b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com> |
| 4 | * |
| 5 | * Derived from: |
| 6 | * https://github.com/yuq/sunxi-nfc-mtd |
| 7 | * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com> |
| 8 | * |
| 9 | * https://github.com/hno/Allwinner-Info |
| 10 | * Copyright (C) 2013 Henrik Nordström <Henrik Nordström> |
| 11 | * |
| 12 | * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com> |
| 13 | * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org> |
| 14 | */ |
| 15 | |
| 16 | #include <linux/dma-mapping.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/moduleparam.h> |
| 20 | #include <linux/platform_device.h> |
| 21 | #include <linux/of.h> |
| 22 | #include <linux/of_device.h> |
| 23 | #include <linux/mtd/mtd.h> |
| 24 | #include <linux/mtd/rawnand.h> |
| 25 | #include <linux/mtd/partitions.h> |
| 26 | #include <linux/clk.h> |
| 27 | #include <linux/delay.h> |
| 28 | #include <linux/dmaengine.h> |
| 29 | #include <linux/interrupt.h> |
| 30 | #include <linux/iopoll.h> |
| 31 | #include <linux/reset.h> |
| 32 | |
| 33 | #define NFC_REG_CTL 0x0000 |
| 34 | #define NFC_REG_ST 0x0004 |
| 35 | #define NFC_REG_INT 0x0008 |
| 36 | #define NFC_REG_TIMING_CTL 0x000C |
| 37 | #define NFC_REG_TIMING_CFG 0x0010 |
| 38 | #define NFC_REG_ADDR_LOW 0x0014 |
| 39 | #define NFC_REG_ADDR_HIGH 0x0018 |
| 40 | #define NFC_REG_SECTOR_NUM 0x001C |
| 41 | #define NFC_REG_CNT 0x0020 |
| 42 | #define NFC_REG_CMD 0x0024 |
| 43 | #define NFC_REG_RCMD_SET 0x0028 |
| 44 | #define NFC_REG_WCMD_SET 0x002C |
| 45 | #define NFC_REG_A10_IO_DATA 0x0030 |
| 46 | #define NFC_REG_A23_IO_DATA 0x0300 |
| 47 | #define NFC_REG_ECC_CTL 0x0034 |
| 48 | #define NFC_REG_ECC_ST 0x0038 |
| 49 | #define NFC_REG_DEBUG 0x003C |
| 50 | #define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) |
| 51 | #define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) |
| 52 | #define NFC_REG_SPARE_AREA 0x00A0 |
| 53 | #define NFC_REG_PAT_ID 0x00A4 |
| 54 | #define NFC_REG_MDMA_CNT 0x00C4 |
| 55 | #define NFC_RAM0_BASE 0x0400 |
| 56 | #define NFC_RAM1_BASE 0x0800 |
| 57 | |
| 58 | /* define bit use in NFC_CTL */ |
| 59 | #define NFC_EN BIT(0) |
| 60 | #define NFC_RESET BIT(1) |
| 61 | #define NFC_BUS_WIDTH_MSK BIT(2) |
| 62 | #define NFC_BUS_WIDTH_8 (0 << 2) |
| 63 | #define NFC_BUS_WIDTH_16 (1 << 2) |
| 64 | #define NFC_RB_SEL_MSK BIT(3) |
| 65 | #define NFC_RB_SEL(x) ((x) << 3) |
| 66 | #define NFC_CE_SEL_MSK GENMASK(26, 24) |
| 67 | #define NFC_CE_SEL(x) ((x) << 24) |
| 68 | #define NFC_CE_CTL BIT(6) |
| 69 | #define NFC_PAGE_SHIFT_MSK GENMASK(11, 8) |
| 70 | #define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) |
| 71 | #define NFC_SAM BIT(12) |
| 72 | #define NFC_RAM_METHOD BIT(14) |
| 73 | #define NFC_DMA_TYPE_NORMAL BIT(15) |
| 74 | #define NFC_DEBUG_CTL BIT(31) |
| 75 | |
| 76 | /* define bit use in NFC_ST */ |
| 77 | #define NFC_RB_B2R BIT(0) |
| 78 | #define NFC_CMD_INT_FLAG BIT(1) |
| 79 | #define NFC_DMA_INT_FLAG BIT(2) |
| 80 | #define NFC_CMD_FIFO_STATUS BIT(3) |
| 81 | #define NFC_STA BIT(4) |
| 82 | #define NFC_NATCH_INT_FLAG BIT(5) |
| 83 | #define NFC_RB_STATE(x) BIT(x + 8) |
| 84 | |
| 85 | /* define bit use in NFC_INT */ |
| 86 | #define NFC_B2R_INT_ENABLE BIT(0) |
| 87 | #define NFC_CMD_INT_ENABLE BIT(1) |
| 88 | #define NFC_DMA_INT_ENABLE BIT(2) |
| 89 | #define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ |
| 90 | NFC_CMD_INT_ENABLE | \ |
| 91 | NFC_DMA_INT_ENABLE) |
| 92 | |
| 93 | /* define bit use in NFC_TIMING_CTL */ |
| 94 | #define NFC_TIMING_CTL_EDO BIT(8) |
| 95 | |
| 96 | /* define NFC_TIMING_CFG register layout */ |
| 97 | #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ |
| 98 | (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ |
| 99 | (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ |
| 100 | (((tCAD) & 0x7) << 8)) |
| 101 | |
| 102 | /* define bit use in NFC_CMD */ |
| 103 | #define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0) |
| 104 | #define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8) |
| 105 | #define NFC_CMD(x) (x) |
| 106 | #define NFC_ADR_NUM_MSK GENMASK(18, 16) |
| 107 | #define NFC_ADR_NUM(x) (((x) - 1) << 16) |
| 108 | #define NFC_SEND_ADR BIT(19) |
| 109 | #define NFC_ACCESS_DIR BIT(20) |
| 110 | #define NFC_DATA_TRANS BIT(21) |
| 111 | #define NFC_SEND_CMD1 BIT(22) |
| 112 | #define NFC_WAIT_FLAG BIT(23) |
| 113 | #define NFC_SEND_CMD2 BIT(24) |
| 114 | #define NFC_SEQ BIT(25) |
| 115 | #define NFC_DATA_SWAP_METHOD BIT(26) |
| 116 | #define NFC_ROW_AUTO_INC BIT(27) |
| 117 | #define NFC_SEND_CMD3 BIT(28) |
| 118 | #define NFC_SEND_CMD4 BIT(29) |
| 119 | #define NFC_CMD_TYPE_MSK GENMASK(31, 30) |
| 120 | #define NFC_NORMAL_OP (0 << 30) |
| 121 | #define NFC_ECC_OP (1 << 30) |
| 122 | #define NFC_PAGE_OP (2U << 30) |
| 123 | |
| 124 | /* define bit use in NFC_RCMD_SET */ |
| 125 | #define NFC_READ_CMD_MSK GENMASK(7, 0) |
| 126 | #define NFC_RND_READ_CMD0_MSK GENMASK(15, 8) |
| 127 | #define NFC_RND_READ_CMD1_MSK GENMASK(23, 16) |
| 128 | |
| 129 | /* define bit use in NFC_WCMD_SET */ |
| 130 | #define NFC_PROGRAM_CMD_MSK GENMASK(7, 0) |
| 131 | #define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8) |
| 132 | #define NFC_READ_CMD0_MSK GENMASK(23, 16) |
| 133 | #define NFC_READ_CMD1_MSK GENMASK(31, 24) |
| 134 | |
| 135 | /* define bit use in NFC_ECC_CTL */ |
| 136 | #define NFC_ECC_EN BIT(0) |
| 137 | #define NFC_ECC_PIPELINE BIT(3) |
| 138 | #define NFC_ECC_EXCEPTION BIT(4) |
| 139 | #define NFC_ECC_BLOCK_SIZE_MSK BIT(5) |
| 140 | #define NFC_ECC_BLOCK_512 BIT(5) |
| 141 | #define NFC_RANDOM_EN BIT(9) |
| 142 | #define NFC_RANDOM_DIRECTION BIT(10) |
| 143 | #define NFC_ECC_MODE_MSK GENMASK(15, 12) |
| 144 | #define NFC_ECC_MODE(x) ((x) << 12) |
| 145 | #define NFC_RANDOM_SEED_MSK GENMASK(30, 16) |
| 146 | #define NFC_RANDOM_SEED(x) ((x) << 16) |
| 147 | |
| 148 | /* define bit use in NFC_ECC_ST */ |
| 149 | #define NFC_ECC_ERR(x) BIT(x) |
| 150 | #define NFC_ECC_ERR_MSK GENMASK(15, 0) |
| 151 | #define NFC_ECC_PAT_FOUND(x) BIT(x + 16) |
| 152 | #define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff) |
| 153 | |
| 154 | #define NFC_DEFAULT_TIMEOUT_MS 1000 |
| 155 | |
| 156 | #define NFC_SRAM_SIZE 1024 |
| 157 | |
| 158 | #define NFC_MAX_CS 7 |
| 159 | |
| 160 | /** |
| 161 | * struct sunxi_nand_chip_sel - stores information related to NAND Chip Select |
| 162 | * |
| 163 | * @cs: the NAND CS id used to communicate with a NAND Chip |
| 164 | * @rb: the Ready/Busy pin ID. -1 means no R/B pin connected to the NFC |
| 165 | */ |
| 166 | struct sunxi_nand_chip_sel { |
| 167 | u8 cs; |
| 168 | s8 rb; |
| 169 | }; |
| 170 | |
| 171 | /** |
| 172 | * struct sunxi_nand_hw_ecc - stores information related to HW ECC support |
| 173 | * |
| 174 | * @mode: the sunxi ECC mode field deduced from ECC requirements |
| 175 | */ |
| 176 | struct sunxi_nand_hw_ecc { |
| 177 | int mode; |
| 178 | }; |
| 179 | |
| 180 | /** |
| 181 | * struct sunxi_nand_chip - stores NAND chip device related information |
| 182 | * |
| 183 | * @node: used to store NAND chips into a list |
| 184 | * @nand: base NAND chip structure |
| 185 | * @clk_rate: clk_rate required for this NAND chip |
| 186 | * @timing_cfg: TIMING_CFG register value for this NAND chip |
| 187 | * @timing_ctl: TIMING_CTL register value for this NAND chip |
| 188 | * @nsels: number of CS lines required by the NAND chip |
| 189 | * @sels: array of CS lines descriptions |
| 190 | */ |
| 191 | struct sunxi_nand_chip { |
| 192 | struct list_head node; |
| 193 | struct nand_chip nand; |
| 194 | unsigned long clk_rate; |
| 195 | u32 timing_cfg; |
| 196 | u32 timing_ctl; |
| 197 | int nsels; |
| 198 | struct sunxi_nand_chip_sel sels[0]; |
| 199 | }; |
| 200 | |
| 201 | static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) |
| 202 | { |
| 203 | return container_of(nand, struct sunxi_nand_chip, nand); |
| 204 | } |
| 205 | |
| 206 | /* |
| 207 | * NAND Controller capabilities structure: stores NAND controller capabilities |
| 208 | * for distinction between compatible strings. |
| 209 | * |
| 210 | * @extra_mbus_conf: Contrary to A10, A10s and A13, accessing internal RAM |
| 211 | * through MBUS on A23/A33 needs extra configuration. |
| 212 | * @reg_io_data: I/O data register |
| 213 | * @dma_maxburst: DMA maxburst |
| 214 | */ |
| 215 | struct sunxi_nfc_caps { |
| 216 | bool extra_mbus_conf; |
| 217 | unsigned int reg_io_data; |
| 218 | unsigned int dma_maxburst; |
| 219 | }; |
| 220 | |
| 221 | /** |
| 222 | * struct sunxi_nfc - stores sunxi NAND controller information |
| 223 | * |
| 224 | * @controller: base controller structure |
| 225 | * @dev: parent device (used to print error messages) |
| 226 | * @regs: NAND controller registers |
| 227 | * @ahb_clk: NAND controller AHB clock |
| 228 | * @mod_clk: NAND controller mod clock |
| 229 | * @reset: NAND controller reset line |
| 230 | * @assigned_cs: bitmask describing already assigned CS lines |
| 231 | * @clk_rate: NAND controller current clock rate |
| 232 | * @chips: a list containing all the NAND chips attached to this NAND |
| 233 | * controller |
| 234 | * @complete: a completion object used to wait for NAND controller events |
| 235 | * @dmac: the DMA channel attached to the NAND controller |
| 236 | */ |
| 237 | struct sunxi_nfc { |
| 238 | struct nand_controller controller; |
| 239 | struct device *dev; |
| 240 | void __iomem *regs; |
| 241 | struct clk *ahb_clk; |
| 242 | struct clk *mod_clk; |
| 243 | struct reset_control *reset; |
| 244 | unsigned long assigned_cs; |
| 245 | unsigned long clk_rate; |
| 246 | struct list_head chips; |
| 247 | struct completion complete; |
| 248 | struct dma_chan *dmac; |
| 249 | const struct sunxi_nfc_caps *caps; |
| 250 | }; |
| 251 | |
| 252 | static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_controller *ctrl) |
| 253 | { |
| 254 | return container_of(ctrl, struct sunxi_nfc, controller); |
| 255 | } |
| 256 | |
| 257 | static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) |
| 258 | { |
| 259 | struct sunxi_nfc *nfc = dev_id; |
| 260 | u32 st = readl(nfc->regs + NFC_REG_ST); |
| 261 | u32 ien = readl(nfc->regs + NFC_REG_INT); |
| 262 | |
| 263 | if (!(ien & st)) |
| 264 | return IRQ_NONE; |
| 265 | |
| 266 | if ((ien & st) == ien) |
| 267 | complete(&nfc->complete); |
| 268 | |
| 269 | writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); |
| 270 | writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); |
| 271 | |
| 272 | return IRQ_HANDLED; |
| 273 | } |
| 274 | |
| 275 | static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events, |
| 276 | bool use_polling, unsigned int timeout_ms) |
| 277 | { |
| 278 | int ret; |
| 279 | |
| 280 | if (events & ~NFC_INT_MASK) |
| 281 | return -EINVAL; |
| 282 | |
| 283 | if (!timeout_ms) |
| 284 | timeout_ms = NFC_DEFAULT_TIMEOUT_MS; |
| 285 | |
| 286 | if (!use_polling) { |
| 287 | init_completion(&nfc->complete); |
| 288 | |
| 289 | writel(events, nfc->regs + NFC_REG_INT); |
| 290 | |
| 291 | ret = wait_for_completion_timeout(&nfc->complete, |
| 292 | msecs_to_jiffies(timeout_ms)); |
| 293 | if (!ret) |
| 294 | ret = -ETIMEDOUT; |
| 295 | else |
| 296 | ret = 0; |
| 297 | |
| 298 | writel(0, nfc->regs + NFC_REG_INT); |
| 299 | } else { |
| 300 | u32 status; |
| 301 | |
| 302 | ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, |
| 303 | (status & events) == events, 1, |
| 304 | timeout_ms * 1000); |
| 305 | } |
| 306 | |
| 307 | writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST); |
| 308 | |
| 309 | if (ret) |
| 310 | dev_err(nfc->dev, "wait interrupt timedout\n"); |
| 311 | |
| 312 | return ret; |
| 313 | } |
| 314 | |
| 315 | static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) |
| 316 | { |
| 317 | u32 status; |
| 318 | int ret; |
| 319 | |
| 320 | ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, |
| 321 | !(status & NFC_CMD_FIFO_STATUS), 1, |
| 322 | NFC_DEFAULT_TIMEOUT_MS * 1000); |
| 323 | if (ret) |
| 324 | dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); |
| 325 | |
| 326 | return ret; |
| 327 | } |
| 328 | |
| 329 | static int sunxi_nfc_rst(struct sunxi_nfc *nfc) |
| 330 | { |
| 331 | u32 ctl; |
| 332 | int ret; |
| 333 | |
| 334 | writel(0, nfc->regs + NFC_REG_ECC_CTL); |
| 335 | writel(NFC_RESET, nfc->regs + NFC_REG_CTL); |
| 336 | |
| 337 | ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl, |
| 338 | !(ctl & NFC_RESET), 1, |
| 339 | NFC_DEFAULT_TIMEOUT_MS * 1000); |
| 340 | if (ret) |
| 341 | dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); |
| 342 | |
| 343 | return ret; |
| 344 | } |
| 345 | |
| 346 | static int sunxi_nfc_dma_op_prepare(struct sunxi_nfc *nfc, const void *buf, |
| 347 | int chunksize, int nchunks, |
| 348 | enum dma_data_direction ddir, |
| 349 | struct scatterlist *sg) |
| 350 | { |
| 351 | struct dma_async_tx_descriptor *dmad; |
| 352 | enum dma_transfer_direction tdir; |
| 353 | dma_cookie_t dmat; |
| 354 | int ret; |
| 355 | |
| 356 | if (ddir == DMA_FROM_DEVICE) |
| 357 | tdir = DMA_DEV_TO_MEM; |
| 358 | else |
| 359 | tdir = DMA_MEM_TO_DEV; |
| 360 | |
| 361 | sg_init_one(sg, buf, nchunks * chunksize); |
| 362 | ret = dma_map_sg(nfc->dev, sg, 1, ddir); |
| 363 | if (!ret) |
| 364 | return -ENOMEM; |
| 365 | |
| 366 | dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK); |
| 367 | if (!dmad) { |
| 368 | ret = -EINVAL; |
| 369 | goto err_unmap_buf; |
| 370 | } |
| 371 | |
| 372 | writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD, |
| 373 | nfc->regs + NFC_REG_CTL); |
| 374 | writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM); |
| 375 | writel(chunksize, nfc->regs + NFC_REG_CNT); |
| 376 | if (nfc->caps->extra_mbus_conf) |
| 377 | writel(chunksize * nchunks, nfc->regs + NFC_REG_MDMA_CNT); |
| 378 | |
| 379 | dmat = dmaengine_submit(dmad); |
| 380 | |
| 381 | ret = dma_submit_error(dmat); |
| 382 | if (ret) |
| 383 | goto err_clr_dma_flag; |
| 384 | |
| 385 | return 0; |
| 386 | |
| 387 | err_clr_dma_flag: |
| 388 | writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, |
| 389 | nfc->regs + NFC_REG_CTL); |
| 390 | |
| 391 | err_unmap_buf: |
| 392 | dma_unmap_sg(nfc->dev, sg, 1, ddir); |
| 393 | return ret; |
| 394 | } |
| 395 | |
| 396 | static void sunxi_nfc_dma_op_cleanup(struct sunxi_nfc *nfc, |
| 397 | enum dma_data_direction ddir, |
| 398 | struct scatterlist *sg) |
| 399 | { |
| 400 | dma_unmap_sg(nfc->dev, sg, 1, ddir); |
| 401 | writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, |
| 402 | nfc->regs + NFC_REG_CTL); |
| 403 | } |
| 404 | |
| 405 | static void sunxi_nfc_select_chip(struct nand_chip *nand, unsigned int cs) |
| 406 | { |
| 407 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 408 | struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| 409 | struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| 410 | struct sunxi_nand_chip_sel *sel; |
| 411 | u32 ctl; |
| 412 | |
| 413 | if (cs > 0 && cs >= sunxi_nand->nsels) |
| 414 | return; |
| 415 | |
| 416 | ctl = readl(nfc->regs + NFC_REG_CTL) & |
| 417 | ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); |
| 418 | |
| 419 | sel = &sunxi_nand->sels[cs]; |
| 420 | ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift); |
| 421 | if (sel->rb >= 0) |
| 422 | ctl |= NFC_RB_SEL(sel->rb); |
| 423 | |
| 424 | writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); |
| 425 | |
| 426 | if (nfc->clk_rate != sunxi_nand->clk_rate) { |
| 427 | clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); |
| 428 | nfc->clk_rate = sunxi_nand->clk_rate; |
| 429 | } |
| 430 | |
| 431 | writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); |
| 432 | writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); |
| 433 | writel(ctl, nfc->regs + NFC_REG_CTL); |
| 434 | } |
| 435 | |
| 436 | static void sunxi_nfc_read_buf(struct nand_chip *nand, uint8_t *buf, int len) |
| 437 | { |
| 438 | struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| 439 | struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| 440 | int ret; |
| 441 | int cnt; |
| 442 | int offs = 0; |
| 443 | u32 tmp; |
| 444 | |
| 445 | while (len > offs) { |
| 446 | bool poll = false; |
| 447 | |
| 448 | cnt = min(len - offs, NFC_SRAM_SIZE); |
| 449 | |
| 450 | ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| 451 | if (ret) |
| 452 | break; |
| 453 | |
| 454 | writel(cnt, nfc->regs + NFC_REG_CNT); |
| 455 | tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; |
| 456 | writel(tmp, nfc->regs + NFC_REG_CMD); |
| 457 | |
| 458 | /* Arbitrary limit for polling mode */ |
| 459 | if (cnt < 64) |
| 460 | poll = true; |
| 461 | |
| 462 | ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); |
| 463 | if (ret) |
| 464 | break; |
| 465 | |
| 466 | if (buf) |
| 467 | memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, |
| 468 | cnt); |
| 469 | offs += cnt; |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | static void sunxi_nfc_write_buf(struct nand_chip *nand, const uint8_t *buf, |
| 474 | int len) |
| 475 | { |
| 476 | struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| 477 | struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| 478 | int ret; |
| 479 | int cnt; |
| 480 | int offs = 0; |
| 481 | u32 tmp; |
| 482 | |
| 483 | while (len > offs) { |
| 484 | bool poll = false; |
| 485 | |
| 486 | cnt = min(len - offs, NFC_SRAM_SIZE); |
| 487 | |
| 488 | ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| 489 | if (ret) |
| 490 | break; |
| 491 | |
| 492 | writel(cnt, nfc->regs + NFC_REG_CNT); |
| 493 | memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); |
| 494 | tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | |
| 495 | NFC_ACCESS_DIR; |
| 496 | writel(tmp, nfc->regs + NFC_REG_CMD); |
| 497 | |
| 498 | /* Arbitrary limit for polling mode */ |
| 499 | if (cnt < 64) |
| 500 | poll = true; |
| 501 | |
| 502 | ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); |
| 503 | if (ret) |
| 504 | break; |
| 505 | |
| 506 | offs += cnt; |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | /* These seed values have been extracted from Allwinner's BSP */ |
| 511 | static const u16 sunxi_nfc_randomizer_page_seeds[] = { |
| 512 | 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, |
| 513 | 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, |
| 514 | 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, |
| 515 | 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, |
| 516 | 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, |
| 517 | 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, |
| 518 | 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, |
| 519 | 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, |
| 520 | 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, |
| 521 | 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, |
| 522 | 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, |
| 523 | 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, |
| 524 | 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, |
| 525 | 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, |
| 526 | 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, |
| 527 | 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, |
| 528 | }; |
| 529 | |
| 530 | /* |
| 531 | * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds |
| 532 | * have been generated using |
| 533 | * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what |
| 534 | * the randomizer engine does internally before de/scrambling OOB data. |
| 535 | * |
| 536 | * Those tables are statically defined to avoid calculating randomizer state |
| 537 | * at runtime. |
| 538 | */ |
| 539 | static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { |
| 540 | 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, |
| 541 | 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, |
| 542 | 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, |
| 543 | 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, |
| 544 | 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, |
| 545 | 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, |
| 546 | 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, |
| 547 | 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, |
| 548 | 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, |
| 549 | 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, |
| 550 | 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, |
| 551 | 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, |
| 552 | 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, |
| 553 | 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, |
| 554 | 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, |
| 555 | 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, |
| 556 | }; |
| 557 | |
| 558 | static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { |
| 559 | 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, |
| 560 | 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, |
| 561 | 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, |
| 562 | 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, |
| 563 | 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, |
| 564 | 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, |
| 565 | 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, |
| 566 | 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, |
| 567 | 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, |
| 568 | 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, |
| 569 | 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, |
| 570 | 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, |
| 571 | 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, |
| 572 | 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, |
| 573 | 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, |
| 574 | 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, |
| 575 | }; |
| 576 | |
| 577 | static u16 sunxi_nfc_randomizer_step(u16 state, int count) |
| 578 | { |
| 579 | state &= 0x7fff; |
| 580 | |
| 581 | /* |
| 582 | * This loop is just a simple implementation of a Fibonacci LFSR using |
| 583 | * the x16 + x15 + 1 polynomial. |
| 584 | */ |
| 585 | while (count--) |
| 586 | state = ((state >> 1) | |
| 587 | (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; |
| 588 | |
| 589 | return state; |
| 590 | } |
| 591 | |
| 592 | static u16 sunxi_nfc_randomizer_state(struct nand_chip *nand, int page, |
| 593 | bool ecc) |
| 594 | { |
| 595 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 596 | const u16 *seeds = sunxi_nfc_randomizer_page_seeds; |
| 597 | int mod = mtd_div_by_ws(mtd->erasesize, mtd); |
| 598 | |
| 599 | if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) |
| 600 | mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); |
| 601 | |
| 602 | if (ecc) { |
| 603 | if (mtd->ecc_step_size == 512) |
| 604 | seeds = sunxi_nfc_randomizer_ecc512_seeds; |
| 605 | else |
| 606 | seeds = sunxi_nfc_randomizer_ecc1024_seeds; |
| 607 | } |
| 608 | |
| 609 | return seeds[page % mod]; |
| 610 | } |
| 611 | |
| 612 | static void sunxi_nfc_randomizer_config(struct nand_chip *nand, int page, |
| 613 | bool ecc) |
| 614 | { |
| 615 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 616 | u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); |
| 617 | u16 state; |
| 618 | |
| 619 | if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| 620 | return; |
| 621 | |
| 622 | ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); |
| 623 | state = sunxi_nfc_randomizer_state(nand, page, ecc); |
| 624 | ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; |
| 625 | writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); |
| 626 | } |
| 627 | |
| 628 | static void sunxi_nfc_randomizer_enable(struct nand_chip *nand) |
| 629 | { |
| 630 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 631 | |
| 632 | if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| 633 | return; |
| 634 | |
| 635 | writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, |
| 636 | nfc->regs + NFC_REG_ECC_CTL); |
| 637 | } |
| 638 | |
| 639 | static void sunxi_nfc_randomizer_disable(struct nand_chip *nand) |
| 640 | { |
| 641 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 642 | |
| 643 | if (!(nand->options & NAND_NEED_SCRAMBLING)) |
| 644 | return; |
| 645 | |
| 646 | writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, |
| 647 | nfc->regs + NFC_REG_ECC_CTL); |
| 648 | } |
| 649 | |
| 650 | static void sunxi_nfc_randomize_bbm(struct nand_chip *nand, int page, u8 *bbm) |
| 651 | { |
| 652 | u16 state = sunxi_nfc_randomizer_state(nand, page, true); |
| 653 | |
| 654 | bbm[0] ^= state; |
| 655 | bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); |
| 656 | } |
| 657 | |
| 658 | static void sunxi_nfc_randomizer_write_buf(struct nand_chip *nand, |
| 659 | const uint8_t *buf, int len, |
| 660 | bool ecc, int page) |
| 661 | { |
| 662 | sunxi_nfc_randomizer_config(nand, page, ecc); |
| 663 | sunxi_nfc_randomizer_enable(nand); |
| 664 | sunxi_nfc_write_buf(nand, buf, len); |
| 665 | sunxi_nfc_randomizer_disable(nand); |
| 666 | } |
| 667 | |
| 668 | static void sunxi_nfc_randomizer_read_buf(struct nand_chip *nand, uint8_t *buf, |
| 669 | int len, bool ecc, int page) |
| 670 | { |
| 671 | sunxi_nfc_randomizer_config(nand, page, ecc); |
| 672 | sunxi_nfc_randomizer_enable(nand); |
| 673 | sunxi_nfc_read_buf(nand, buf, len); |
| 674 | sunxi_nfc_randomizer_disable(nand); |
| 675 | } |
| 676 | |
| 677 | static void sunxi_nfc_hw_ecc_enable(struct nand_chip *nand) |
| 678 | { |
| 679 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 680 | struct sunxi_nand_hw_ecc *data = nand->ecc.priv; |
| 681 | u32 ecc_ctl; |
| 682 | |
| 683 | ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); |
| 684 | ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | |
| 685 | NFC_ECC_BLOCK_SIZE_MSK); |
| 686 | ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION | |
| 687 | NFC_ECC_PIPELINE; |
| 688 | |
| 689 | if (nand->ecc.size == 512) |
| 690 | ecc_ctl |= NFC_ECC_BLOCK_512; |
| 691 | |
| 692 | writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); |
| 693 | } |
| 694 | |
| 695 | static void sunxi_nfc_hw_ecc_disable(struct nand_chip *nand) |
| 696 | { |
| 697 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 698 | |
| 699 | writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, |
| 700 | nfc->regs + NFC_REG_ECC_CTL); |
| 701 | } |
| 702 | |
| 703 | static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) |
| 704 | { |
| 705 | buf[0] = user_data; |
| 706 | buf[1] = user_data >> 8; |
| 707 | buf[2] = user_data >> 16; |
| 708 | buf[3] = user_data >> 24; |
| 709 | } |
| 710 | |
| 711 | static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) |
| 712 | { |
| 713 | return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); |
| 714 | } |
| 715 | |
| 716 | static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct nand_chip *nand, u8 *oob, |
| 717 | int step, bool bbm, int page) |
| 718 | { |
| 719 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 720 | |
| 721 | sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)), |
| 722 | oob); |
| 723 | |
| 724 | /* De-randomize the Bad Block Marker. */ |
| 725 | if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) |
| 726 | sunxi_nfc_randomize_bbm(nand, page, oob); |
| 727 | } |
| 728 | |
| 729 | static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct nand_chip *nand, |
| 730 | const u8 *oob, int step, |
| 731 | bool bbm, int page) |
| 732 | { |
| 733 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 734 | u8 user_data[4]; |
| 735 | |
| 736 | /* Randomize the Bad Block Marker. */ |
| 737 | if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) { |
| 738 | memcpy(user_data, oob, sizeof(user_data)); |
| 739 | sunxi_nfc_randomize_bbm(nand, page, user_data); |
| 740 | oob = user_data; |
| 741 | } |
| 742 | |
| 743 | writel(sunxi_nfc_buf_to_user_data(oob), |
| 744 | nfc->regs + NFC_REG_USER_DATA(step)); |
| 745 | } |
| 746 | |
| 747 | static void sunxi_nfc_hw_ecc_update_stats(struct nand_chip *nand, |
| 748 | unsigned int *max_bitflips, int ret) |
| 749 | { |
| 750 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 751 | |
| 752 | if (ret < 0) { |
| 753 | mtd->ecc_stats.failed++; |
| 754 | } else { |
| 755 | mtd->ecc_stats.corrected += ret; |
| 756 | *max_bitflips = max_t(unsigned int, *max_bitflips, ret); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | static int sunxi_nfc_hw_ecc_correct(struct nand_chip *nand, u8 *data, u8 *oob, |
| 761 | int step, u32 status, bool *erased) |
| 762 | { |
| 763 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 764 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 765 | u32 tmp; |
| 766 | |
| 767 | *erased = false; |
| 768 | |
| 769 | if (status & NFC_ECC_ERR(step)) |
| 770 | return -EBADMSG; |
| 771 | |
| 772 | if (status & NFC_ECC_PAT_FOUND(step)) { |
| 773 | u8 pattern; |
| 774 | |
| 775 | if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) { |
| 776 | pattern = 0x0; |
| 777 | } else { |
| 778 | pattern = 0xff; |
| 779 | *erased = true; |
| 780 | } |
| 781 | |
| 782 | if (data) |
| 783 | memset(data, pattern, ecc->size); |
| 784 | |
| 785 | if (oob) |
| 786 | memset(oob, pattern, ecc->bytes + 4); |
| 787 | |
| 788 | return 0; |
| 789 | } |
| 790 | |
| 791 | tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step)); |
| 792 | |
| 793 | return NFC_ECC_ERR_CNT(step, tmp); |
| 794 | } |
| 795 | |
| 796 | static int sunxi_nfc_hw_ecc_read_chunk(struct nand_chip *nand, |
| 797 | u8 *data, int data_off, |
| 798 | u8 *oob, int oob_off, |
| 799 | int *cur_off, |
| 800 | unsigned int *max_bitflips, |
| 801 | bool bbm, bool oob_required, int page) |
| 802 | { |
| 803 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 804 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 805 | int raw_mode = 0; |
| 806 | bool erased; |
| 807 | int ret; |
| 808 | |
| 809 | if (*cur_off != data_off) |
| 810 | nand_change_read_column_op(nand, data_off, NULL, 0, false); |
| 811 | |
| 812 | sunxi_nfc_randomizer_read_buf(nand, NULL, ecc->size, false, page); |
| 813 | |
| 814 | if (data_off + ecc->size != oob_off) |
| 815 | nand_change_read_column_op(nand, oob_off, NULL, 0, false); |
| 816 | |
| 817 | ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| 818 | if (ret) |
| 819 | return ret; |
| 820 | |
| 821 | sunxi_nfc_randomizer_enable(nand); |
| 822 | writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, |
| 823 | nfc->regs + NFC_REG_CMD); |
| 824 | |
| 825 | ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); |
| 826 | sunxi_nfc_randomizer_disable(nand); |
| 827 | if (ret) |
| 828 | return ret; |
| 829 | |
| 830 | *cur_off = oob_off + ecc->bytes + 4; |
| 831 | |
| 832 | ret = sunxi_nfc_hw_ecc_correct(nand, data, oob_required ? oob : NULL, 0, |
| 833 | readl(nfc->regs + NFC_REG_ECC_ST), |
| 834 | &erased); |
| 835 | if (erased) |
| 836 | return 1; |
| 837 | |
| 838 | if (ret < 0) { |
| 839 | /* |
| 840 | * Re-read the data with the randomizer disabled to identify |
| 841 | * bitflips in erased pages. |
| 842 | */ |
| 843 | if (nand->options & NAND_NEED_SCRAMBLING) |
| 844 | nand_change_read_column_op(nand, data_off, data, |
| 845 | ecc->size, false); |
| 846 | else |
| 847 | memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, |
| 848 | ecc->size); |
| 849 | |
| 850 | nand_change_read_column_op(nand, oob_off, oob, ecc->bytes + 4, |
| 851 | false); |
| 852 | |
| 853 | ret = nand_check_erased_ecc_chunk(data, ecc->size, |
| 854 | oob, ecc->bytes + 4, |
| 855 | NULL, 0, ecc->strength); |
| 856 | if (ret >= 0) |
| 857 | raw_mode = 1; |
| 858 | } else { |
| 859 | memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); |
| 860 | |
| 861 | if (oob_required) { |
| 862 | nand_change_read_column_op(nand, oob_off, NULL, 0, |
| 863 | false); |
| 864 | sunxi_nfc_randomizer_read_buf(nand, oob, ecc->bytes + 4, |
| 865 | true, page); |
| 866 | |
| 867 | sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, 0, |
| 868 | bbm, page); |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips, ret); |
| 873 | |
| 874 | return raw_mode; |
| 875 | } |
| 876 | |
| 877 | static void sunxi_nfc_hw_ecc_read_extra_oob(struct nand_chip *nand, |
| 878 | u8 *oob, int *cur_off, |
| 879 | bool randomize, int page) |
| 880 | { |
| 881 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 882 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 883 | int offset = ((ecc->bytes + 4) * ecc->steps); |
| 884 | int len = mtd->oobsize - offset; |
| 885 | |
| 886 | if (len <= 0) |
| 887 | return; |
| 888 | |
| 889 | if (!cur_off || *cur_off != offset) |
| 890 | nand_change_read_column_op(nand, mtd->writesize, NULL, 0, |
| 891 | false); |
| 892 | |
| 893 | if (!randomize) |
| 894 | sunxi_nfc_read_buf(nand, oob + offset, len); |
| 895 | else |
| 896 | sunxi_nfc_randomizer_read_buf(nand, oob + offset, len, |
| 897 | false, page); |
| 898 | |
| 899 | if (cur_off) |
| 900 | *cur_off = mtd->oobsize + mtd->writesize; |
| 901 | } |
| 902 | |
| 903 | static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf, |
| 904 | int oob_required, int page, |
| 905 | int nchunks) |
| 906 | { |
| 907 | bool randomized = nand->options & NAND_NEED_SCRAMBLING; |
| 908 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 909 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 910 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 911 | unsigned int max_bitflips = 0; |
| 912 | int ret, i, raw_mode = 0; |
| 913 | struct scatterlist sg; |
| 914 | u32 status; |
| 915 | |
| 916 | ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| 917 | if (ret) |
| 918 | return ret; |
| 919 | |
| 920 | ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, nchunks, |
| 921 | DMA_FROM_DEVICE, &sg); |
| 922 | if (ret) |
| 923 | return ret; |
| 924 | |
| 925 | sunxi_nfc_hw_ecc_enable(nand); |
| 926 | sunxi_nfc_randomizer_config(nand, page, false); |
| 927 | sunxi_nfc_randomizer_enable(nand); |
| 928 | |
| 929 | writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) | |
| 930 | NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET); |
| 931 | |
| 932 | dma_async_issue_pending(nfc->dmac); |
| 933 | |
| 934 | writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS, |
| 935 | nfc->regs + NFC_REG_CMD); |
| 936 | |
| 937 | ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); |
| 938 | if (ret) |
| 939 | dmaengine_terminate_all(nfc->dmac); |
| 940 | |
| 941 | sunxi_nfc_randomizer_disable(nand); |
| 942 | sunxi_nfc_hw_ecc_disable(nand); |
| 943 | |
| 944 | sunxi_nfc_dma_op_cleanup(nfc, DMA_FROM_DEVICE, &sg); |
| 945 | |
| 946 | if (ret) |
| 947 | return ret; |
| 948 | |
| 949 | status = readl(nfc->regs + NFC_REG_ECC_ST); |
| 950 | |
| 951 | for (i = 0; i < nchunks; i++) { |
| 952 | int data_off = i * ecc->size; |
| 953 | int oob_off = i * (ecc->bytes + 4); |
| 954 | u8 *data = buf + data_off; |
| 955 | u8 *oob = nand->oob_poi + oob_off; |
| 956 | bool erased; |
| 957 | |
| 958 | ret = sunxi_nfc_hw_ecc_correct(nand, randomized ? data : NULL, |
| 959 | oob_required ? oob : NULL, |
| 960 | i, status, &erased); |
| 961 | |
| 962 | /* ECC errors are handled in the second loop. */ |
| 963 | if (ret < 0) |
| 964 | continue; |
| 965 | |
| 966 | if (oob_required && !erased) { |
| 967 | /* TODO: use DMA to retrieve OOB */ |
| 968 | nand_change_read_column_op(nand, |
| 969 | mtd->writesize + oob_off, |
| 970 | oob, ecc->bytes + 4, false); |
| 971 | |
| 972 | sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, i, |
| 973 | !i, page); |
| 974 | } |
| 975 | |
| 976 | if (erased) |
| 977 | raw_mode = 1; |
| 978 | |
| 979 | sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret); |
| 980 | } |
| 981 | |
| 982 | if (status & NFC_ECC_ERR_MSK) { |
| 983 | for (i = 0; i < nchunks; i++) { |
| 984 | int data_off = i * ecc->size; |
| 985 | int oob_off = i * (ecc->bytes + 4); |
| 986 | u8 *data = buf + data_off; |
| 987 | u8 *oob = nand->oob_poi + oob_off; |
| 988 | |
| 989 | if (!(status & NFC_ECC_ERR(i))) |
| 990 | continue; |
| 991 | |
| 992 | /* |
| 993 | * Re-read the data with the randomizer disabled to |
| 994 | * identify bitflips in erased pages. |
| 995 | * TODO: use DMA to read page in raw mode |
| 996 | */ |
| 997 | if (randomized) |
| 998 | nand_change_read_column_op(nand, data_off, |
| 999 | data, ecc->size, |
| 1000 | false); |
| 1001 | |
| 1002 | /* TODO: use DMA to retrieve OOB */ |
| 1003 | nand_change_read_column_op(nand, |
| 1004 | mtd->writesize + oob_off, |
| 1005 | oob, ecc->bytes + 4, false); |
| 1006 | |
| 1007 | ret = nand_check_erased_ecc_chunk(data, ecc->size, |
| 1008 | oob, ecc->bytes + 4, |
| 1009 | NULL, 0, |
| 1010 | ecc->strength); |
| 1011 | if (ret >= 0) |
| 1012 | raw_mode = 1; |
| 1013 | |
| 1014 | sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret); |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | if (oob_required) |
| 1019 | sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, |
| 1020 | NULL, !raw_mode, |
| 1021 | page); |
| 1022 | |
| 1023 | return max_bitflips; |
| 1024 | } |
| 1025 | |
| 1026 | static int sunxi_nfc_hw_ecc_write_chunk(struct nand_chip *nand, |
| 1027 | const u8 *data, int data_off, |
| 1028 | const u8 *oob, int oob_off, |
| 1029 | int *cur_off, bool bbm, |
| 1030 | int page) |
| 1031 | { |
| 1032 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 1033 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1034 | int ret; |
| 1035 | |
| 1036 | if (data_off != *cur_off) |
| 1037 | nand_change_write_column_op(nand, data_off, NULL, 0, false); |
| 1038 | |
| 1039 | sunxi_nfc_randomizer_write_buf(nand, data, ecc->size, false, page); |
| 1040 | |
| 1041 | if (data_off + ecc->size != oob_off) |
| 1042 | nand_change_write_column_op(nand, oob_off, NULL, 0, false); |
| 1043 | |
| 1044 | ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| 1045 | if (ret) |
| 1046 | return ret; |
| 1047 | |
| 1048 | sunxi_nfc_randomizer_enable(nand); |
| 1049 | sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, 0, bbm, page); |
| 1050 | |
| 1051 | writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | |
| 1052 | NFC_ACCESS_DIR | NFC_ECC_OP, |
| 1053 | nfc->regs + NFC_REG_CMD); |
| 1054 | |
| 1055 | ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); |
| 1056 | sunxi_nfc_randomizer_disable(nand); |
| 1057 | if (ret) |
| 1058 | return ret; |
| 1059 | |
| 1060 | *cur_off = oob_off + ecc->bytes + 4; |
| 1061 | |
| 1062 | return 0; |
| 1063 | } |
| 1064 | |
| 1065 | static void sunxi_nfc_hw_ecc_write_extra_oob(struct nand_chip *nand, |
| 1066 | u8 *oob, int *cur_off, |
| 1067 | int page) |
| 1068 | { |
| 1069 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1070 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1071 | int offset = ((ecc->bytes + 4) * ecc->steps); |
| 1072 | int len = mtd->oobsize - offset; |
| 1073 | |
| 1074 | if (len <= 0) |
| 1075 | return; |
| 1076 | |
| 1077 | if (!cur_off || *cur_off != offset) |
| 1078 | nand_change_write_column_op(nand, offset + mtd->writesize, |
| 1079 | NULL, 0, false); |
| 1080 | |
| 1081 | sunxi_nfc_randomizer_write_buf(nand, oob + offset, len, false, page); |
| 1082 | |
| 1083 | if (cur_off) |
| 1084 | *cur_off = mtd->oobsize + mtd->writesize; |
| 1085 | } |
| 1086 | |
| 1087 | static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *nand, uint8_t *buf, |
| 1088 | int oob_required, int page) |
| 1089 | { |
| 1090 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1091 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1092 | unsigned int max_bitflips = 0; |
| 1093 | int ret, i, cur_off = 0; |
| 1094 | bool raw_mode = false; |
| 1095 | |
| 1096 | sunxi_nfc_select_chip(nand, nand->cur_cs); |
| 1097 | |
| 1098 | nand_read_page_op(nand, page, 0, NULL, 0); |
| 1099 | |
| 1100 | sunxi_nfc_hw_ecc_enable(nand); |
| 1101 | |
| 1102 | for (i = 0; i < ecc->steps; i++) { |
| 1103 | int data_off = i * ecc->size; |
| 1104 | int oob_off = i * (ecc->bytes + 4); |
| 1105 | u8 *data = buf + data_off; |
| 1106 | u8 *oob = nand->oob_poi + oob_off; |
| 1107 | |
| 1108 | ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, oob, |
| 1109 | oob_off + mtd->writesize, |
| 1110 | &cur_off, &max_bitflips, |
| 1111 | !i, oob_required, page); |
| 1112 | if (ret < 0) |
| 1113 | return ret; |
| 1114 | else if (ret) |
| 1115 | raw_mode = true; |
| 1116 | } |
| 1117 | |
| 1118 | if (oob_required) |
| 1119 | sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, &cur_off, |
| 1120 | !raw_mode, page); |
| 1121 | |
| 1122 | sunxi_nfc_hw_ecc_disable(nand); |
| 1123 | |
| 1124 | return max_bitflips; |
| 1125 | } |
| 1126 | |
| 1127 | static int sunxi_nfc_hw_ecc_read_page_dma(struct nand_chip *nand, u8 *buf, |
| 1128 | int oob_required, int page) |
| 1129 | { |
| 1130 | int ret; |
| 1131 | |
| 1132 | sunxi_nfc_select_chip(nand, nand->cur_cs); |
| 1133 | |
| 1134 | nand_read_page_op(nand, page, 0, NULL, 0); |
| 1135 | |
| 1136 | ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, oob_required, page, |
| 1137 | nand->ecc.steps); |
| 1138 | if (ret >= 0) |
| 1139 | return ret; |
| 1140 | |
| 1141 | /* Fallback to PIO mode */ |
| 1142 | return sunxi_nfc_hw_ecc_read_page(nand, buf, oob_required, page); |
| 1143 | } |
| 1144 | |
| 1145 | static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *nand, |
| 1146 | u32 data_offs, u32 readlen, |
| 1147 | u8 *bufpoi, int page) |
| 1148 | { |
| 1149 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1150 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1151 | int ret, i, cur_off = 0; |
| 1152 | unsigned int max_bitflips = 0; |
| 1153 | |
| 1154 | sunxi_nfc_select_chip(nand, nand->cur_cs); |
| 1155 | |
| 1156 | nand_read_page_op(nand, page, 0, NULL, 0); |
| 1157 | |
| 1158 | sunxi_nfc_hw_ecc_enable(nand); |
| 1159 | |
| 1160 | for (i = data_offs / ecc->size; |
| 1161 | i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { |
| 1162 | int data_off = i * ecc->size; |
| 1163 | int oob_off = i * (ecc->bytes + 4); |
| 1164 | u8 *data = bufpoi + data_off; |
| 1165 | u8 *oob = nand->oob_poi + oob_off; |
| 1166 | |
| 1167 | ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, |
| 1168 | oob, |
| 1169 | oob_off + mtd->writesize, |
| 1170 | &cur_off, &max_bitflips, !i, |
| 1171 | false, page); |
| 1172 | if (ret < 0) |
| 1173 | return ret; |
| 1174 | } |
| 1175 | |
| 1176 | sunxi_nfc_hw_ecc_disable(nand); |
| 1177 | |
| 1178 | return max_bitflips; |
| 1179 | } |
| 1180 | |
| 1181 | static int sunxi_nfc_hw_ecc_read_subpage_dma(struct nand_chip *nand, |
| 1182 | u32 data_offs, u32 readlen, |
| 1183 | u8 *buf, int page) |
| 1184 | { |
| 1185 | int nchunks = DIV_ROUND_UP(data_offs + readlen, nand->ecc.size); |
| 1186 | int ret; |
| 1187 | |
| 1188 | sunxi_nfc_select_chip(nand, nand->cur_cs); |
| 1189 | |
| 1190 | nand_read_page_op(nand, page, 0, NULL, 0); |
| 1191 | |
| 1192 | ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, false, page, nchunks); |
| 1193 | if (ret >= 0) |
| 1194 | return ret; |
| 1195 | |
| 1196 | /* Fallback to PIO mode */ |
| 1197 | return sunxi_nfc_hw_ecc_read_subpage(nand, data_offs, readlen, |
| 1198 | buf, page); |
| 1199 | } |
| 1200 | |
| 1201 | static int sunxi_nfc_hw_ecc_write_page(struct nand_chip *nand, |
| 1202 | const uint8_t *buf, int oob_required, |
| 1203 | int page) |
| 1204 | { |
| 1205 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1206 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1207 | int ret, i, cur_off = 0; |
| 1208 | |
| 1209 | sunxi_nfc_select_chip(nand, nand->cur_cs); |
| 1210 | |
| 1211 | nand_prog_page_begin_op(nand, page, 0, NULL, 0); |
| 1212 | |
| 1213 | sunxi_nfc_hw_ecc_enable(nand); |
| 1214 | |
| 1215 | for (i = 0; i < ecc->steps; i++) { |
| 1216 | int data_off = i * ecc->size; |
| 1217 | int oob_off = i * (ecc->bytes + 4); |
| 1218 | const u8 *data = buf + data_off; |
| 1219 | const u8 *oob = nand->oob_poi + oob_off; |
| 1220 | |
| 1221 | ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob, |
| 1222 | oob_off + mtd->writesize, |
| 1223 | &cur_off, !i, page); |
| 1224 | if (ret) |
| 1225 | return ret; |
| 1226 | } |
| 1227 | |
| 1228 | if (oob_required || (nand->options & NAND_NEED_SCRAMBLING)) |
| 1229 | sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi, |
| 1230 | &cur_off, page); |
| 1231 | |
| 1232 | sunxi_nfc_hw_ecc_disable(nand); |
| 1233 | |
| 1234 | return nand_prog_page_end_op(nand); |
| 1235 | } |
| 1236 | |
| 1237 | static int sunxi_nfc_hw_ecc_write_subpage(struct nand_chip *nand, |
| 1238 | u32 data_offs, u32 data_len, |
| 1239 | const u8 *buf, int oob_required, |
| 1240 | int page) |
| 1241 | { |
| 1242 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1243 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1244 | int ret, i, cur_off = 0; |
| 1245 | |
| 1246 | sunxi_nfc_select_chip(nand, nand->cur_cs); |
| 1247 | |
| 1248 | nand_prog_page_begin_op(nand, page, 0, NULL, 0); |
| 1249 | |
| 1250 | sunxi_nfc_hw_ecc_enable(nand); |
| 1251 | |
| 1252 | for (i = data_offs / ecc->size; |
| 1253 | i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { |
| 1254 | int data_off = i * ecc->size; |
| 1255 | int oob_off = i * (ecc->bytes + 4); |
| 1256 | const u8 *data = buf + data_off; |
| 1257 | const u8 *oob = nand->oob_poi + oob_off; |
| 1258 | |
| 1259 | ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob, |
| 1260 | oob_off + mtd->writesize, |
| 1261 | &cur_off, !i, page); |
| 1262 | if (ret) |
| 1263 | return ret; |
| 1264 | } |
| 1265 | |
| 1266 | sunxi_nfc_hw_ecc_disable(nand); |
| 1267 | |
| 1268 | return nand_prog_page_end_op(nand); |
| 1269 | } |
| 1270 | |
| 1271 | static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand, |
| 1272 | const u8 *buf, |
| 1273 | int oob_required, |
| 1274 | int page) |
| 1275 | { |
| 1276 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 1277 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1278 | struct scatterlist sg; |
| 1279 | int ret, i; |
| 1280 | |
| 1281 | sunxi_nfc_select_chip(nand, nand->cur_cs); |
| 1282 | |
| 1283 | ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| 1284 | if (ret) |
| 1285 | return ret; |
| 1286 | |
| 1287 | ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, ecc->steps, |
| 1288 | DMA_TO_DEVICE, &sg); |
| 1289 | if (ret) |
| 1290 | goto pio_fallback; |
| 1291 | |
| 1292 | for (i = 0; i < ecc->steps; i++) { |
| 1293 | const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4)); |
| 1294 | |
| 1295 | sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, i, !i, page); |
| 1296 | } |
| 1297 | |
| 1298 | nand_prog_page_begin_op(nand, page, 0, NULL, 0); |
| 1299 | |
| 1300 | sunxi_nfc_hw_ecc_enable(nand); |
| 1301 | sunxi_nfc_randomizer_config(nand, page, false); |
| 1302 | sunxi_nfc_randomizer_enable(nand); |
| 1303 | |
| 1304 | writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG, |
| 1305 | nfc->regs + NFC_REG_WCMD_SET); |
| 1306 | |
| 1307 | dma_async_issue_pending(nfc->dmac); |
| 1308 | |
| 1309 | writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | |
| 1310 | NFC_DATA_TRANS | NFC_ACCESS_DIR, |
| 1311 | nfc->regs + NFC_REG_CMD); |
| 1312 | |
| 1313 | ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); |
| 1314 | if (ret) |
| 1315 | dmaengine_terminate_all(nfc->dmac); |
| 1316 | |
| 1317 | sunxi_nfc_randomizer_disable(nand); |
| 1318 | sunxi_nfc_hw_ecc_disable(nand); |
| 1319 | |
| 1320 | sunxi_nfc_dma_op_cleanup(nfc, DMA_TO_DEVICE, &sg); |
| 1321 | |
| 1322 | if (ret) |
| 1323 | return ret; |
| 1324 | |
| 1325 | if (oob_required || (nand->options & NAND_NEED_SCRAMBLING)) |
| 1326 | /* TODO: use DMA to transfer extra OOB bytes ? */ |
| 1327 | sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi, |
| 1328 | NULL, page); |
| 1329 | |
| 1330 | return nand_prog_page_end_op(nand); |
| 1331 | |
| 1332 | pio_fallback: |
| 1333 | return sunxi_nfc_hw_ecc_write_page(nand, buf, oob_required, page); |
| 1334 | } |
| 1335 | |
| 1336 | static int sunxi_nfc_hw_ecc_read_oob(struct nand_chip *nand, int page) |
| 1337 | { |
| 1338 | u8 *buf = nand_get_data_buf(nand); |
| 1339 | |
| 1340 | return nand->ecc.read_page(nand, buf, 1, page); |
| 1341 | } |
| 1342 | |
| 1343 | static int sunxi_nfc_hw_ecc_write_oob(struct nand_chip *nand, int page) |
| 1344 | { |
| 1345 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1346 | u8 *buf = nand_get_data_buf(nand); |
| 1347 | int ret; |
| 1348 | |
| 1349 | memset(buf, 0xff, mtd->writesize); |
| 1350 | ret = nand->ecc.write_page(nand, buf, 1, page); |
| 1351 | if (ret) |
| 1352 | return ret; |
| 1353 | |
| 1354 | /* Send command to program the OOB data */ |
| 1355 | return nand_prog_page_end_op(nand); |
| 1356 | } |
| 1357 | |
| 1358 | static const s32 tWB_lut[] = {6, 12, 16, 20}; |
| 1359 | static const s32 tRHW_lut[] = {4, 8, 12, 20}; |
| 1360 | |
| 1361 | static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, |
| 1362 | u32 clk_period) |
| 1363 | { |
| 1364 | u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); |
| 1365 | int i; |
| 1366 | |
| 1367 | for (i = 0; i < lut_size; i++) { |
| 1368 | if (clk_cycles <= lut[i]) |
| 1369 | return i; |
| 1370 | } |
| 1371 | |
| 1372 | /* Doesn't fit */ |
| 1373 | return -EINVAL; |
| 1374 | } |
| 1375 | |
| 1376 | #define sunxi_nand_lookup_timing(l, p, c) \ |
| 1377 | _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) |
| 1378 | |
| 1379 | static int sunxi_nfc_setup_data_interface(struct nand_chip *nand, int csline, |
| 1380 | const struct nand_data_interface *conf) |
| 1381 | { |
| 1382 | struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| 1383 | struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); |
| 1384 | const struct nand_sdr_timings *timings; |
| 1385 | u32 min_clk_period = 0; |
| 1386 | s32 tWB, tADL, tWHR, tRHW, tCAD; |
| 1387 | long real_clk_rate; |
| 1388 | |
| 1389 | timings = nand_get_sdr_timings(conf); |
| 1390 | if (IS_ERR(timings)) |
| 1391 | return -ENOTSUPP; |
| 1392 | |
| 1393 | /* T1 <=> tCLS */ |
| 1394 | if (timings->tCLS_min > min_clk_period) |
| 1395 | min_clk_period = timings->tCLS_min; |
| 1396 | |
| 1397 | /* T2 <=> tCLH */ |
| 1398 | if (timings->tCLH_min > min_clk_period) |
| 1399 | min_clk_period = timings->tCLH_min; |
| 1400 | |
| 1401 | /* T3 <=> tCS */ |
| 1402 | if (timings->tCS_min > min_clk_period) |
| 1403 | min_clk_period = timings->tCS_min; |
| 1404 | |
| 1405 | /* T4 <=> tCH */ |
| 1406 | if (timings->tCH_min > min_clk_period) |
| 1407 | min_clk_period = timings->tCH_min; |
| 1408 | |
| 1409 | /* T5 <=> tWP */ |
| 1410 | if (timings->tWP_min > min_clk_period) |
| 1411 | min_clk_period = timings->tWP_min; |
| 1412 | |
| 1413 | /* T6 <=> tWH */ |
| 1414 | if (timings->tWH_min > min_clk_period) |
| 1415 | min_clk_period = timings->tWH_min; |
| 1416 | |
| 1417 | /* T7 <=> tALS */ |
| 1418 | if (timings->tALS_min > min_clk_period) |
| 1419 | min_clk_period = timings->tALS_min; |
| 1420 | |
| 1421 | /* T8 <=> tDS */ |
| 1422 | if (timings->tDS_min > min_clk_period) |
| 1423 | min_clk_period = timings->tDS_min; |
| 1424 | |
| 1425 | /* T9 <=> tDH */ |
| 1426 | if (timings->tDH_min > min_clk_period) |
| 1427 | min_clk_period = timings->tDH_min; |
| 1428 | |
| 1429 | /* T10 <=> tRR */ |
| 1430 | if (timings->tRR_min > (min_clk_period * 3)) |
| 1431 | min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); |
| 1432 | |
| 1433 | /* T11 <=> tALH */ |
| 1434 | if (timings->tALH_min > min_clk_period) |
| 1435 | min_clk_period = timings->tALH_min; |
| 1436 | |
| 1437 | /* T12 <=> tRP */ |
| 1438 | if (timings->tRP_min > min_clk_period) |
| 1439 | min_clk_period = timings->tRP_min; |
| 1440 | |
| 1441 | /* T13 <=> tREH */ |
| 1442 | if (timings->tREH_min > min_clk_period) |
| 1443 | min_clk_period = timings->tREH_min; |
| 1444 | |
| 1445 | /* T14 <=> tRC */ |
| 1446 | if (timings->tRC_min > (min_clk_period * 2)) |
| 1447 | min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); |
| 1448 | |
| 1449 | /* T15 <=> tWC */ |
| 1450 | if (timings->tWC_min > (min_clk_period * 2)) |
| 1451 | min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); |
| 1452 | |
| 1453 | /* T16 - T19 + tCAD */ |
| 1454 | if (timings->tWB_max > (min_clk_period * 20)) |
| 1455 | min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20); |
| 1456 | |
| 1457 | if (timings->tADL_min > (min_clk_period * 32)) |
| 1458 | min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32); |
| 1459 | |
| 1460 | if (timings->tWHR_min > (min_clk_period * 32)) |
| 1461 | min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32); |
| 1462 | |
| 1463 | if (timings->tRHW_min > (min_clk_period * 20)) |
| 1464 | min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20); |
| 1465 | |
| 1466 | /* |
| 1467 | * In non-EDO, tREA should be less than tRP to guarantee that the |
| 1468 | * controller does not sample the IO lines too early. Unfortunately, |
| 1469 | * the sunxi NAND controller does not allow us to have different |
| 1470 | * values for tRP and tREH (tRP = tREH = tRW / 2). |
| 1471 | * |
| 1472 | * We have 2 options to overcome this limitation: |
| 1473 | * |
| 1474 | * 1/ Extend tRC to fulfil the tREA <= tRC / 2 constraint |
| 1475 | * 2/ Use EDO mode (only works if timings->tRLOH > 0) |
| 1476 | */ |
| 1477 | if (timings->tREA_max > min_clk_period && !timings->tRLOH_min) |
| 1478 | min_clk_period = timings->tREA_max; |
| 1479 | |
| 1480 | tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, |
| 1481 | min_clk_period); |
| 1482 | if (tWB < 0) { |
| 1483 | dev_err(nfc->dev, "unsupported tWB\n"); |
| 1484 | return tWB; |
| 1485 | } |
| 1486 | |
| 1487 | tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; |
| 1488 | if (tADL > 3) { |
| 1489 | dev_err(nfc->dev, "unsupported tADL\n"); |
| 1490 | return -EINVAL; |
| 1491 | } |
| 1492 | |
| 1493 | tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; |
| 1494 | if (tWHR > 3) { |
| 1495 | dev_err(nfc->dev, "unsupported tWHR\n"); |
| 1496 | return -EINVAL; |
| 1497 | } |
| 1498 | |
| 1499 | tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, |
| 1500 | min_clk_period); |
| 1501 | if (tRHW < 0) { |
| 1502 | dev_err(nfc->dev, "unsupported tRHW\n"); |
| 1503 | return tRHW; |
| 1504 | } |
| 1505 | |
| 1506 | if (csline == NAND_DATA_IFACE_CHECK_ONLY) |
| 1507 | return 0; |
| 1508 | |
| 1509 | /* |
| 1510 | * TODO: according to ONFI specs this value only applies for DDR NAND, |
| 1511 | * but Allwinner seems to set this to 0x7. Mimic them for now. |
| 1512 | */ |
| 1513 | tCAD = 0x7; |
| 1514 | |
| 1515 | /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ |
| 1516 | sunxi_nand->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); |
| 1517 | |
| 1518 | /* Convert min_clk_period from picoseconds to nanoseconds */ |
| 1519 | min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); |
| 1520 | |
| 1521 | /* |
| 1522 | * Unlike what is stated in Allwinner datasheet, the clk_rate should |
| 1523 | * be set to (1 / min_clk_period), and not (2 / min_clk_period). |
| 1524 | * This new formula was verified with a scope and validated by |
| 1525 | * Allwinner engineers. |
| 1526 | */ |
| 1527 | sunxi_nand->clk_rate = NSEC_PER_SEC / min_clk_period; |
| 1528 | real_clk_rate = clk_round_rate(nfc->mod_clk, sunxi_nand->clk_rate); |
| 1529 | if (real_clk_rate <= 0) { |
| 1530 | dev_err(nfc->dev, "Unable to round clk %lu\n", |
| 1531 | sunxi_nand->clk_rate); |
| 1532 | return -EINVAL; |
| 1533 | } |
| 1534 | |
| 1535 | sunxi_nand->timing_ctl = 0; |
| 1536 | |
| 1537 | /* |
| 1538 | * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data |
| 1539 | * output cycle timings shall be used if the host drives tRC less than |
| 1540 | * 30 ns. We should also use EDO mode if tREA is bigger than tRP. |
| 1541 | */ |
| 1542 | min_clk_period = NSEC_PER_SEC / real_clk_rate; |
| 1543 | if (min_clk_period * 2 < 30 || min_clk_period * 1000 < timings->tREA_max) |
| 1544 | sunxi_nand->timing_ctl = NFC_TIMING_CTL_EDO; |
| 1545 | |
| 1546 | return 0; |
| 1547 | } |
| 1548 | |
| 1549 | static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| 1550 | struct mtd_oob_region *oobregion) |
| 1551 | { |
| 1552 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 1553 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1554 | |
| 1555 | if (section >= ecc->steps) |
| 1556 | return -ERANGE; |
| 1557 | |
| 1558 | oobregion->offset = section * (ecc->bytes + 4) + 4; |
| 1559 | oobregion->length = ecc->bytes; |
| 1560 | |
| 1561 | return 0; |
| 1562 | } |
| 1563 | |
| 1564 | static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| 1565 | struct mtd_oob_region *oobregion) |
| 1566 | { |
| 1567 | struct nand_chip *nand = mtd_to_nand(mtd); |
| 1568 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1569 | |
| 1570 | if (section > ecc->steps) |
| 1571 | return -ERANGE; |
| 1572 | |
| 1573 | /* |
| 1574 | * The first 2 bytes are used for BB markers, hence we |
| 1575 | * only have 2 bytes available in the first user data |
| 1576 | * section. |
| 1577 | */ |
| 1578 | if (!section && ecc->mode == NAND_ECC_HW) { |
| 1579 | oobregion->offset = 2; |
| 1580 | oobregion->length = 2; |
| 1581 | |
| 1582 | return 0; |
| 1583 | } |
| 1584 | |
| 1585 | oobregion->offset = section * (ecc->bytes + 4); |
| 1586 | |
| 1587 | if (section < ecc->steps) |
| 1588 | oobregion->length = 4; |
| 1589 | else |
| 1590 | oobregion->length = mtd->oobsize - oobregion->offset; |
| 1591 | |
| 1592 | return 0; |
| 1593 | } |
| 1594 | |
| 1595 | static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = { |
| 1596 | .ecc = sunxi_nand_ooblayout_ecc, |
| 1597 | .free = sunxi_nand_ooblayout_free, |
| 1598 | }; |
| 1599 | |
| 1600 | static void sunxi_nand_hw_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) |
| 1601 | { |
| 1602 | kfree(ecc->priv); |
| 1603 | } |
| 1604 | |
| 1605 | static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand, |
| 1606 | struct nand_ecc_ctrl *ecc, |
| 1607 | struct device_node *np) |
| 1608 | { |
| 1609 | static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; |
| 1610 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 1611 | struct mtd_info *mtd = nand_to_mtd(nand); |
| 1612 | struct sunxi_nand_hw_ecc *data; |
| 1613 | int nsectors; |
| 1614 | int ret; |
| 1615 | int i; |
| 1616 | |
| 1617 | if (ecc->options & NAND_ECC_MAXIMIZE) { |
| 1618 | int bytes; |
| 1619 | |
| 1620 | ecc->size = 1024; |
| 1621 | nsectors = mtd->writesize / ecc->size; |
| 1622 | |
| 1623 | /* Reserve 2 bytes for the BBM */ |
| 1624 | bytes = (mtd->oobsize - 2) / nsectors; |
| 1625 | |
| 1626 | /* 4 non-ECC bytes are added before each ECC bytes section */ |
| 1627 | bytes -= 4; |
| 1628 | |
| 1629 | /* and bytes has to be even. */ |
| 1630 | if (bytes % 2) |
| 1631 | bytes--; |
| 1632 | |
| 1633 | ecc->strength = bytes * 8 / fls(8 * ecc->size); |
| 1634 | |
| 1635 | for (i = 0; i < ARRAY_SIZE(strengths); i++) { |
| 1636 | if (strengths[i] > ecc->strength) |
| 1637 | break; |
| 1638 | } |
| 1639 | |
| 1640 | if (!i) |
| 1641 | ecc->strength = 0; |
| 1642 | else |
| 1643 | ecc->strength = strengths[i - 1]; |
| 1644 | } |
| 1645 | |
| 1646 | if (ecc->size != 512 && ecc->size != 1024) |
| 1647 | return -EINVAL; |
| 1648 | |
| 1649 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 1650 | if (!data) |
| 1651 | return -ENOMEM; |
| 1652 | |
| 1653 | /* Prefer 1k ECC chunk over 512 ones */ |
| 1654 | if (ecc->size == 512 && mtd->writesize > 512) { |
| 1655 | ecc->size = 1024; |
| 1656 | ecc->strength *= 2; |
| 1657 | } |
| 1658 | |
| 1659 | /* Add ECC info retrieval from DT */ |
| 1660 | for (i = 0; i < ARRAY_SIZE(strengths); i++) { |
| 1661 | if (ecc->strength <= strengths[i]) { |
| 1662 | /* |
| 1663 | * Update ecc->strength value with the actual strength |
| 1664 | * that will be used by the ECC engine. |
| 1665 | */ |
| 1666 | ecc->strength = strengths[i]; |
| 1667 | break; |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | if (i >= ARRAY_SIZE(strengths)) { |
| 1672 | dev_err(nfc->dev, "unsupported strength\n"); |
| 1673 | ret = -ENOTSUPP; |
| 1674 | goto err; |
| 1675 | } |
| 1676 | |
| 1677 | data->mode = i; |
| 1678 | |
| 1679 | /* HW ECC always request ECC bytes for 1024 bytes blocks */ |
| 1680 | ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); |
| 1681 | |
| 1682 | /* HW ECC always work with even numbers of ECC bytes */ |
| 1683 | ecc->bytes = ALIGN(ecc->bytes, 2); |
| 1684 | |
| 1685 | nsectors = mtd->writesize / ecc->size; |
| 1686 | |
| 1687 | if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { |
| 1688 | ret = -EINVAL; |
| 1689 | goto err; |
| 1690 | } |
| 1691 | |
| 1692 | ecc->read_oob = sunxi_nfc_hw_ecc_read_oob; |
| 1693 | ecc->write_oob = sunxi_nfc_hw_ecc_write_oob; |
| 1694 | mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops); |
| 1695 | ecc->priv = data; |
| 1696 | |
| 1697 | if (nfc->dmac) { |
| 1698 | ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma; |
| 1699 | ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma; |
| 1700 | ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma; |
| 1701 | nand->options |= NAND_USE_BOUNCE_BUFFER; |
| 1702 | } else { |
| 1703 | ecc->read_page = sunxi_nfc_hw_ecc_read_page; |
| 1704 | ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; |
| 1705 | ecc->write_page = sunxi_nfc_hw_ecc_write_page; |
| 1706 | } |
| 1707 | |
| 1708 | /* TODO: support DMA for raw accesses and subpage write */ |
| 1709 | ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; |
| 1710 | ecc->read_oob_raw = nand_read_oob_std; |
| 1711 | ecc->write_oob_raw = nand_write_oob_std; |
| 1712 | |
| 1713 | return 0; |
| 1714 | |
| 1715 | err: |
| 1716 | kfree(data); |
| 1717 | |
| 1718 | return ret; |
| 1719 | } |
| 1720 | |
| 1721 | static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) |
| 1722 | { |
| 1723 | switch (ecc->mode) { |
| 1724 | case NAND_ECC_HW: |
| 1725 | sunxi_nand_hw_ecc_ctrl_cleanup(ecc); |
| 1726 | break; |
| 1727 | case NAND_ECC_NONE: |
| 1728 | default: |
| 1729 | break; |
| 1730 | } |
| 1731 | } |
| 1732 | |
| 1733 | static int sunxi_nand_attach_chip(struct nand_chip *nand) |
| 1734 | { |
| 1735 | struct nand_ecc_ctrl *ecc = &nand->ecc; |
| 1736 | struct device_node *np = nand_get_flash_node(nand); |
| 1737 | int ret; |
| 1738 | |
| 1739 | if (nand->bbt_options & NAND_BBT_USE_FLASH) |
| 1740 | nand->bbt_options |= NAND_BBT_NO_OOB; |
| 1741 | |
| 1742 | if (nand->options & NAND_NEED_SCRAMBLING) |
| 1743 | nand->options |= NAND_NO_SUBPAGE_WRITE; |
| 1744 | |
| 1745 | nand->options |= NAND_SUBPAGE_READ; |
| 1746 | |
| 1747 | if (!ecc->size) { |
| 1748 | ecc->size = nand->base.eccreq.step_size; |
| 1749 | ecc->strength = nand->base.eccreq.strength; |
| 1750 | } |
| 1751 | |
| 1752 | if (!ecc->size || !ecc->strength) |
| 1753 | return -EINVAL; |
| 1754 | |
| 1755 | switch (ecc->mode) { |
| 1756 | case NAND_ECC_HW: |
| 1757 | ret = sunxi_nand_hw_ecc_ctrl_init(nand, ecc, np); |
| 1758 | if (ret) |
| 1759 | return ret; |
| 1760 | break; |
| 1761 | case NAND_ECC_NONE: |
| 1762 | case NAND_ECC_SOFT: |
| 1763 | break; |
| 1764 | default: |
| 1765 | return -EINVAL; |
| 1766 | } |
| 1767 | |
| 1768 | return 0; |
| 1769 | } |
| 1770 | |
| 1771 | static int sunxi_nfc_exec_subop(struct nand_chip *nand, |
| 1772 | const struct nand_subop *subop) |
| 1773 | { |
| 1774 | struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); |
| 1775 | u32 cmd = 0, extcmd = 0, cnt = 0, addrs[2] = { }; |
| 1776 | unsigned int i, j, remaining, start; |
| 1777 | void *inbuf = NULL; |
| 1778 | int ret; |
| 1779 | |
| 1780 | for (i = 0; i < subop->ninstrs; i++) { |
| 1781 | const struct nand_op_instr *instr = &subop->instrs[i]; |
| 1782 | |
| 1783 | switch (instr->type) { |
| 1784 | case NAND_OP_CMD_INSTR: |
| 1785 | if (cmd & NFC_SEND_CMD1) { |
| 1786 | if (WARN_ON(cmd & NFC_SEND_CMD2)) |
| 1787 | return -EINVAL; |
| 1788 | |
| 1789 | cmd |= NFC_SEND_CMD2; |
| 1790 | extcmd |= instr->ctx.cmd.opcode; |
| 1791 | } else { |
| 1792 | cmd |= NFC_SEND_CMD1 | |
| 1793 | NFC_CMD(instr->ctx.cmd.opcode); |
| 1794 | } |
| 1795 | break; |
| 1796 | |
| 1797 | case NAND_OP_ADDR_INSTR: |
| 1798 | remaining = nand_subop_get_num_addr_cyc(subop, i); |
| 1799 | start = nand_subop_get_addr_start_off(subop, i); |
| 1800 | for (j = 0; j < 8 && j + start < remaining; j++) { |
| 1801 | u32 addr = instr->ctx.addr.addrs[j + start]; |
| 1802 | |
| 1803 | addrs[j / 4] |= addr << (j % 4) * 8; |
| 1804 | } |
| 1805 | |
| 1806 | if (j) |
| 1807 | cmd |= NFC_SEND_ADR | NFC_ADR_NUM(j); |
| 1808 | |
| 1809 | break; |
| 1810 | |
| 1811 | case NAND_OP_DATA_IN_INSTR: |
| 1812 | case NAND_OP_DATA_OUT_INSTR: |
| 1813 | start = nand_subop_get_data_start_off(subop, i); |
| 1814 | remaining = nand_subop_get_data_len(subop, i); |
| 1815 | cnt = min_t(u32, remaining, NFC_SRAM_SIZE); |
| 1816 | cmd |= NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; |
| 1817 | |
| 1818 | if (instr->type == NAND_OP_DATA_OUT_INSTR) { |
| 1819 | cmd |= NFC_ACCESS_DIR; |
| 1820 | memcpy_toio(nfc->regs + NFC_RAM0_BASE, |
| 1821 | instr->ctx.data.buf.out + start, |
| 1822 | cnt); |
| 1823 | } else { |
| 1824 | inbuf = instr->ctx.data.buf.in + start; |
| 1825 | } |
| 1826 | |
| 1827 | break; |
| 1828 | |
| 1829 | case NAND_OP_WAITRDY_INSTR: |
| 1830 | cmd |= NFC_WAIT_FLAG; |
| 1831 | break; |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); |
| 1836 | if (ret) |
| 1837 | return ret; |
| 1838 | |
| 1839 | if (cmd & NFC_SEND_ADR) { |
| 1840 | writel(addrs[0], nfc->regs + NFC_REG_ADDR_LOW); |
| 1841 | writel(addrs[1], nfc->regs + NFC_REG_ADDR_HIGH); |
| 1842 | } |
| 1843 | |
| 1844 | if (cmd & NFC_SEND_CMD2) |
| 1845 | writel(extcmd, |
| 1846 | nfc->regs + |
| 1847 | (cmd & NFC_ACCESS_DIR ? |
| 1848 | NFC_REG_WCMD_SET : NFC_REG_RCMD_SET)); |
| 1849 | |
| 1850 | if (cmd & NFC_DATA_TRANS) |
| 1851 | writel(cnt, nfc->regs + NFC_REG_CNT); |
| 1852 | |
| 1853 | writel(cmd, nfc->regs + NFC_REG_CMD); |
| 1854 | |
| 1855 | ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, |
| 1856 | !(cmd & NFC_WAIT_FLAG) && cnt < 64, |
| 1857 | 0); |
| 1858 | if (ret) |
| 1859 | return ret; |
| 1860 | |
| 1861 | if (inbuf) |
| 1862 | memcpy_fromio(inbuf, nfc->regs + NFC_RAM0_BASE, cnt); |
| 1863 | |
| 1864 | return 0; |
| 1865 | } |
| 1866 | |
| 1867 | static int sunxi_nfc_soft_waitrdy(struct nand_chip *nand, |
| 1868 | const struct nand_subop *subop) |
| 1869 | { |
| 1870 | return nand_soft_waitrdy(nand, |
| 1871 | subop->instrs[0].ctx.waitrdy.timeout_ms); |
| 1872 | } |
| 1873 | |
| 1874 | static const struct nand_op_parser sunxi_nfc_op_parser = NAND_OP_PARSER( |
| 1875 | NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, |
| 1876 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 1877 | NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| 1878 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 1879 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
| 1880 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)), |
| 1881 | NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, |
| 1882 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 1883 | NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| 1884 | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024), |
| 1885 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 1886 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), |
| 1887 | ); |
| 1888 | |
| 1889 | static const struct nand_op_parser sunxi_nfc_norb_op_parser = NAND_OP_PARSER( |
| 1890 | NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, |
| 1891 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 1892 | NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| 1893 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 1894 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)), |
| 1895 | NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, |
| 1896 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
| 1897 | NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), |
| 1898 | NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024), |
| 1899 | NAND_OP_PARSER_PAT_CMD_ELEM(true)), |
| 1900 | NAND_OP_PARSER_PATTERN(sunxi_nfc_soft_waitrdy, |
| 1901 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
| 1902 | ); |
| 1903 | |
| 1904 | static int sunxi_nfc_exec_op(struct nand_chip *nand, |
| 1905 | const struct nand_operation *op, bool check_only) |
| 1906 | { |
| 1907 | struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); |
| 1908 | const struct nand_op_parser *parser; |
| 1909 | |
| 1910 | sunxi_nfc_select_chip(nand, op->cs); |
| 1911 | |
| 1912 | if (sunxi_nand->sels[op->cs].rb >= 0) |
| 1913 | parser = &sunxi_nfc_op_parser; |
| 1914 | else |
| 1915 | parser = &sunxi_nfc_norb_op_parser; |
| 1916 | |
| 1917 | return nand_op_parser_exec_op(nand, parser, op, check_only); |
| 1918 | } |
| 1919 | |
| 1920 | static const struct nand_controller_ops sunxi_nand_controller_ops = { |
| 1921 | .attach_chip = sunxi_nand_attach_chip, |
| 1922 | .setup_data_interface = sunxi_nfc_setup_data_interface, |
| 1923 | .exec_op = sunxi_nfc_exec_op, |
| 1924 | }; |
| 1925 | |
| 1926 | static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, |
| 1927 | struct device_node *np) |
| 1928 | { |
| 1929 | struct sunxi_nand_chip *sunxi_nand; |
| 1930 | struct mtd_info *mtd; |
| 1931 | struct nand_chip *nand; |
| 1932 | int nsels; |
| 1933 | int ret; |
| 1934 | int i; |
| 1935 | u32 tmp; |
| 1936 | |
| 1937 | if (!of_get_property(np, "reg", &nsels)) |
| 1938 | return -EINVAL; |
| 1939 | |
| 1940 | nsels /= sizeof(u32); |
| 1941 | if (!nsels) { |
| 1942 | dev_err(dev, "invalid reg property size\n"); |
| 1943 | return -EINVAL; |
| 1944 | } |
| 1945 | |
| 1946 | sunxi_nand = devm_kzalloc(dev, struct_size(sunxi_nand, sels, nsels), |
| 1947 | GFP_KERNEL); |
| 1948 | if (!sunxi_nand) { |
| 1949 | dev_err(dev, "could not allocate chip\n"); |
| 1950 | return -ENOMEM; |
| 1951 | } |
| 1952 | |
| 1953 | sunxi_nand->nsels = nsels; |
| 1954 | |
| 1955 | for (i = 0; i < nsels; i++) { |
| 1956 | ret = of_property_read_u32_index(np, "reg", i, &tmp); |
| 1957 | if (ret) { |
| 1958 | dev_err(dev, "could not retrieve reg property: %d\n", |
| 1959 | ret); |
| 1960 | return ret; |
| 1961 | } |
| 1962 | |
| 1963 | if (tmp > NFC_MAX_CS) { |
| 1964 | dev_err(dev, |
| 1965 | "invalid reg value: %u (max CS = 7)\n", |
| 1966 | tmp); |
| 1967 | return -EINVAL; |
| 1968 | } |
| 1969 | |
| 1970 | if (test_and_set_bit(tmp, &nfc->assigned_cs)) { |
| 1971 | dev_err(dev, "CS %d already assigned\n", tmp); |
| 1972 | return -EINVAL; |
| 1973 | } |
| 1974 | |
| 1975 | sunxi_nand->sels[i].cs = tmp; |
| 1976 | |
| 1977 | if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && |
| 1978 | tmp < 2) |
| 1979 | sunxi_nand->sels[i].rb = tmp; |
| 1980 | else |
| 1981 | sunxi_nand->sels[i].rb = -1; |
| 1982 | } |
| 1983 | |
| 1984 | nand = &sunxi_nand->nand; |
| 1985 | /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ |
| 1986 | nand->controller = &nfc->controller; |
| 1987 | nand->controller->ops = &sunxi_nand_controller_ops; |
| 1988 | |
| 1989 | /* |
| 1990 | * Set the ECC mode to the default value in case nothing is specified |
| 1991 | * in the DT. |
| 1992 | */ |
| 1993 | nand->ecc.mode = NAND_ECC_HW; |
| 1994 | nand_set_flash_node(nand, np); |
| 1995 | |
| 1996 | mtd = nand_to_mtd(nand); |
| 1997 | mtd->dev.parent = dev; |
| 1998 | |
| 1999 | ret = nand_scan(nand, nsels); |
| 2000 | if (ret) |
| 2001 | return ret; |
| 2002 | |
| 2003 | ret = mtd_device_register(mtd, NULL, 0); |
| 2004 | if (ret) { |
| 2005 | dev_err(dev, "failed to register mtd device: %d\n", ret); |
| 2006 | nand_cleanup(nand); |
| 2007 | return ret; |
| 2008 | } |
| 2009 | |
| 2010 | list_add_tail(&sunxi_nand->node, &nfc->chips); |
| 2011 | |
| 2012 | return 0; |
| 2013 | } |
| 2014 | |
| 2015 | static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) |
| 2016 | { |
| 2017 | struct device_node *np = dev->of_node; |
| 2018 | struct device_node *nand_np; |
| 2019 | int nchips = of_get_child_count(np); |
| 2020 | int ret; |
| 2021 | |
| 2022 | if (nchips > 8) { |
| 2023 | dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips); |
| 2024 | return -EINVAL; |
| 2025 | } |
| 2026 | |
| 2027 | for_each_child_of_node(np, nand_np) { |
| 2028 | ret = sunxi_nand_chip_init(dev, nfc, nand_np); |
| 2029 | if (ret) { |
| 2030 | of_node_put(nand_np); |
| 2031 | return ret; |
| 2032 | } |
| 2033 | } |
| 2034 | |
| 2035 | return 0; |
| 2036 | } |
| 2037 | |
| 2038 | static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) |
| 2039 | { |
| 2040 | struct sunxi_nand_chip *sunxi_nand; |
| 2041 | |
| 2042 | while (!list_empty(&nfc->chips)) { |
| 2043 | sunxi_nand = list_first_entry(&nfc->chips, |
| 2044 | struct sunxi_nand_chip, |
| 2045 | node); |
| 2046 | nand_release(&sunxi_nand->nand); |
| 2047 | sunxi_nand_ecc_cleanup(&sunxi_nand->nand.ecc); |
| 2048 | list_del(&sunxi_nand->node); |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | static int sunxi_nfc_probe(struct platform_device *pdev) |
| 2053 | { |
| 2054 | struct device *dev = &pdev->dev; |
| 2055 | struct resource *r; |
| 2056 | struct sunxi_nfc *nfc; |
| 2057 | int irq; |
| 2058 | int ret; |
| 2059 | |
| 2060 | nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); |
| 2061 | if (!nfc) |
| 2062 | return -ENOMEM; |
| 2063 | |
| 2064 | nfc->dev = dev; |
| 2065 | nand_controller_init(&nfc->controller); |
| 2066 | INIT_LIST_HEAD(&nfc->chips); |
| 2067 | |
| 2068 | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 2069 | nfc->regs = devm_ioremap_resource(dev, r); |
| 2070 | if (IS_ERR(nfc->regs)) |
| 2071 | return PTR_ERR(nfc->regs); |
| 2072 | |
| 2073 | irq = platform_get_irq(pdev, 0); |
| 2074 | if (irq < 0) { |
| 2075 | dev_err(dev, "failed to retrieve irq\n"); |
| 2076 | return irq; |
| 2077 | } |
| 2078 | |
| 2079 | nfc->ahb_clk = devm_clk_get(dev, "ahb"); |
| 2080 | if (IS_ERR(nfc->ahb_clk)) { |
| 2081 | dev_err(dev, "failed to retrieve ahb clk\n"); |
| 2082 | return PTR_ERR(nfc->ahb_clk); |
| 2083 | } |
| 2084 | |
| 2085 | ret = clk_prepare_enable(nfc->ahb_clk); |
| 2086 | if (ret) |
| 2087 | return ret; |
| 2088 | |
| 2089 | nfc->mod_clk = devm_clk_get(dev, "mod"); |
| 2090 | if (IS_ERR(nfc->mod_clk)) { |
| 2091 | dev_err(dev, "failed to retrieve mod clk\n"); |
| 2092 | ret = PTR_ERR(nfc->mod_clk); |
| 2093 | goto out_ahb_clk_unprepare; |
| 2094 | } |
| 2095 | |
| 2096 | ret = clk_prepare_enable(nfc->mod_clk); |
| 2097 | if (ret) |
| 2098 | goto out_ahb_clk_unprepare; |
| 2099 | |
| 2100 | nfc->reset = devm_reset_control_get_optional_exclusive(dev, "ahb"); |
| 2101 | if (IS_ERR(nfc->reset)) { |
| 2102 | ret = PTR_ERR(nfc->reset); |
| 2103 | goto out_mod_clk_unprepare; |
| 2104 | } |
| 2105 | |
| 2106 | ret = reset_control_deassert(nfc->reset); |
| 2107 | if (ret) { |
| 2108 | dev_err(dev, "reset err %d\n", ret); |
| 2109 | goto out_mod_clk_unprepare; |
| 2110 | } |
| 2111 | |
| 2112 | nfc->caps = of_device_get_match_data(&pdev->dev); |
| 2113 | if (!nfc->caps) { |
| 2114 | ret = -EINVAL; |
| 2115 | goto out_ahb_reset_reassert; |
| 2116 | } |
| 2117 | |
| 2118 | ret = sunxi_nfc_rst(nfc); |
| 2119 | if (ret) |
| 2120 | goto out_ahb_reset_reassert; |
| 2121 | |
| 2122 | writel(0, nfc->regs + NFC_REG_INT); |
| 2123 | ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, |
| 2124 | 0, "sunxi-nand", nfc); |
| 2125 | if (ret) |
| 2126 | goto out_ahb_reset_reassert; |
| 2127 | |
| 2128 | nfc->dmac = dma_request_slave_channel(dev, "rxtx"); |
| 2129 | if (nfc->dmac) { |
| 2130 | struct dma_slave_config dmac_cfg = { }; |
| 2131 | |
| 2132 | dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data; |
| 2133 | dmac_cfg.dst_addr = dmac_cfg.src_addr; |
| 2134 | dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 2135 | dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width; |
| 2136 | dmac_cfg.src_maxburst = nfc->caps->dma_maxburst; |
| 2137 | dmac_cfg.dst_maxburst = nfc->caps->dma_maxburst; |
| 2138 | dmaengine_slave_config(nfc->dmac, &dmac_cfg); |
| 2139 | |
| 2140 | if (nfc->caps->extra_mbus_conf) |
| 2141 | writel(readl(nfc->regs + NFC_REG_CTL) | |
| 2142 | NFC_DMA_TYPE_NORMAL, nfc->regs + NFC_REG_CTL); |
| 2143 | |
| 2144 | } else { |
| 2145 | dev_warn(dev, "failed to request rxtx DMA channel\n"); |
| 2146 | } |
| 2147 | |
| 2148 | platform_set_drvdata(pdev, nfc); |
| 2149 | |
| 2150 | ret = sunxi_nand_chips_init(dev, nfc); |
| 2151 | if (ret) { |
| 2152 | dev_err(dev, "failed to init nand chips\n"); |
| 2153 | goto out_release_dmac; |
| 2154 | } |
| 2155 | |
| 2156 | return 0; |
| 2157 | |
| 2158 | out_release_dmac: |
| 2159 | if (nfc->dmac) |
| 2160 | dma_release_channel(nfc->dmac); |
| 2161 | out_ahb_reset_reassert: |
| 2162 | reset_control_assert(nfc->reset); |
| 2163 | out_mod_clk_unprepare: |
| 2164 | clk_disable_unprepare(nfc->mod_clk); |
| 2165 | out_ahb_clk_unprepare: |
| 2166 | clk_disable_unprepare(nfc->ahb_clk); |
| 2167 | |
| 2168 | return ret; |
| 2169 | } |
| 2170 | |
| 2171 | static int sunxi_nfc_remove(struct platform_device *pdev) |
| 2172 | { |
| 2173 | struct sunxi_nfc *nfc = platform_get_drvdata(pdev); |
| 2174 | |
| 2175 | sunxi_nand_chips_cleanup(nfc); |
| 2176 | |
| 2177 | reset_control_assert(nfc->reset); |
| 2178 | |
| 2179 | if (nfc->dmac) |
| 2180 | dma_release_channel(nfc->dmac); |
| 2181 | clk_disable_unprepare(nfc->mod_clk); |
| 2182 | clk_disable_unprepare(nfc->ahb_clk); |
| 2183 | |
| 2184 | return 0; |
| 2185 | } |
| 2186 | |
| 2187 | static const struct sunxi_nfc_caps sunxi_nfc_a10_caps = { |
| 2188 | .reg_io_data = NFC_REG_A10_IO_DATA, |
| 2189 | .dma_maxburst = 4, |
| 2190 | }; |
| 2191 | |
| 2192 | static const struct sunxi_nfc_caps sunxi_nfc_a23_caps = { |
| 2193 | .extra_mbus_conf = true, |
| 2194 | .reg_io_data = NFC_REG_A23_IO_DATA, |
| 2195 | .dma_maxburst = 8, |
| 2196 | }; |
| 2197 | |
| 2198 | static const struct of_device_id sunxi_nfc_ids[] = { |
| 2199 | { |
| 2200 | .compatible = "allwinner,sun4i-a10-nand", |
| 2201 | .data = &sunxi_nfc_a10_caps, |
| 2202 | }, |
| 2203 | { |
| 2204 | .compatible = "allwinner,sun8i-a23-nand-controller", |
| 2205 | .data = &sunxi_nfc_a23_caps, |
| 2206 | }, |
| 2207 | { /* sentinel */ } |
| 2208 | }; |
| 2209 | MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); |
| 2210 | |
| 2211 | static struct platform_driver sunxi_nfc_driver = { |
| 2212 | .driver = { |
| 2213 | .name = "sunxi_nand", |
| 2214 | .of_match_table = sunxi_nfc_ids, |
| 2215 | }, |
| 2216 | .probe = sunxi_nfc_probe, |
| 2217 | .remove = sunxi_nfc_remove, |
| 2218 | }; |
| 2219 | module_platform_driver(sunxi_nfc_driver); |
| 2220 | |
| 2221 | MODULE_LICENSE("GPL"); |
| 2222 | MODULE_AUTHOR("Boris BREZILLON"); |
| 2223 | MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); |
| 2224 | MODULE_ALIAS("platform:sunxi_nand"); |