 | { |
| 559 | if (chip->legacy.block_markbad) |
| 560 | return chip->legacy.block_markbad(chip, ofs); |
| 561 | |
| 562 | return nand_default_block_markbad(chip, ofs); |
| 563 | } |
| 564 | |
| 565 | /** |
| 566 | * nand_block_markbad_lowlevel - mark a block bad |
| 567 | * @chip: NAND chip object |
| 568 | * @ofs: offset from device start |
| 569 | * |
| 570 | * This function performs the generic NAND bad block marking steps (i.e., bad |
| 571 | * block table(s) and/or marker(s)). We only allow the hardware driver to |
| 572 | * specify how to write bad block markers to OOB (chip->legacy.block_markbad). |
| 573 | * |
| 574 | * We try operations in the following order: |
| 575 | * |
| 576 | * (1) erase the affected block, to allow OOB marker to be written cleanly |
| 577 | * (2) write bad block marker to OOB area of affected block (unless flag |
| 578 | * NAND_BBT_NO_OOB_BBM is present) |
| 579 | * (3) update the BBT |
| 580 | * |
| 581 | * Note that we retain the first error encountered in (2) or (3), finish the |
| 582 | * procedures, and dump the error in the end. |
| 583 | */ |
| 584 | static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) |
| 585 | { |
| 586 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 587 | int res, ret = 0; |
| 588 | |
| 589 | if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { |
| 590 | struct erase_info einfo; |
| 591 | |
| 592 | /* Attempt erase before marking OOB */ |
| 593 | memset(&einfo, 0, sizeof(einfo)); |
| 594 | einfo.addr = ofs; |
| 595 | einfo.len = 1ULL << chip->phys_erase_shift; |
| 596 | nand_erase_nand(chip, &einfo, 0); |
| 597 | |
| 598 | /* Write bad block marker to OOB */ |
| 599 | nand_get_device(chip); |
| 600 | |
| 601 | ret = nand_markbad_bbm(chip, ofs); |
| 602 | nand_release_device(chip); |
| 603 | } |
| 604 | |
| 605 | /* Mark block bad in BBT */ |
| 606 | if (chip->bbt) { |
| 607 | res = nand_markbad_bbt(chip, ofs); |
| 608 | if (!ret) |
| 609 | ret = res; |
| 610 | } |
| 611 | |
| 612 | if (!ret) |
| 613 | mtd->ecc_stats.badblocks++; |
| 614 | |
| 615 | return ret; |
| 616 | } |
| 617 | |
| 618 | /** |
| 619 | * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. |
| 620 | * @mtd: MTD device structure |
| 621 | * @ofs: offset from device start |
| 622 | * |
| 623 | * Check if the block is marked as reserved. |
| 624 | */ |
| 625 | static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) |
| 626 | { |
| 627 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 628 | |
| 629 | if (!chip->bbt) |
| 630 | return 0; |
| 631 | /* Return info from the table */ |
| 632 | return nand_isreserved_bbt(chip, ofs); |
| 633 | } |
| 634 | |
| 635 | /** |
| 636 | * nand_block_checkbad - [GENERIC] Check if a block is marked bad |
| 637 | * @chip: NAND chip object |
| 638 | * @ofs: offset from device start |
| 639 | * @allowbbt: 1, if its allowed to access the bbt area |
| 640 | * |
| 641 | * Check, if the block is bad. Either by reading the bad block table or |
| 642 | * calling of the scan function. |
| 643 | */ |
| 644 | static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) |
| 645 | { |
| 646 | /* Return info from the table */ |
| 647 | if (chip->bbt) |
| 648 | return nand_isbad_bbt(chip, ofs, allowbbt); |
| 649 | |
| 650 | return nand_isbad_bbm(chip, ofs); |
| 651 | } |
| 652 | |
| 653 | /** |
| 654 | * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 |
| 655 | * @chip: NAND chip structure |
| 656 | * @timeout_ms: Timeout in ms |
| 657 | * |
| 658 | * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. |
| 659 | * If that does not happen whitin the specified timeout, -ETIMEDOUT is |
| 660 | * returned. |
| 661 | * |
| 662 | * This helper is intended to be used when the controller does not have access |
| 663 | * to the NAND R/B pin. |
| 664 | * |
| 665 | * Be aware that calling this helper from an ->exec_op() implementation means |
| 666 | * ->exec_op() must be re-entrant. |
| 667 | * |
| 668 | * Return 0 if the NAND chip is ready, a negative error otherwise. |
| 669 | */ |
| 670 | int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) |
| 671 | { |
| 672 | const struct nand_sdr_timings *timings; |
| 673 | u8 status = 0; |
| 674 | int ret; |
| 675 | |
| 676 | if (!nand_has_exec_op(chip)) |
| 677 | return -ENOTSUPP; |
| 678 | |
| 679 | /* Wait tWB before polling the STATUS reg. */ |
| 680 | timings = nand_get_sdr_timings(&chip->data_interface); |
| 681 | ndelay(PSEC_TO_NSEC(timings->tWB_max)); |
| 682 | |
| 683 | ret = nand_status_op(chip, NULL); |
| 684 | if (ret) |
| 685 | return ret; |
| 686 | |
| 687 | timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); |
| 688 | do { |
| 689 | ret = nand_read_data_op(chip, &status, sizeof(status), true); |
| 690 | if (ret) |
| 691 | break; |
| 692 | |
| 693 | if (status & NAND_STATUS_READY) |
| 694 | break; |
| 695 | |
| 696 | /* |
| 697 | * Typical lowest execution time for a tR on most NANDs is 10us, |
| 698 | * use this as polling delay before doing something smarter (ie. |
| 699 | * deriving a delay from the timeout value, timeout_ms/ratio). |
| 700 | */ |
| 701 | udelay(10); |
| 702 | } while (time_before(jiffies, timeout_ms)); |
| 703 | |
| 704 | /* |
| 705 | * We have to exit READ_STATUS mode in order to read real data on the |
| 706 | * bus in case the WAITRDY instruction is preceding a DATA_IN |
| 707 | * instruction. |
| 708 | */ |
| 709 | nand_exit_status_op(chip); |
| 710 | |
| 711 | if (ret) |
| 712 | return ret; |
| 713 | |
| 714 | return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; |
| 715 | }; |
| 716 | EXPORT_SYMBOL_GPL(nand_soft_waitrdy); |
| 717 | |
| 718 | /** |
| 719 | * nand_gpio_waitrdy - Poll R/B GPIO pin until ready |
| 720 | * @chip: NAND chip structure |
| 721 | * @gpiod: GPIO descriptor of R/B pin |
| 722 | * @timeout_ms: Timeout in ms |
| 723 | * |
| 724 | * Poll the R/B GPIO pin until it becomes ready. If that does not happen |
| 725 | * whitin the specified timeout, -ETIMEDOUT is returned. |
| 726 | * |
| 727 | * This helper is intended to be used when the controller has access to the |
| 728 | * NAND R/B pin over GPIO. |
| 729 | * |
| 730 | * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. |
| 731 | */ |
| 732 | int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, |
| 733 | unsigned long timeout_ms) |
| 734 | { |
| 735 | |
| 736 | /* |
| 737 | * Wait until R/B pin indicates chip is ready or timeout occurs. |
| 738 | * +1 below is necessary because if we are now in the last fraction |
| 739 | * of jiffy and msecs_to_jiffies is 1 then we will wait only that |
| 740 | * small jiffy fraction - possibly leading to false timeout. |
| 741 | */ |
| 742 | timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; |
| 743 | do { |
| 744 | if (gpiod_get_value_cansleep(gpiod)) |
| 745 | return 0; |
| 746 | |
| 747 | cond_resched(); |
| 748 | } while (time_before(jiffies, timeout_ms)); |
| 749 | |
| 750 | return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; |
| 751 | }; |
| 752 | EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); |
| 753 | |
| 754 | /** |
| 755 | * panic_nand_wait - [GENERIC] wait until the command is done |
| 756 | * @chip: NAND chip structure |
| 757 | * @timeo: timeout |
| 758 | * |
| 759 | * Wait for command done. This is a helper function for nand_wait used when |
| 760 | * we are in interrupt context. May happen when in panic and trying to write |
| 761 | * an oops through mtdoops. |
| 762 | */ |
| 763 | void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) |
| 764 | { |
| 765 | int i; |
| 766 | for (i = 0; i < timeo; i++) { |
| 767 | if (chip->legacy.dev_ready) { |
| 768 | if (chip->legacy.dev_ready(chip)) |
| 769 | break; |
| 770 | } else { |
| 771 | int ret; |
| 772 | u8 status; |
| 773 | |
| 774 | ret = nand_read_data_op(chip, &status, sizeof(status), |
| 775 | true); |
| 776 | if (ret) |
| 777 | return; |
| 778 | |
| 779 | if (status & NAND_STATUS_READY) |
| 780 | break; |
| 781 | } |
| 782 | mdelay(1); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | static bool nand_supports_get_features(struct nand_chip *chip, int addr) |
| 787 | { |
| 788 | return (chip->parameters.supports_set_get_features && |
| 789 | test_bit(addr, chip->parameters.get_feature_list)); |
| 790 | } |
| 791 | |
| 792 | static bool nand_supports_set_features(struct nand_chip *chip, int addr) |
| 793 | { |
| 794 | return (chip->parameters.supports_set_get_features && |
| 795 | test_bit(addr, chip->parameters.set_feature_list)); |
| 796 | } |
| 797 | |
| 798 | /** |
| 799 | * nand_reset_data_interface - Reset data interface and timings |
| 800 | * @chip: The NAND chip |
| 801 | * @chipnr: Internal die id |
| 802 | * |
| 803 | * Reset the Data interface and timings to ONFI mode 0. |
| 804 | * |
| 805 | * Returns 0 for success or negative error code otherwise. |
| 806 | */ |
| 807 | static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) |
| 808 | { |
| 809 | int ret; |
| 810 | |
| 811 | if (!nand_has_setup_data_iface(chip)) |
| 812 | return 0; |
| 813 | |
| 814 | /* |
| 815 | * The ONFI specification says: |
| 816 | * " |
| 817 | * To transition from NV-DDR or NV-DDR2 to the SDR data |
| 818 | * interface, the host shall use the Reset (FFh) command |
| 819 | * using SDR timing mode 0. A device in any timing mode is |
| 820 | * required to recognize Reset (FFh) command issued in SDR |
| 821 | * timing mode 0. |
| 822 | * " |
| 823 | * |
| 824 | * Configure the data interface in SDR mode and set the |
| 825 | * timings to timing mode 0. |
| 826 | */ |
| 827 | |
| 828 | onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); |
| 829 | ret = chip->controller->ops->setup_data_interface(chip, chipnr, |
| 830 | &chip->data_interface); |
| 831 | if (ret) |
| 832 | pr_err("Failed to configure data interface to SDR timing mode 0\n"); |
| 833 | |
| 834 | return ret; |
| 835 | } |
| 836 | |
| 837 | /** |
| 838 | * nand_setup_data_interface - Setup the best data interface and timings |
| 839 | * @chip: The NAND chip |
| 840 | * @chipnr: Internal die id |
| 841 | * |
| 842 | * Find and configure the best data interface and NAND timings supported by |
| 843 | * the chip and the driver. |
| 844 | * First tries to retrieve supported timing modes from ONFI information, |
| 845 | * and if the NAND chip does not support ONFI, relies on the |
| 846 | * ->onfi_timing_mode_default specified in the nand_ids table. |
| 847 | * |
| 848 | * Returns 0 for success or negative error code otherwise. |
| 849 | */ |
| 850 | static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) |
| 851 | { |
| 852 | u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { |
| 853 | chip->onfi_timing_mode_default, |
| 854 | }; |
| 855 | int ret; |
| 856 | |
| 857 | if (!nand_has_setup_data_iface(chip)) |
| 858 | return 0; |
| 859 | |
| 860 | /* Change the mode on the chip side (if supported by the NAND chip) */ |
| 861 | if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { |
| 862 | nand_select_target(chip, chipnr); |
| 863 | ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, |
| 864 | tmode_param); |
| 865 | nand_deselect_target(chip); |
| 866 | if (ret) |
| 867 | return ret; |
| 868 | } |
| 869 | |
| 870 | /* Change the mode on the controller side */ |
| 871 | ret = chip->controller->ops->setup_data_interface(chip, chipnr, |
| 872 | &chip->data_interface); |
| 873 | if (ret) |
| 874 | return ret; |
| 875 | |
| 876 | /* Check the mode has been accepted by the chip, if supported */ |
| 877 | if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) |
| 878 | return 0; |
| 879 | |
| 880 | memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); |
| 881 | nand_select_target(chip, chipnr); |
| 882 | ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, |
| 883 | tmode_param); |
| 884 | nand_deselect_target(chip); |
| 885 | if (ret) |
| 886 | goto err_reset_chip; |
| 887 | |
| 888 | if (tmode_param[0] != chip->onfi_timing_mode_default) { |
| 889 | pr_warn("timing mode %d not acknowledged by the NAND chip\n", |
| 890 | chip->onfi_timing_mode_default); |
| 891 | goto err_reset_chip; |
| 892 | } |
| 893 | |
| 894 | return 0; |
| 895 | |
| 896 | err_reset_chip: |
| 897 | /* |
| 898 | * Fallback to mode 0 if the chip explicitly did not ack the chosen |
| 899 | * timing mode. |
| 900 | */ |
| 901 | nand_reset_data_interface(chip, chipnr); |
| 902 | nand_select_target(chip, chipnr); |
| 903 | nand_reset_op(chip); |
| 904 | nand_deselect_target(chip); |
| 905 | |
| 906 | return ret; |
| 907 | } |
| 908 | |
| 909 | /** |
| 910 | * nand_init_data_interface - find the best data interface and timings |
| 911 | * @chip: The NAND chip |
| 912 | * |
| 913 | * Find the best data interface and NAND timings supported by the chip |
| 914 | * and the driver. |
| 915 | * First tries to retrieve supported timing modes from ONFI information, |
| 916 | * and if the NAND chip does not support ONFI, relies on the |
| 917 | * ->onfi_timing_mode_default specified in the nand_ids table. After this |
| 918 | * function nand_chip->data_interface is initialized with the best timing mode |
| 919 | * available. |
| 920 | * |
| 921 | * Returns 0 for success or negative error code otherwise. |
| 922 | */ |
| 923 | static int nand_init_data_interface(struct nand_chip *chip) |
| 924 | { |
| 925 | int modes, mode, ret; |
| 926 | |
| 927 | if (!nand_has_setup_data_iface(chip)) |
| 928 | return 0; |
| 929 | |
| 930 | /* |
| 931 | * First try to identify the best timings from ONFI parameters and |
| 932 | * if the NAND does not support ONFI, fallback to the default ONFI |
| 933 | * timing mode. |
| 934 | */ |
| 935 | if (chip->parameters.onfi) { |
| 936 | modes = chip->parameters.onfi->async_timing_mode; |
| 937 | } else { |
| 938 | if (!chip->onfi_timing_mode_default) |
| 939 | return 0; |
| 940 | |
| 941 | modes = GENMASK(chip->onfi_timing_mode_default, 0); |
| 942 | } |
| 943 | |
| 944 | for (mode = fls(modes) - 1; mode >= 0; mode--) { |
| 945 | ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); |
| 946 | if (ret) |
| 947 | continue; |
| 948 | |
| 949 | /* |
| 950 | * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the |
| 951 | * controller supports the requested timings. |
| 952 | */ |
| 953 | ret = chip->controller->ops->setup_data_interface(chip, |
| 954 | NAND_DATA_IFACE_CHECK_ONLY, |
| 955 | &chip->data_interface); |
| 956 | if (!ret) { |
| 957 | chip->onfi_timing_mode_default = mode; |
| 958 | break; |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | return 0; |
| 963 | } |
| 964 | |
| 965 | /** |
| 966 | * nand_fill_column_cycles - fill the column cycles of an address |
| 967 | * @chip: The NAND chip |
| 968 | * @addrs: Array of address cycles to fill |
| 969 | * @offset_in_page: The offset in the page |
| 970 | * |
| 971 | * Fills the first or the first two bytes of the @addrs field depending |
| 972 | * on the NAND bus width and the page size. |
| 973 | * |
| 974 | * Returns the number of cycles needed to encode the column, or a negative |
| 975 | * error code in case one of the arguments is invalid. |
| 976 | */ |
| 977 | static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, |
| 978 | unsigned int offset_in_page) |
| 979 | { |
| 980 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 981 | |
| 982 | /* Make sure the offset is less than the actual page size. */ |
| 983 | if (offset_in_page > mtd->writesize + mtd->oobsize) |
| 984 | return -EINVAL; |
| 985 | |
| 986 | /* |
| 987 | * On small page NANDs, there's a dedicated command to access the OOB |
| 988 | * area, and the column address is relative to the start of the OOB |
| 989 | * area, not the start of the page. Asjust the address accordingly. |
| 990 | */ |
| 991 | if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) |
| 992 | offset_in_page -= mtd->writesize; |
| 993 | |
| 994 | /* |
| 995 | * The offset in page is expressed in bytes, if the NAND bus is 16-bit |
| 996 | * wide, then it must be divided by 2. |
| 997 | */ |
| 998 | if (chip->options & NAND_BUSWIDTH_16) { |
| 999 | if (WARN_ON(offset_in_page % 2)) |
| 1000 | return -EINVAL; |
| 1001 | |
| 1002 | offset_in_page /= 2; |
| 1003 | } |
| 1004 | |
| 1005 | addrs[0] = offset_in_page; |
| 1006 | |
| 1007 | /* |
| 1008 | * Small page NANDs use 1 cycle for the columns, while large page NANDs |
| 1009 | * need 2 |
| 1010 | */ |
| 1011 | if (mtd->writesize <= 512) |
| 1012 | return 1; |
| 1013 | |
| 1014 | addrs[1] = offset_in_page >> 8; |
| 1015 | |
| 1016 | return 2; |
| 1017 | } |
| 1018 | |
| 1019 | static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, |
| 1020 | unsigned int offset_in_page, void *buf, |
| 1021 | unsigned int len) |
| 1022 | { |
| 1023 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1024 | const struct nand_sdr_timings *sdr = |
| 1025 | nand_get_sdr_timings(&chip->data_interface); |
| 1026 | u8 addrs[4]; |
| 1027 | struct nand_op_instr instrs[] = { |
| 1028 | NAND_OP_CMD(NAND_CMD_READ0, 0), |
| 1029 | NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), |
| 1030 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), |
| 1031 | PSEC_TO_NSEC(sdr->tRR_min)), |
| 1032 | NAND_OP_DATA_IN(len, buf, 0), |
| 1033 | }; |
| 1034 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1035 | int ret; |
| 1036 | |
| 1037 | /* Drop the DATA_IN instruction if len is set to 0. */ |
| 1038 | if (!len) |
| 1039 | op.ninstrs--; |
| 1040 | |
| 1041 | if (offset_in_page >= mtd->writesize) |
| 1042 | instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; |
| 1043 | else if (offset_in_page >= 256 && |
| 1044 | !(chip->options & NAND_BUSWIDTH_16)) |
| 1045 | instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; |
| 1046 | |
| 1047 | ret = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| 1048 | if (ret < 0) |
| 1049 | return ret; |
| 1050 | |
| 1051 | addrs[1] = page; |
| 1052 | addrs[2] = page >> 8; |
| 1053 | |
| 1054 | if (chip->options & NAND_ROW_ADDR_3) { |
| 1055 | addrs[3] = page >> 16; |
| 1056 | instrs[1].ctx.addr.naddrs++; |
| 1057 | } |
| 1058 | |
| 1059 | return nand_exec_op(chip, &op); |
| 1060 | } |
| 1061 | |
| 1062 | static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, |
| 1063 | unsigned int offset_in_page, void *buf, |
| 1064 | unsigned int len) |
| 1065 | { |
| 1066 | const struct nand_sdr_timings *sdr = |
| 1067 | nand_get_sdr_timings(&chip->data_interface); |
| 1068 | u8 addrs[5]; |
| 1069 | struct nand_op_instr instrs[] = { |
| 1070 | NAND_OP_CMD(NAND_CMD_READ0, 0), |
| 1071 | NAND_OP_ADDR(4, addrs, 0), |
| 1072 | NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), |
| 1073 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), |
| 1074 | PSEC_TO_NSEC(sdr->tRR_min)), |
| 1075 | NAND_OP_DATA_IN(len, buf, 0), |
| 1076 | }; |
| 1077 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1078 | int ret; |
| 1079 | |
| 1080 | /* Drop the DATA_IN instruction if len is set to 0. */ |
| 1081 | if (!len) |
| 1082 | op.ninstrs--; |
| 1083 | |
| 1084 | ret = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| 1085 | if (ret < 0) |
| 1086 | return ret; |
| 1087 | |
| 1088 | addrs[2] = page; |
| 1089 | addrs[3] = page >> 8; |
| 1090 | |
| 1091 | if (chip->options & NAND_ROW_ADDR_3) { |
| 1092 | addrs[4] = page >> 16; |
| 1093 | instrs[1].ctx.addr.naddrs++; |
| 1094 | } |
| 1095 | |
| 1096 | return nand_exec_op(chip, &op); |
| 1097 | } |
| 1098 | |
| 1099 | /** |
| 1100 | * nand_read_page_op - Do a READ PAGE operation |
| 1101 | * @chip: The NAND chip |
| 1102 | * @page: page to read |
| 1103 | * @offset_in_page: offset within the page |
| 1104 | * @buf: buffer used to store the data |
| 1105 | * @len: length of the buffer |
| 1106 | * |
| 1107 | * This function issues a READ PAGE operation. |
| 1108 | * This function does not select/unselect the CS line. |
| 1109 | * |
| 1110 | * Returns 0 on success, a negative error code otherwise. |
| 1111 | */ |
| 1112 | int nand_read_page_op(struct nand_chip *chip, unsigned int page, |
| 1113 | unsigned int offset_in_page, void *buf, unsigned int len) |
| 1114 | { |
| 1115 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1116 | |
| 1117 | if (len && !buf) |
| 1118 | return -EINVAL; |
| 1119 | |
| 1120 | if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| 1121 | return -EINVAL; |
| 1122 | |
| 1123 | if (nand_has_exec_op(chip)) { |
| 1124 | if (mtd->writesize > 512) |
| 1125 | return nand_lp_exec_read_page_op(chip, page, |
| 1126 | offset_in_page, buf, |
| 1127 | len); |
| 1128 | |
| 1129 | return nand_sp_exec_read_page_op(chip, page, offset_in_page, |
| 1130 | buf, len); |
| 1131 | } |
| 1132 | |
| 1133 | chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); |
| 1134 | if (len) |
| 1135 | chip->legacy.read_buf(chip, buf, len); |
| 1136 | |
| 1137 | return 0; |
| 1138 | } |
| 1139 | EXPORT_SYMBOL_GPL(nand_read_page_op); |
| 1140 | |
| 1141 | /** |
| 1142 | * nand_read_param_page_op - Do a READ PARAMETER PAGE operation |
| 1143 | * @chip: The NAND chip |
| 1144 | * @page: parameter page to read |
| 1145 | * @buf: buffer used to store the data |
| 1146 | * @len: length of the buffer |
| 1147 | * |
| 1148 | * This function issues a READ PARAMETER PAGE operation. |
| 1149 | * This function does not select/unselect the CS line. |
| 1150 | * |
| 1151 | * Returns 0 on success, a negative error code otherwise. |
| 1152 | */ |
| 1153 | int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, |
| 1154 | unsigned int len) |
| 1155 | { |
| 1156 | unsigned int i; |
| 1157 | u8 *p = buf; |
| 1158 | |
| 1159 | if (len && !buf) |
| 1160 | return -EINVAL; |
| 1161 | |
| 1162 | if (nand_has_exec_op(chip)) { |
| 1163 | const struct nand_sdr_timings *sdr = |
| 1164 | nand_get_sdr_timings(&chip->data_interface); |
| 1165 | struct nand_op_instr instrs[] = { |
| 1166 | NAND_OP_CMD(NAND_CMD_PARAM, 0), |
| 1167 | NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), |
| 1168 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), |
| 1169 | PSEC_TO_NSEC(sdr->tRR_min)), |
| 1170 | NAND_OP_8BIT_DATA_IN(len, buf, 0), |
| 1171 | }; |
| 1172 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1173 | |
| 1174 | /* Drop the DATA_IN instruction if len is set to 0. */ |
| 1175 | if (!len) |
| 1176 | op.ninstrs--; |
| 1177 | |
| 1178 | return nand_exec_op(chip, &op); |
| 1179 | } |
| 1180 | |
| 1181 | chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); |
| 1182 | for (i = 0; i < len; i++) |
| 1183 | p[i] = chip->legacy.read_byte(chip); |
| 1184 | |
| 1185 | return 0; |
| 1186 | } |
| 1187 | |
| 1188 | /** |
| 1189 | * nand_change_read_column_op - Do a CHANGE READ COLUMN operation |
| 1190 | * @chip: The NAND chip |
| 1191 | * @offset_in_page: offset within the page |
| 1192 | * @buf: buffer used to store the data |
| 1193 | * @len: length of the buffer |
| 1194 | * @force_8bit: force 8-bit bus access |
| 1195 | * |
| 1196 | * This function issues a CHANGE READ COLUMN operation. |
| 1197 | * This function does not select/unselect the CS line. |
| 1198 | * |
| 1199 | * Returns 0 on success, a negative error code otherwise. |
| 1200 | */ |
| 1201 | int nand_change_read_column_op(struct nand_chip *chip, |
| 1202 | unsigned int offset_in_page, void *buf, |
| 1203 | unsigned int len, bool force_8bit) |
| 1204 | { |
| 1205 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1206 | |
| 1207 | if (len && !buf) |
| 1208 | return -EINVAL; |
| 1209 | |
| 1210 | if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| 1211 | return -EINVAL; |
| 1212 | |
| 1213 | /* Small page NANDs do not support column change. */ |
| 1214 | if (mtd->writesize <= 512) |
| 1215 | return -ENOTSUPP; |
| 1216 | |
| 1217 | if (nand_has_exec_op(chip)) { |
| 1218 | const struct nand_sdr_timings *sdr = |
| 1219 | nand_get_sdr_timings(&chip->data_interface); |
| 1220 | u8 addrs[2] = {}; |
| 1221 | struct nand_op_instr instrs[] = { |
| 1222 | NAND_OP_CMD(NAND_CMD_RNDOUT, 0), |
| 1223 | NAND_OP_ADDR(2, addrs, 0), |
| 1224 | NAND_OP_CMD(NAND_CMD_RNDOUTSTART, |
| 1225 | PSEC_TO_NSEC(sdr->tCCS_min)), |
| 1226 | NAND_OP_DATA_IN(len, buf, 0), |
| 1227 | }; |
| 1228 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1229 | int ret; |
| 1230 | |
| 1231 | ret = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| 1232 | if (ret < 0) |
| 1233 | return ret; |
| 1234 | |
| 1235 | /* Drop the DATA_IN instruction if len is set to 0. */ |
| 1236 | if (!len) |
| 1237 | op.ninstrs--; |
| 1238 | |
| 1239 | instrs[3].ctx.data.force_8bit = force_8bit; |
| 1240 | |
| 1241 | return nand_exec_op(chip, &op); |
| 1242 | } |
| 1243 | |
| 1244 | chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); |
| 1245 | if (len) |
| 1246 | chip->legacy.read_buf(chip, buf, len); |
| 1247 | |
| 1248 | return 0; |
| 1249 | } |
| 1250 | EXPORT_SYMBOL_GPL(nand_change_read_column_op); |
| 1251 | |
| 1252 | /** |
| 1253 | * nand_read_oob_op - Do a READ OOB operation |
| 1254 | * @chip: The NAND chip |
| 1255 | * @page: page to read |
| 1256 | * @offset_in_oob: offset within the OOB area |
| 1257 | * @buf: buffer used to store the data |
| 1258 | * @len: length of the buffer |
| 1259 | * |
| 1260 | * This function issues a READ OOB operation. |
| 1261 | * This function does not select/unselect the CS line. |
| 1262 | * |
| 1263 | * Returns 0 on success, a negative error code otherwise. |
| 1264 | */ |
| 1265 | int nand_read_oob_op(struct nand_chip *chip, unsigned int page, |
| 1266 | unsigned int offset_in_oob, void *buf, unsigned int len) |
| 1267 | { |
| 1268 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1269 | |
| 1270 | if (len && !buf) |
| 1271 | return -EINVAL; |
| 1272 | |
| 1273 | if (offset_in_oob + len > mtd->oobsize) |
| 1274 | return -EINVAL; |
| 1275 | |
| 1276 | if (nand_has_exec_op(chip)) |
| 1277 | return nand_read_page_op(chip, page, |
| 1278 | mtd->writesize + offset_in_oob, |
| 1279 | buf, len); |
| 1280 | |
| 1281 | chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); |
| 1282 | if (len) |
| 1283 | chip->legacy.read_buf(chip, buf, len); |
| 1284 | |
| 1285 | return 0; |
| 1286 | } |
| 1287 | EXPORT_SYMBOL_GPL(nand_read_oob_op); |
| 1288 | |
| 1289 | static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, |
| 1290 | unsigned int offset_in_page, const void *buf, |
| 1291 | unsigned int len, bool prog) |
| 1292 | { |
| 1293 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1294 | const struct nand_sdr_timings *sdr = |
| 1295 | nand_get_sdr_timings(&chip->data_interface); |
| 1296 | u8 addrs[5] = {}; |
| 1297 | struct nand_op_instr instrs[] = { |
| 1298 | /* |
| 1299 | * The first instruction will be dropped if we're dealing |
| 1300 | * with a large page NAND and adjusted if we're dealing |
| 1301 | * with a small page NAND and the page offset is > 255. |
| 1302 | */ |
| 1303 | NAND_OP_CMD(NAND_CMD_READ0, 0), |
| 1304 | NAND_OP_CMD(NAND_CMD_SEQIN, 0), |
| 1305 | NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), |
| 1306 | NAND_OP_DATA_OUT(len, buf, 0), |
| 1307 | NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), |
| 1308 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), |
| 1309 | }; |
| 1310 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1311 | int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| 1312 | int ret; |
| 1313 | u8 status; |
| 1314 | |
| 1315 | if (naddrs < 0) |
| 1316 | return naddrs; |
| 1317 | |
| 1318 | addrs[naddrs++] = page; |
| 1319 | addrs[naddrs++] = page >> 8; |
| 1320 | if (chip->options & NAND_ROW_ADDR_3) |
| 1321 | addrs[naddrs++] = page >> 16; |
| 1322 | |
| 1323 | instrs[2].ctx.addr.naddrs = naddrs; |
| 1324 | |
| 1325 | /* Drop the last two instructions if we're not programming the page. */ |
| 1326 | if (!prog) { |
| 1327 | op.ninstrs -= 2; |
| 1328 | /* Also drop the DATA_OUT instruction if empty. */ |
| 1329 | if (!len) |
| 1330 | op.ninstrs--; |
| 1331 | } |
| 1332 | |
| 1333 | if (mtd->writesize <= 512) { |
| 1334 | /* |
| 1335 | * Small pages need some more tweaking: we have to adjust the |
| 1336 | * first instruction depending on the page offset we're trying |
| 1337 | * to access. |
| 1338 | */ |
| 1339 | if (offset_in_page >= mtd->writesize) |
| 1340 | instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; |
| 1341 | else if (offset_in_page >= 256 && |
| 1342 | !(chip->options & NAND_BUSWIDTH_16)) |
| 1343 | instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; |
| 1344 | } else { |
| 1345 | /* |
| 1346 | * Drop the first command if we're dealing with a large page |
| 1347 | * NAND. |
| 1348 | */ |
| 1349 | op.instrs++; |
| 1350 | op.ninstrs--; |
| 1351 | } |
| 1352 | |
| 1353 | ret = nand_exec_op(chip, &op); |
| 1354 | if (!prog || ret) |
| 1355 | return ret; |
| 1356 | |
| 1357 | ret = nand_status_op(chip, &status); |
| 1358 | if (ret) |
| 1359 | return ret; |
| 1360 | |
| 1361 | return status; |
| 1362 | } |
| 1363 | |
| 1364 | /** |
| 1365 | * nand_prog_page_begin_op - starts a PROG PAGE operation |
| 1366 | * @chip: The NAND chip |
| 1367 | * @page: page to write |
| 1368 | * @offset_in_page: offset within the page |
| 1369 | * @buf: buffer containing the data to write to the page |
| 1370 | * @len: length of the buffer |
| 1371 | * |
| 1372 | * This function issues the first half of a PROG PAGE operation. |
| 1373 | * This function does not select/unselect the CS line. |
| 1374 | * |
| 1375 | * Returns 0 on success, a negative error code otherwise. |
| 1376 | */ |
| 1377 | int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, |
| 1378 | unsigned int offset_in_page, const void *buf, |
| 1379 | unsigned int len) |
| 1380 | { |
| 1381 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1382 | |
| 1383 | if (len && !buf) |
| 1384 | return -EINVAL; |
| 1385 | |
| 1386 | if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| 1387 | return -EINVAL; |
| 1388 | |
| 1389 | if (nand_has_exec_op(chip)) |
| 1390 | return nand_exec_prog_page_op(chip, page, offset_in_page, buf, |
| 1391 | len, false); |
| 1392 | |
| 1393 | chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); |
| 1394 | |
| 1395 | if (buf) |
| 1396 | chip->legacy.write_buf(chip, buf, len); |
| 1397 | |
| 1398 | return 0; |
| 1399 | } |
| 1400 | EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); |
| 1401 | |
| 1402 | /** |
| 1403 | * nand_prog_page_end_op - ends a PROG PAGE operation |
| 1404 | * @chip: The NAND chip |
| 1405 | * |
| 1406 | * This function issues the second half of a PROG PAGE operation. |
| 1407 | * This function does not select/unselect the CS line. |
| 1408 | * |
| 1409 | * Returns 0 on success, a negative error code otherwise. |
| 1410 | */ |
| 1411 | int nand_prog_page_end_op(struct nand_chip *chip) |
| 1412 | { |
| 1413 | int ret; |
| 1414 | u8 status; |
| 1415 | |
| 1416 | if (nand_has_exec_op(chip)) { |
| 1417 | const struct nand_sdr_timings *sdr = |
| 1418 | nand_get_sdr_timings(&chip->data_interface); |
| 1419 | struct nand_op_instr instrs[] = { |
| 1420 | NAND_OP_CMD(NAND_CMD_PAGEPROG, |
| 1421 | PSEC_TO_NSEC(sdr->tWB_max)), |
| 1422 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), |
| 1423 | }; |
| 1424 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1425 | |
| 1426 | ret = nand_exec_op(chip, &op); |
| 1427 | if (ret) |
| 1428 | return ret; |
| 1429 | |
| 1430 | ret = nand_status_op(chip, &status); |
| 1431 | if (ret) |
| 1432 | return ret; |
| 1433 | } else { |
| 1434 | chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); |
| 1435 | ret = chip->legacy.waitfunc(chip); |
| 1436 | if (ret < 0) |
| 1437 | return ret; |
| 1438 | |
| 1439 | status = ret; |
| 1440 | } |
| 1441 | |
| 1442 | if (status & NAND_STATUS_FAIL) |
| 1443 | return -EIO; |
| 1444 | |
| 1445 | return 0; |
| 1446 | } |
| 1447 | EXPORT_SYMBOL_GPL(nand_prog_page_end_op); |
| 1448 | |
| 1449 | /** |
| 1450 | * nand_prog_page_op - Do a full PROG PAGE operation |
| 1451 | * @chip: The NAND chip |
| 1452 | * @page: page to write |
| 1453 | * @offset_in_page: offset within the page |
| 1454 | * @buf: buffer containing the data to write to the page |
| 1455 | * @len: length of the buffer |
| 1456 | * |
| 1457 | * This function issues a full PROG PAGE operation. |
| 1458 | * This function does not select/unselect the CS line. |
| 1459 | * |
| 1460 | * Returns 0 on success, a negative error code otherwise. |
| 1461 | */ |
| 1462 | int nand_prog_page_op(struct nand_chip *chip, unsigned int page, |
| 1463 | unsigned int offset_in_page, const void *buf, |
| 1464 | unsigned int len) |
| 1465 | { |
| 1466 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1467 | int status; |
| 1468 | |
| 1469 | if (!len || !buf) |
| 1470 | return -EINVAL; |
| 1471 | |
| 1472 | if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| 1473 | return -EINVAL; |
| 1474 | |
| 1475 | if (nand_has_exec_op(chip)) { |
| 1476 | status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, |
| 1477 | len, true); |
| 1478 | } else { |
| 1479 | chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, |
| 1480 | page); |
| 1481 | chip->legacy.write_buf(chip, buf, len); |
| 1482 | chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); |
| 1483 | status = chip->legacy.waitfunc(chip); |
| 1484 | } |
| 1485 | |
| 1486 | if (status & NAND_STATUS_FAIL) |
| 1487 | return -EIO; |
| 1488 | |
| 1489 | return 0; |
| 1490 | } |
| 1491 | EXPORT_SYMBOL_GPL(nand_prog_page_op); |
| 1492 | |
| 1493 | /** |
| 1494 | * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation |
| 1495 | * @chip: The NAND chip |
| 1496 | * @offset_in_page: offset within the page |
| 1497 | * @buf: buffer containing the data to send to the NAND |
| 1498 | * @len: length of the buffer |
| 1499 | * @force_8bit: force 8-bit bus access |
| 1500 | * |
| 1501 | * This function issues a CHANGE WRITE COLUMN operation. |
| 1502 | * This function does not select/unselect the CS line. |
| 1503 | * |
| 1504 | * Returns 0 on success, a negative error code otherwise. |
| 1505 | */ |
| 1506 | int nand_change_write_column_op(struct nand_chip *chip, |
| 1507 | unsigned int offset_in_page, |
| 1508 | const void *buf, unsigned int len, |
| 1509 | bool force_8bit) |
| 1510 | { |
| 1511 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 1512 | |
| 1513 | if (len && !buf) |
| 1514 | return -EINVAL; |
| 1515 | |
| 1516 | if (offset_in_page + len > mtd->writesize + mtd->oobsize) |
| 1517 | return -EINVAL; |
| 1518 | |
| 1519 | /* Small page NANDs do not support column change. */ |
| 1520 | if (mtd->writesize <= 512) |
| 1521 | return -ENOTSUPP; |
| 1522 | |
| 1523 | if (nand_has_exec_op(chip)) { |
| 1524 | const struct nand_sdr_timings *sdr = |
| 1525 | nand_get_sdr_timings(&chip->data_interface); |
| 1526 | u8 addrs[2]; |
| 1527 | struct nand_op_instr instrs[] = { |
| 1528 | NAND_OP_CMD(NAND_CMD_RNDIN, 0), |
| 1529 | NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), |
| 1530 | NAND_OP_DATA_OUT(len, buf, 0), |
| 1531 | }; |
| 1532 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1533 | int ret; |
| 1534 | |
| 1535 | ret = nand_fill_column_cycles(chip, addrs, offset_in_page); |
| 1536 | if (ret < 0) |
| 1537 | return ret; |
| 1538 | |
| 1539 | instrs[2].ctx.data.force_8bit = force_8bit; |
| 1540 | |
| 1541 | /* Drop the DATA_OUT instruction if len is set to 0. */ |
| 1542 | if (!len) |
| 1543 | op.ninstrs--; |
| 1544 | |
| 1545 | return nand_exec_op(chip, &op); |
| 1546 | } |
| 1547 | |
| 1548 | chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); |
| 1549 | if (len) |
| 1550 | chip->legacy.write_buf(chip, buf, len); |
| 1551 | |
| 1552 | return 0; |
| 1553 | } |
| 1554 | EXPORT_SYMBOL_GPL(nand_change_write_column_op); |
| 1555 | |
| 1556 | /** |
| 1557 | * nand_readid_op - Do a READID operation |
| 1558 | * @chip: The NAND chip |
| 1559 | * @addr: address cycle to pass after the READID command |
| 1560 | * @buf: buffer used to store the ID |
| 1561 | * @len: length of the buffer |
| 1562 | * |
| 1563 | * This function sends a READID command and reads back the ID returned by the |
| 1564 | * NAND. |
| 1565 | * This function does not select/unselect the CS line. |
| 1566 | * |
| 1567 | * Returns 0 on success, a negative error code otherwise. |
| 1568 | */ |
| 1569 | int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, |
| 1570 | unsigned int len) |
| 1571 | { |
| 1572 | unsigned int i; |
| 1573 | u8 *id = buf; |
| 1574 | |
| 1575 | if (len && !buf) |
| 1576 | return -EINVAL; |
| 1577 | |
| 1578 | if (nand_has_exec_op(chip)) { |
| 1579 | const struct nand_sdr_timings *sdr = |
| 1580 | nand_get_sdr_timings(&chip->data_interface); |
| 1581 | struct nand_op_instr instrs[] = { |
| 1582 | NAND_OP_CMD(NAND_CMD_READID, 0), |
| 1583 | NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), |
| 1584 | NAND_OP_8BIT_DATA_IN(len, buf, 0), |
| 1585 | }; |
| 1586 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1587 | |
| 1588 | /* Drop the DATA_IN instruction if len is set to 0. */ |
| 1589 | if (!len) |
| 1590 | op.ninstrs--; |
| 1591 | |
| 1592 | return nand_exec_op(chip, &op); |
| 1593 | } |
| 1594 | |
| 1595 | chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); |
| 1596 | |
| 1597 | for (i = 0; i < len; i++) |
| 1598 | id[i] = chip->legacy.read_byte(chip); |
| 1599 | |
| 1600 | return 0; |
| 1601 | } |
| 1602 | EXPORT_SYMBOL_GPL(nand_readid_op); |
| 1603 | |
| 1604 | /** |
| 1605 | * nand_status_op - Do a STATUS operation |
| 1606 | * @chip: The NAND chip |
| 1607 | * @status: out variable to store the NAND status |
| 1608 | * |
| 1609 | * This function sends a STATUS command and reads back the status returned by |
| 1610 | * the NAND. |
| 1611 | * This function does not select/unselect the CS line. |
| 1612 | * |
| 1613 | * Returns 0 on success, a negative error code otherwise. |
| 1614 | */ |
| 1615 | int nand_status_op(struct nand_chip *chip, u8 *status) |
| 1616 | { |
| 1617 | if (nand_has_exec_op(chip)) { |
| 1618 | const struct nand_sdr_timings *sdr = |
| 1619 | nand_get_sdr_timings(&chip->data_interface); |
| 1620 | struct nand_op_instr instrs[] = { |
| 1621 | NAND_OP_CMD(NAND_CMD_STATUS, |
| 1622 | PSEC_TO_NSEC(sdr->tADL_min)), |
| 1623 | NAND_OP_8BIT_DATA_IN(1, status, 0), |
| 1624 | }; |
| 1625 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1626 | |
| 1627 | if (!status) |
| 1628 | op.ninstrs--; |
| 1629 | |
| 1630 | return nand_exec_op(chip, &op); |
| 1631 | } |
| 1632 | |
| 1633 | chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); |
| 1634 | if (status) |
| 1635 | *status = chip->legacy.read_byte(chip); |
| 1636 | |
| 1637 | return 0; |
| 1638 | } |
| 1639 | EXPORT_SYMBOL_GPL(nand_status_op); |
| 1640 | |
| 1641 | /** |
| 1642 | * nand_exit_status_op - Exit a STATUS operation |
| 1643 | * @chip: The NAND chip |
| 1644 | * |
| 1645 | * This function sends a READ0 command to cancel the effect of the STATUS |
| 1646 | * command to avoid reading only the status until a new read command is sent. |
| 1647 | * |
| 1648 | * This function does not select/unselect the CS line. |
| 1649 | * |
| 1650 | * Returns 0 on success, a negative error code otherwise. |
| 1651 | */ |
| 1652 | int nand_exit_status_op(struct nand_chip *chip) |
| 1653 | { |
| 1654 | if (nand_has_exec_op(chip)) { |
| 1655 | struct nand_op_instr instrs[] = { |
| 1656 | NAND_OP_CMD(NAND_CMD_READ0, 0), |
| 1657 | }; |
| 1658 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1659 | |
| 1660 | return nand_exec_op(chip, &op); |
| 1661 | } |
| 1662 | |
| 1663 | chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); |
| 1664 | |
| 1665 | return 0; |
| 1666 | } |
| 1667 | |
| 1668 | /** |
| 1669 | * nand_erase_op - Do an erase operation |
| 1670 | * @chip: The NAND chip |
| 1671 | * @eraseblock: block to erase |
| 1672 | * |
| 1673 | * This function sends an ERASE command and waits for the NAND to be ready |
| 1674 | * before returning. |
| 1675 | * This function does not select/unselect the CS line. |
| 1676 | * |
| 1677 | * Returns 0 on success, a negative error code otherwise. |
| 1678 | */ |
| 1679 | int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) |
| 1680 | { |
| 1681 | unsigned int page = eraseblock << |
| 1682 | (chip->phys_erase_shift - chip->page_shift); |
| 1683 | int ret; |
| 1684 | u8 status; |
| 1685 | |
| 1686 | if (nand_has_exec_op(chip)) { |
| 1687 | const struct nand_sdr_timings *sdr = |
| 1688 | nand_get_sdr_timings(&chip->data_interface); |
| 1689 | u8 addrs[3] = { page, page >> 8, page >> 16 }; |
| 1690 | struct nand_op_instr instrs[] = { |
| 1691 | NAND_OP_CMD(NAND_CMD_ERASE1, 0), |
| 1692 | NAND_OP_ADDR(2, addrs, 0), |
| 1693 | NAND_OP_CMD(NAND_CMD_ERASE2, |
| 1694 | PSEC_TO_MSEC(sdr->tWB_max)), |
| 1695 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), |
| 1696 | }; |
| 1697 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1698 | |
| 1699 | if (chip->options & NAND_ROW_ADDR_3) |
| 1700 | instrs[1].ctx.addr.naddrs++; |
| 1701 | |
| 1702 | ret = nand_exec_op(chip, &op); |
| 1703 | if (ret) |
| 1704 | return ret; |
| 1705 | |
| 1706 | ret = nand_status_op(chip, &status); |
| 1707 | if (ret) |
| 1708 | return ret; |
| 1709 | } else { |
| 1710 | chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); |
| 1711 | chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); |
| 1712 | |
| 1713 | ret = chip->legacy.waitfunc(chip); |
| 1714 | if (ret < 0) |
| 1715 | return ret; |
| 1716 | |
| 1717 | status = ret; |
| 1718 | } |
| 1719 | |
| 1720 | if (status & NAND_STATUS_FAIL) |
| 1721 | return -EIO; |
| 1722 | |
| 1723 | return 0; |
| 1724 | } |
| 1725 | EXPORT_SYMBOL_GPL(nand_erase_op); |
| 1726 | |
| 1727 | /** |
| 1728 | * nand_set_features_op - Do a SET FEATURES operation |
| 1729 | * @chip: The NAND chip |
| 1730 | * @feature: feature id |
| 1731 | * @data: 4 bytes of data |
| 1732 | * |
| 1733 | * This function sends a SET FEATURES command and waits for the NAND to be |
| 1734 | * ready before returning. |
| 1735 | * This function does not select/unselect the CS line. |
| 1736 | * |
| 1737 | * Returns 0 on success, a negative error code otherwise. |
| 1738 | */ |
| 1739 | static int nand_set_features_op(struct nand_chip *chip, u8 feature, |
| 1740 | const void *data) |
| 1741 | { |
| 1742 | const u8 *params = data; |
| 1743 | int i, ret; |
| 1744 | |
| 1745 | if (nand_has_exec_op(chip)) { |
| 1746 | const struct nand_sdr_timings *sdr = |
| 1747 | nand_get_sdr_timings(&chip->data_interface); |
| 1748 | struct nand_op_instr instrs[] = { |
| 1749 | NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), |
| 1750 | NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), |
| 1751 | NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, |
| 1752 | PSEC_TO_NSEC(sdr->tWB_max)), |
| 1753 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), |
| 1754 | }; |
| 1755 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1756 | |
| 1757 | return nand_exec_op(chip, &op); |
| 1758 | } |
| 1759 | |
| 1760 | chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); |
| 1761 | for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) |
| 1762 | chip->legacy.write_byte(chip, params[i]); |
| 1763 | |
| 1764 | ret = chip->legacy.waitfunc(chip); |
| 1765 | if (ret < 0) |
| 1766 | return ret; |
| 1767 | |
| 1768 | if (ret & NAND_STATUS_FAIL) |
| 1769 | return -EIO; |
| 1770 | |
| 1771 | return 0; |
| 1772 | } |
| 1773 | |
| 1774 | /** |
| 1775 | * nand_get_features_op - Do a GET FEATURES operation |
| 1776 | * @chip: The NAND chip |
| 1777 | * @feature: feature id |
| 1778 | * @data: 4 bytes of data |
| 1779 | * |
| 1780 | * This function sends a GET FEATURES command and waits for the NAND to be |
| 1781 | * ready before returning. |
| 1782 | * This function does not select/unselect the CS line. |
| 1783 | * |
| 1784 | * Returns 0 on success, a negative error code otherwise. |
| 1785 | */ |
| 1786 | static int nand_get_features_op(struct nand_chip *chip, u8 feature, |
| 1787 | void *data) |
| 1788 | { |
| 1789 | u8 *params = data; |
| 1790 | int i; |
| 1791 | |
| 1792 | if (nand_has_exec_op(chip)) { |
| 1793 | const struct nand_sdr_timings *sdr = |
| 1794 | nand_get_sdr_timings(&chip->data_interface); |
| 1795 | struct nand_op_instr instrs[] = { |
| 1796 | NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), |
| 1797 | NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), |
| 1798 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), |
| 1799 | PSEC_TO_NSEC(sdr->tRR_min)), |
| 1800 | NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, |
| 1801 | data, 0), |
| 1802 | }; |
| 1803 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1804 | |
| 1805 | return nand_exec_op(chip, &op); |
| 1806 | } |
| 1807 | |
| 1808 | chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); |
| 1809 | for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) |
| 1810 | params[i] = chip->legacy.read_byte(chip); |
| 1811 | |
| 1812 | return 0; |
| 1813 | } |
| 1814 | |
| 1815 | static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, |
| 1816 | unsigned int delay_ns) |
| 1817 | { |
| 1818 | if (nand_has_exec_op(chip)) { |
| 1819 | struct nand_op_instr instrs[] = { |
| 1820 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), |
| 1821 | PSEC_TO_NSEC(delay_ns)), |
| 1822 | }; |
| 1823 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1824 | |
| 1825 | return nand_exec_op(chip, &op); |
| 1826 | } |
| 1827 | |
| 1828 | /* Apply delay or wait for ready/busy pin */ |
| 1829 | if (!chip->legacy.dev_ready) |
| 1830 | udelay(chip->legacy.chip_delay); |
| 1831 | else |
| 1832 | nand_wait_ready(chip); |
| 1833 | |
| 1834 | return 0; |
| 1835 | } |
| 1836 | |
| 1837 | /** |
| 1838 | * nand_reset_op - Do a reset operation |
| 1839 | * @chip: The NAND chip |
| 1840 | * |
| 1841 | * This function sends a RESET command and waits for the NAND to be ready |
| 1842 | * before returning. |
| 1843 | * This function does not select/unselect the CS line. |
| 1844 | * |
| 1845 | * Returns 0 on success, a negative error code otherwise. |
| 1846 | */ |
| 1847 | int nand_reset_op(struct nand_chip *chip) |
| 1848 | { |
| 1849 | if (nand_has_exec_op(chip)) { |
| 1850 | const struct nand_sdr_timings *sdr = |
| 1851 | nand_get_sdr_timings(&chip->data_interface); |
| 1852 | struct nand_op_instr instrs[] = { |
| 1853 | NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), |
| 1854 | NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), |
| 1855 | }; |
| 1856 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1857 | |
| 1858 | return nand_exec_op(chip, &op); |
| 1859 | } |
| 1860 | |
| 1861 | chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); |
| 1862 | |
| 1863 | return 0; |
| 1864 | } |
| 1865 | EXPORT_SYMBOL_GPL(nand_reset_op); |
| 1866 | |
| 1867 | /** |
| 1868 | * nand_read_data_op - Read data from the NAND |
| 1869 | * @chip: The NAND chip |
| 1870 | * @buf: buffer used to store the data |
| 1871 | * @len: length of the buffer |
| 1872 | * @force_8bit: force 8-bit bus access |
| 1873 | * |
| 1874 | * This function does a raw data read on the bus. Usually used after launching |
| 1875 | * another NAND operation like nand_read_page_op(). |
| 1876 | * This function does not select/unselect the CS line. |
| 1877 | * |
| 1878 | * Returns 0 on success, a negative error code otherwise. |
| 1879 | */ |
| 1880 | int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, |
| 1881 | bool force_8bit) |
| 1882 | { |
| 1883 | if (!len || !buf) |
| 1884 | return -EINVAL; |
| 1885 | |
| 1886 | if (nand_has_exec_op(chip)) { |
| 1887 | struct nand_op_instr instrs[] = { |
| 1888 | NAND_OP_DATA_IN(len, buf, 0), |
| 1889 | }; |
| 1890 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1891 | |
| 1892 | instrs[0].ctx.data.force_8bit = force_8bit; |
| 1893 | |
| 1894 | return nand_exec_op(chip, &op); |
| 1895 | } |
| 1896 | |
| 1897 | if (force_8bit) { |
| 1898 | u8 *p = buf; |
| 1899 | unsigned int i; |
| 1900 | |
| 1901 | for (i = 0; i < len; i++) |
| 1902 | p[i] = chip->legacy.read_byte(chip); |
| 1903 | } else { |
| 1904 | chip->legacy.read_buf(chip, buf, len); |
| 1905 | } |
| 1906 | |
| 1907 | return 0; |
| 1908 | } |
| 1909 | EXPORT_SYMBOL_GPL(nand_read_data_op); |
| 1910 | |
| 1911 | /** |
| 1912 | * nand_write_data_op - Write data from the NAND |
| 1913 | * @chip: The NAND chip |
| 1914 | * @buf: buffer containing the data to send on the bus |
| 1915 | * @len: length of the buffer |
| 1916 | * @force_8bit: force 8-bit bus access |
| 1917 | * |
| 1918 | * This function does a raw data write on the bus. Usually used after launching |
| 1919 | * another NAND operation like nand_write_page_begin_op(). |
| 1920 | * This function does not select/unselect the CS line. |
| 1921 | * |
| 1922 | * Returns 0 on success, a negative error code otherwise. |
| 1923 | */ |
| 1924 | int nand_write_data_op(struct nand_chip *chip, const void *buf, |
| 1925 | unsigned int len, bool force_8bit) |
| 1926 | { |
| 1927 | if (!len || !buf) |
| 1928 | return -EINVAL; |
| 1929 | |
| 1930 | if (nand_has_exec_op(chip)) { |
| 1931 | struct nand_op_instr instrs[] = { |
| 1932 | NAND_OP_DATA_OUT(len, buf, 0), |
| 1933 | }; |
| 1934 | struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); |
| 1935 | |
| 1936 | instrs[0].ctx.data.force_8bit = force_8bit; |
| 1937 | |
| 1938 | return nand_exec_op(chip, &op); |
| 1939 | } |
| 1940 | |
| 1941 | if (force_8bit) { |
| 1942 | const u8 *p = buf; |
| 1943 | unsigned int i; |
| 1944 | |
| 1945 | for (i = 0; i < len; i++) |
| 1946 | chip->legacy.write_byte(chip, p[i]); |
| 1947 | } else { |
| 1948 | chip->legacy.write_buf(chip, buf, len); |
| 1949 | } |
| 1950 | |
| 1951 | return 0; |
| 1952 | } |
| 1953 | EXPORT_SYMBOL_GPL(nand_write_data_op); |
| 1954 | |
| 1955 | /** |
| 1956 | * struct nand_op_parser_ctx - Context used by the parser |
| 1957 | * @instrs: array of all the instructions that must be addressed |
| 1958 | * @ninstrs: length of the @instrs array |
| 1959 | * @subop: Sub-operation to be passed to the NAND controller |
| 1960 | * |
| 1961 | * This structure is used by the core to split NAND operations into |
| 1962 | * sub-operations that can be handled by the NAND controller. |
| 1963 | */ |
| 1964 | struct nand_op_parser_ctx { |
| 1965 | const struct nand_op_instr *instrs; |
| 1966 | unsigned int ninstrs; |
| 1967 | struct nand_subop subop; |
| 1968 | }; |
| 1969 | |
| 1970 | /** |
| 1971 | * nand_op_parser_must_split_instr - Checks if an instruction must be split |
| 1972 | * @pat: the parser pattern element that matches @instr |
| 1973 | * @instr: pointer to the instruction to check |
| 1974 | * @start_offset: this is an in/out parameter. If @instr has already been |
| 1975 | * split, then @start_offset is the offset from which to start |
| 1976 | * (either an address cycle or an offset in the data buffer). |
| 1977 | * Conversely, if the function returns true (ie. instr must be |
| 1978 | * split), this parameter is updated to point to the first |
| 1979 | * data/address cycle that has not been taken care of. |
| 1980 | * |
| 1981 | * Some NAND controllers are limited and cannot send X address cycles with a |
| 1982 | * unique operation, or cannot read/write more than Y bytes at the same time. |
| 1983 | * In this case, split the instruction that does not fit in a single |
| 1984 | * controller-operation into two or more chunks. |
| 1985 | * |
| 1986 | * Returns true if the instruction must be split, false otherwise. |
| 1987 | * The @start_offset parameter is also updated to the offset at which the next |
| 1988 | * bundle of instruction must start (if an address or a data instruction). |
| 1989 | */ |
| 1990 | static bool |
| 1991 | nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, |
| 1992 | const struct nand_op_instr *instr, |
| 1993 | unsigned int *start_offset) |
| 1994 | { |
| 1995 | switch (pat->type) { |
| 1996 | case NAND_OP_ADDR_INSTR: |
| 1997 | if (!pat->ctx.addr.maxcycles) |
| 1998 | break; |
| 1999 | |
| 2000 | if (instr->ctx.addr.naddrs - *start_offset > |
| 2001 | pat->ctx.addr.maxcycles) { |
| 2002 | *start_offset += pat->ctx.addr.maxcycles; |
| 2003 | return true; |
| 2004 | } |
| 2005 | break; |
| 2006 | |
| 2007 | case NAND_OP_DATA_IN_INSTR: |
| 2008 | case NAND_OP_DATA_OUT_INSTR: |
| 2009 | if (!pat->ctx.data.maxlen) |
| 2010 | break; |
| 2011 | |
| 2012 | if (instr->ctx.data.len - *start_offset > |
| 2013 | pat->ctx.data.maxlen) { |
| 2014 | *start_offset += pat->ctx.data.maxlen; |
| 2015 | return true; |
| 2016 | } |
| 2017 | break; |
| 2018 | |
| 2019 | default: |
| 2020 | break; |
| 2021 | } |
| 2022 | |
| 2023 | return false; |
| 2024 | } |
| 2025 | |
| 2026 | /** |
| 2027 | * nand_op_parser_match_pat - Checks if a pattern matches the instructions |
| 2028 | * remaining in the parser context |
| 2029 | * @pat: the pattern to test |
| 2030 | * @ctx: the parser context structure to match with the pattern @pat |
| 2031 | * |
| 2032 | * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. |
| 2033 | * Returns true if this is the case, false ortherwise. When true is returned, |
| 2034 | * @ctx->subop is updated with the set of instructions to be passed to the |
| 2035 | * controller driver. |
| 2036 | */ |
| 2037 | static bool |
| 2038 | nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, |
| 2039 | struct nand_op_parser_ctx *ctx) |
| 2040 | { |
| 2041 | unsigned int instr_offset = ctx->subop.first_instr_start_off; |
| 2042 | const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; |
| 2043 | const struct nand_op_instr *instr = ctx->subop.instrs; |
| 2044 | unsigned int i, ninstrs; |
| 2045 | |
| 2046 | for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { |
| 2047 | /* |
| 2048 | * The pattern instruction does not match the operation |
| 2049 | * instruction. If the instruction is marked optional in the |
| 2050 | * pattern definition, we skip the pattern element and continue |
| 2051 | * to the next one. If the element is mandatory, there's no |
| 2052 | * match and we can return false directly. |
| 2053 | */ |
| 2054 | if (instr->type != pat->elems[i].type) { |
| 2055 | if (!pat->elems[i].optional) |
| 2056 | return false; |
| 2057 | |
| 2058 | continue; |
| 2059 | } |
| 2060 | |
| 2061 | /* |
| 2062 | * Now check the pattern element constraints. If the pattern is |
| 2063 | * not able to handle the whole instruction in a single step, |
| 2064 | * we have to split it. |
| 2065 | * The last_instr_end_off value comes back updated to point to |
| 2066 | * the position where we have to split the instruction (the |
| 2067 | * start of the next subop chunk). |
| 2068 | */ |
| 2069 | if (nand_op_parser_must_split_instr(&pat->elems[i], instr, |
| 2070 | &instr_offset)) { |
| 2071 | ninstrs++; |
| 2072 | i++; |
| 2073 | break; |
| 2074 | } |
| 2075 | |
| 2076 | instr++; |
| 2077 | ninstrs++; |
| 2078 | instr_offset = 0; |
| 2079 | } |
| 2080 | |
| 2081 | /* |
| 2082 | * This can happen if all instructions of a pattern are optional. |
| 2083 | * Still, if there's not at least one instruction handled by this |
| 2084 | * pattern, this is not a match, and we should try the next one (if |
| 2085 | * any). |
| 2086 | */ |
| 2087 | if (!ninstrs) |
| 2088 | return false; |
| 2089 | |
| 2090 | /* |
| 2091 | * We had a match on the pattern head, but the pattern may be longer |
| 2092 | * than the instructions we're asked to execute. We need to make sure |
| 2093 | * there's no mandatory elements in the pattern tail. |
| 2094 | */ |
| 2095 | for (; i < pat->nelems; i++) { |
| 2096 | if (!pat->elems[i].optional) |
| 2097 | return false; |
| 2098 | } |
| 2099 | |
| 2100 | /* |
| 2101 | * We have a match: update the subop structure accordingly and return |
| 2102 | * true. |
| 2103 | */ |
| 2104 | ctx->subop.ninstrs = ninstrs; |
| 2105 | ctx->subop.last_instr_end_off = instr_offset; |
| 2106 | |
| 2107 | return true; |
| 2108 | } |
| 2109 | |
| 2110 | #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) |
| 2111 | static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) |
| 2112 | { |
| 2113 | const struct nand_op_instr *instr; |
| 2114 | char *prefix = " "; |
| 2115 | unsigned int i; |
| 2116 | |
| 2117 | pr_debug("executing subop:\n"); |
| 2118 | |
| 2119 | for (i = 0; i < ctx->ninstrs; i++) { |
| 2120 | instr = &ctx->instrs[i]; |
| 2121 | |
| 2122 | if (instr == &ctx->subop.instrs[0]) |
| 2123 | prefix = " ->"; |
| 2124 | |
| 2125 | nand_op_trace(prefix, instr); |
| 2126 | |
| 2127 | if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) |
| 2128 | prefix = " "; |
| 2129 | } |
| 2130 | } |
| 2131 | #else |
| 2132 | static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) |
| 2133 | { |
| 2134 | /* NOP */ |
| 2135 | } |
| 2136 | #endif |
| 2137 | |
| 2138 | static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, |
| 2139 | const struct nand_op_parser_ctx *b) |
| 2140 | { |
| 2141 | if (a->subop.ninstrs < b->subop.ninstrs) |
| 2142 | return -1; |
| 2143 | else if (a->subop.ninstrs > b->subop.ninstrs) |
| 2144 | return 1; |
| 2145 | |
| 2146 | if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) |
| 2147 | return -1; |
| 2148 | else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) |
| 2149 | return 1; |
| 2150 | |
| 2151 | return 0; |
| 2152 | } |
| 2153 | |
| 2154 | /** |
| 2155 | * nand_op_parser_exec_op - exec_op parser |
| 2156 | * @chip: the NAND chip |
| 2157 | * @parser: patterns description provided by the controller driver |
| 2158 | * @op: the NAND operation to address |
| 2159 | * @check_only: when true, the function only checks if @op can be handled but |
| 2160 | * does not execute the operation |
| 2161 | * |
| 2162 | * Helper function designed to ease integration of NAND controller drivers that |
| 2163 | * only support a limited set of instruction sequences. The supported sequences |
| 2164 | * are described in @parser, and the framework takes care of splitting @op into |
| 2165 | * multiple sub-operations (if required) and pass them back to the ->exec() |
| 2166 | * callback of the matching pattern if @check_only is set to false. |
| 2167 | * |
| 2168 | * NAND controller drivers should call this function from their own ->exec_op() |
| 2169 | * implementation. |
| 2170 | * |
| 2171 | * Returns 0 on success, a negative error code otherwise. A failure can be |
| 2172 | * caused by an unsupported operation (none of the supported patterns is able |
| 2173 | * to handle the requested operation), or an error returned by one of the |
| 2174 | * matching pattern->exec() hook. |
| 2175 | */ |
| 2176 | int nand_op_parser_exec_op(struct nand_chip *chip, |
| 2177 | const struct nand_op_parser *parser, |
| 2178 | const struct nand_operation *op, bool check_only) |
| 2179 | { |
| 2180 | struct nand_op_parser_ctx ctx = { |
| 2181 | .subop.instrs = op->instrs, |
| 2182 | .instrs = op->instrs, |
| 2183 | .ninstrs = op->ninstrs, |
| 2184 | }; |
| 2185 | unsigned int i; |
| 2186 | |
| 2187 | while (ctx.subop.instrs < op->instrs + op->ninstrs) { |
| 2188 | const struct nand_op_parser_pattern *pattern; |
| 2189 | struct nand_op_parser_ctx best_ctx; |
| 2190 | int ret, best_pattern = -1; |
| 2191 | |
| 2192 | for (i = 0; i < parser->npatterns; i++) { |
| 2193 | struct nand_op_parser_ctx test_ctx = ctx; |
| 2194 | |
| 2195 | pattern = &parser->patterns[i]; |
| 2196 | if (!nand_op_parser_match_pat(pattern, &test_ctx)) |
| 2197 | continue; |
| 2198 | |
| 2199 | if (best_pattern >= 0 && |
| 2200 | nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) |
| 2201 | continue; |
| 2202 | |
| 2203 | best_pattern = i; |
| 2204 | best_ctx = test_ctx; |
| 2205 | } |
| 2206 | |
| 2207 | if (best_pattern < 0) { |
| 2208 | pr_debug("->exec_op() parser: pattern not found!\n"); |
| 2209 | return -ENOTSUPP; |
| 2210 | } |
| 2211 | |
| 2212 | ctx = best_ctx; |
| 2213 | nand_op_parser_trace(&ctx); |
| 2214 | |
| 2215 | if (!check_only) { |
| 2216 | pattern = &parser->patterns[best_pattern]; |
| 2217 | ret = pattern->exec(chip, &ctx.subop); |
| 2218 | if (ret) |
| 2219 | return ret; |
| 2220 | } |
| 2221 | |
| 2222 | /* |
| 2223 | * Update the context structure by pointing to the start of the |
| 2224 | * next subop. |
| 2225 | */ |
| 2226 | ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; |
| 2227 | if (ctx.subop.last_instr_end_off) |
| 2228 | ctx.subop.instrs -= 1; |
| 2229 | |
| 2230 | ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; |
| 2231 | } |
| 2232 | |
| 2233 | return 0; |
| 2234 | } |
| 2235 | EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); |
| 2236 | |
| 2237 | static bool nand_instr_is_data(const struct nand_op_instr *instr) |
| 2238 | { |
| 2239 | return instr && (instr->type == NAND_OP_DATA_IN_INSTR || |
| 2240 | instr->type == NAND_OP_DATA_OUT_INSTR); |
| 2241 | } |
| 2242 | |
| 2243 | static bool nand_subop_instr_is_valid(const struct nand_subop *subop, |
| 2244 | unsigned int instr_idx) |
| 2245 | { |
| 2246 | return subop && instr_idx < subop->ninstrs; |
| 2247 | } |
| 2248 | |
| 2249 | static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, |
| 2250 | unsigned int instr_idx) |
| 2251 | { |
| 2252 | if (instr_idx) |
| 2253 | return 0; |
| 2254 | |
| 2255 | return subop->first_instr_start_off; |
| 2256 | } |
| 2257 | |
| 2258 | /** |
| 2259 | * nand_subop_get_addr_start_off - Get the start offset in an address array |
| 2260 | * @subop: The entire sub-operation |
| 2261 | * @instr_idx: Index of the instruction inside the sub-operation |
| 2262 | * |
| 2263 | * During driver development, one could be tempted to directly use the |
| 2264 | * ->addr.addrs field of address instructions. This is wrong as address |
| 2265 | * instructions might be split. |
| 2266 | * |
| 2267 | * Given an address instruction, returns the offset of the first cycle to issue. |
| 2268 | */ |
| 2269 | unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, |
| 2270 | unsigned int instr_idx) |
| 2271 | { |
| 2272 | if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || |
| 2273 | subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) |
| 2274 | return 0; |
| 2275 | |
| 2276 | return nand_subop_get_start_off(subop, instr_idx); |
| 2277 | } |
| 2278 | EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); |
| 2279 | |
| 2280 | /** |
| 2281 | * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert |
| 2282 | * @subop: The entire sub-operation |
| 2283 | * @instr_idx: Index of the instruction inside the sub-operation |
| 2284 | * |
| 2285 | * During driver development, one could be tempted to directly use the |
| 2286 | * ->addr->naddrs field of a data instruction. This is wrong as instructions |
| 2287 | * might be split. |
| 2288 | * |
| 2289 | * Given an address instruction, returns the number of address cycle to issue. |
| 2290 | */ |
| 2291 | unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, |
| 2292 | unsigned int instr_idx) |
| 2293 | { |
| 2294 | int start_off, end_off; |
| 2295 | |
| 2296 | if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || |
| 2297 | subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) |
| 2298 | return 0; |
| 2299 | |
| 2300 | start_off = nand_subop_get_addr_start_off(subop, instr_idx); |
| 2301 | |
| 2302 | if (instr_idx == subop->ninstrs - 1 && |
| 2303 | subop->last_instr_end_off) |
| 2304 | end_off = subop->last_instr_end_off; |
| 2305 | else |
| 2306 | end_off = subop->instrs[instr_idx].ctx.addr.naddrs; |
| 2307 | |
| 2308 | return end_off - start_off; |
| 2309 | } |
| 2310 | EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); |
| 2311 | |
| 2312 | /** |
| 2313 | * nand_subop_get_data_start_off - Get the start offset in a data array |
| 2314 | * @subop: The entire sub-operation |
| 2315 | * @instr_idx: Index of the instruction inside the sub-operation |
| 2316 | * |
| 2317 | * During driver development, one could be tempted to directly use the |
| 2318 | * ->data->buf.{in,out} field of data instructions. This is wrong as data |
| 2319 | * instructions might be split. |
| 2320 | * |
| 2321 | * Given a data instruction, returns the offset to start from. |
| 2322 | */ |
| 2323 | unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, |
| 2324 | unsigned int instr_idx) |
| 2325 | { |
| 2326 | if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || |
| 2327 | !nand_instr_is_data(&subop->instrs[instr_idx]))) |
| 2328 | return 0; |
| 2329 | |
| 2330 | return nand_subop_get_start_off(subop, instr_idx); |
| 2331 | } |
| 2332 | EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); |
| 2333 | |
| 2334 | /** |
| 2335 | * nand_subop_get_data_len - Get the number of bytes to retrieve |
| 2336 | * @subop: The entire sub-operation |
| 2337 | * @instr_idx: Index of the instruction inside the sub-operation |
| 2338 | * |
| 2339 | * During driver development, one could be tempted to directly use the |
| 2340 | * ->data->len field of a data instruction. This is wrong as data instructions |
| 2341 | * might be split. |
| 2342 | * |
| 2343 | * Returns the length of the chunk of data to send/receive. |
| 2344 | */ |
| 2345 | unsigned int nand_subop_get_data_len(const struct nand_subop *subop, |
| 2346 | unsigned int instr_idx) |
| 2347 | { |
| 2348 | int start_off = 0, end_off; |
| 2349 | |
| 2350 | if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || |
| 2351 | !nand_instr_is_data(&subop->instrs[instr_idx]))) |
| 2352 | return 0; |
| 2353 | |
| 2354 | start_off = nand_subop_get_data_start_off(subop, instr_idx); |
| 2355 | |
| 2356 | if (instr_idx == subop->ninstrs - 1 && |
| 2357 | subop->last_instr_end_off) |
| 2358 | end_off = subop->last_instr_end_off; |
| 2359 | else |
| 2360 | end_off = subop->instrs[instr_idx].ctx.data.len; |
| 2361 | |
| 2362 | return end_off - start_off; |
| 2363 | } |
| 2364 | EXPORT_SYMBOL_GPL(nand_subop_get_data_len); |
| 2365 | |
| 2366 | /** |
| 2367 | * nand_reset - Reset and initialize a NAND device |
| 2368 | * @chip: The NAND chip |
| 2369 | * @chipnr: Internal die id |
| 2370 | * |
| 2371 | * Save the timings data structure, then apply SDR timings mode 0 (see |
| 2372 | * nand_reset_data_interface for details), do the reset operation, and |
| 2373 | * apply back the previous timings. |
| 2374 | * |
| 2375 | * Returns 0 on success, a negative error code otherwise. |
| 2376 | */ |
| 2377 | int nand_reset(struct nand_chip *chip, int chipnr) |
| 2378 | { |
| 2379 | struct nand_data_interface saved_data_intf = chip->data_interface; |
| 2380 | int ret; |
| 2381 | |
| 2382 | ret = nand_reset_data_interface(chip, chipnr); |
| 2383 | if (ret) |
| 2384 | return ret; |
| 2385 | |
| 2386 | /* |
| 2387 | * The CS line has to be released before we can apply the new NAND |
| 2388 | * interface settings, hence this weird nand_select_target() |
| 2389 | * nand_deselect_target() dance. |
| 2390 | */ |
| 2391 | nand_select_target(chip, chipnr); |
| 2392 | ret = nand_reset_op(chip); |
| 2393 | nand_deselect_target(chip); |
| 2394 | if (ret) |
| 2395 | return ret; |
| 2396 | |
| 2397 | /* |
| 2398 | * A nand_reset_data_interface() put both the NAND chip and the NAND |
| 2399 | * controller in timings mode 0. If the default mode for this chip is |
| 2400 | * also 0, no need to proceed to the change again. Plus, at probe time, |
| 2401 | * nand_setup_data_interface() uses ->set/get_features() which would |
| 2402 | * fail anyway as the parameter page is not available yet. |
| 2403 | */ |
| 2404 | if (!chip->onfi_timing_mode_default) |
| 2405 | return 0; |
| 2406 | |
| 2407 | chip->data_interface = saved_data_intf; |
| 2408 | ret = nand_setup_data_interface(chip, chipnr); |
| 2409 | if (ret) |
| 2410 | return ret; |
| 2411 | |
| 2412 | return 0; |
| 2413 | } |
| 2414 | EXPORT_SYMBOL_GPL(nand_reset); |
| 2415 | |
| 2416 | /** |
| 2417 | * nand_get_features - wrapper to perform a GET_FEATURE |
| 2418 | * @chip: NAND chip info structure |
| 2419 | * @addr: feature address |
| 2420 | * @subfeature_param: the subfeature parameters, a four bytes array |
| 2421 | * |
| 2422 | * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the |
| 2423 | * operation cannot be handled. |
| 2424 | */ |
| 2425 | int nand_get_features(struct nand_chip *chip, int addr, |
| 2426 | u8 *subfeature_param) |
| 2427 | { |
| 2428 | if (!nand_supports_get_features(chip, addr)) |
| 2429 | return -ENOTSUPP; |
| 2430 | |
| 2431 | if (chip->legacy.get_features) |
| 2432 | return chip->legacy.get_features(chip, addr, subfeature_param); |
| 2433 | |
| 2434 | return nand_get_features_op(chip, addr, subfeature_param); |
| 2435 | } |
| 2436 | |
| 2437 | /** |
| 2438 | * nand_set_features - wrapper to perform a SET_FEATURE |
| 2439 | * @chip: NAND chip info structure |
| 2440 | * @addr: feature address |
| 2441 | * @subfeature_param: the subfeature parameters, a four bytes array |
| 2442 | * |
| 2443 | * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the |
| 2444 | * operation cannot be handled. |
| 2445 | */ |
| 2446 | int nand_set_features(struct nand_chip *chip, int addr, |
| 2447 | u8 *subfeature_param) |
| 2448 | { |
| 2449 | if (!nand_supports_set_features(chip, addr)) |
| 2450 | return -ENOTSUPP; |
| 2451 | |
| 2452 | if (chip->legacy.set_features) |
| 2453 | return chip->legacy.set_features(chip, addr, subfeature_param); |
| 2454 | |
| 2455 | return nand_set_features_op(chip, addr, subfeature_param); |
| 2456 | } |
| 2457 | |
| 2458 | /** |
| 2459 | * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data |
| 2460 | * @buf: buffer to test |
| 2461 | * @len: buffer length |
| 2462 | * @bitflips_threshold: maximum number of bitflips |
| 2463 | * |
| 2464 | * Check if a buffer contains only 0xff, which means the underlying region |
| 2465 | * has been erased and is ready to be programmed. |
| 2466 | * The bitflips_threshold specify the maximum number of bitflips before |
| 2467 | * considering the region is not erased. |
| 2468 | * Note: The logic of this function has been extracted from the memweight |
| 2469 | * implementation, except that nand_check_erased_buf function exit before |
| 2470 | * testing the whole buffer if the number of bitflips exceed the |
| 2471 | * bitflips_threshold value. |
| 2472 | * |
| 2473 | * Returns a positive number of bitflips less than or equal to |
| 2474 | * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the |
| 2475 | * threshold. |
| 2476 | */ |
| 2477 | static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) |
| 2478 | { |
| 2479 | const unsigned char *bitmap = buf; |
| 2480 | int bitflips = 0; |
| 2481 | int weight; |
| 2482 | |
| 2483 | for (; len && ((uintptr_t)bitmap) % sizeof(long); |
| 2484 | len--, bitmap++) { |
| 2485 | weight = hweight8(*bitmap); |
| 2486 | bitflips += BITS_PER_BYTE - weight; |
| 2487 | if (unlikely(bitflips > bitflips_threshold)) |
| 2488 | return -EBADMSG; |
| 2489 | } |
| 2490 | |
| 2491 | for (; len >= sizeof(long); |
| 2492 | len -= sizeof(long), bitmap += sizeof(long)) { |
| 2493 | unsigned long d = *((unsigned long *)bitmap); |
| 2494 | if (d == ~0UL) |
| 2495 | continue; |
| 2496 | weight = hweight_long(d); |
| 2497 | bitflips += BITS_PER_LONG - weight; |
| 2498 | if (unlikely(bitflips > bitflips_threshold)) |
| 2499 | return -EBADMSG; |
| 2500 | } |
| 2501 | |
| 2502 | for (; len > 0; len--, bitmap++) { |
| 2503 | weight = hweight8(*bitmap); |
| 2504 | bitflips += BITS_PER_BYTE - weight; |
| 2505 | if (unlikely(bitflips > bitflips_threshold)) |
| 2506 | return -EBADMSG; |
| 2507 | } |
| 2508 | |
| 2509 | return bitflips; |
| 2510 | } |
| 2511 | |
| 2512 | /** |
| 2513 | * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only |
| 2514 | * 0xff data |
| 2515 | * @data: data buffer to test |
| 2516 | * @datalen: data length |
| 2517 | * @ecc: ECC buffer |
| 2518 | * @ecclen: ECC length |
| 2519 | * @extraoob: extra OOB buffer |
| 2520 | * @extraooblen: extra OOB length |
| 2521 | * @bitflips_threshold: maximum number of bitflips |
| 2522 | * |
| 2523 | * Check if a data buffer and its associated ECC and OOB data contains only |
| 2524 | * 0xff pattern, which means the underlying region has been erased and is |
| 2525 | * ready to be programmed. |
| 2526 | * The bitflips_threshold specify the maximum number of bitflips before |
| 2527 | * considering the region as not erased. |
| 2528 | * |
| 2529 | * Note: |
| 2530 | * 1/ ECC algorithms are working on pre-defined block sizes which are usually |
| 2531 | * different from the NAND page size. When fixing bitflips, ECC engines will |
| 2532 | * report the number of errors per chunk, and the NAND core infrastructure |
| 2533 | * expect you to return the maximum number of bitflips for the whole page. |
| 2534 | * This is why you should always use this function on a single chunk and |
| 2535 | * not on the whole page. After checking each chunk you should update your |
| 2536 | * max_bitflips value accordingly. |
| 2537 | * 2/ When checking for bitflips in erased pages you should not only check |
| 2538 | * the payload data but also their associated ECC data, because a user might |
| 2539 | * have programmed almost all bits to 1 but a few. In this case, we |
| 2540 | * shouldn't consider the chunk as erased, and checking ECC bytes prevent |
| 2541 | * this case. |
| 2542 | * 3/ The extraoob argument is optional, and should be used if some of your OOB |
| 2543 | * data are protected by the ECC engine. |
| 2544 | * It could also be used if you support subpages and want to attach some |
| 2545 | * extra OOB data to an ECC chunk. |
| 2546 | * |
| 2547 | * Returns a positive number of bitflips less than or equal to |
| 2548 | * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the |
| 2549 | * threshold. In case of success, the passed buffers are filled with 0xff. |
| 2550 | */ |
| 2551 | int nand_check_erased_ecc_chunk(void *data, int datalen, |
| 2552 | void *ecc, int ecclen, |
| 2553 | void *extraoob, int extraooblen, |
| 2554 | int bitflips_threshold) |
| 2555 | { |
| 2556 | int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; |
| 2557 | |
| 2558 | data_bitflips = nand_check_erased_buf(data, datalen, |
| 2559 | bitflips_threshold); |
| 2560 | if (data_bitflips < 0) |
| 2561 | return data_bitflips; |
| 2562 | |
| 2563 | bitflips_threshold -= data_bitflips; |
| 2564 | |
| 2565 | ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); |
| 2566 | if (ecc_bitflips < 0) |
| 2567 | return ecc_bitflips; |
| 2568 | |
| 2569 | bitflips_threshold -= ecc_bitflips; |
| 2570 | |
| 2571 | extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, |
| 2572 | bitflips_threshold); |
| 2573 | if (extraoob_bitflips < 0) |
| 2574 | return extraoob_bitflips; |
| 2575 | |
| 2576 | if (data_bitflips) |
| 2577 | memset(data, 0xff, datalen); |
| 2578 | |
| 2579 | if (ecc_bitflips) |
| 2580 | memset(ecc, 0xff, ecclen); |
| 2581 | |
| 2582 | if (extraoob_bitflips) |
| 2583 | memset(extraoob, 0xff, extraooblen); |
| 2584 | |
| 2585 | return data_bitflips + ecc_bitflips + extraoob_bitflips; |
| 2586 | } |
| 2587 | EXPORT_SYMBOL(nand_check_erased_ecc_chunk); |
| 2588 | |
| 2589 | /** |
| 2590 | * nand_read_page_raw_notsupp - dummy read raw page function |
| 2591 | * @chip: nand chip info structure |
| 2592 | * @buf: buffer to store read data |
| 2593 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 2594 | * @page: page number to read |
| 2595 | * |
| 2596 | * Returns -ENOTSUPP unconditionally. |
| 2597 | */ |
| 2598 | int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, |
| 2599 | int oob_required, int page) |
| 2600 | { |
| 2601 | return -ENOTSUPP; |
| 2602 | } |
| 2603 | |
| 2604 | /** |
| 2605 | * nand_read_page_raw - [INTERN] read raw page data without ecc |
| 2606 | * @chip: nand chip info structure |
| 2607 | * @buf: buffer to store read data |
| 2608 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 2609 | * @page: page number to read |
| 2610 | * |
| 2611 | * Not for syndrome calculating ECC controllers, which use a special oob layout. |
| 2612 | */ |
| 2613 | int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, |
| 2614 | int page) |
| 2615 | { |
| 2616 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 2617 | int ret; |
| 2618 | |
| 2619 | ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); |
| 2620 | if (ret) |
| 2621 | return ret; |
| 2622 | |
| 2623 | if (oob_required) { |
| 2624 | ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, |
| 2625 | false); |
| 2626 | if (ret) |
| 2627 | return ret; |
| 2628 | } |
| 2629 | |
| 2630 | return 0; |
| 2631 | } |
| 2632 | EXPORT_SYMBOL(nand_read_page_raw); |
| 2633 | |
| 2634 | /** |
| 2635 | * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc |
| 2636 | * @chip: nand chip info structure |
| 2637 | * @buf: buffer to store read data |
| 2638 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 2639 | * @page: page number to read |
| 2640 | * |
| 2641 | * We need a special oob layout and handling even when OOB isn't used. |
| 2642 | */ |
| 2643 | static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, |
| 2644 | int oob_required, int page) |
| 2645 | { |
| 2646 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 2647 | int eccsize = chip->ecc.size; |
| 2648 | int eccbytes = chip->ecc.bytes; |
| 2649 | uint8_t *oob = chip->oob_poi; |
| 2650 | int steps, size, ret; |
| 2651 | |
| 2652 | ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| 2653 | if (ret) |
| 2654 | return ret; |
| 2655 | |
| 2656 | for (steps = chip->ecc.steps; steps > 0; steps--) { |
| 2657 | ret = nand_read_data_op(chip, buf, eccsize, false); |
| 2658 | if (ret) |
| 2659 | return ret; |
| 2660 | |
| 2661 | buf += eccsize; |
| 2662 | |
| 2663 | if (chip->ecc.prepad) { |
| 2664 | ret = nand_read_data_op(chip, oob, chip->ecc.prepad, |
| 2665 | false); |
| 2666 | if (ret) |
| 2667 | return ret; |
| 2668 | |
| 2669 | oob += chip->ecc.prepad; |
| 2670 | } |
| 2671 | |
| 2672 | ret = nand_read_data_op(chip, oob, eccbytes, false); |
| 2673 | if (ret) |
| 2674 | return ret; |
| 2675 | |
| 2676 | oob += eccbytes; |
| 2677 | |
| 2678 | if (chip->ecc.postpad) { |
| 2679 | ret = nand_read_data_op(chip, oob, chip->ecc.postpad, |
| 2680 | false); |
| 2681 | if (ret) |
| 2682 | return ret; |
| 2683 | |
| 2684 | oob += chip->ecc.postpad; |
| 2685 | } |
| 2686 | } |
| 2687 | |
| 2688 | size = mtd->oobsize - (oob - chip->oob_poi); |
| 2689 | if (size) { |
| 2690 | ret = nand_read_data_op(chip, oob, size, false); |
| 2691 | if (ret) |
| 2692 | return ret; |
| 2693 | } |
| 2694 | |
| 2695 | return 0; |
| 2696 | } |
| 2697 | |
| 2698 | /** |
| 2699 | * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function |
| 2700 | * @chip: nand chip info structure |
| 2701 | * @buf: buffer to store read data |
| 2702 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 2703 | * @page: page number to read |
| 2704 | */ |
| 2705 | static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, |
| 2706 | int oob_required, int page) |
| 2707 | { |
| 2708 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 2709 | int i, eccsize = chip->ecc.size, ret; |
| 2710 | int eccbytes = chip->ecc.bytes; |
| 2711 | int eccsteps = chip->ecc.steps; |
| 2712 | uint8_t *p = buf; |
| 2713 | uint8_t *ecc_calc = chip->ecc.calc_buf; |
| 2714 | uint8_t *ecc_code = chip->ecc.code_buf; |
| 2715 | unsigned int max_bitflips = 0; |
| 2716 | |
| 2717 | chip->ecc.read_page_raw(chip, buf, 1, page); |
| 2718 | |
| 2719 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| 2720 | chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| 2721 | |
| 2722 | ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| 2723 | chip->ecc.total); |
| 2724 | if (ret) |
| 2725 | return ret; |
| 2726 | |
| 2727 | eccsteps = chip->ecc.steps; |
| 2728 | p = buf; |
| 2729 | |
| 2730 | for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 2731 | int stat; |
| 2732 | |
| 2733 | stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); |
| 2734 | if (stat < 0) { |
| 2735 | mtd->ecc_stats.failed++; |
| 2736 | } else { |
| 2737 | mtd->ecc_stats.corrected += stat; |
| 2738 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 2739 | } |
| 2740 | } |
| 2741 | return max_bitflips; |
| 2742 | } |
| 2743 | |
| 2744 | /** |
| 2745 | * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function |
| 2746 | * @chip: nand chip info structure |
| 2747 | * @data_offs: offset of requested data within the page |
| 2748 | * @readlen: data length |
| 2749 | * @bufpoi: buffer to store read data |
| 2750 | * @page: page number to read |
| 2751 | */ |
| 2752 | static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, |
| 2753 | uint32_t readlen, uint8_t *bufpoi, int page) |
| 2754 | { |
| 2755 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 2756 | int start_step, end_step, num_steps, ret; |
| 2757 | uint8_t *p; |
| 2758 | int data_col_addr, i, gaps = 0; |
| 2759 | int datafrag_len, eccfrag_len, aligned_len, aligned_pos; |
| 2760 | int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; |
| 2761 | int index, section = 0; |
| 2762 | unsigned int max_bitflips = 0; |
| 2763 | struct mtd_oob_region oobregion = { }; |
| 2764 | |
| 2765 | /* Column address within the page aligned to ECC size (256bytes) */ |
| 2766 | start_step = data_offs / chip->ecc.size; |
| 2767 | end_step = (data_offs + readlen - 1) / chip->ecc.size; |
| 2768 | num_steps = end_step - start_step + 1; |
| 2769 | index = start_step * chip->ecc.bytes; |
| 2770 | |
| 2771 | /* Data size aligned to ECC ecc.size */ |
| 2772 | datafrag_len = num_steps * chip->ecc.size; |
| 2773 | eccfrag_len = num_steps * chip->ecc.bytes; |
| 2774 | |
| 2775 | data_col_addr = start_step * chip->ecc.size; |
| 2776 | /* If we read not a page aligned data */ |
| 2777 | p = bufpoi + data_col_addr; |
| 2778 | ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); |
| 2779 | if (ret) |
| 2780 | return ret; |
| 2781 | |
| 2782 | /* Calculate ECC */ |
| 2783 | for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) |
| 2784 | chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); |
| 2785 | |
| 2786 | /* |
| 2787 | * The performance is faster if we position offsets according to |
| 2788 | * ecc.pos. Let's make sure that there are no gaps in ECC positions. |
| 2789 | */ |
| 2790 | ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); |
| 2791 | if (ret) |
| 2792 | return ret; |
| 2793 | |
| 2794 | if (oobregion.length < eccfrag_len) |
| 2795 | gaps = 1; |
| 2796 | |
| 2797 | if (gaps) { |
| 2798 | ret = nand_change_read_column_op(chip, mtd->writesize, |
| 2799 | chip->oob_poi, mtd->oobsize, |
| 2800 | false); |
| 2801 | if (ret) |
| 2802 | return ret; |
| 2803 | } else { |
| 2804 | /* |
| 2805 | * Send the command to read the particular ECC bytes take care |
| 2806 | * about buswidth alignment in read_buf. |
| 2807 | */ |
| 2808 | aligned_pos = oobregion.offset & ~(busw - 1); |
| 2809 | aligned_len = eccfrag_len; |
| 2810 | if (oobregion.offset & (busw - 1)) |
| 2811 | aligned_len++; |
| 2812 | if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & |
| 2813 | (busw - 1)) |
| 2814 | aligned_len++; |
| 2815 | |
| 2816 | ret = nand_change_read_column_op(chip, |
| 2817 | mtd->writesize + aligned_pos, |
| 2818 | &chip->oob_poi[aligned_pos], |
| 2819 | aligned_len, false); |
| 2820 | if (ret) |
| 2821 | return ret; |
| 2822 | } |
| 2823 | |
| 2824 | ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, |
| 2825 | chip->oob_poi, index, eccfrag_len); |
| 2826 | if (ret) |
| 2827 | return ret; |
| 2828 | |
| 2829 | p = bufpoi + data_col_addr; |
| 2830 | for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { |
| 2831 | int stat; |
| 2832 | |
| 2833 | stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], |
| 2834 | &chip->ecc.calc_buf[i]); |
| 2835 | if (stat == -EBADMSG && |
| 2836 | (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| 2837 | /* check for empty pages with bitflips */ |
| 2838 | stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, |
| 2839 | &chip->ecc.code_buf[i], |
| 2840 | chip->ecc.bytes, |
| 2841 | NULL, 0, |
| 2842 | chip->ecc.strength); |
| 2843 | } |
| 2844 | |
| 2845 | if (stat < 0) { |
| 2846 | mtd->ecc_stats.failed++; |
| 2847 | } else { |
| 2848 | mtd->ecc_stats.corrected += stat; |
| 2849 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 2850 | } |
| 2851 | } |
| 2852 | return max_bitflips; |
| 2853 | } |
| 2854 | |
| 2855 | /** |
| 2856 | * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function |
| 2857 | * @chip: nand chip info structure |
| 2858 | * @buf: buffer to store read data |
| 2859 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 2860 | * @page: page number to read |
| 2861 | * |
| 2862 | * Not for syndrome calculating ECC controllers which need a special oob layout. |
| 2863 | */ |
| 2864 | static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, |
| 2865 | int oob_required, int page) |
| 2866 | { |
| 2867 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 2868 | int i, eccsize = chip->ecc.size, ret; |
| 2869 | int eccbytes = chip->ecc.bytes; |
| 2870 | int eccsteps = chip->ecc.steps; |
| 2871 | uint8_t *p = buf; |
| 2872 | uint8_t *ecc_calc = chip->ecc.calc_buf; |
| 2873 | uint8_t *ecc_code = chip->ecc.code_buf; |
| 2874 | unsigned int max_bitflips = 0; |
| 2875 | |
| 2876 | ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| 2877 | if (ret) |
| 2878 | return ret; |
| 2879 | |
| 2880 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 2881 | chip->ecc.hwctl(chip, NAND_ECC_READ); |
| 2882 | |
| 2883 | ret = nand_read_data_op(chip, p, eccsize, false); |
| 2884 | if (ret) |
| 2885 | return ret; |
| 2886 | |
| 2887 | chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| 2888 | } |
| 2889 | |
| 2890 | ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); |
| 2891 | if (ret) |
| 2892 | return ret; |
| 2893 | |
| 2894 | ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| 2895 | chip->ecc.total); |
| 2896 | if (ret) |
| 2897 | return ret; |
| 2898 | |
| 2899 | eccsteps = chip->ecc.steps; |
| 2900 | p = buf; |
| 2901 | |
| 2902 | for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 2903 | int stat; |
| 2904 | |
| 2905 | stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); |
| 2906 | if (stat == -EBADMSG && |
| 2907 | (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| 2908 | /* check for empty pages with bitflips */ |
| 2909 | stat = nand_check_erased_ecc_chunk(p, eccsize, |
| 2910 | &ecc_code[i], eccbytes, |
| 2911 | NULL, 0, |
| 2912 | chip->ecc.strength); |
| 2913 | } |
| 2914 | |
| 2915 | if (stat < 0) { |
| 2916 | mtd->ecc_stats.failed++; |
| 2917 | } else { |
| 2918 | mtd->ecc_stats.corrected += stat; |
| 2919 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 2920 | } |
| 2921 | } |
| 2922 | return max_bitflips; |
| 2923 | } |
| 2924 | |
| 2925 | /** |
| 2926 | * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first |
| 2927 | * @chip: nand chip info structure |
| 2928 | * @buf: buffer to store read data |
| 2929 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 2930 | * @page: page number to read |
| 2931 | * |
| 2932 | * Hardware ECC for large page chips, require OOB to be read first. For this |
| 2933 | * ECC mode, the write_page method is re-used from ECC_HW. These methods |
| 2934 | * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with |
| 2935 | * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from |
| 2936 | * the data area, by overwriting the NAND manufacturer bad block markings. |
| 2937 | */ |
| 2938 | static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, |
| 2939 | int oob_required, int page) |
| 2940 | { |
| 2941 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 2942 | int i, eccsize = chip->ecc.size, ret; |
| 2943 | int eccbytes = chip->ecc.bytes; |
| 2944 | int eccsteps = chip->ecc.steps; |
| 2945 | uint8_t *p = buf; |
| 2946 | uint8_t *ecc_code = chip->ecc.code_buf; |
| 2947 | uint8_t *ecc_calc = chip->ecc.calc_buf; |
| 2948 | unsigned int max_bitflips = 0; |
| 2949 | |
| 2950 | /* Read the OOB area first */ |
| 2951 | ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); |
| 2952 | if (ret) |
| 2953 | return ret; |
| 2954 | |
| 2955 | ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| 2956 | if (ret) |
| 2957 | return ret; |
| 2958 | |
| 2959 | ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, |
| 2960 | chip->ecc.total); |
| 2961 | if (ret) |
| 2962 | return ret; |
| 2963 | |
| 2964 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 2965 | int stat; |
| 2966 | |
| 2967 | chip->ecc.hwctl(chip, NAND_ECC_READ); |
| 2968 | |
| 2969 | ret = nand_read_data_op(chip, p, eccsize, false); |
| 2970 | if (ret) |
| 2971 | return ret; |
| 2972 | |
| 2973 | chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| 2974 | |
| 2975 | stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); |
| 2976 | if (stat == -EBADMSG && |
| 2977 | (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| 2978 | /* check for empty pages with bitflips */ |
| 2979 | stat = nand_check_erased_ecc_chunk(p, eccsize, |
| 2980 | &ecc_code[i], eccbytes, |
| 2981 | NULL, 0, |
| 2982 | chip->ecc.strength); |
| 2983 | } |
| 2984 | |
| 2985 | if (stat < 0) { |
| 2986 | mtd->ecc_stats.failed++; |
| 2987 | } else { |
| 2988 | mtd->ecc_stats.corrected += stat; |
| 2989 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 2990 | } |
| 2991 | } |
| 2992 | return max_bitflips; |
| 2993 | } |
| 2994 | |
| 2995 | /** |
| 2996 | * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read |
| 2997 | * @chip: nand chip info structure |
| 2998 | * @buf: buffer to store read data |
| 2999 | * @oob_required: caller requires OOB data read to chip->oob_poi |
| 3000 | * @page: page number to read |
| 3001 | * |
| 3002 | * The hw generator calculates the error syndrome automatically. Therefore we |
| 3003 | * need a special oob layout and handling. |
| 3004 | */ |
| 3005 | static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, |
| 3006 | int oob_required, int page) |
| 3007 | { |
| 3008 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3009 | int ret, i, eccsize = chip->ecc.size; |
| 3010 | int eccbytes = chip->ecc.bytes; |
| 3011 | int eccsteps = chip->ecc.steps; |
| 3012 | int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; |
| 3013 | uint8_t *p = buf; |
| 3014 | uint8_t *oob = chip->oob_poi; |
| 3015 | unsigned int max_bitflips = 0; |
| 3016 | |
| 3017 | ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| 3018 | if (ret) |
| 3019 | return ret; |
| 3020 | |
| 3021 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 3022 | int stat; |
| 3023 | |
| 3024 | chip->ecc.hwctl(chip, NAND_ECC_READ); |
| 3025 | |
| 3026 | ret = nand_read_data_op(chip, p, eccsize, false); |
| 3027 | if (ret) |
| 3028 | return ret; |
| 3029 | |
| 3030 | if (chip->ecc.prepad) { |
| 3031 | ret = nand_read_data_op(chip, oob, chip->ecc.prepad, |
| 3032 | false); |
| 3033 | if (ret) |
| 3034 | return ret; |
| 3035 | |
| 3036 | oob += chip->ecc.prepad; |
| 3037 | } |
| 3038 | |
| 3039 | chip->ecc.hwctl(chip, NAND_ECC_READSYN); |
| 3040 | |
| 3041 | ret = nand_read_data_op(chip, oob, eccbytes, false); |
| 3042 | if (ret) |
| 3043 | return ret; |
| 3044 | |
| 3045 | stat = chip->ecc.correct(chip, p, oob, NULL); |
| 3046 | |
| 3047 | oob += eccbytes; |
| 3048 | |
| 3049 | if (chip->ecc.postpad) { |
| 3050 | ret = nand_read_data_op(chip, oob, chip->ecc.postpad, |
| 3051 | false); |
| 3052 | if (ret) |
| 3053 | return ret; |
| 3054 | |
| 3055 | oob += chip->ecc.postpad; |
| 3056 | } |
| 3057 | |
| 3058 | if (stat == -EBADMSG && |
| 3059 | (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| 3060 | /* check for empty pages with bitflips */ |
| 3061 | stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, |
| 3062 | oob - eccpadbytes, |
| 3063 | eccpadbytes, |
| 3064 | NULL, 0, |
| 3065 | chip->ecc.strength); |
| 3066 | } |
| 3067 | |
| 3068 | if (stat < 0) { |
| 3069 | mtd->ecc_stats.failed++; |
| 3070 | } else { |
| 3071 | mtd->ecc_stats.corrected += stat; |
| 3072 | max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| 3073 | } |
| 3074 | } |
| 3075 | |
| 3076 | /* Calculate remaining oob bytes */ |
| 3077 | i = mtd->oobsize - (oob - chip->oob_poi); |
| 3078 | if (i) { |
| 3079 | ret = nand_read_data_op(chip, oob, i, false); |
| 3080 | if (ret) |
| 3081 | return ret; |
| 3082 | } |
| 3083 | |
| 3084 | return max_bitflips; |
| 3085 | } |
| 3086 | |
| 3087 | /** |
| 3088 | * nand_transfer_oob - [INTERN] Transfer oob to client buffer |
| 3089 | * @chip: NAND chip object |
| 3090 | * @oob: oob destination address |
| 3091 | * @ops: oob ops structure |
| 3092 | * @len: size of oob to transfer |
| 3093 | */ |
| 3094 | static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, |
| 3095 | struct mtd_oob_ops *ops, size_t len) |
| 3096 | { |
| 3097 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3098 | int ret; |
| 3099 | |
| 3100 | switch (ops->mode) { |
| 3101 | |
| 3102 | case MTD_OPS_PLACE_OOB: |
| 3103 | case MTD_OPS_RAW: |
| 3104 | memcpy(oob, chip->oob_poi + ops->ooboffs, len); |
| 3105 | return oob + len; |
| 3106 | |
| 3107 | case MTD_OPS_AUTO_OOB: |
| 3108 | ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, |
| 3109 | ops->ooboffs, len); |
| 3110 | BUG_ON(ret); |
| 3111 | return oob + len; |
| 3112 | |
| 3113 | default: |
| 3114 | BUG(); |
| 3115 | } |
| 3116 | return NULL; |
| 3117 | } |
| 3118 | |
| 3119 | /** |
| 3120 | * nand_setup_read_retry - [INTERN] Set the READ RETRY mode |
| 3121 | * @chip: NAND chip object |
| 3122 | * @retry_mode: the retry mode to use |
| 3123 | * |
| 3124 | * Some vendors supply a special command to shift the Vt threshold, to be used |
| 3125 | * when there are too many bitflips in a page (i.e., ECC error). After setting |
| 3126 | * a new threshold, the host should retry reading the page. |
| 3127 | */ |
| 3128 | static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) |
| 3129 | { |
| 3130 | pr_debug("setting READ RETRY mode %d\n", retry_mode); |
| 3131 | |
| 3132 | if (retry_mode >= chip->read_retries) |
| 3133 | return -EINVAL; |
| 3134 | |
| 3135 | if (!chip->setup_read_retry) |
| 3136 | return -EOPNOTSUPP; |
| 3137 | |
| 3138 | return chip->setup_read_retry(chip, retry_mode); |
| 3139 | } |
| 3140 | |
| 3141 | static void nand_wait_readrdy(struct nand_chip *chip) |
| 3142 | { |
| 3143 | const struct nand_sdr_timings *sdr; |
| 3144 | |
| 3145 | if (!(chip->options & NAND_NEED_READRDY)) |
| 3146 | return; |
| 3147 | |
| 3148 | sdr = nand_get_sdr_timings(&chip->data_interface); |
| 3149 | WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); |
| 3150 | } |
| 3151 | |
| 3152 | /** |
| 3153 | * nand_do_read_ops - [INTERN] Read data with ECC |
| 3154 | * @chip: NAND chip object |
| 3155 | * @from: offset to read from |
| 3156 | * @ops: oob ops structure |
| 3157 | * |
| 3158 | * Internal function. Called with chip held. |
| 3159 | */ |
| 3160 | static int nand_do_read_ops(struct nand_chip *chip, loff_t from, |
| 3161 | struct mtd_oob_ops *ops) |
| 3162 | { |
| 3163 | int chipnr, page, realpage, col, bytes, aligned, oob_required; |
| 3164 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3165 | int ret = 0; |
| 3166 | uint32_t readlen = ops->len; |
| 3167 | uint32_t oobreadlen = ops->ooblen; |
| 3168 | uint32_t max_oobsize = mtd_oobavail(mtd, ops); |
| 3169 | |
| 3170 | uint8_t *bufpoi, *oob, *buf; |
| 3171 | int use_bufpoi; |
| 3172 | unsigned int max_bitflips = 0; |
| 3173 | int retry_mode = 0; |
| 3174 | bool ecc_fail = false; |
| 3175 | |
| 3176 | chipnr = (int)(from >> chip->chip_shift); |
| 3177 | nand_select_target(chip, chipnr); |
| 3178 | |
| 3179 | realpage = (int)(from >> chip->page_shift); |
| 3180 | page = realpage & chip->pagemask; |
| 3181 | |
| 3182 | col = (int)(from & (mtd->writesize - 1)); |
| 3183 | |
| 3184 | buf = ops->datbuf; |
| 3185 | oob = ops->oobbuf; |
| 3186 | oob_required = oob ? 1 : 0; |
| 3187 | |
| 3188 | while (1) { |
| 3189 | unsigned int ecc_failures = mtd->ecc_stats.failed; |
| 3190 | |
| 3191 | bytes = min(mtd->writesize - col, readlen); |
| 3192 | aligned = (bytes == mtd->writesize); |
| 3193 | |
| 3194 | if (!aligned) |
| 3195 | use_bufpoi = 1; |
| 3196 | else if (chip->options & NAND_USE_BOUNCE_BUFFER) |
| 3197 | use_bufpoi = !virt_addr_valid(buf) || |
| 3198 | !IS_ALIGNED((unsigned long)buf, |
| 3199 | chip->buf_align); |
| 3200 | else |
| 3201 | use_bufpoi = 0; |
| 3202 | |
| 3203 | /* Is the current page in the buffer? */ |
| 3204 | if (realpage != chip->pagecache.page || oob) { |
| 3205 | bufpoi = use_bufpoi ? chip->data_buf : buf; |
| 3206 | |
| 3207 | if (use_bufpoi && aligned) |
| 3208 | pr_debug("%s: using read bounce buffer for buf@%p\n", |
| 3209 | __func__, buf); |
| 3210 | |
| 3211 | read_retry: |
| 3212 | /* |
| 3213 | * Now read the page into the buffer. Absent an error, |
| 3214 | * the read methods return max bitflips per ecc step. |
| 3215 | */ |
| 3216 | if (unlikely(ops->mode == MTD_OPS_RAW)) |
| 3217 | ret = chip->ecc.read_page_raw(chip, bufpoi, |
| 3218 | oob_required, |
| 3219 | page); |
| 3220 | else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && |
| 3221 | !oob) |
| 3222 | ret = chip->ecc.read_subpage(chip, col, bytes, |
| 3223 | bufpoi, page); |
| 3224 | else |
| 3225 | ret = chip->ecc.read_page(chip, bufpoi, |
| 3226 | oob_required, page); |
| 3227 | if (ret < 0) { |
| 3228 | if (use_bufpoi) |
| 3229 | /* Invalidate page cache */ |
| 3230 | chip->pagecache.page = -1; |
| 3231 | break; |
| 3232 | } |
| 3233 | |
| 3234 | /* Transfer not aligned data */ |
| 3235 | if (use_bufpoi) { |
| 3236 | if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && |
| 3237 | !(mtd->ecc_stats.failed - ecc_failures) && |
| 3238 | (ops->mode != MTD_OPS_RAW)) { |
| 3239 | chip->pagecache.page = realpage; |
| 3240 | chip->pagecache.bitflips = ret; |
| 3241 | } else { |
| 3242 | /* Invalidate page cache */ |
| 3243 | chip->pagecache.page = -1; |
| 3244 | } |
| 3245 | memcpy(buf, chip->data_buf + col, bytes); |
| 3246 | } |
| 3247 | |
| 3248 | if (unlikely(oob)) { |
| 3249 | int toread = min(oobreadlen, max_oobsize); |
| 3250 | |
| 3251 | if (toread) { |
| 3252 | oob = nand_transfer_oob(chip, oob, ops, |
| 3253 | toread); |
| 3254 | oobreadlen -= toread; |
| 3255 | } |
| 3256 | } |
| 3257 | |
| 3258 | nand_wait_readrdy(chip); |
| 3259 | |
| 3260 | if (mtd->ecc_stats.failed - ecc_failures) { |
| 3261 | if (retry_mode + 1 < chip->read_retries) { |
| 3262 | retry_mode++; |
| 3263 | ret = nand_setup_read_retry(chip, |
| 3264 | retry_mode); |
| 3265 | if (ret < 0) |
| 3266 | break; |
| 3267 | |
| 3268 | /* Reset failures; retry */ |
| 3269 | mtd->ecc_stats.failed = ecc_failures; |
| 3270 | goto read_retry; |
| 3271 | } else { |
| 3272 | /* No more retry modes; real failure */ |
| 3273 | ecc_fail = true; |
| 3274 | } |
| 3275 | } |
| 3276 | |
| 3277 | buf += bytes; |
| 3278 | max_bitflips = max_t(unsigned int, max_bitflips, ret); |
| 3279 | } else { |
| 3280 | memcpy(buf, chip->data_buf + col, bytes); |
| 3281 | buf += bytes; |
| 3282 | max_bitflips = max_t(unsigned int, max_bitflips, |
| 3283 | chip->pagecache.bitflips); |
| 3284 | } |
| 3285 | |
| 3286 | readlen -= bytes; |
| 3287 | |
| 3288 | /* Reset to retry mode 0 */ |
| 3289 | if (retry_mode) { |
| 3290 | ret = nand_setup_read_retry(chip, 0); |
| 3291 | if (ret < 0) |
| 3292 | break; |
| 3293 | retry_mode = 0; |
| 3294 | } |
| 3295 | |
| 3296 | if (!readlen) |
| 3297 | break; |
| 3298 | |
| 3299 | /* For subsequent reads align to page boundary */ |
| 3300 | col = 0; |
| 3301 | /* Increment page address */ |
| 3302 | realpage++; |
| 3303 | |
| 3304 | page = realpage & chip->pagemask; |
| 3305 | /* Check, if we cross a chip boundary */ |
| 3306 | if (!page) { |
| 3307 | chipnr++; |
| 3308 | nand_deselect_target(chip); |
| 3309 | nand_select_target(chip, chipnr); |
| 3310 | } |
| 3311 | } |
| 3312 | nand_deselect_target(chip); |
| 3313 | |
| 3314 | ops->retlen = ops->len - (size_t) readlen; |
| 3315 | if (oob) |
| 3316 | ops->oobretlen = ops->ooblen - oobreadlen; |
| 3317 | |
| 3318 | if (ret < 0) |
| 3319 | return ret; |
| 3320 | |
| 3321 | if (ecc_fail) |
| 3322 | return -EBADMSG; |
| 3323 | |
| 3324 | return max_bitflips; |
| 3325 | } |
| 3326 | |
| 3327 | /** |
| 3328 | * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function |
| 3329 | * @chip: nand chip info structure |
| 3330 | * @page: page number to read |
| 3331 | */ |
| 3332 | int nand_read_oob_std(struct nand_chip *chip, int page) |
| 3333 | { |
| 3334 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3335 | |
| 3336 | return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); |
| 3337 | } |
| 3338 | EXPORT_SYMBOL(nand_read_oob_std); |
| 3339 | |
| 3340 | /** |
| 3341 | * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC |
| 3342 | * with syndromes |
| 3343 | * @chip: nand chip info structure |
| 3344 | * @page: page number to read |
| 3345 | */ |
| 3346 | static int nand_read_oob_syndrome(struct nand_chip *chip, int page) |
| 3347 | { |
| 3348 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3349 | int length = mtd->oobsize; |
| 3350 | int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; |
| 3351 | int eccsize = chip->ecc.size; |
| 3352 | uint8_t *bufpoi = chip->oob_poi; |
| 3353 | int i, toread, sndrnd = 0, pos, ret; |
| 3354 | |
| 3355 | ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); |
| 3356 | if (ret) |
| 3357 | return ret; |
| 3358 | |
| 3359 | for (i = 0; i < chip->ecc.steps; i++) { |
| 3360 | if (sndrnd) { |
| 3361 | int ret; |
| 3362 | |
| 3363 | pos = eccsize + i * (eccsize + chunk); |
| 3364 | if (mtd->writesize > 512) |
| 3365 | ret = nand_change_read_column_op(chip, pos, |
| 3366 | NULL, 0, |
| 3367 | false); |
| 3368 | else |
| 3369 | ret = nand_read_page_op(chip, page, pos, NULL, |
| 3370 | 0); |
| 3371 | |
| 3372 | if (ret) |
| 3373 | return ret; |
| 3374 | } else |
| 3375 | sndrnd = 1; |
| 3376 | toread = min_t(int, length, chunk); |
| 3377 | |
| 3378 | ret = nand_read_data_op(chip, bufpoi, toread, false); |
| 3379 | if (ret) |
| 3380 | return ret; |
| 3381 | |
| 3382 | bufpoi += toread; |
| 3383 | length -= toread; |
| 3384 | } |
| 3385 | if (length > 0) { |
| 3386 | ret = nand_read_data_op(chip, bufpoi, length, false); |
| 3387 | if (ret) |
| 3388 | return ret; |
| 3389 | } |
| 3390 | |
| 3391 | return 0; |
| 3392 | } |
| 3393 | |
| 3394 | /** |
| 3395 | * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function |
| 3396 | * @chip: nand chip info structure |
| 3397 | * @page: page number to write |
| 3398 | */ |
| 3399 | int nand_write_oob_std(struct nand_chip *chip, int page) |
| 3400 | { |
| 3401 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3402 | |
| 3403 | return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, |
| 3404 | mtd->oobsize); |
| 3405 | } |
| 3406 | EXPORT_SYMBOL(nand_write_oob_std); |
| 3407 | |
| 3408 | /** |
| 3409 | * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC |
| 3410 | * with syndrome - only for large page flash |
| 3411 | * @chip: nand chip info structure |
| 3412 | * @page: page number to write |
| 3413 | */ |
| 3414 | static int nand_write_oob_syndrome(struct nand_chip *chip, int page) |
| 3415 | { |
| 3416 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3417 | int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; |
| 3418 | int eccsize = chip->ecc.size, length = mtd->oobsize; |
| 3419 | int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; |
| 3420 | const uint8_t *bufpoi = chip->oob_poi; |
| 3421 | |
| 3422 | /* |
| 3423 | * data-ecc-data-ecc ... ecc-oob |
| 3424 | * or |
| 3425 | * data-pad-ecc-pad-data-pad .... ecc-pad-oob |
| 3426 | */ |
| 3427 | if (!chip->ecc.prepad && !chip->ecc.postpad) { |
| 3428 | pos = steps * (eccsize + chunk); |
| 3429 | steps = 0; |
| 3430 | } else |
| 3431 | pos = eccsize; |
| 3432 | |
| 3433 | ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); |
| 3434 | if (ret) |
| 3435 | return ret; |
| 3436 | |
| 3437 | for (i = 0; i < steps; i++) { |
| 3438 | if (sndcmd) { |
| 3439 | if (mtd->writesize <= 512) { |
| 3440 | uint32_t fill = 0xFFFFFFFF; |
| 3441 | |
| 3442 | len = eccsize; |
| 3443 | while (len > 0) { |
| 3444 | int num = min_t(int, len, 4); |
| 3445 | |
| 3446 | ret = nand_write_data_op(chip, &fill, |
| 3447 | num, false); |
| 3448 | if (ret) |
| 3449 | return ret; |
| 3450 | |
| 3451 | len -= num; |
| 3452 | } |
| 3453 | } else { |
| 3454 | pos = eccsize + i * (eccsize + chunk); |
| 3455 | ret = nand_change_write_column_op(chip, pos, |
| 3456 | NULL, 0, |
| 3457 | false); |
| 3458 | if (ret) |
| 3459 | return ret; |
| 3460 | } |
| 3461 | } else |
| 3462 | sndcmd = 1; |
| 3463 | len = min_t(int, length, chunk); |
| 3464 | |
| 3465 | ret = nand_write_data_op(chip, bufpoi, len, false); |
| 3466 | if (ret) |
| 3467 | return ret; |
| 3468 | |
| 3469 | bufpoi += len; |
| 3470 | length -= len; |
| 3471 | } |
| 3472 | if (length > 0) { |
| 3473 | ret = nand_write_data_op(chip, bufpoi, length, false); |
| 3474 | if (ret) |
| 3475 | return ret; |
| 3476 | } |
| 3477 | |
| 3478 | return nand_prog_page_end_op(chip); |
| 3479 | } |
| 3480 | |
| 3481 | /** |
| 3482 | * nand_do_read_oob - [INTERN] NAND read out-of-band |
| 3483 | * @chip: NAND chip object |
| 3484 | * @from: offset to read from |
| 3485 | * @ops: oob operations description structure |
| 3486 | * |
| 3487 | * NAND read out-of-band data from the spare area. |
| 3488 | */ |
| 3489 | static int nand_do_read_oob(struct nand_chip *chip, loff_t from, |
| 3490 | struct mtd_oob_ops *ops) |
| 3491 | { |
| 3492 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3493 | unsigned int max_bitflips = 0; |
| 3494 | int page, realpage, chipnr; |
| 3495 | struct mtd_ecc_stats stats; |
| 3496 | int readlen = ops->ooblen; |
| 3497 | int len; |
| 3498 | uint8_t *buf = ops->oobbuf; |
| 3499 | int ret = 0; |
| 3500 | |
| 3501 | pr_debug("%s: from = 0x%08Lx, len = %i\n", |
| 3502 | __func__, (unsigned long long)from, readlen); |
| 3503 | |
| 3504 | stats = mtd->ecc_stats; |
| 3505 | |
| 3506 | len = mtd_oobavail(mtd, ops); |
| 3507 | |
| 3508 | chipnr = (int)(from >> chip->chip_shift); |
| 3509 | nand_select_target(chip, chipnr); |
| 3510 | |
| 3511 | /* Shift to get page */ |
| 3512 | realpage = (int)(from >> chip->page_shift); |
| 3513 | page = realpage & chip->pagemask; |
| 3514 | |
| 3515 | while (1) { |
| 3516 | if (ops->mode == MTD_OPS_RAW) |
| 3517 | ret = chip->ecc.read_oob_raw(chip, page); |
| 3518 | else |
| 3519 | ret = chip->ecc.read_oob(chip, page); |
| 3520 | |
| 3521 | if (ret < 0) |
| 3522 | break; |
| 3523 | |
| 3524 | len = min(len, readlen); |
| 3525 | buf = nand_transfer_oob(chip, buf, ops, len); |
| 3526 | |
| 3527 | nand_wait_readrdy(chip); |
| 3528 | |
| 3529 | max_bitflips = max_t(unsigned int, max_bitflips, ret); |
| 3530 | |
| 3531 | readlen -= len; |
| 3532 | if (!readlen) |
| 3533 | break; |
| 3534 | |
| 3535 | /* Increment page address */ |
| 3536 | realpage++; |
| 3537 | |
| 3538 | page = realpage & chip->pagemask; |
| 3539 | /* Check, if we cross a chip boundary */ |
| 3540 | if (!page) { |
| 3541 | chipnr++; |
| 3542 | nand_deselect_target(chip); |
| 3543 | nand_select_target(chip, chipnr); |
| 3544 | } |
| 3545 | } |
| 3546 | nand_deselect_target(chip); |
| 3547 | |
| 3548 | ops->oobretlen = ops->ooblen - readlen; |
| 3549 | |
| 3550 | if (ret < 0) |
| 3551 | return ret; |
| 3552 | |
| 3553 | if (mtd->ecc_stats.failed - stats.failed) |
| 3554 | return -EBADMSG; |
| 3555 | |
| 3556 | return max_bitflips; |
| 3557 | } |
| 3558 | |
| 3559 | /** |
| 3560 | * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band |
| 3561 | * @mtd: MTD device structure |
| 3562 | * @from: offset to read from |
| 3563 | * @ops: oob operation description structure |
| 3564 | * |
| 3565 | * NAND read data and/or out-of-band data. |
| 3566 | */ |
| 3567 | static int nand_read_oob(struct mtd_info *mtd, loff_t from, |
| 3568 | struct mtd_oob_ops *ops) |
| 3569 | { |
| 3570 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 3571 | int ret; |
| 3572 | |
| 3573 | ops->retlen = 0; |
| 3574 | |
| 3575 | if (ops->mode != MTD_OPS_PLACE_OOB && |
| 3576 | ops->mode != MTD_OPS_AUTO_OOB && |
| 3577 | ops->mode != MTD_OPS_RAW) |
| 3578 | return -ENOTSUPP; |
| 3579 | |
| 3580 | nand_get_device(chip); |
| 3581 | |
| 3582 | if (!ops->datbuf) |
| 3583 | ret = nand_do_read_oob(chip, from, ops); |
| 3584 | else |
| 3585 | ret = nand_do_read_ops(chip, from, ops); |
| 3586 | |
| 3587 | nand_release_device(chip); |
| 3588 | return ret; |
| 3589 | } |
| 3590 | |
| 3591 | /** |
| 3592 | * nand_write_page_raw_notsupp - dummy raw page write function |
| 3593 | * @chip: nand chip info structure |
| 3594 | * @buf: data buffer |
| 3595 | * @oob_required: must write chip->oob_poi to OOB |
| 3596 | * @page: page number to write |
| 3597 | * |
| 3598 | * Returns -ENOTSUPP unconditionally. |
| 3599 | */ |
| 3600 | int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, |
| 3601 | int oob_required, int page) |
| 3602 | { |
| 3603 | return -ENOTSUPP; |
| 3604 | } |
| 3605 | |
| 3606 | /** |
| 3607 | * nand_write_page_raw - [INTERN] raw page write function |
| 3608 | * @chip: nand chip info structure |
| 3609 | * @buf: data buffer |
| 3610 | * @oob_required: must write chip->oob_poi to OOB |
| 3611 | * @page: page number to write |
| 3612 | * |
| 3613 | * Not for syndrome calculating ECC controllers, which use a special oob layout. |
| 3614 | */ |
| 3615 | int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, |
| 3616 | int oob_required, int page) |
| 3617 | { |
| 3618 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3619 | int ret; |
| 3620 | |
| 3621 | ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); |
| 3622 | if (ret) |
| 3623 | return ret; |
| 3624 | |
| 3625 | if (oob_required) { |
| 3626 | ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, |
| 3627 | false); |
| 3628 | if (ret) |
| 3629 | return ret; |
| 3630 | } |
| 3631 | |
| 3632 | return nand_prog_page_end_op(chip); |
| 3633 | } |
| 3634 | EXPORT_SYMBOL(nand_write_page_raw); |
| 3635 | |
| 3636 | /** |
| 3637 | * nand_write_page_raw_syndrome - [INTERN] raw page write function |
| 3638 | * @chip: nand chip info structure |
| 3639 | * @buf: data buffer |
| 3640 | * @oob_required: must write chip->oob_poi to OOB |
| 3641 | * @page: page number to write |
| 3642 | * |
| 3643 | * We need a special oob layout and handling even when ECC isn't checked. |
| 3644 | */ |
| 3645 | static int nand_write_page_raw_syndrome(struct nand_chip *chip, |
| 3646 | const uint8_t *buf, int oob_required, |
| 3647 | int page) |
| 3648 | { |
| 3649 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3650 | int eccsize = chip->ecc.size; |
| 3651 | int eccbytes = chip->ecc.bytes; |
| 3652 | uint8_t *oob = chip->oob_poi; |
| 3653 | int steps, size, ret; |
| 3654 | |
| 3655 | ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| 3656 | if (ret) |
| 3657 | return ret; |
| 3658 | |
| 3659 | for (steps = chip->ecc.steps; steps > 0; steps--) { |
| 3660 | ret = nand_write_data_op(chip, buf, eccsize, false); |
| 3661 | if (ret) |
| 3662 | return ret; |
| 3663 | |
| 3664 | buf += eccsize; |
| 3665 | |
| 3666 | if (chip->ecc.prepad) { |
| 3667 | ret = nand_write_data_op(chip, oob, chip->ecc.prepad, |
| 3668 | false); |
| 3669 | if (ret) |
| 3670 | return ret; |
| 3671 | |
| 3672 | oob += chip->ecc.prepad; |
| 3673 | } |
| 3674 | |
| 3675 | ret = nand_write_data_op(chip, oob, eccbytes, false); |
| 3676 | if (ret) |
| 3677 | return ret; |
| 3678 | |
| 3679 | oob += eccbytes; |
| 3680 | |
| 3681 | if (chip->ecc.postpad) { |
| 3682 | ret = nand_write_data_op(chip, oob, chip->ecc.postpad, |
| 3683 | false); |
| 3684 | if (ret) |
| 3685 | return ret; |
| 3686 | |
| 3687 | oob += chip->ecc.postpad; |
| 3688 | } |
| 3689 | } |
| 3690 | |
| 3691 | size = mtd->oobsize - (oob - chip->oob_poi); |
| 3692 | if (size) { |
| 3693 | ret = nand_write_data_op(chip, oob, size, false); |
| 3694 | if (ret) |
| 3695 | return ret; |
| 3696 | } |
| 3697 | |
| 3698 | return nand_prog_page_end_op(chip); |
| 3699 | } |
| 3700 | /** |
| 3701 | * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function |
| 3702 | * @chip: nand chip info structure |
| 3703 | * @buf: data buffer |
| 3704 | * @oob_required: must write chip->oob_poi to OOB |
| 3705 | * @page: page number to write |
| 3706 | */ |
| 3707 | static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, |
| 3708 | int oob_required, int page) |
| 3709 | { |
| 3710 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3711 | int i, eccsize = chip->ecc.size, ret; |
| 3712 | int eccbytes = chip->ecc.bytes; |
| 3713 | int eccsteps = chip->ecc.steps; |
| 3714 | uint8_t *ecc_calc = chip->ecc.calc_buf; |
| 3715 | const uint8_t *p = buf; |
| 3716 | |
| 3717 | /* Software ECC calculation */ |
| 3718 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| 3719 | chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| 3720 | |
| 3721 | ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| 3722 | chip->ecc.total); |
| 3723 | if (ret) |
| 3724 | return ret; |
| 3725 | |
| 3726 | return chip->ecc.write_page_raw(chip, buf, 1, page); |
| 3727 | } |
| 3728 | |
| 3729 | /** |
| 3730 | * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function |
| 3731 | * @chip: nand chip info structure |
| 3732 | * @buf: data buffer |
| 3733 | * @oob_required: must write chip->oob_poi to OOB |
| 3734 | * @page: page number to write |
| 3735 | */ |
| 3736 | static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, |
| 3737 | int oob_required, int page) |
| 3738 | { |
| 3739 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3740 | int i, eccsize = chip->ecc.size, ret; |
| 3741 | int eccbytes = chip->ecc.bytes; |
| 3742 | int eccsteps = chip->ecc.steps; |
| 3743 | uint8_t *ecc_calc = chip->ecc.calc_buf; |
| 3744 | const uint8_t *p = buf; |
| 3745 | |
| 3746 | ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| 3747 | if (ret) |
| 3748 | return ret; |
| 3749 | |
| 3750 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 3751 | chip->ecc.hwctl(chip, NAND_ECC_WRITE); |
| 3752 | |
| 3753 | ret = nand_write_data_op(chip, p, eccsize, false); |
| 3754 | if (ret) |
| 3755 | return ret; |
| 3756 | |
| 3757 | chip->ecc.calculate(chip, p, &ecc_calc[i]); |
| 3758 | } |
| 3759 | |
| 3760 | ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| 3761 | chip->ecc.total); |
| 3762 | if (ret) |
| 3763 | return ret; |
| 3764 | |
| 3765 | ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); |
| 3766 | if (ret) |
| 3767 | return ret; |
| 3768 | |
| 3769 | return nand_prog_page_end_op(chip); |
| 3770 | } |
| 3771 | |
| 3772 | |
| 3773 | /** |
| 3774 | * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write |
| 3775 | * @chip: nand chip info structure |
| 3776 | * @offset: column address of subpage within the page |
| 3777 | * @data_len: data length |
| 3778 | * @buf: data buffer |
| 3779 | * @oob_required: must write chip->oob_poi to OOB |
| 3780 | * @page: page number to write |
| 3781 | */ |
| 3782 | static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, |
| 3783 | uint32_t data_len, const uint8_t *buf, |
| 3784 | int oob_required, int page) |
| 3785 | { |
| 3786 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3787 | uint8_t *oob_buf = chip->oob_poi; |
| 3788 | uint8_t *ecc_calc = chip->ecc.calc_buf; |
| 3789 | int ecc_size = chip->ecc.size; |
| 3790 | int ecc_bytes = chip->ecc.bytes; |
| 3791 | int ecc_steps = chip->ecc.steps; |
| 3792 | uint32_t start_step = offset / ecc_size; |
| 3793 | uint32_t end_step = (offset + data_len - 1) / ecc_size; |
| 3794 | int oob_bytes = mtd->oobsize / ecc_steps; |
| 3795 | int step, ret; |
| 3796 | |
| 3797 | ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| 3798 | if (ret) |
| 3799 | return ret; |
| 3800 | |
| 3801 | for (step = 0; step < ecc_steps; step++) { |
| 3802 | /* configure controller for WRITE access */ |
| 3803 | chip->ecc.hwctl(chip, NAND_ECC_WRITE); |
| 3804 | |
| 3805 | /* write data (untouched subpages already masked by 0xFF) */ |
| 3806 | ret = nand_write_data_op(chip, buf, ecc_size, false); |
| 3807 | if (ret) |
| 3808 | return ret; |
| 3809 | |
| 3810 | /* mask ECC of un-touched subpages by padding 0xFF */ |
| 3811 | if ((step < start_step) || (step > end_step)) |
| 3812 | memset(ecc_calc, 0xff, ecc_bytes); |
| 3813 | else |
| 3814 | chip->ecc.calculate(chip, buf, ecc_calc); |
| 3815 | |
| 3816 | /* mask OOB of un-touched subpages by padding 0xFF */ |
| 3817 | /* if oob_required, preserve OOB metadata of written subpage */ |
| 3818 | if (!oob_required || (step < start_step) || (step > end_step)) |
| 3819 | memset(oob_buf, 0xff, oob_bytes); |
| 3820 | |
| 3821 | buf += ecc_size; |
| 3822 | ecc_calc += ecc_bytes; |
| 3823 | oob_buf += oob_bytes; |
| 3824 | } |
| 3825 | |
| 3826 | /* copy calculated ECC for whole page to chip->buffer->oob */ |
| 3827 | /* this include masked-value(0xFF) for unwritten subpages */ |
| 3828 | ecc_calc = chip->ecc.calc_buf; |
| 3829 | ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, |
| 3830 | chip->ecc.total); |
| 3831 | if (ret) |
| 3832 | return ret; |
| 3833 | |
| 3834 | /* write OOB buffer to NAND device */ |
| 3835 | ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); |
| 3836 | if (ret) |
| 3837 | return ret; |
| 3838 | |
| 3839 | return nand_prog_page_end_op(chip); |
| 3840 | } |
| 3841 | |
| 3842 | |
| 3843 | /** |
| 3844 | * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write |
| 3845 | * @chip: nand chip info structure |
| 3846 | * @buf: data buffer |
| 3847 | * @oob_required: must write chip->oob_poi to OOB |
| 3848 | * @page: page number to write |
| 3849 | * |
| 3850 | * The hw generator calculates the error syndrome automatically. Therefore we |
| 3851 | * need a special oob layout and handling. |
| 3852 | */ |
| 3853 | static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, |
| 3854 | int oob_required, int page) |
| 3855 | { |
| 3856 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3857 | int i, eccsize = chip->ecc.size; |
| 3858 | int eccbytes = chip->ecc.bytes; |
| 3859 | int eccsteps = chip->ecc.steps; |
| 3860 | const uint8_t *p = buf; |
| 3861 | uint8_t *oob = chip->oob_poi; |
| 3862 | int ret; |
| 3863 | |
| 3864 | ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| 3865 | if (ret) |
| 3866 | return ret; |
| 3867 | |
| 3868 | for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| 3869 | chip->ecc.hwctl(chip, NAND_ECC_WRITE); |
| 3870 | |
| 3871 | ret = nand_write_data_op(chip, p, eccsize, false); |
| 3872 | if (ret) |
| 3873 | return ret; |
| 3874 | |
| 3875 | if (chip->ecc.prepad) { |
| 3876 | ret = nand_write_data_op(chip, oob, chip->ecc.prepad, |
| 3877 | false); |
| 3878 | if (ret) |
| 3879 | return ret; |
| 3880 | |
| 3881 | oob += chip->ecc.prepad; |
| 3882 | } |
| 3883 | |
| 3884 | chip->ecc.calculate(chip, p, oob); |
| 3885 | |
| 3886 | ret = nand_write_data_op(chip, oob, eccbytes, false); |
| 3887 | if (ret) |
| 3888 | return ret; |
| 3889 | |
| 3890 | oob += eccbytes; |
| 3891 | |
| 3892 | if (chip->ecc.postpad) { |
| 3893 | ret = nand_write_data_op(chip, oob, chip->ecc.postpad, |
| 3894 | false); |
| 3895 | if (ret) |
| 3896 | return ret; |
| 3897 | |
| 3898 | oob += chip->ecc.postpad; |
| 3899 | } |
| 3900 | } |
| 3901 | |
| 3902 | /* Calculate remaining oob bytes */ |
| 3903 | i = mtd->oobsize - (oob - chip->oob_poi); |
| 3904 | if (i) { |
| 3905 | ret = nand_write_data_op(chip, oob, i, false); |
| 3906 | if (ret) |
| 3907 | return ret; |
| 3908 | } |
| 3909 | |
| 3910 | return nand_prog_page_end_op(chip); |
| 3911 | } |
| 3912 | |
| 3913 | /** |
| 3914 | * nand_write_page - write one page |
| 3915 | * @chip: NAND chip descriptor |
| 3916 | * @offset: address offset within the page |
| 3917 | * @data_len: length of actual data to be written |
| 3918 | * @buf: the data to write |
| 3919 | * @oob_required: must write chip->oob_poi to OOB |
| 3920 | * @page: page number to write |
| 3921 | * @raw: use _raw version of write_page |
| 3922 | */ |
| 3923 | static int nand_write_page(struct nand_chip *chip, uint32_t offset, |
| 3924 | int data_len, const uint8_t *buf, int oob_required, |
| 3925 | int page, int raw) |
| 3926 | { |
| 3927 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3928 | int status, subpage; |
| 3929 | |
| 3930 | if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && |
| 3931 | chip->ecc.write_subpage) |
| 3932 | subpage = offset || (data_len < mtd->writesize); |
| 3933 | else |
| 3934 | subpage = 0; |
| 3935 | |
| 3936 | if (unlikely(raw)) |
| 3937 | status = chip->ecc.write_page_raw(chip, buf, oob_required, |
| 3938 | page); |
| 3939 | else if (subpage) |
| 3940 | status = chip->ecc.write_subpage(chip, offset, data_len, buf, |
| 3941 | oob_required, page); |
| 3942 | else |
| 3943 | status = chip->ecc.write_page(chip, buf, oob_required, page); |
| 3944 | |
| 3945 | if (status < 0) |
| 3946 | return status; |
| 3947 | |
| 3948 | return 0; |
| 3949 | } |
| 3950 | |
| 3951 | #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) |
| 3952 | |
| 3953 | /** |
| 3954 | * nand_do_write_ops - [INTERN] NAND write with ECC |
| 3955 | * @chip: NAND chip object |
| 3956 | * @to: offset to write to |
| 3957 | * @ops: oob operations description structure |
| 3958 | * |
| 3959 | * NAND write with ECC. |
| 3960 | */ |
| 3961 | static int nand_do_write_ops(struct nand_chip *chip, loff_t to, |
| 3962 | struct mtd_oob_ops *ops) |
| 3963 | { |
| 3964 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 3965 | int chipnr, realpage, page, column; |
| 3966 | uint32_t writelen = ops->len; |
| 3967 | |
| 3968 | uint32_t oobwritelen = ops->ooblen; |
| 3969 | uint32_t oobmaxlen = mtd_oobavail(mtd, ops); |
| 3970 | |
| 3971 | uint8_t *oob = ops->oobbuf; |
| 3972 | uint8_t *buf = ops->datbuf; |
| 3973 | int ret; |
| 3974 | int oob_required = oob ? 1 : 0; |
| 3975 | |
| 3976 | ops->retlen = 0; |
| 3977 | if (!writelen) |
| 3978 | return 0; |
| 3979 | |
| 3980 | /* Reject writes, which are not page aligned */ |
| 3981 | if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { |
| 3982 | pr_notice("%s: attempt to write non page aligned data\n", |
| 3983 | __func__); |
| 3984 | return -EINVAL; |
| 3985 | } |
| 3986 | |
| 3987 | column = to & (mtd->writesize - 1); |
| 3988 | |
| 3989 | chipnr = (int)(to >> chip->chip_shift); |
| 3990 | nand_select_target(chip, chipnr); |
| 3991 | |
| 3992 | /* Check, if it is write protected */ |
| 3993 | if (nand_check_wp(chip)) { |
| 3994 | ret = -EIO; |
| 3995 | goto err_out; |
| 3996 | } |
| 3997 | |
| 3998 | realpage = (int)(to >> chip->page_shift); |
| 3999 | page = realpage & chip->pagemask; |
| 4000 | |
| 4001 | /* Invalidate the page cache, when we write to the cached page */ |
| 4002 | if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && |
| 4003 | ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) |
| 4004 | chip->pagecache.page = -1; |
| 4005 | |
| 4006 | /* Don't allow multipage oob writes with offset */ |
| 4007 | if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { |
| 4008 | ret = -EINVAL; |
| 4009 | goto err_out; |
| 4010 | } |
| 4011 | |
| 4012 | while (1) { |
| 4013 | int bytes = mtd->writesize; |
| 4014 | uint8_t *wbuf = buf; |
| 4015 | int use_bufpoi; |
| 4016 | int part_pagewr = (column || writelen < mtd->writesize); |
| 4017 | |
| 4018 | if (part_pagewr) |
| 4019 | use_bufpoi = 1; |
| 4020 | else if (chip->options & NAND_USE_BOUNCE_BUFFER) |
| 4021 | use_bufpoi = !virt_addr_valid(buf) || |
| 4022 | !IS_ALIGNED((unsigned long)buf, |
| 4023 | chip->buf_align); |
| 4024 | else |
| 4025 | use_bufpoi = 0; |
| 4026 | |
| 4027 | /* Partial page write?, or need to use bounce buffer */ |
| 4028 | if (use_bufpoi) { |
| 4029 | pr_debug("%s: using write bounce buffer for buf@%p\n", |
| 4030 | __func__, buf); |
| 4031 | if (part_pagewr) |
| 4032 | bytes = min_t(int, bytes - column, writelen); |
| 4033 | wbuf = nand_get_data_buf(chip); |
| 4034 | memset(wbuf, 0xff, mtd->writesize); |
| 4035 | memcpy(&wbuf[column], buf, bytes); |
| 4036 | } |
| 4037 | |
| 4038 | if (unlikely(oob)) { |
| 4039 | size_t len = min(oobwritelen, oobmaxlen); |
| 4040 | oob = nand_fill_oob(chip, oob, len, ops); |
| 4041 | oobwritelen -= len; |
| 4042 | } else { |
| 4043 | /* We still need to erase leftover OOB data */ |
| 4044 | memset(chip->oob_poi, 0xff, mtd->oobsize); |
| 4045 | } |
| 4046 | |
| 4047 | ret = nand_write_page(chip, column, bytes, wbuf, |
| 4048 | oob_required, page, |
| 4049 | (ops->mode == MTD_OPS_RAW)); |
| 4050 | if (ret) |
| 4051 | break; |
| 4052 | |
| 4053 | writelen -= bytes; |
| 4054 | if (!writelen) |
| 4055 | break; |
| 4056 | |
| 4057 | column = 0; |
| 4058 | buf += bytes; |
| 4059 | realpage++; |
| 4060 | |
| 4061 | page = realpage & chip->pagemask; |
| 4062 | /* Check, if we cross a chip boundary */ |
| 4063 | if (!page) { |
| 4064 | chipnr++; |
| 4065 | nand_deselect_target(chip); |
| 4066 | nand_select_target(chip, chipnr); |
| 4067 | } |
| 4068 | } |
| 4069 | |
| 4070 | ops->retlen = ops->len - writelen; |
| 4071 | if (unlikely(oob)) |
| 4072 | ops->oobretlen = ops->ooblen; |
| 4073 | |
| 4074 | err_out: |
| 4075 | nand_deselect_target(chip); |
| 4076 | return ret; |
| 4077 | } |
| 4078 | |
| 4079 | /** |
| 4080 | * panic_nand_write - [MTD Interface] NAND write with ECC |
| 4081 | * @mtd: MTD device structure |
| 4082 | * @to: offset to write to |
| 4083 | * @len: number of bytes to write |
| 4084 | * @retlen: pointer to variable to store the number of written bytes |
| 4085 | * @buf: the data to write |
| 4086 | * |
| 4087 | * NAND write with ECC. Used when performing writes in interrupt context, this |
| 4088 | * may for example be called by mtdoops when writing an oops while in panic. |
| 4089 | */ |
| 4090 | static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, |
| 4091 | size_t *retlen, const uint8_t *buf) |
| 4092 | { |
| 4093 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 4094 | int chipnr = (int)(to >> chip->chip_shift); |
| 4095 | struct mtd_oob_ops ops; |
| 4096 | int ret; |
| 4097 | |
| 4098 | nand_select_target(chip, chipnr); |
| 4099 | |
| 4100 | /* Wait for the device to get ready */ |
| 4101 | panic_nand_wait(chip, 400); |
| 4102 | |
| 4103 | memset(&ops, 0, sizeof(ops)); |
| 4104 | ops.len = len; |
| 4105 | ops.datbuf = (uint8_t *)buf; |
| 4106 | ops.mode = MTD_OPS_PLACE_OOB; |
| 4107 | |
| 4108 | ret = nand_do_write_ops(chip, to, &ops); |
| 4109 | |
| 4110 | *retlen = ops.retlen; |
| 4111 | return ret; |
| 4112 | } |
| 4113 | |
| 4114 | /** |
| 4115 | * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band |
| 4116 | * @mtd: MTD device structure |
| 4117 | * @to: offset to write to |
| 4118 | * @ops: oob operation description structure |
| 4119 | */ |
| 4120 | static int nand_write_oob(struct mtd_info *mtd, loff_t to, |
| 4121 | struct mtd_oob_ops *ops) |
| 4122 | { |
| 4123 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 4124 | int ret = 0; |
| 4125 | |
| 4126 | ops->retlen = 0; |
| 4127 | |
| 4128 | nand_get_device(chip); |
| 4129 | |
| 4130 | switch (ops->mode) { |
| 4131 | case MTD_OPS_PLACE_OOB: |
| 4132 | case MTD_OPS_AUTO_OOB: |
| 4133 | case MTD_OPS_RAW: |
| 4134 | break; |
| 4135 | |
| 4136 | default: |
| 4137 | goto out; |
| 4138 | } |
| 4139 | |
| 4140 | if (!ops->datbuf) |
| 4141 | ret = nand_do_write_oob(chip, to, ops); |
| 4142 | else |
| 4143 | ret = nand_do_write_ops(chip, to, ops); |
| 4144 | |
| 4145 | out: |
| 4146 | nand_release_device(chip); |
| 4147 | return ret; |
| 4148 | } |
| 4149 | |
| 4150 | /** |
| 4151 | * nand_erase - [MTD Interface] erase block(s) |
| 4152 | * @mtd: MTD device structure |
| 4153 | * @instr: erase instruction |
| 4154 | * |
| 4155 | * Erase one ore more blocks. |
| 4156 | */ |
| 4157 | static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) |
| 4158 | { |
| 4159 | return nand_erase_nand(mtd_to_nand(mtd), instr, 0); |
| 4160 | } |
| 4161 | |
| 4162 | /** |
| 4163 | * nand_erase_nand - [INTERN] erase block(s) |
| 4164 | * @chip: NAND chip object |
| 4165 | * @instr: erase instruction |
| 4166 | * @allowbbt: allow erasing the bbt area |
| 4167 | * |
| 4168 | * Erase one ore more blocks. |
| 4169 | */ |
| 4170 | int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, |
| 4171 | int allowbbt) |
| 4172 | { |
| 4173 | int page, pages_per_block, ret, chipnr; |
| 4174 | loff_t len; |
| 4175 | |
| 4176 | pr_debug("%s: start = 0x%012llx, len = %llu\n", |
| 4177 | __func__, (unsigned long long)instr->addr, |
| 4178 | (unsigned long long)instr->len); |
| 4179 | |
| 4180 | if (check_offs_len(chip, instr->addr, instr->len)) |
| 4181 | return -EINVAL; |
| 4182 | |
| 4183 | /* Grab the lock and see if the device is available */ |
| 4184 | nand_get_device(chip); |
| 4185 | |
| 4186 | /* Shift to get first page */ |
| 4187 | page = (int)(instr->addr >> chip->page_shift); |
| 4188 | chipnr = (int)(instr->addr >> chip->chip_shift); |
| 4189 | |
| 4190 | /* Calculate pages in each block */ |
| 4191 | pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); |
| 4192 | |
| 4193 | /* Select the NAND device */ |
| 4194 | nand_select_target(chip, chipnr); |
| 4195 | |
| 4196 | /* Check, if it is write protected */ |
| 4197 | if (nand_check_wp(chip)) { |
| 4198 | pr_debug("%s: device is write protected!\n", |
| 4199 | __func__); |
| 4200 | ret = -EIO; |
| 4201 | goto erase_exit; |
| 4202 | } |
| 4203 | |
| 4204 | /* Loop through the pages */ |
| 4205 | len = instr->len; |
| 4206 | |
| 4207 | while (len) { |
| 4208 | /* Check if we have a bad block, we do not erase bad blocks! */ |
| 4209 | if (nand_block_checkbad(chip, ((loff_t) page) << |
| 4210 | chip->page_shift, allowbbt)) { |
| 4211 | pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", |
| 4212 | __func__, page); |
| 4213 | ret = -EIO; |
| 4214 | goto erase_exit; |
| 4215 | } |
| 4216 | |
| 4217 | /* |
| 4218 | * Invalidate the page cache, if we erase the block which |
| 4219 | * contains the current cached page. |
| 4220 | */ |
| 4221 | if (page <= chip->pagecache.page && chip->pagecache.page < |
| 4222 | (page + pages_per_block)) |
| 4223 | chip->pagecache.page = -1; |
| 4224 | |
| 4225 | ret = nand_erase_op(chip, (page & chip->pagemask) >> |
| 4226 | (chip->phys_erase_shift - chip->page_shift)); |
| 4227 | if (ret) { |
| 4228 | pr_debug("%s: failed erase, page 0x%08x\n", |
| 4229 | __func__, page); |
| 4230 | instr->fail_addr = |
| 4231 | ((loff_t)page << chip->page_shift); |
| 4232 | goto erase_exit; |
| 4233 | } |
| 4234 | |
| 4235 | /* Increment page address and decrement length */ |
| 4236 | len -= (1ULL << chip->phys_erase_shift); |
| 4237 | page += pages_per_block; |
| 4238 | |
| 4239 | /* Check, if we cross a chip boundary */ |
| 4240 | if (len && !(page & chip->pagemask)) { |
| 4241 | chipnr++; |
| 4242 | nand_deselect_target(chip); |
| 4243 | nand_select_target(chip, chipnr); |
| 4244 | } |
| 4245 | } |
| 4246 | |
| 4247 | ret = 0; |
| 4248 | erase_exit: |
| 4249 | |
| 4250 | /* Deselect and wake up anyone waiting on the device */ |
| 4251 | nand_deselect_target(chip); |
| 4252 | nand_release_device(chip); |
| 4253 | |
| 4254 | /* Return more or less happy */ |
| 4255 | return ret; |
| 4256 | } |
| 4257 | |
| 4258 | /** |
| 4259 | * nand_sync - [MTD Interface] sync |
| 4260 | * @mtd: MTD device structure |
| 4261 | * |
| 4262 | * Sync is actually a wait for chip ready function. |
| 4263 | */ |
| 4264 | static void nand_sync(struct mtd_info *mtd) |
| 4265 | { |
| 4266 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 4267 | |
| 4268 | pr_debug("%s: called\n", __func__); |
| 4269 | |
| 4270 | /* Grab the lock and see if the device is available */ |
| 4271 | nand_get_device(chip); |
| 4272 | /* Release it and go back */ |
| 4273 | nand_release_device(chip); |
| 4274 | } |
| 4275 | |
| 4276 | /** |
| 4277 | * nand_block_isbad - [MTD Interface] Check if block at offset is bad |
| 4278 | * @mtd: MTD device structure |
| 4279 | * @offs: offset relative to mtd start |
| 4280 | */ |
| 4281 | static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) |
| 4282 | { |
| 4283 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 4284 | int chipnr = (int)(offs >> chip->chip_shift); |
| 4285 | int ret; |
| 4286 | |
| 4287 | /* Select the NAND device */ |
| 4288 | nand_get_device(chip); |
| 4289 | |
| 4290 | nand_select_target(chip, chipnr); |
| 4291 | |
| 4292 | ret = nand_block_checkbad(chip, offs, 0); |
| 4293 | |
| 4294 | nand_deselect_target(chip); |
| 4295 | nand_release_device(chip); |
| 4296 | |
| 4297 | return ret; |
| 4298 | } |
| 4299 | |
| 4300 | /** |
| 4301 | * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad |
| 4302 | * @mtd: MTD device structure |
| 4303 | * @ofs: offset relative to mtd start |
| 4304 | */ |
| 4305 | static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| 4306 | { |
| 4307 | int ret; |
| 4308 | |
| 4309 | ret = nand_block_isbad(mtd, ofs); |
| 4310 | if (ret) { |
| 4311 | /* If it was bad already, return success and do nothing */ |
| 4312 | if (ret > 0) |
| 4313 | return 0; |
| 4314 | return ret; |
| 4315 | } |
| 4316 | |
| 4317 | return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); |
| 4318 | } |
| 4319 | |
| 4320 | /** |
| 4321 | * nand_suspend - [MTD Interface] Suspend the NAND flash |
| 4322 | * @mtd: MTD device structure |
| 4323 | */ |
| 4324 | static int nand_suspend(struct mtd_info *mtd) |
| 4325 | { |
| 4326 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 4327 | |
| 4328 | mutex_lock(&chip->lock); |
| 4329 | chip->suspended = 1; |
| 4330 | mutex_unlock(&chip->lock); |
| 4331 | |
| 4332 | return 0; |
| 4333 | } |
| 4334 | |
| 4335 | /** |
| 4336 | * nand_resume - [MTD Interface] Resume the NAND flash |
| 4337 | * @mtd: MTD device structure |
| 4338 | */ |
| 4339 | static void nand_resume(struct mtd_info *mtd) |
| 4340 | { |
| 4341 | struct nand_chip *chip = mtd_to_nand(mtd); |
| 4342 | |
| 4343 | mutex_lock(&chip->lock); |
| 4344 | if (chip->suspended) |
| 4345 | chip->suspended = 0; |
| 4346 | else |
| 4347 | pr_err("%s called for a chip which is not in suspended state\n", |
| 4348 | __func__); |
| 4349 | mutex_unlock(&chip->lock); |
| 4350 | |
| 4351 | wake_up_all(&chip->resume_wq); |
| 4352 | } |
| 4353 | |
| 4354 | /** |
| 4355 | * nand_shutdown - [MTD Interface] Finish the current NAND operation and |
| 4356 | * prevent further operations |
| 4357 | * @mtd: MTD device structure |
| 4358 | */ |
| 4359 | static void nand_shutdown(struct mtd_info *mtd) |
| 4360 | { |
| 4361 | nand_suspend(mtd); |
| 4362 | } |
| 4363 | |
| 4364 | /* Set default functions */ |
| 4365 | static void nand_set_defaults(struct nand_chip *chip) |
| 4366 | { |
| 4367 | /* If no controller is provided, use the dummy, legacy one. */ |
| 4368 | if (!chip->controller) { |
| 4369 | chip->controller = &chip->legacy.dummy_controller; |
| 4370 | nand_controller_init(chip->controller); |
| 4371 | } |
| 4372 | |
| 4373 | nand_legacy_set_defaults(chip); |
| 4374 | |
| 4375 | if (!chip->buf_align) |
| 4376 | chip->buf_align = 1; |
| 4377 | } |
| 4378 | |
| 4379 | /* Sanitize ONFI strings so we can safely print them */ |
| 4380 | void sanitize_string(uint8_t *s, size_t len) |
| 4381 | { |
| 4382 | ssize_t i; |
| 4383 | |
| 4384 | /* Null terminate */ |
| 4385 | s[len - 1] = 0; |
| 4386 | |
| 4387 | /* Remove non printable chars */ |
| 4388 | for (i = 0; i < len - 1; i++) { |
| 4389 | if (s[i] < ' ' || s[i] > 127) |
| 4390 | s[i] = '?'; |
| 4391 | } |
| 4392 | |
| 4393 | /* Remove trailing spaces */ |
| 4394 | strim(s); |
| 4395 | } |
| 4396 | |
| 4397 | /* |
| 4398 | * nand_id_has_period - Check if an ID string has a given wraparound period |
| 4399 | * @id_data: the ID string |
| 4400 | * @arrlen: the length of the @id_data array |
| 4401 | * @period: the period of repitition |
| 4402 | * |
| 4403 | * Check if an ID string is repeated within a given sequence of bytes at |
| 4404 | * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a |
| 4405 | * period of 3). This is a helper function for nand_id_len(). Returns non-zero |
| 4406 | * if the repetition has a period of @period; otherwise, returns zero. |
| 4407 | */ |
| 4408 | static int nand_id_has_period(u8 *id_data, int arrlen, int period) |
| 4409 | { |
| 4410 | int i, j; |
| 4411 | for (i = 0; i < period; i++) |
| 4412 | for (j = i + period; j < arrlen; j += period) |
| 4413 | if (id_data[i] != id_data[j]) |
| 4414 | return 0; |
| 4415 | return 1; |
| 4416 | } |
| 4417 | |
| 4418 | /* |
| 4419 | * nand_id_len - Get the length of an ID string returned by CMD_READID |
| 4420 | * @id_data: the ID string |
| 4421 | * @arrlen: the length of the @id_data array |
| 4422 | |
| 4423 | * Returns the length of the ID string, according to known wraparound/trailing |
| 4424 | * zero patterns. If no pattern exists, returns the length of the array. |
| 4425 | */ |
| 4426 | static int nand_id_len(u8 *id_data, int arrlen) |
| 4427 | { |
| 4428 | int last_nonzero, period; |
| 4429 | |
| 4430 | /* Find last non-zero byte */ |
| 4431 | for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) |
| 4432 | if (id_data[last_nonzero]) |
| 4433 | break; |
| 4434 | |
| 4435 | /* All zeros */ |
| 4436 | if (last_nonzero < 0) |
| 4437 | return 0; |
| 4438 | |
| 4439 | /* Calculate wraparound period */ |
| 4440 | for (period = 1; period < arrlen; period++) |
| 4441 | if (nand_id_has_period(id_data, arrlen, period)) |
| 4442 | break; |
| 4443 | |
| 4444 | /* There's a repeated pattern */ |
| 4445 | if (period < arrlen) |
| 4446 | return period; |
| 4447 | |
| 4448 | /* There are trailing zeros */ |
| 4449 | if (last_nonzero < arrlen - 1) |
| 4450 | return last_nonzero + 1; |
| 4451 | |
| 4452 | /* No pattern detected */ |
| 4453 | return arrlen; |
| 4454 | } |
| 4455 | |
| 4456 | /* Extract the bits of per cell from the 3rd byte of the extended ID */ |
| 4457 | static int nand_get_bits_per_cell(u8 cellinfo) |
| 4458 | { |
| 4459 | int bits; |
| 4460 | |
| 4461 | bits = cellinfo & NAND_CI_CELLTYPE_MSK; |
| 4462 | bits >>= NAND_CI_CELLTYPE_SHIFT; |
| 4463 | return bits + 1; |
| 4464 | } |
| 4465 | |
| 4466 | /* |
| 4467 | * Many new NAND share similar device ID codes, which represent the size of the |
| 4468 | * chip. The rest of the parameters must be decoded according to generic or |
| 4469 | * manufacturer-specific "extended ID" decoding patterns. |
| 4470 | */ |
| 4471 | void nand_decode_ext_id(struct nand_chip *chip) |
| 4472 | { |
| 4473 | struct nand_memory_organization *memorg; |
| 4474 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 4475 | int extid; |
| 4476 | u8 *id_data = chip->id.data; |
| 4477 | |
| 4478 | memorg = nanddev_get_memorg(&chip->base); |
| 4479 | |
| 4480 | /* The 3rd id byte holds MLC / multichip data */ |
| 4481 | memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); |
| 4482 | /* The 4th id byte is the important one */ |
| 4483 | extid = id_data[3]; |
| 4484 | |
| 4485 | /* Calc pagesize */ |
| 4486 | memorg->pagesize = 1024 << (extid & 0x03); |
| 4487 | mtd->writesize = memorg->pagesize; |
| 4488 | extid >>= 2; |
| 4489 | /* Calc oobsize */ |
| 4490 | memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); |
| 4491 | mtd->oobsize = memorg->oobsize; |
| 4492 | extid >>= 2; |
| 4493 | /* Calc blocksize. Blocksize is multiples of 64KiB */ |
| 4494 | memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / |
| 4495 | memorg->pagesize; |
| 4496 | mtd->erasesize = (64 * 1024) << (extid & 0x03); |
| 4497 | extid >>= 2; |
| 4498 | /* Get buswidth information */ |
| 4499 | if (extid & 0x1) |
| 4500 | chip->options |= NAND_BUSWIDTH_16; |
| 4501 | } |
| 4502 | EXPORT_SYMBOL_GPL(nand_decode_ext_id); |
| 4503 | |
| 4504 | /* |
| 4505 | * Old devices have chip data hardcoded in the device ID table. nand_decode_id |
| 4506 | * decodes a matching ID table entry and assigns the MTD size parameters for |
| 4507 | * the chip. |
| 4508 | */ |
| 4509 | static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) |
| 4510 | { |
| 4511 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 4512 | struct nand_memory_organization *memorg; |
| 4513 | |
| 4514 | memorg = nanddev_get_memorg(&chip->base); |
| 4515 | |
| 4516 | memorg->pages_per_eraseblock = type->erasesize / type->pagesize; |
| 4517 | mtd->erasesize = type->erasesize; |
| 4518 | memorg->pagesize = type->pagesize; |
| 4519 | mtd->writesize = memorg->pagesize; |
| 4520 | memorg->oobsize = memorg->pagesize / 32; |
| 4521 | mtd->oobsize = memorg->oobsize; |
| 4522 | |
| 4523 | /* All legacy ID NAND are small-page, SLC */ |
| 4524 | memorg->bits_per_cell = 1; |
| 4525 | } |
| 4526 | |
| 4527 | /* |
| 4528 | * Set the bad block marker/indicator (BBM/BBI) patterns according to some |
| 4529 | * heuristic patterns using various detected parameters (e.g., manufacturer, |
| 4530 | * page size, cell-type information). |
| 4531 | */ |
| 4532 | static void nand_decode_bbm_options(struct nand_chip *chip) |
| 4533 | { |
| 4534 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 4535 | |
| 4536 | /* Set the bad block position */ |
| 4537 | if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) |
| 4538 | chip->badblockpos = NAND_BBM_POS_LARGE; |
| 4539 | else |
| 4540 | chip->badblockpos = NAND_BBM_POS_SMALL; |
| 4541 | } |
| 4542 | |
| 4543 | static inline bool is_full_id_nand(struct nand_flash_dev *type) |
| 4544 | { |
| 4545 | return type->id_len; |
| 4546 | } |
| 4547 | |
| 4548 | static bool find_full_id_nand(struct nand_chip *chip, |
| 4549 | struct nand_flash_dev *type) |
| 4550 | { |
| 4551 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 4552 | struct nand_memory_organization *memorg; |
| 4553 | u8 *id_data = chip->id.data; |
| 4554 | |
| 4555 | memorg = nanddev_get_memorg(&chip->base); |
| 4556 | |
| 4557 | if (!strncmp(type->id, id_data, type->id_len)) { |
| 4558 | memorg->pagesize = type->pagesize; |
| 4559 | mtd->writesize = memorg->pagesize; |
| 4560 | memorg->pages_per_eraseblock = type->erasesize / |
| 4561 | type->pagesize; |
| 4562 | mtd->erasesize = type->erasesize; |
| 4563 | memorg->oobsize = type->oobsize; |
| 4564 | mtd->oobsize = memorg->oobsize; |
| 4565 | |
| 4566 | memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); |
| 4567 | memorg->eraseblocks_per_lun = |
| 4568 | DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, |
| 4569 | memorg->pagesize * |
| 4570 | memorg->pages_per_eraseblock); |
| 4571 | chip->options |= type->options; |
| 4572 | chip->base.eccreq.strength = NAND_ECC_STRENGTH(type); |
| 4573 | chip->base.eccreq.step_size = NAND_ECC_STEP(type); |
| 4574 | chip->onfi_timing_mode_default = |
| 4575 | type->onfi_timing_mode_default; |
| 4576 | |
| 4577 | chip->parameters.model = kstrdup(type->name, GFP_KERNEL); |
| 4578 | if (!chip->parameters.model) |
| 4579 | return false; |
| 4580 | |
| 4581 | return true; |
| 4582 | } |
| 4583 | return false; |
| 4584 | } |
| 4585 | |
| 4586 | /* |
| 4587 | * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC |
| 4588 | * compliant and does not have a full-id or legacy-id entry in the nand_ids |
| 4589 | * table. |
| 4590 | */ |
| 4591 | static void nand_manufacturer_detect(struct nand_chip *chip) |
| 4592 | { |
| 4593 | /* |
| 4594 | * Try manufacturer detection if available and use |
| 4595 | * nand_decode_ext_id() otherwise. |
| 4596 | */ |
| 4597 | if (chip->manufacturer.desc && chip->manufacturer.desc->ops && |
| 4598 | chip->manufacturer.desc->ops->detect) { |
| 4599 | struct nand_memory_organization *memorg; |
| 4600 | |
| 4601 | memorg = nanddev_get_memorg(&chip->base); |
| 4602 | |
| 4603 | /* The 3rd id byte holds MLC / multichip data */ |
| 4604 | memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); |
| 4605 | chip->manufacturer.desc->ops->detect(chip); |
| 4606 | } else { |
| 4607 | nand_decode_ext_id(chip); |
| 4608 | } |
| 4609 | } |
| 4610 | |
| 4611 | /* |
| 4612 | * Manufacturer initialization. This function is called for all NANDs including |
| 4613 | * ONFI and JEDEC compliant ones. |
| 4614 | * Manufacturer drivers should put all their specific initialization code in |
| 4615 | * their ->init() hook. |
| 4616 | */ |
| 4617 | static int nand_manufacturer_init(struct nand_chip *chip) |
| 4618 | { |
| 4619 | if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || |
| 4620 | !chip->manufacturer.desc->ops->init) |
| 4621 | return 0; |
| 4622 | |
| 4623 | return chip->manufacturer.desc->ops->init(chip); |
| 4624 | } |
| 4625 | |
| 4626 | /* |
| 4627 | * Manufacturer cleanup. This function is called for all NANDs including |
| 4628 | * ONFI and JEDEC compliant ones. |
| 4629 | * Manufacturer drivers should put all their specific cleanup code in their |
| 4630 | * ->cleanup() hook. |
| 4631 | */ |
| 4632 | static void nand_manufacturer_cleanup(struct nand_chip *chip) |
| 4633 | { |
| 4634 | /* Release manufacturer private data */ |
| 4635 | if (chip->manufacturer.desc && chip->manufacturer.desc->ops && |
| 4636 | chip->manufacturer.desc->ops->cleanup) |
| 4637 | chip->manufacturer.desc->ops->cleanup(chip); |
| 4638 | } |
| 4639 | |
| 4640 | static const char * |
| 4641 | nand_manufacturer_name(const struct nand_manufacturer *manufacturer) |
| 4642 | { |
| 4643 | return manufacturer ? manufacturer->name : "Unknown"; |
| 4644 | } |
| 4645 | |
| 4646 | /* |
| 4647 | * Get the flash and manufacturer id and lookup if the type is supported. |
| 4648 | */ |
| 4649 | static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) |
| 4650 | { |
| 4651 | const struct nand_manufacturer *manufacturer; |
| 4652 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 4653 | struct nand_memory_organization *memorg; |
| 4654 | int busw, ret; |
| 4655 | u8 *id_data = chip->id.data; |
| 4656 | u8 maf_id, dev_id; |
| 4657 | u64 targetsize; |
| 4658 | |
| 4659 | /* |
| 4660 | * Let's start by initializing memorg fields that might be left |
| 4661 | * unassigned by the ID-based detection logic. |
| 4662 | */ |
| 4663 | memorg = nanddev_get_memorg(&chip->base); |
| 4664 | memorg->planes_per_lun = 1; |
| 4665 | memorg->luns_per_target = 1; |
| 4666 | |
| 4667 | /* |
| 4668 | * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) |
| 4669 | * after power-up. |
| 4670 | */ |
| 4671 | ret = nand_reset(chip, 0); |
| 4672 | if (ret) |
| 4673 | return ret; |
| 4674 | |
| 4675 | /* Select the device */ |
| 4676 | nand_select_target(chip, 0); |
| 4677 | |
| 4678 | /* Send the command for reading device ID */ |
| 4679 | ret = nand_readid_op(chip, 0, id_data, 2); |
| 4680 | if (ret) |
| 4681 | return ret; |
| 4682 | |
| 4683 | /* Read manufacturer and device IDs */ |
| 4684 | maf_id = id_data[0]; |
| 4685 | dev_id = id_data[1]; |
| 4686 | |
| 4687 | /* |
| 4688 | * Try again to make sure, as some systems the bus-hold or other |
| 4689 | * interface concerns can cause random data which looks like a |
| 4690 | * possibly credible NAND flash to appear. If the two results do |
| 4691 | * not match, ignore the device completely. |
| 4692 | */ |
| 4693 | |
| 4694 | /* Read entire ID string */ |
| 4695 | ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); |
| 4696 | if (ret) |
| 4697 | return ret; |
| 4698 | |
| 4699 | if (id_data[0] != maf_id || id_data[1] != dev_id) { |
| 4700 | pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", |
| 4701 | maf_id, dev_id, id_data[0], id_data[1]); |
| 4702 | return -ENODEV; |
| 4703 | } |
| 4704 | |
| 4705 | chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); |
| 4706 | |
| 4707 | /* Try to identify manufacturer */ |
| 4708 | manufacturer = nand_get_manufacturer(maf_id); |
| 4709 | chip->manufacturer.desc = manufacturer; |
| 4710 | |
| 4711 | if (!type) |
| 4712 | type = nand_flash_ids; |
| 4713 | |
| 4714 | /* |
| 4715 | * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic |
| 4716 | * override it. |
| 4717 | * This is required to make sure initial NAND bus width set by the |
| 4718 | * NAND controller driver is coherent with the real NAND bus width |
| 4719 | * (extracted by auto-detection code). |
| 4720 | */ |
| 4721 | busw = chip->options & NAND_BUSWIDTH_16; |
| 4722 | |
| 4723 | /* |
| 4724 | * The flag is only set (never cleared), reset it to its default value |
| 4725 | * before starting auto-detection. |
| 4726 | */ |
| 4727 | chip->options &= ~NAND_BUSWIDTH_16; |
| 4728 | |
| 4729 | for (; type->name != NULL; type++) { |
| 4730 | if (is_full_id_nand(type)) { |
| 4731 | if (find_full_id_nand(chip, type)) |
| 4732 | goto ident_done; |
| 4733 | } else if (dev_id == type->dev_id) { |
| 4734 | break; |
| 4735 | } |
| 4736 | } |
| 4737 | |
| 4738 | if (!type->name || !type->pagesize) { |
| 4739 | /* Check if the chip is ONFI compliant */ |
| 4740 | ret = nand_onfi_detect(chip); |
| 4741 | if (ret < 0) |
| 4742 | return ret; |
| 4743 | else if (ret) |
| 4744 | goto ident_done; |
| 4745 | |
| 4746 | /* Check if the chip is JEDEC compliant */ |
| 4747 | ret = nand_jedec_detect(chip); |
| 4748 | if (ret < 0) |
| 4749 | return ret; |
| 4750 | else if (ret) |
| 4751 | goto ident_done; |
| 4752 | } |
| 4753 | |
| 4754 | if (!type->name) |
| 4755 | return -ENODEV; |
| 4756 | |
| 4757 | chip->parameters.model = kstrdup(type->name, GFP_KERNEL); |
| 4758 | if (!chip->parameters.model) |
| 4759 | return -ENOMEM; |
| 4760 | |
| 4761 | if (!type->pagesize) |
| 4762 | nand_manufacturer_detect(chip); |
| 4763 | else |
| 4764 | nand_decode_id(chip, type); |
| 4765 | |
| 4766 | /* Get chip options */ |
| 4767 | chip->options |= type->options; |
| 4768 | |
| 4769 | memorg->eraseblocks_per_lun = |
| 4770 | DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, |
| 4771 | memorg->pagesize * |
| 4772 | memorg->pages_per_eraseblock); |
| 4773 | |
| 4774 | ident_done: |
| 4775 | if (!mtd->name) |
| 4776 | mtd->name = chip->parameters.model; |
| 4777 | |
| 4778 | if (chip->options & NAND_BUSWIDTH_AUTO) { |
| 4779 | WARN_ON(busw & NAND_BUSWIDTH_16); |
| 4780 | nand_set_defaults(chip); |
| 4781 | } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { |
| 4782 | /* |
| 4783 | * Check, if buswidth is correct. Hardware drivers should set |
| 4784 | * chip correct! |
| 4785 | */ |
| 4786 | pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", |
| 4787 | maf_id, dev_id); |
| 4788 | pr_info("%s %s\n", nand_manufacturer_name(manufacturer), |
| 4789 | mtd->name); |
| 4790 | pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, |
| 4791 | (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); |
| 4792 | ret = -EINVAL; |
| 4793 | |
| 4794 | goto free_detect_allocation; |
| 4795 | } |
| 4796 | |
| 4797 | nand_decode_bbm_options(chip); |
| 4798 | |
| 4799 | /* Calculate the address shift from the page size */ |
| 4800 | chip->page_shift = ffs(mtd->writesize) - 1; |
| 4801 | /* Convert chipsize to number of pages per chip -1 */ |
| 4802 | targetsize = nanddev_target_size(&chip->base); |
| 4803 | chip->pagemask = (targetsize >> chip->page_shift) - 1; |
| 4804 | |
| 4805 | chip->bbt_erase_shift = chip->phys_erase_shift = |
| 4806 | ffs(mtd->erasesize) - 1; |
| 4807 | if (targetsize & 0xffffffff) |
| 4808 | chip->chip_shift = ffs((unsigned)targetsize) - 1; |
| 4809 | else { |
| 4810 | chip->chip_shift = ffs((unsigned)(targetsize >> 32)); |
| 4811 | chip->chip_shift += 32 - 1; |
| 4812 | } |
| 4813 | |
| 4814 | if (chip->chip_shift - chip->page_shift > 16) |
| 4815 | chip->options |= NAND_ROW_ADDR_3; |
| 4816 | |
| 4817 | chip->badblockbits = 8; |
| 4818 | |
| 4819 | nand_legacy_adjust_cmdfunc(chip); |
| 4820 | |
| 4821 | pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", |
| 4822 | maf_id, dev_id); |
| 4823 | pr_info("%s %s\n", nand_manufacturer_name(manufacturer), |
| 4824 | chip->parameters.model); |
| 4825 | pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", |
| 4826 | (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", |
| 4827 | mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); |
| 4828 | return 0; |
| 4829 | |
| 4830 | free_detect_allocation: |
| 4831 | kfree(chip->parameters.model); |
| 4832 | |
| 4833 | return ret; |
| 4834 | } |
| 4835 | |
| 4836 | static const char * const nand_ecc_modes[] = { |
| 4837 | [NAND_ECC_NONE] = "none", |
| 4838 | [NAND_ECC_SOFT] = "soft", |
| 4839 | [NAND_ECC_HW] = "hw", |
| 4840 | [NAND_ECC_HW_SYNDROME] = "hw_syndrome", |
| 4841 | [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", |
| 4842 | [NAND_ECC_ON_DIE] = "on-die", |
| 4843 | }; |
| 4844 | |
| 4845 | static int of_get_nand_ecc_mode(struct device_node *np) |
| 4846 | { |
| 4847 | const char *pm; |
| 4848 | int err, i; |
| 4849 | |
| 4850 | err = of_property_read_string(np, "nand-ecc-mode", &pm); |
| 4851 | if (err < 0) |
| 4852 | return err; |
| 4853 | |
| 4854 | for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) |
| 4855 | if (!strcasecmp(pm, nand_ecc_modes[i])) |
| 4856 | return i; |
| 4857 | |
| 4858 | /* |
| 4859 | * For backward compatibility we support few obsoleted values that don't |
| 4860 | * have their mappings into nand_ecc_modes_t anymore (they were merged |
| 4861 | * with other enums). |
| 4862 | */ |
| 4863 | if (!strcasecmp(pm, "soft_bch")) |
| 4864 | return NAND_ECC_SOFT; |
| 4865 | |
| 4866 | return -ENODEV; |
| 4867 | } |
| 4868 | |
| 4869 | static const char * const nand_ecc_algos[] = { |
| 4870 | [NAND_ECC_HAMMING] = "hamming", |
| 4871 | [NAND_ECC_BCH] = "bch", |
| 4872 | [NAND_ECC_RS] = "rs", |
| 4873 | }; |
| 4874 | |
| 4875 | static int of_get_nand_ecc_algo(struct device_node *np) |
| 4876 | { |
| 4877 | const char *pm; |
| 4878 | int err, i; |
| 4879 | |
| 4880 | err = of_property_read_string(np, "nand-ecc-algo", &pm); |
| 4881 | if (!err) { |
| 4882 | for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) |
| 4883 | if (!strcasecmp(pm, nand_ecc_algos[i])) |
| 4884 | return i; |
| 4885 | return -ENODEV; |
| 4886 | } |
| 4887 | |
| 4888 | /* |
| 4889 | * For backward compatibility we also read "nand-ecc-mode" checking |
| 4890 | * for some obsoleted values that were specifying ECC algorithm. |
| 4891 | */ |
| 4892 | err = of_property_read_string(np, "nand-ecc-mode", &pm); |
| 4893 | if (err < 0) |
| 4894 | return err; |
| 4895 | |
| 4896 | if (!strcasecmp(pm, "soft")) |
| 4897 | return NAND_ECC_HAMMING; |
| 4898 | else if (!strcasecmp(pm, "soft_bch")) |
| 4899 | return NAND_ECC_BCH; |
| 4900 | |
| 4901 | return -ENODEV; |
| 4902 | } |
| 4903 | |
| 4904 | static int of_get_nand_ecc_step_size(struct device_node *np) |
| 4905 | { |
| 4906 | int ret; |
| 4907 | u32 val; |
| 4908 | |
| 4909 | ret = of_property_read_u32(np, "nand-ecc-step-size", &val); |
| 4910 | return ret ? ret : val; |
| 4911 | } |
| 4912 | |
| 4913 | static int of_get_nand_ecc_strength(struct device_node *np) |
| 4914 | { |
| 4915 | int ret; |
| 4916 | u32 val; |
| 4917 | |
| 4918 | ret = of_property_read_u32(np, "nand-ecc-strength", &val); |
| 4919 | return ret ? ret : val; |
| 4920 | } |
| 4921 | |
| 4922 | static int of_get_nand_bus_width(struct device_node *np) |
| 4923 | { |
| 4924 | u32 val; |
| 4925 | |
| 4926 | if (of_property_read_u32(np, "nand-bus-width", &val)) |
| 4927 | return 8; |
| 4928 | |
| 4929 | switch (val) { |
| 4930 | case 8: |
| 4931 | case 16: |
| 4932 | return val; |
| 4933 | default: |
| 4934 | return -EIO; |
| 4935 | } |
| 4936 | } |
| 4937 | |
| 4938 | static bool of_get_nand_on_flash_bbt(struct device_node *np) |
| 4939 | { |
| 4940 | return of_property_read_bool(np, "nand-on-flash-bbt"); |
| 4941 | } |
| 4942 | |
| 4943 | static int nand_dt_init(struct nand_chip *chip) |
| 4944 | { |
| 4945 | struct device_node *dn = nand_get_flash_node(chip); |
| 4946 | int ecc_mode, ecc_algo, ecc_strength, ecc_step; |
| 4947 | |
| 4948 | if (!dn) |
| 4949 | return 0; |
| 4950 | |
| 4951 | if (of_get_nand_bus_width(dn) == 16) |
| 4952 | chip->options |= NAND_BUSWIDTH_16; |
| 4953 | |
| 4954 | if (of_property_read_bool(dn, "nand-is-boot-medium")) |
| 4955 | chip->options |= NAND_IS_BOOT_MEDIUM; |
| 4956 | |
| 4957 | if (of_get_nand_on_flash_bbt(dn)) |
| 4958 | chip->bbt_options |= NAND_BBT_USE_FLASH; |
| 4959 | |
| 4960 | ecc_mode = of_get_nand_ecc_mode(dn); |
| 4961 | ecc_algo = of_get_nand_ecc_algo(dn); |
| 4962 | ecc_strength = of_get_nand_ecc_strength(dn); |
| 4963 | ecc_step = of_get_nand_ecc_step_size(dn); |
| 4964 | |
| 4965 | if (ecc_mode >= 0) |
| 4966 | chip->ecc.mode = ecc_mode; |
| 4967 | |
| 4968 | if (ecc_algo >= 0) |
| 4969 | chip->ecc.algo = ecc_algo; |
| 4970 | |
| 4971 | if (ecc_strength >= 0) |
| 4972 | chip->ecc.strength = ecc_strength; |
| 4973 | |
| 4974 | if (ecc_step > 0) |
| 4975 | chip->ecc.size = ecc_step; |
| 4976 | |
| 4977 | if (of_property_read_bool(dn, "nand-ecc-maximize")) |
| 4978 | chip->ecc.options |= NAND_ECC_MAXIMIZE; |
| 4979 | |
| 4980 | return 0; |
| 4981 | } |
| 4982 | |
| 4983 | /** |
| 4984 | * nand_scan_ident - Scan for the NAND device |
| 4985 | * @chip: NAND chip object |
| 4986 | * @maxchips: number of chips to scan for |
| 4987 | * @table: alternative NAND ID table |
| 4988 | * |
| 4989 | * This is the first phase of the normal nand_scan() function. It reads the |
| 4990 | * flash ID and sets up MTD fields accordingly. |
| 4991 | * |
| 4992 | * This helper used to be called directly from controller drivers that needed |
| 4993 | * to tweak some ECC-related parameters before nand_scan_tail(). This separation |
| 4994 | * prevented dynamic allocations during this phase which was unconvenient and |
| 4995 | * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. |
| 4996 | */ |
| 4997 | static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, |
| 4998 | struct nand_flash_dev *table) |
| 4999 | { |
| 5000 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 5001 | struct nand_memory_organization *memorg; |
| 5002 | int nand_maf_id, nand_dev_id; |
| 5003 | unsigned int i; |
| 5004 | int ret; |
| 5005 | |
| 5006 | memorg = nanddev_get_memorg(&chip->base); |
| 5007 | |
| 5008 | /* Assume all dies are deselected when we enter nand_scan_ident(). */ |
| 5009 | chip->cur_cs = -1; |
| 5010 | |
| 5011 | mutex_init(&chip->lock); |
| 5012 | init_waitqueue_head(&chip->resume_wq); |
| 5013 | |
| 5014 | /* Enforce the right timings for reset/detection */ |
| 5015 | onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); |
| 5016 | |
| 5017 | ret = nand_dt_init(chip); |
| 5018 | if (ret) |
| 5019 | return ret; |
| 5020 | |
| 5021 | if (!mtd->name && mtd->dev.parent) |
| 5022 | mtd->name = dev_name(mtd->dev.parent); |
| 5023 | |
| 5024 | /* Set the default functions */ |
| 5025 | nand_set_defaults(chip); |
| 5026 | |
| 5027 | ret = nand_legacy_check_hooks(chip); |
| 5028 | if (ret) |
| 5029 | return ret; |
| 5030 | |
| 5031 | memorg->ntargets = maxchips; |
| 5032 | |
| 5033 | /* Read the flash type */ |
| 5034 | ret = nand_detect(chip, table); |
| 5035 | if (ret) { |
| 5036 | if (!(chip->options & NAND_SCAN_SILENT_NODEV)) |
| 5037 | pr_warn("No NAND device found\n"); |
| 5038 | nand_deselect_target(chip); |
| 5039 | return ret; |
| 5040 | } |
| 5041 | |
| 5042 | nand_maf_id = chip->id.data[0]; |
| 5043 | nand_dev_id = chip->id.data[1]; |
| 5044 | |
| 5045 | nand_deselect_target(chip); |
| 5046 | |
| 5047 | /* Check for a chip array */ |
| 5048 | for (i = 1; i < maxchips; i++) { |
| 5049 | u8 id[2]; |
| 5050 | |
| 5051 | /* See comment in nand_get_flash_type for reset */ |
| 5052 | ret = nand_reset(chip, i); |
| 5053 | if (ret) |
| 5054 | break; |
| 5055 | |
| 5056 | nand_select_target(chip, i); |
| 5057 | /* Send the command for reading device ID */ |
| 5058 | ret = nand_readid_op(chip, 0, id, sizeof(id)); |
| 5059 | if (ret) |
| 5060 | break; |
| 5061 | /* Read manufacturer and device IDs */ |
| 5062 | if (nand_maf_id != id[0] || nand_dev_id != id[1]) { |
| 5063 | nand_deselect_target(chip); |
| 5064 | break; |
| 5065 | } |
| 5066 | nand_deselect_target(chip); |
| 5067 | } |
| 5068 | if (i > 1) |
| 5069 | pr_info("%d chips detected\n", i); |
| 5070 | |
| 5071 | /* Store the number of chips and calc total size for mtd */ |
| 5072 | memorg->ntargets = i; |
| 5073 | mtd->size = i * nanddev_target_size(&chip->base); |
| 5074 | |
| 5075 | return 0; |
| 5076 | } |
| 5077 | |
| 5078 | static void nand_scan_ident_cleanup(struct nand_chip *chip) |
| 5079 | { |
| 5080 | kfree(chip->parameters.model); |
| 5081 | kfree(chip->parameters.onfi); |
| 5082 | } |
| 5083 | |
| 5084 | static int nand_set_ecc_soft_ops(struct nand_chip *chip) |
| 5085 | { |
| 5086 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 5087 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 5088 | |
| 5089 | if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) |
| 5090 | return -EINVAL; |
| 5091 | |
| 5092 | switch (ecc->algo) { |
| 5093 | case NAND_ECC_HAMMING: |
| 5094 | ecc->calculate = nand_calculate_ecc; |
| 5095 | ecc->correct = nand_correct_data; |
| 5096 | ecc->read_page = nand_read_page_swecc; |
| 5097 | ecc->read_subpage = nand_read_subpage; |
| 5098 | ecc->write_page = nand_write_page_swecc; |
| 5099 | ecc->read_page_raw = nand_read_page_raw; |
| 5100 | ecc->write_page_raw = nand_write_page_raw; |
| 5101 | ecc->read_oob = nand_read_oob_std; |
| 5102 | ecc->write_oob = nand_write_oob_std; |
| 5103 | if (!ecc->size) |
| 5104 | ecc->size = 256; |
| 5105 | ecc->bytes = 3; |
| 5106 | ecc->strength = 1; |
| 5107 | |
| 5108 | if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) |
| 5109 | ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; |
| 5110 | |
| 5111 | return 0; |
| 5112 | case NAND_ECC_BCH: |
| 5113 | if (!mtd_nand_has_bch()) { |
| 5114 | WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); |
| 5115 | return -EINVAL; |
| 5116 | } |
| 5117 | ecc->calculate = nand_bch_calculate_ecc; |
| 5118 | ecc->correct = nand_bch_correct_data; |
| 5119 | ecc->read_page = nand_read_page_swecc; |
| 5120 | ecc->read_subpage = nand_read_subpage; |
| 5121 | ecc->write_page = nand_write_page_swecc; |
| 5122 | ecc->read_page_raw = nand_read_page_raw; |
| 5123 | ecc->write_page_raw = nand_write_page_raw; |
| 5124 | ecc->read_oob = nand_read_oob_std; |
| 5125 | ecc->write_oob = nand_write_oob_std; |
| 5126 | |
| 5127 | /* |
| 5128 | * Board driver should supply ecc.size and ecc.strength |
| 5129 | * values to select how many bits are correctable. |
| 5130 | * Otherwise, default to 4 bits for large page devices. |
| 5131 | */ |
| 5132 | if (!ecc->size && (mtd->oobsize >= 64)) { |
| 5133 | ecc->size = 512; |
| 5134 | ecc->strength = 4; |
| 5135 | } |
| 5136 | |
| 5137 | /* |
| 5138 | * if no ecc placement scheme was provided pickup the default |
| 5139 | * large page one. |
| 5140 | */ |
| 5141 | if (!mtd->ooblayout) { |
| 5142 | /* handle large page devices only */ |
| 5143 | if (mtd->oobsize < 64) { |
| 5144 | WARN(1, "OOB layout is required when using software BCH on small pages\n"); |
| 5145 | return -EINVAL; |
| 5146 | } |
| 5147 | |
| 5148 | mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); |
| 5149 | |
| 5150 | } |
| 5151 | |
| 5152 | /* |
| 5153 | * We can only maximize ECC config when the default layout is |
| 5154 | * used, otherwise we don't know how many bytes can really be |
| 5155 | * used. |
| 5156 | */ |
| 5157 | if (mtd->ooblayout == &nand_ooblayout_lp_ops && |
| 5158 | ecc->options & NAND_ECC_MAXIMIZE) { |
| 5159 | int steps, bytes; |
| 5160 | |
| 5161 | /* Always prefer 1k blocks over 512bytes ones */ |
| 5162 | ecc->size = 1024; |
| 5163 | steps = mtd->writesize / ecc->size; |
| 5164 | |
| 5165 | /* Reserve 2 bytes for the BBM */ |
| 5166 | bytes = (mtd->oobsize - 2) / steps; |
| 5167 | ecc->strength = bytes * 8 / fls(8 * ecc->size); |
| 5168 | } |
| 5169 | |
| 5170 | /* See nand_bch_init() for details. */ |
| 5171 | ecc->bytes = 0; |
| 5172 | ecc->priv = nand_bch_init(mtd); |
| 5173 | if (!ecc->priv) { |
| 5174 | WARN(1, "BCH ECC initialization failed!\n"); |
| 5175 | return -EINVAL; |
| 5176 | } |
| 5177 | return 0; |
| 5178 | default: |
| 5179 | WARN(1, "Unsupported ECC algorithm!\n"); |
| 5180 | return -EINVAL; |
| 5181 | } |
| 5182 | } |
| 5183 | |
| 5184 | /** |
| 5185 | * nand_check_ecc_caps - check the sanity of preset ECC settings |
| 5186 | * @chip: nand chip info structure |
| 5187 | * @caps: ECC caps info structure |
| 5188 | * @oobavail: OOB size that the ECC engine can use |
| 5189 | * |
| 5190 | * When ECC step size and strength are already set, check if they are supported |
| 5191 | * by the controller and the calculated ECC bytes fit within the chip's OOB. |
| 5192 | * On success, the calculated ECC bytes is set. |
| 5193 | */ |
| 5194 | static int |
| 5195 | nand_check_ecc_caps(struct nand_chip *chip, |
| 5196 | const struct nand_ecc_caps *caps, int oobavail) |
| 5197 | { |
| 5198 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 5199 | const struct nand_ecc_step_info *stepinfo; |
| 5200 | int preset_step = chip->ecc.size; |
| 5201 | int preset_strength = chip->ecc.strength; |
| 5202 | int ecc_bytes, nsteps = mtd->writesize / preset_step; |
| 5203 | int i, j; |
| 5204 | |
| 5205 | for (i = 0; i < caps->nstepinfos; i++) { |
| 5206 | stepinfo = &caps->stepinfos[i]; |
| 5207 | |
| 5208 | if (stepinfo->stepsize != preset_step) |
| 5209 | continue; |
| 5210 | |
| 5211 | for (j = 0; j < stepinfo->nstrengths; j++) { |
| 5212 | if (stepinfo->strengths[j] != preset_strength) |
| 5213 | continue; |
| 5214 | |
| 5215 | ecc_bytes = caps->calc_ecc_bytes(preset_step, |
| 5216 | preset_strength); |
| 5217 | if (WARN_ON_ONCE(ecc_bytes < 0)) |
| 5218 | return ecc_bytes; |
| 5219 | |
| 5220 | if (ecc_bytes * nsteps > oobavail) { |
| 5221 | pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", |
| 5222 | preset_step, preset_strength); |
| 5223 | return -ENOSPC; |
| 5224 | } |
| 5225 | |
| 5226 | chip->ecc.bytes = ecc_bytes; |
| 5227 | |
| 5228 | return 0; |
| 5229 | } |
| 5230 | } |
| 5231 | |
| 5232 | pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", |
| 5233 | preset_step, preset_strength); |
| 5234 | |
| 5235 | return -ENOTSUPP; |
| 5236 | } |
| 5237 | |
| 5238 | /** |
| 5239 | * nand_match_ecc_req - meet the chip's requirement with least ECC bytes |
| 5240 | * @chip: nand chip info structure |
| 5241 | * @caps: ECC engine caps info structure |
| 5242 | * @oobavail: OOB size that the ECC engine can use |
| 5243 | * |
| 5244 | * If a chip's ECC requirement is provided, try to meet it with the least |
| 5245 | * number of ECC bytes (i.e. with the largest number of OOB-free bytes). |
| 5246 | * On success, the chosen ECC settings are set. |
| 5247 | */ |
| 5248 | static int |
| 5249 | nand_match_ecc_req(struct nand_chip *chip, |
| 5250 | const struct nand_ecc_caps *caps, int oobavail) |
| 5251 | { |
| 5252 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 5253 | const struct nand_ecc_step_info *stepinfo; |
| 5254 | int req_step = chip->base.eccreq.step_size; |
| 5255 | int req_strength = chip->base.eccreq.strength; |
| 5256 | int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; |
| 5257 | int best_step, best_strength, best_ecc_bytes; |
| 5258 | int best_ecc_bytes_total = INT_MAX; |
| 5259 | int i, j; |
| 5260 | |
| 5261 | /* No information provided by the NAND chip */ |
| 5262 | if (!req_step || !req_strength) |
| 5263 | return -ENOTSUPP; |
| 5264 | |
| 5265 | /* number of correctable bits the chip requires in a page */ |
| 5266 | req_corr = mtd->writesize / req_step * req_strength; |
| 5267 | |
| 5268 | for (i = 0; i < caps->nstepinfos; i++) { |
| 5269 | stepinfo = &caps->stepinfos[i]; |
| 5270 | step_size = stepinfo->stepsize; |
| 5271 | |
| 5272 | for (j = 0; j < stepinfo->nstrengths; j++) { |
| 5273 | strength = stepinfo->strengths[j]; |
| 5274 | |
| 5275 | /* |
| 5276 | * If both step size and strength are smaller than the |
| 5277 | * chip's requirement, it is not easy to compare the |
| 5278 | * resulted reliability. |
| 5279 | */ |
| 5280 | if (step_size < req_step && strength < req_strength) |
| 5281 | continue; |
| 5282 | |
| 5283 | if (mtd->writesize % step_size) |
| 5284 | continue; |
| 5285 | |
| 5286 | nsteps = mtd->writesize / step_size; |
| 5287 | |
| 5288 | ecc_bytes = caps->calc_ecc_bytes(step_size, strength); |
| 5289 | if (WARN_ON_ONCE(ecc_bytes < 0)) |
| 5290 | continue; |
| 5291 | ecc_bytes_total = ecc_bytes * nsteps; |
| 5292 | |
| 5293 | if (ecc_bytes_total > oobavail || |
| 5294 | strength * nsteps < req_corr) |
| 5295 | continue; |
| 5296 | |
| 5297 | /* |
| 5298 | * We assume the best is to meet the chip's requrement |
| 5299 | * with the least number of ECC bytes. |
| 5300 | */ |
| 5301 | if (ecc_bytes_total < best_ecc_bytes_total) { |
| 5302 | best_ecc_bytes_total = ecc_bytes_total; |
| 5303 | best_step = step_size; |
| 5304 | best_strength = strength; |
| 5305 | best_ecc_bytes = ecc_bytes; |
| 5306 | } |
| 5307 | } |
| 5308 | } |
| 5309 | |
| 5310 | if (best_ecc_bytes_total == INT_MAX) |
| 5311 | return -ENOTSUPP; |
| 5312 | |
| 5313 | chip->ecc.size = best_step; |
| 5314 | chip->ecc.strength = best_strength; |
| 5315 | chip->ecc.bytes = best_ecc_bytes; |
| 5316 | |
| 5317 | return 0; |
| 5318 | } |
| 5319 | |
| 5320 | /** |
| 5321 | * nand_maximize_ecc - choose the max ECC strength available |
| 5322 | * @chip: nand chip info structure |
| 5323 | * @caps: ECC engine caps info structure |
| 5324 | * @oobavail: OOB size that the ECC engine can use |
| 5325 | * |
| 5326 | * Choose the max ECC strength that is supported on the controller, and can fit |
| 5327 | * within the chip's OOB. On success, the chosen ECC settings are set. |
| 5328 | */ |
| 5329 | static int |
| 5330 | nand_maximize_ecc(struct nand_chip *chip, |
| 5331 | const struct nand_ecc_caps *caps, int oobavail) |
| 5332 | { |
| 5333 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 5334 | const struct nand_ecc_step_info *stepinfo; |
| 5335 | int step_size, strength, nsteps, ecc_bytes, corr; |
| 5336 | int best_corr = 0; |
| 5337 | int best_step = 0; |
| 5338 | int best_strength, best_ecc_bytes; |
| 5339 | int i, j; |
| 5340 | |
| 5341 | for (i = 0; i < caps->nstepinfos; i++) { |
| 5342 | stepinfo = &caps->stepinfos[i]; |
| 5343 | step_size = stepinfo->stepsize; |
| 5344 | |
| 5345 | /* If chip->ecc.size is already set, respect it */ |
| 5346 | if (chip->ecc.size && step_size != chip->ecc.size) |
| 5347 | continue; |
| 5348 | |
| 5349 | for (j = 0; j < stepinfo->nstrengths; j++) { |
| 5350 | strength = stepinfo->strengths[j]; |
| 5351 | |
| 5352 | if (mtd->writesize % step_size) |
| 5353 | continue; |
| 5354 | |
| 5355 | nsteps = mtd->writesize / step_size; |
| 5356 | |
| 5357 | ecc_bytes = caps->calc_ecc_bytes(step_size, strength); |
| 5358 | if (WARN_ON_ONCE(ecc_bytes < 0)) |
| 5359 | continue; |
| 5360 | |
| 5361 | if (ecc_bytes * nsteps > oobavail) |
| 5362 | continue; |
| 5363 | |
| 5364 | corr = strength * nsteps; |
| 5365 | |
| 5366 | /* |
| 5367 | * If the number of correctable bits is the same, |
| 5368 | * bigger step_size has more reliability. |
| 5369 | */ |
| 5370 | if (corr > best_corr || |
| 5371 | (corr == best_corr && step_size > best_step)) { |
| 5372 | best_corr = corr; |
| 5373 | best_step = step_size; |
| 5374 | best_strength = strength; |
| 5375 | best_ecc_bytes = ecc_bytes; |
| 5376 | } |
| 5377 | } |
| 5378 | } |
| 5379 | |
| 5380 | if (!best_corr) |
| 5381 | return -ENOTSUPP; |
| 5382 | |
| 5383 | chip->ecc.size = best_step; |
| 5384 | chip->ecc.strength = best_strength; |
| 5385 | chip->ecc.bytes = best_ecc_bytes; |
| 5386 | |
| 5387 | return 0; |
| 5388 | } |
| 5389 | |
| 5390 | /** |
| 5391 | * nand_ecc_choose_conf - Set the ECC strength and ECC step size |
| 5392 | * @chip: nand chip info structure |
| 5393 | * @caps: ECC engine caps info structure |
| 5394 | * @oobavail: OOB size that the ECC engine can use |
| 5395 | * |
| 5396 | * Choose the ECC configuration according to following logic |
| 5397 | * |
| 5398 | * 1. If both ECC step size and ECC strength are already set (usually by DT) |
| 5399 | * then check if it is supported by this controller. |
| 5400 | * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength. |
| 5401 | * 3. Otherwise, try to match the ECC step size and ECC strength closest |
| 5402 | * to the chip's requirement. If available OOB size can't fit the chip |
| 5403 | * requirement then fallback to the maximum ECC step size and ECC strength. |
| 5404 | * |
| 5405 | * On success, the chosen ECC settings are set. |
| 5406 | */ |
| 5407 | int nand_ecc_choose_conf(struct nand_chip *chip, |
| 5408 | const struct nand_ecc_caps *caps, int oobavail) |
| 5409 | { |
| 5410 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 5411 | |
| 5412 | if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) |
| 5413 | return -EINVAL; |
| 5414 | |
| 5415 | if (chip->ecc.size && chip->ecc.strength) |
| 5416 | return nand_check_ecc_caps(chip, caps, oobavail); |
| 5417 | |
| 5418 | if (chip->ecc.options & NAND_ECC_MAXIMIZE) |
| 5419 | return nand_maximize_ecc(chip, caps, oobavail); |
| 5420 | |
| 5421 | if (!nand_match_ecc_req(chip, caps, oobavail)) |
| 5422 | return 0; |
| 5423 | |
| 5424 | return nand_maximize_ecc(chip, caps, oobavail); |
| 5425 | } |
| 5426 | EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); |
| 5427 | |
| 5428 | /* |
| 5429 | * Check if the chip configuration meet the datasheet requirements. |
| 5430 | |
| 5431 | * If our configuration corrects A bits per B bytes and the minimum |
| 5432 | * required correction level is X bits per Y bytes, then we must ensure |
| 5433 | * both of the following are true: |
| 5434 | * |
| 5435 | * (1) A / B >= X / Y |
| 5436 | * (2) A >= X |
| 5437 | * |
| 5438 | * Requirement (1) ensures we can correct for the required bitflip density. |
| 5439 | * Requirement (2) ensures we can correct even when all bitflips are clumped |
| 5440 | * in the same sector. |
| 5441 | */ |
| 5442 | static bool nand_ecc_strength_good(struct nand_chip *chip) |
| 5443 | { |
| 5444 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 5445 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 5446 | int corr, ds_corr; |
| 5447 | |
| 5448 | if (ecc->size == 0 || chip->base.eccreq.step_size == 0) |
| 5449 | /* Not enough information */ |
| 5450 | return true; |
| 5451 | |
| 5452 | /* |
| 5453 | * We get the number of corrected bits per page to compare |
| 5454 | * the correction density. |
| 5455 | */ |
| 5456 | corr = (mtd->writesize * ecc->strength) / ecc->size; |
| 5457 | ds_corr = (mtd->writesize * chip->base.eccreq.strength) / |
| 5458 | chip->base.eccreq.step_size; |
| 5459 | |
| 5460 | return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength; |
| 5461 | } |
| 5462 | |
| 5463 | static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) |
| 5464 | { |
| 5465 | struct nand_chip *chip = container_of(nand, struct nand_chip, |
| 5466 | base); |
| 5467 | unsigned int eb = nanddev_pos_to_row(nand, pos); |
| 5468 | int ret; |
| 5469 | |
| 5470 | eb >>= nand->rowconv.eraseblock_addr_shift; |
| 5471 | |
| 5472 | nand_select_target(chip, pos->target); |
| 5473 | ret = nand_erase_op(chip, eb); |
| 5474 | nand_deselect_target(chip); |
| 5475 | |
| 5476 | return ret; |
| 5477 | } |
| 5478 | |
| 5479 | static int rawnand_markbad(struct nand_device *nand, |
| 5480 | const struct nand_pos *pos) |
| 5481 | { |
| 5482 | struct nand_chip *chip = container_of(nand, struct nand_chip, |
| 5483 | base); |
| 5484 | |
| 5485 | return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); |
| 5486 | } |
| 5487 | |
| 5488 | static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) |
| 5489 | { |
| 5490 | struct nand_chip *chip = container_of(nand, struct nand_chip, |
| 5491 | base); |
| 5492 | int ret; |
| 5493 | |
| 5494 | nand_select_target(chip, pos->target); |
| 5495 | ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); |
| 5496 | nand_deselect_target(chip); |
| 5497 | |
| 5498 | return ret; |
| 5499 | } |
| 5500 | |
| 5501 | static const struct nand_ops rawnand_ops = { |
| 5502 | .erase = rawnand_erase, |
| 5503 | .markbad = rawnand_markbad, |
| 5504 | .isbad = rawnand_isbad, |
| 5505 | }; |
| 5506 | |
| 5507 | /** |
| 5508 | * nand_scan_tail - Scan for the NAND device |
| 5509 | * @chip: NAND chip object |
| 5510 | * |
| 5511 | * This is the second phase of the normal nand_scan() function. It fills out |
| 5512 | * all the uninitialized function pointers with the defaults and scans for a |
| 5513 | * bad block table if appropriate. |
| 5514 | */ |
| 5515 | static int nand_scan_tail(struct nand_chip *chip) |
| 5516 | { |
| 5517 | struct mtd_info *mtd = nand_to_mtd(chip); |
| 5518 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
| 5519 | int ret, i; |
| 5520 | |
| 5521 | /* New bad blocks should be marked in OOB, flash-based BBT, or both */ |
| 5522 | if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && |
| 5523 | !(chip->bbt_options & NAND_BBT_USE_FLASH))) { |
| 5524 | return -EINVAL; |
| 5525 | } |
| 5526 | |
| 5527 | chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); |
| 5528 | if (!chip->data_buf) |
| 5529 | return -ENOMEM; |
| 5530 | |
| 5531 | /* |
| 5532 | * FIXME: some NAND manufacturer drivers expect the first die to be |
| 5533 | * selected when manufacturer->init() is called. They should be fixed |
| 5534 | * to explictly select the relevant die when interacting with the NAND |
| 5535 | * chip. |
| 5536 | */ |
| 5537 | nand_select_target(chip, 0); |
| 5538 | ret = nand_manufacturer_init(chip); |
| 5539 | nand_deselect_target(chip); |
| 5540 | if (ret) |
| 5541 | goto err_free_buf; |
| 5542 | |
| 5543 | /* Set the internal oob buffer location, just after the page data */ |
| 5544 | chip->oob_poi = chip->data_buf + mtd->writesize; |
| 5545 | |
| 5546 | /* |
| 5547 | * If no default placement scheme is given, select an appropriate one. |
| 5548 | */ |
| 5549 | if (!mtd->ooblayout && |
| 5550 | !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { |
| 5551 | switch (mtd->oobsize) { |
| 5552 | case 8: |
| 5553 | case 16: |
| 5554 | mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); |
| 5555 | break; |
| 5556 | case 64: |
| 5557 | case 128: |
| 5558 | mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); |
| 5559 | break; |
| 5560 | default: |
| 5561 | /* |
| 5562 | * Expose the whole OOB area to users if ECC_NONE |
| 5563 | * is passed. We could do that for all kind of |
| 5564 | * ->oobsize, but we must keep the old large/small |
| 5565 | * page with ECC layout when ->oobsize <= 128 for |
| 5566 | * compatibility reasons. |
| 5567 | */ |
| 5568 | if (ecc->mode == NAND_ECC_NONE) { |
| 5569 | mtd_set_ooblayout(mtd, |
| 5570 | &nand_ooblayout_lp_ops); |
| 5571 | break; |
| 5572 | } |
| 5573 | |
| 5574 | WARN(1, "No oob scheme defined for oobsize %d\n", |
| 5575 | mtd->oobsize); |
| 5576 | ret = -EINVAL; |
| 5577 | goto err_nand_manuf_cleanup; |
| 5578 | } |
| 5579 | } |
| 5580 | |
| 5581 | /* |
| 5582 | * Check ECC mode, default to software if 3byte/512byte hardware ECC is |
| 5583 | * selected and we have 256 byte pagesize fallback to software ECC |
| 5584 | */ |
| 5585 | |
| 5586 | switch (ecc->mode) { |
| 5587 | case NAND_ECC_HW_OOB_FIRST: |
| 5588 | /* Similar to NAND_ECC_HW, but a separate read_page handle */ |
| 5589 | if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { |
| 5590 | WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); |
| 5591 | ret = -EINVAL; |
| 5592 | goto err_nand_manuf_cleanup; |
| 5593 | } |
| 5594 | if (!ecc->read_page) |
| 5595 | ecc->read_page = nand_read_page_hwecc_oob_first; |
| 5596 | /* fall through */ |
| 5597 | |
| 5598 | case NAND_ECC_HW: |
| 5599 | /* Use standard hwecc read page function? */ |
| 5600 | if (!ecc->read_page) |
| 5601 | ecc->read_page = nand_read_page_hwecc; |
| 5602 | if (!ecc->write_page) |
| 5603 | ecc->write_page = nand_write_page_hwecc; |
| 5604 | if (!ecc->read_page_raw) |
| 5605 | ecc->read_page_raw = nand_read_page_raw; |
| 5606 | if (!ecc->write_page_raw) |
| 5607 | ecc->write_page_raw = nand_write_page_raw; |
| 5608 | if (!ecc->read_oob) |
| 5609 | ecc->read_oob = nand_read_oob_std; |
| 5610 | if (!ecc->write_oob) |
| 5611 | ecc->write_oob = nand_write_oob_std; |
| 5612 | if (!ecc->read_subpage) |
| 5613 | ecc->read_subpage = nand_read_subpage; |
| 5614 | if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) |
| 5615 | ecc->write_subpage = nand_write_subpage_hwecc; |
| 5616 | /* fall through */ |
| 5617 | |
| 5618 | case NAND_ECC_HW_SYNDROME: |
| 5619 | if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && |
| 5620 | (!ecc->read_page || |
| 5621 | ecc->read_page == nand_read_page_hwecc || |
| 5622 | !ecc->write_page || |
| 5623 | ecc->write_page == nand_write_page_hwecc)) { |
| 5624 | WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); |
| 5625 | ret = -EINVAL; |
| 5626 | goto err_nand_manuf_cleanup; |
| 5627 | } |
| 5628 | /* Use standard syndrome read/write page function? */ |
| 5629 | if (!ecc->read_page) |
| 5630 | ecc->read_page = nand_read_page_syndrome; |
| 5631 | if (!ecc->write_page) |
| 5632 | ecc->write_page = nand_write_page_syndrome; |
| 5633 | if (!ecc->read_page_raw) |
| 5634 | ecc->read_page_raw = nand_read_page_raw_syndrome; |
| 5635 | if (!ecc->write_page_raw) |
| 5636 | ecc->write_page_raw = nand_write_page_raw_syndrome; |
| 5637 | if (!ecc->read_oob) |
| 5638 | ecc->read_oob = nand_read_oob_syndrome; |
| 5639 | if (!ecc->write_oob) |
| 5640 | ecc->write_oob = nand_write_oob_syndrome; |
| 5641 | |
| 5642 | if (mtd->writesize >= ecc->size) { |
| 5643 | if (!ecc->strength) { |
| 5644 | WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); |
| 5645 | ret = -EINVAL; |
| 5646 | goto err_nand_manuf_cleanup; |
| 5647 | } |
| 5648 | break; |
| 5649 | } |
| 5650 | pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", |
| 5651 | ecc->size, mtd->writesize); |
| 5652 | ecc->mode = NAND_ECC_SOFT; |
| 5653 | ecc->algo = NAND_ECC_HAMMING; |
| 5654 | /* fall through */ |
| 5655 | |
| 5656 | case NAND_ECC_SOFT: |
| 5657 | ret = nand_set_ecc_soft_ops(chip); |
| 5658 | if (ret) { |
| 5659 | ret = -EINVAL; |
| 5660 | goto err_nand_manuf_cleanup; |
| 5661 | } |
| 5662 | break; |
| 5663 | |
| 5664 | case NAND_ECC_ON_DIE: |
| 5665 | if (!ecc->read_page || !ecc->write_page) { |
| 5666 | WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); |
| 5667 | ret = -EINVAL; |
| 5668 | goto err_nand_manuf_cleanup; |
| 5669 | } |
| 5670 | if (!ecc->read_oob) |
| 5671 | ecc->read_oob = nand_read_oob_std; |
| 5672 | if (!ecc->write_oob) |
| 5673 | ecc->write_oob = nand_write_oob_std; |
| 5674 | break; |
| 5675 | |
| 5676 | case NAND_ECC_NONE: |
| 5677 | pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); |
| 5678 | ecc->read_page = nand_read_page_raw; |
| 5679 | ecc->write_page = nand_write_page_raw; |
| 5680 | ecc->read_oob = nand_read_oob_std; |
| 5681 | ecc->read_page_raw = nand_read_page_raw; |
| 5682 | ecc->write_page_raw = nand_write_page_raw; |
| 5683 | ecc->write_oob = nand_write_oob_std; |
| 5684 | ecc->size = mtd->writesize; |
| 5685 | ecc->bytes = 0; |
| 5686 | ecc->strength = 0; |
| 5687 | break; |
| 5688 | |
| 5689 | default: |
| 5690 | WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); |
| 5691 | ret = -EINVAL; |
| 5692 | goto err_nand_manuf_cleanup; |
| 5693 | } |
| 5694 | |
| 5695 | if (ecc->correct || ecc->calculate) { |
| 5696 | ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); |
| 5697 | ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); |
| 5698 | if (!ecc->calc_buf || !ecc->code_buf) { |
| 5699 | ret = -ENOMEM; |
| 5700 | goto err_nand_manuf_cleanup; |
| 5701 | } |
| 5702 | } |
| 5703 | |
| 5704 | /* For many systems, the standard OOB write also works for raw */ |
| 5705 | if (!ecc->read_oob_raw) |
| 5706 | ecc->read_oob_raw = ecc->read_oob; |
| 5707 | if (!ecc->write_oob_raw) |
| 5708 | ecc->write_oob_raw = ecc->write_oob; |
| 5709 | |
| 5710 | /* propagate ecc info to mtd_info */ |
| 5711 | mtd->ecc_strength = ecc->strength; |
| 5712 | mtd->ecc_step_size = ecc->size; |
| 5713 | |
| 5714 | /* |
| 5715 | * Set the number of read / write steps for one page depending on ECC |
| 5716 | * mode. |
| 5717 | */ |
| 5718 | ecc->steps = mtd->writesize / ecc->size; |
| 5719 | if (ecc->steps * ecc->size != mtd->writesize) { |
| 5720 | WARN(1, "Invalid ECC parameters\n"); |
| 5721 | ret = -EINVAL; |
| 5722 | goto err_nand_manuf_cleanup; |
| 5723 | } |
| 5724 | ecc->total = ecc->steps * ecc->bytes; |
| 5725 | if (ecc->total > mtd->oobsize) { |
| 5726 | WARN(1, "Total number of ECC bytes exceeded oobsize\n"); |
| 5727 | ret = -EINVAL; |
| 5728 | goto err_nand_manuf_cleanup; |
| 5729 | } |
| 5730 | |
| 5731 | /* |
| 5732 | * The number of bytes available for a client to place data into |
| 5733 | * the out of band area. |
| 5734 | */ |
| 5735 | ret = mtd_ooblayout_count_freebytes(mtd); |
| 5736 | if (ret < 0) |
| 5737 | ret = 0; |
| 5738 | |
| 5739 | mtd->oobavail = ret; |
| 5740 | |
| 5741 | /* ECC sanity check: warn if it's too weak */ |
| 5742 | if (!nand_ecc_strength_good(chip)) |
| 5743 | pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", |
| 5744 | mtd->name); |
| 5745 | |
| 5746 | /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ |
| 5747 | if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { |
| 5748 | switch (ecc->steps) { |
| 5749 | case 2: |
| 5750 | mtd->subpage_sft = 1; |
| 5751 | break; |
| 5752 | case 4: |
| 5753 | case 8: |
| 5754 | case 16: |
| 5755 | mtd->subpage_sft = 2; |
| 5756 | break; |
| 5757 | } |
| 5758 | } |
| 5759 | chip->subpagesize = mtd->writesize >> mtd->subpage_sft; |
| 5760 | |
| 5761 | /* Invalidate the pagebuffer reference */ |
| 5762 | chip->pagecache.page = -1; |
| 5763 | |
| 5764 | /* Large page NAND with SOFT_ECC should support subpage reads */ |
| 5765 | switch (ecc->mode) { |
| 5766 | case NAND_ECC_SOFT: |
| 5767 | if (chip->page_shift > 9) |
| 5768 | chip->options |= NAND_SUBPAGE_READ; |
| 5769 | break; |
| 5770 | |
| 5771 | default: |
| 5772 | break; |
| 5773 | } |
| 5774 | |
| 5775 | ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); |
| 5776 | if (ret) |
| 5777 | goto err_nand_manuf_cleanup; |
| 5778 | |
| 5779 | /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ |
| 5780 | if (chip->options & NAND_ROM) |
| 5781 | mtd->flags = MTD_CAP_ROM; |
| 5782 | |
| 5783 | /* Fill in remaining MTD driver data */ |
| 5784 | mtd->_erase = nand_erase; |
| 5785 | mtd->_point = NULL; |
| 5786 | mtd->_unpoint = NULL; |
| 5787 | mtd->_panic_write = panic_nand_write; |
| 5788 | mtd->_read_oob = nand_read_oob; |
| 5789 | mtd->_write_oob = nand_write_oob; |
| 5790 | mtd->_sync = nand_sync; |
| 5791 | mtd->_lock = NULL; |
| 5792 | mtd->_unlock = NULL; |
| 5793 | mtd->_suspend = nand_suspend; |
| 5794 | mtd->_resume = nand_resume; |
| 5795 | mtd->_reboot = nand_shutdown; |
| 5796 | mtd->_block_isreserved = nand_block_isreserved; |
| 5797 | mtd->_block_isbad = nand_block_isbad; |
| 5798 | mtd->_block_markbad = nand_block_markbad; |
| 5799 | mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; |
| 5800 | |
| 5801 | /* |
| 5802 | * Initialize bitflip_threshold to its default prior scan_bbt() call. |
| 5803 | * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be |
| 5804 | * properly set. |
| 5805 | */ |
| 5806 | if (!mtd->bitflip_threshold) |
| 5807 | mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); |
| 5808 | |
| 5809 | /* Initialize the ->data_interface field. */ |
| 5810 | ret = nand_init_data_interface(chip); |
| 5811 | if (ret) |
| 5812 | goto err_nanddev_cleanup; |
| 5813 | |
| 5814 | /* Enter fastest possible mode on all dies. */ |
| 5815 | for (i = 0; i < nanddev_ntargets(&chip->base); i++) { |
| 5816 | ret = nand_setup_data_interface(chip, i); |
| 5817 | if (ret) |
| 5818 | goto err_nanddev_cleanup; |
| 5819 | } |
| 5820 | |
| 5821 | /* Check, if we should skip the bad block table scan */ |
| 5822 | if (chip->options & NAND_SKIP_BBTSCAN) |
| 5823 | return 0; |
| 5824 | |
| 5825 | /* Build bad block table */ |
| 5826 | ret = nand_create_bbt(chip); |
| 5827 | if (ret) |
| 5828 | goto err_nanddev_cleanup; |
| 5829 | |
| 5830 | return 0; |
| 5831 | |
| 5832 | |
| 5833 | err_nanddev_cleanup: |
| 5834 | nanddev_cleanup(&chip->base); |
| 5835 | |
| 5836 | err_nand_manuf_cleanup: |
| 5837 | nand_manufacturer_cleanup(chip); |
| 5838 | |
| 5839 | err_free_buf: |
| 5840 | kfree(chip->data_buf); |
| 5841 | kfree(ecc->code_buf); |
| 5842 | kfree(ecc->calc_buf); |
| 5843 | |
| 5844 | return ret; |
| 5845 | } |
| 5846 | |
| 5847 | static int nand_attach(struct nand_chip *chip) |
| 5848 | { |
| 5849 | if (chip->controller->ops && chip->controller->ops->attach_chip) |
| 5850 | return chip->controller->ops->attach_chip(chip); |
| 5851 | |
| 5852 | return 0; |
| 5853 | } |
| 5854 | |
| 5855 | static void nand_detach(struct nand_chip *chip) |
| 5856 | { |
| 5857 | if (chip->controller->ops && chip->controller->ops->detach_chip) |
| 5858 | chip->controller->ops->detach_chip(chip); |
| 5859 | } |
| 5860 | |
| 5861 | /** |
| 5862 | * nand_scan_with_ids - [NAND Interface] Scan for the NAND device |
| 5863 | * @chip: NAND chip object |
| 5864 | * @maxchips: number of chips to scan for. |
| 5865 | * @ids: optional flash IDs table |
| 5866 | * |
| 5867 | * This fills out all the uninitialized function pointers with the defaults. |
| 5868 | * The flash ID is read and the mtd/chip structures are filled with the |
| 5869 | * appropriate values. |
| 5870 | */ |
| 5871 | int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, |
| 5872 | struct nand_flash_dev *ids) |
| 5873 | { |
| 5874 | int ret; |
| 5875 | |
| 5876 | if (!maxchips) |
| 5877 | return -EINVAL; |
| 5878 | |
| 5879 | ret = nand_scan_ident(chip, maxchips, ids); |
| 5880 | if (ret) |
| 5881 | return ret; |
| 5882 | |
| 5883 | ret = nand_attach(chip); |
| 5884 | if (ret) |
| 5885 | goto cleanup_ident; |
| 5886 | |
| 5887 | ret = nand_scan_tail(chip); |
| 5888 | if (ret) |
| 5889 | goto detach_chip; |
| 5890 | |
| 5891 | return 0; |
| 5892 | |
| 5893 | detach_chip: |
| 5894 | nand_detach(chip); |
| 5895 | cleanup_ident: |
| 5896 | nand_scan_ident_cleanup(chip); |
| 5897 | |
| 5898 | return ret; |
| 5899 | } |
| 5900 | EXPORT_SYMBOL(nand_scan_with_ids); |
| 5901 | |
| 5902 | /** |
| 5903 | * nand_cleanup - [NAND Interface] Free resources held by the NAND device |
| 5904 | * @chip: NAND chip object |
| 5905 | */ |
| 5906 | void nand_cleanup(struct nand_chip *chip) |
| 5907 | { |
| 5908 | if (chip->ecc.mode == NAND_ECC_SOFT && |
| 5909 | chip->ecc.algo == NAND_ECC_BCH) |
| 5910 | nand_bch_free((struct nand_bch_control *)chip->ecc.priv); |
| 5911 | |
| 5912 | nanddev_cleanup(&chip->base); |
| 5913 | |
| 5914 | /* Free bad block table memory */ |
| 5915 | kfree(chip->bbt); |
| 5916 | kfree(chip->data_buf); |
| 5917 | kfree(chip->ecc.code_buf); |
| 5918 | kfree(chip->ecc.calc_buf); |
| 5919 | |
| 5920 | /* Free bad block descriptor memory */ |
| 5921 | if (chip->badblock_pattern && chip->badblock_pattern->options |
| 5922 | & NAND_BBT_DYNAMICSTRUCT) |
| 5923 | kfree(chip->badblock_pattern); |
| 5924 | |
| 5925 | /* Free manufacturer priv data. */ |
| 5926 | nand_manufacturer_cleanup(chip); |
| 5927 | |
| 5928 | /* Free controller specific allocations after chip identification */ |
| 5929 | nand_detach(chip); |
| 5930 | |
| 5931 | /* Free identification phase allocations */ |
| 5932 | nand_scan_ident_cleanup(chip); |
| 5933 | } |
| 5934 | |
| 5935 | EXPORT_SYMBOL_GPL(nand_cleanup); |
| 5936 | |
| 5937 | /** |
| 5938 | * nand_release - [NAND Interface] Unregister the MTD device and free resources |
| 5939 | * held by the NAND device |
| 5940 | * @chip: NAND chip object |
| 5941 | */ |
| 5942 | void nand_release(struct nand_chip *chip) |
| 5943 | { |
| 5944 | mtd_device_unregister(nand_to_mtd(chip)); |
| 5945 | nand_cleanup(chip); |
| 5946 | } |
| 5947 | EXPORT_SYMBOL_GPL(nand_release); |
| 5948 | |
| 5949 | MODULE_LICENSE("GPL"); |
| 5950 | MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); |
| 5951 | MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); |
| 5952 | MODULE_DESCRIPTION("Generic NAND flash driver code"); |