blob: 7bdc558d856013e70885dba652dddaa6d12fae03 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Cadence QSPI Controller
4 *
5 * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 */
7#include <linux/clk.h>
8#include <linux/completion.h>
9#include <linux/delay.h>
10#include <linux/dma-mapping.h>
11#include <linux/dmaengine.h>
12#include <linux/err.h>
13#include <linux/errno.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/iopoll.h>
17#include <linux/jiffies.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/partitions.h>
22#include <linux/mtd/spi-nor.h>
23#include <linux/of_device.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/sched.h>
29#include <linux/spi/spi.h>
30#include <linux/timer.h>
31
32#define CQSPI_NAME "cadence-qspi"
33#define CQSPI_MAX_CHIPSELECT 16
34
35/* Quirks */
36#define CQSPI_NEEDS_WR_DELAY BIT(0)
37#define CQSPI_DISABLE_DAC_MODE BIT(1)
38
39/* Capabilities mask */
40#define CQSPI_BASE_HWCAPS_MASK \
41 (SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST | \
42 SNOR_HWCAPS_READ_1_1_2 | SNOR_HWCAPS_READ_1_1_4 | \
43 SNOR_HWCAPS_PP)
44
45struct cqspi_st;
46
47struct cqspi_flash_pdata {
48 struct spi_nor nor;
49 struct cqspi_st *cqspi;
50 u32 clk_rate;
51 u32 read_delay;
52 u32 tshsl_ns;
53 u32 tsd2d_ns;
54 u32 tchsh_ns;
55 u32 tslch_ns;
56 u8 inst_width;
57 u8 addr_width;
58 u8 data_width;
59 u8 cs;
60 bool registered;
61 bool use_direct_mode;
62};
63
64struct cqspi_st {
65 struct platform_device *pdev;
66
67 struct clk *clk;
68 unsigned int sclk;
69
70 void __iomem *iobase;
71 void __iomem *ahb_base;
72 resource_size_t ahb_size;
73 struct completion transfer_complete;
74 struct mutex bus_mutex;
75
76 struct dma_chan *rx_chan;
77 struct completion rx_dma_complete;
78 dma_addr_t mmap_phys_base;
79
80 int current_cs;
81 unsigned long master_ref_clk_hz;
82 bool is_decoded_cs;
83 u32 fifo_depth;
84 u32 fifo_width;
85 bool rclk_en;
86 u32 trigger_address;
87 u32 wr_delay;
88 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
89};
90
91struct cqspi_driver_platdata {
92 u32 hwcaps_mask;
93 u8 quirks;
94};
95
96/* Operation timeout value */
97#define CQSPI_TIMEOUT_MS 500
98#define CQSPI_READ_TIMEOUT_MS 10
99
100/* Instruction type */
101#define CQSPI_INST_TYPE_SINGLE 0
102#define CQSPI_INST_TYPE_DUAL 1
103#define CQSPI_INST_TYPE_QUAD 2
104#define CQSPI_INST_TYPE_OCTAL 3
105
106#define CQSPI_DUMMY_CLKS_PER_BYTE 8
107#define CQSPI_DUMMY_BYTES_MAX 4
108#define CQSPI_DUMMY_CLKS_MAX 31
109
110#define CQSPI_STIG_DATA_LEN_MAX 8
111
112/* Register map */
113#define CQSPI_REG_CONFIG 0x00
114#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
115#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
116#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
117#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
118#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
119#define CQSPI_REG_CONFIG_BAUD_LSB 19
120#define CQSPI_REG_CONFIG_IDLE_LSB 31
121#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
122#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
123
124#define CQSPI_REG_RD_INSTR 0x04
125#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
126#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
127#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
128#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
129#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
130#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
131#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
132#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
133#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
134#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
135
136#define CQSPI_REG_WR_INSTR 0x08
137#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
138#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
139#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
140
141#define CQSPI_REG_DELAY 0x0C
142#define CQSPI_REG_DELAY_TSLCH_LSB 0
143#define CQSPI_REG_DELAY_TCHSH_LSB 8
144#define CQSPI_REG_DELAY_TSD2D_LSB 16
145#define CQSPI_REG_DELAY_TSHSL_LSB 24
146#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
147#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
148#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
149#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
150
151#define CQSPI_REG_READCAPTURE 0x10
152#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
153#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
154#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
155
156#define CQSPI_REG_SIZE 0x14
157#define CQSPI_REG_SIZE_ADDRESS_LSB 0
158#define CQSPI_REG_SIZE_PAGE_LSB 4
159#define CQSPI_REG_SIZE_BLOCK_LSB 16
160#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
161#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
162#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
163
164#define CQSPI_REG_SRAMPARTITION 0x18
165#define CQSPI_REG_INDIRECTTRIGGER 0x1C
166
167#define CQSPI_REG_DMA 0x20
168#define CQSPI_REG_DMA_SINGLE_LSB 0
169#define CQSPI_REG_DMA_BURST_LSB 8
170#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
171#define CQSPI_REG_DMA_BURST_MASK 0xFF
172
173#define CQSPI_REG_REMAP 0x24
174#define CQSPI_REG_MODE_BIT 0x28
175
176#define CQSPI_REG_SDRAMLEVEL 0x2C
177#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
178#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
179#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
180#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
181
182#define CQSPI_REG_IRQSTATUS 0x40
183#define CQSPI_REG_IRQMASK 0x44
184
185#define CQSPI_REG_INDIRECTRD 0x60
186#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
187#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
188#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
189
190#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
191#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
192#define CQSPI_REG_INDIRECTRDBYTES 0x6C
193
194#define CQSPI_REG_CMDCTRL 0x90
195#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
196#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
197#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
198#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
199#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
200#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
201#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
202#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
203#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
204#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
205#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
206#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
207
208#define CQSPI_REG_INDIRECTWR 0x70
209#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
210#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
211#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
212
213#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
214#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
215#define CQSPI_REG_INDIRECTWRBYTES 0x7C
216
217#define CQSPI_REG_CMDADDRESS 0x94
218#define CQSPI_REG_CMDREADDATALOWER 0xA0
219#define CQSPI_REG_CMDREADDATAUPPER 0xA4
220#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
221#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
222
223/* Interrupt status bits */
224#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
225#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
226#define CQSPI_REG_IRQ_IND_COMP BIT(2)
227#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
228#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
229#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
230#define CQSPI_REG_IRQ_WATERMARK BIT(6)
231#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
232
233#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
234 CQSPI_REG_IRQ_IND_SRAM_FULL | \
235 CQSPI_REG_IRQ_IND_COMP)
236
237#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
238 CQSPI_REG_IRQ_WATERMARK | \
239 CQSPI_REG_IRQ_UNDERFLOW)
240
241#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
242
243static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
244{
245 u32 val;
246
247 return readl_relaxed_poll_timeout(reg, val,
248 (((clr ? ~val : val) & mask) == mask),
249 10, CQSPI_TIMEOUT_MS * 1000);
250}
251
252static bool cqspi_is_idle(struct cqspi_st *cqspi)
253{
254 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
255
256 return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
257}
258
259static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
260{
261 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
262
263 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
264 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
265}
266
267static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
268{
269 struct cqspi_st *cqspi = dev;
270 unsigned int irq_status;
271
272 /* Read interrupt status */
273 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
274
275 /* Clear interrupt */
276 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
277
278 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
279
280 if (irq_status)
281 complete(&cqspi->transfer_complete);
282
283 return IRQ_HANDLED;
284}
285
286static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
287{
288 struct cqspi_flash_pdata *f_pdata = nor->priv;
289 u32 rdreg = 0;
290
291 rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
292 rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
293 rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
294
295 return rdreg;
296}
297
298static int cqspi_wait_idle(struct cqspi_st *cqspi)
299{
300 const unsigned int poll_idle_retry = 3;
301 unsigned int count = 0;
302 unsigned long timeout;
303
304 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
305 while (1) {
306 /*
307 * Read few times in succession to ensure the controller
308 * is indeed idle, that is, the bit does not transition
309 * low again.
310 */
311 if (cqspi_is_idle(cqspi))
312 count++;
313 else
314 count = 0;
315
316 if (count >= poll_idle_retry)
317 return 0;
318
319 if (time_after(jiffies, timeout)) {
320 /* Timeout, in busy mode. */
321 dev_err(&cqspi->pdev->dev,
322 "QSPI is still busy after %dms timeout.\n",
323 CQSPI_TIMEOUT_MS);
324 return -ETIMEDOUT;
325 }
326
327 cpu_relax();
328 }
329}
330
331static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
332{
333 void __iomem *reg_base = cqspi->iobase;
334 int ret;
335
336 /* Write the CMDCTRL without start execution. */
337 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
338 /* Start execute */
339 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
340 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
341
342 /* Polling for completion. */
343 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
344 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
345 if (ret) {
346 dev_err(&cqspi->pdev->dev,
347 "Flash command execution timed out.\n");
348 return ret;
349 }
350
351 /* Polling QSPI idle status. */
352 return cqspi_wait_idle(cqspi);
353}
354
355static int cqspi_command_read(struct spi_nor *nor,
356 const u8 *txbuf, const unsigned n_tx,
357 u8 *rxbuf, const unsigned n_rx)
358{
359 struct cqspi_flash_pdata *f_pdata = nor->priv;
360 struct cqspi_st *cqspi = f_pdata->cqspi;
361 void __iomem *reg_base = cqspi->iobase;
362 unsigned int rdreg;
363 unsigned int reg;
364 unsigned int read_len;
365 int status;
366
367 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
368 dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
369 n_rx, rxbuf);
370 return -EINVAL;
371 }
372
373 reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
374
375 rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
376 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
377
378 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
379
380 /* 0 means 1 byte. */
381 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
382 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
383 status = cqspi_exec_flash_cmd(cqspi, reg);
384 if (status)
385 return status;
386
387 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
388
389 /* Put the read value into rx_buf */
390 read_len = (n_rx > 4) ? 4 : n_rx;
391 memcpy(rxbuf, &reg, read_len);
392 rxbuf += read_len;
393
394 if (n_rx > 4) {
395 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
396
397 read_len = n_rx - read_len;
398 memcpy(rxbuf, &reg, read_len);
399 }
400
401 return 0;
402}
403
404static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
405 const u8 *txbuf, const unsigned n_tx)
406{
407 struct cqspi_flash_pdata *f_pdata = nor->priv;
408 struct cqspi_st *cqspi = f_pdata->cqspi;
409 void __iomem *reg_base = cqspi->iobase;
410 unsigned int reg;
411 unsigned int data;
412 u32 write_len;
413 int ret;
414
415 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
416 dev_err(nor->dev,
417 "Invalid input argument, cmdlen %d txbuf 0x%p\n",
418 n_tx, txbuf);
419 return -EINVAL;
420 }
421
422 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
423 if (n_tx) {
424 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
425 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
426 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
427 data = 0;
428 write_len = (n_tx > 4) ? 4 : n_tx;
429 memcpy(&data, txbuf, write_len);
430 txbuf += write_len;
431 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
432
433 if (n_tx > 4) {
434 data = 0;
435 write_len = n_tx - 4;
436 memcpy(&data, txbuf, write_len);
437 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
438 }
439 }
440 ret = cqspi_exec_flash_cmd(cqspi, reg);
441 return ret;
442}
443
444static int cqspi_command_write_addr(struct spi_nor *nor,
445 const u8 opcode, const unsigned int addr)
446{
447 struct cqspi_flash_pdata *f_pdata = nor->priv;
448 struct cqspi_st *cqspi = f_pdata->cqspi;
449 void __iomem *reg_base = cqspi->iobase;
450 unsigned int reg;
451
452 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
453 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
454 reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
455 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
456
457 writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
458
459 return cqspi_exec_flash_cmd(cqspi, reg);
460}
461
462static int cqspi_read_setup(struct spi_nor *nor)
463{
464 struct cqspi_flash_pdata *f_pdata = nor->priv;
465 struct cqspi_st *cqspi = f_pdata->cqspi;
466 void __iomem *reg_base = cqspi->iobase;
467 unsigned int dummy_clk = 0;
468 unsigned int reg;
469
470 reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
471 reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
472
473 /* Setup dummy clock cycles */
474 dummy_clk = nor->read_dummy;
475 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
476 return -EOPNOTSUPP;
477
478 if (dummy_clk / 8) {
479 reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
480 /* Set mode bits high to ensure chip doesn't enter XIP */
481 writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
482
483 /* Need to subtract the mode byte (8 clocks). */
484 if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
485 dummy_clk -= 8;
486
487 if (dummy_clk)
488 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
489 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
490 }
491
492 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
493
494 /* Set address width */
495 reg = readl(reg_base + CQSPI_REG_SIZE);
496 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
497 reg |= (nor->addr_width - 1);
498 writel(reg, reg_base + CQSPI_REG_SIZE);
499 return 0;
500}
501
502static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
503 loff_t from_addr, const size_t n_rx)
504{
505 struct cqspi_flash_pdata *f_pdata = nor->priv;
506 struct cqspi_st *cqspi = f_pdata->cqspi;
507 void __iomem *reg_base = cqspi->iobase;
508 void __iomem *ahb_base = cqspi->ahb_base;
509 unsigned int remaining = n_rx;
510 unsigned int mod_bytes = n_rx % 4;
511 unsigned int bytes_to_read = 0;
512 u8 *rxbuf_end = rxbuf + n_rx;
513 int ret = 0;
514
515 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
516 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
517
518 /* Clear all interrupts. */
519 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
520
521 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
522
523 reinit_completion(&cqspi->transfer_complete);
524 writel(CQSPI_REG_INDIRECTRD_START_MASK,
525 reg_base + CQSPI_REG_INDIRECTRD);
526
527 while (remaining > 0) {
528 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
529 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
530 ret = -ETIMEDOUT;
531
532 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
533
534 if (ret && bytes_to_read == 0) {
535 dev_err(nor->dev, "Indirect read timeout, no bytes\n");
536 goto failrd;
537 }
538
539 while (bytes_to_read != 0) {
540 unsigned int word_remain = round_down(remaining, 4);
541
542 bytes_to_read *= cqspi->fifo_width;
543 bytes_to_read = bytes_to_read > remaining ?
544 remaining : bytes_to_read;
545 bytes_to_read = round_down(bytes_to_read, 4);
546 /* Read 4 byte word chunks then single bytes */
547 if (bytes_to_read) {
548 ioread32_rep(ahb_base, rxbuf,
549 (bytes_to_read / 4));
550 } else if (!word_remain && mod_bytes) {
551 unsigned int temp = ioread32(ahb_base);
552
553 bytes_to_read = mod_bytes;
554 memcpy(rxbuf, &temp, min((unsigned int)
555 (rxbuf_end - rxbuf),
556 bytes_to_read));
557 }
558 rxbuf += bytes_to_read;
559 remaining -= bytes_to_read;
560 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
561 }
562
563 if (remaining > 0)
564 reinit_completion(&cqspi->transfer_complete);
565 }
566
567 /* Check indirect done status */
568 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
569 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
570 if (ret) {
571 dev_err(nor->dev,
572 "Indirect read completion error (%i)\n", ret);
573 goto failrd;
574 }
575
576 /* Disable interrupt */
577 writel(0, reg_base + CQSPI_REG_IRQMASK);
578
579 /* Clear indirect completion status */
580 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
581
582 return 0;
583
584failrd:
585 /* Disable interrupt */
586 writel(0, reg_base + CQSPI_REG_IRQMASK);
587
588 /* Cancel the indirect read */
589 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
590 reg_base + CQSPI_REG_INDIRECTRD);
591 return ret;
592}
593
594static int cqspi_write_setup(struct spi_nor *nor)
595{
596 unsigned int reg;
597 struct cqspi_flash_pdata *f_pdata = nor->priv;
598 struct cqspi_st *cqspi = f_pdata->cqspi;
599 void __iomem *reg_base = cqspi->iobase;
600
601 /* Set opcode. */
602 reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
603 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
604 reg = cqspi_calc_rdreg(nor, nor->program_opcode);
605 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
606
607 reg = readl(reg_base + CQSPI_REG_SIZE);
608 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
609 reg |= (nor->addr_width - 1);
610 writel(reg, reg_base + CQSPI_REG_SIZE);
611 return 0;
612}
613
614static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
615 const u8 *txbuf, const size_t n_tx)
616{
617 const unsigned int page_size = nor->page_size;
618 struct cqspi_flash_pdata *f_pdata = nor->priv;
619 struct cqspi_st *cqspi = f_pdata->cqspi;
620 void __iomem *reg_base = cqspi->iobase;
621 unsigned int remaining = n_tx;
622 unsigned int write_bytes;
623 int ret;
624
625 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
626 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
627
628 /* Clear all interrupts. */
629 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
630
631 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
632
633 reinit_completion(&cqspi->transfer_complete);
634 writel(CQSPI_REG_INDIRECTWR_START_MASK,
635 reg_base + CQSPI_REG_INDIRECTWR);
636 /*
637 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
638 * Controller programming sequence, couple of cycles of
639 * QSPI_REF_CLK delay is required for the above bit to
640 * be internally synchronized by the QSPI module. Provide 5
641 * cycles of delay.
642 */
643 if (cqspi->wr_delay)
644 ndelay(cqspi->wr_delay);
645
646 while (remaining > 0) {
647 size_t write_words, mod_bytes;
648
649 write_bytes = remaining > page_size ? page_size : remaining;
650 write_words = write_bytes / 4;
651 mod_bytes = write_bytes % 4;
652 /* Write 4 bytes at a time then single bytes. */
653 if (write_words) {
654 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
655 txbuf += (write_words * 4);
656 }
657 if (mod_bytes) {
658 unsigned int temp = 0xFFFFFFFF;
659
660 memcpy(&temp, txbuf, mod_bytes);
661 iowrite32(temp, cqspi->ahb_base);
662 txbuf += mod_bytes;
663 }
664
665 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
666 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
667 dev_err(nor->dev, "Indirect write timeout\n");
668 ret = -ETIMEDOUT;
669 goto failwr;
670 }
671
672 remaining -= write_bytes;
673
674 if (remaining > 0)
675 reinit_completion(&cqspi->transfer_complete);
676 }
677
678 /* Check indirect done status */
679 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
680 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
681 if (ret) {
682 dev_err(nor->dev,
683 "Indirect write completion error (%i)\n", ret);
684 goto failwr;
685 }
686
687 /* Disable interrupt. */
688 writel(0, reg_base + CQSPI_REG_IRQMASK);
689
690 /* Clear indirect completion status */
691 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
692
693 cqspi_wait_idle(cqspi);
694
695 return 0;
696
697failwr:
698 /* Disable interrupt. */
699 writel(0, reg_base + CQSPI_REG_IRQMASK);
700
701 /* Cancel the indirect write */
702 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
703 reg_base + CQSPI_REG_INDIRECTWR);
704 return ret;
705}
706
707static void cqspi_chipselect(struct spi_nor *nor)
708{
709 struct cqspi_flash_pdata *f_pdata = nor->priv;
710 struct cqspi_st *cqspi = f_pdata->cqspi;
711 void __iomem *reg_base = cqspi->iobase;
712 unsigned int chip_select = f_pdata->cs;
713 unsigned int reg;
714
715 reg = readl(reg_base + CQSPI_REG_CONFIG);
716 if (cqspi->is_decoded_cs) {
717 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
718 } else {
719 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
720
721 /* Convert CS if without decoder.
722 * CS0 to 4b'1110
723 * CS1 to 4b'1101
724 * CS2 to 4b'1011
725 * CS3 to 4b'0111
726 */
727 chip_select = 0xF & ~(1 << chip_select);
728 }
729
730 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
731 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
732 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
733 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
734 writel(reg, reg_base + CQSPI_REG_CONFIG);
735}
736
737static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
738 const unsigned int ns_val)
739{
740 unsigned int ticks;
741
742 ticks = ref_clk_hz / 1000; /* kHz */
743 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
744
745 return ticks;
746}
747
748static void cqspi_delay(struct spi_nor *nor)
749{
750 struct cqspi_flash_pdata *f_pdata = nor->priv;
751 struct cqspi_st *cqspi = f_pdata->cqspi;
752 void __iomem *iobase = cqspi->iobase;
753 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
754 unsigned int tshsl, tchsh, tslch, tsd2d;
755 unsigned int reg;
756 unsigned int tsclk;
757
758 /* calculate the number of ref ticks for one sclk tick */
759 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
760
761 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
762 /* this particular value must be at least one sclk */
763 if (tshsl < tsclk)
764 tshsl = tsclk;
765
766 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
767 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
768 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
769
770 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
771 << CQSPI_REG_DELAY_TSHSL_LSB;
772 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
773 << CQSPI_REG_DELAY_TCHSH_LSB;
774 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
775 << CQSPI_REG_DELAY_TSLCH_LSB;
776 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
777 << CQSPI_REG_DELAY_TSD2D_LSB;
778 writel(reg, iobase + CQSPI_REG_DELAY);
779}
780
781static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
782{
783 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
784 void __iomem *reg_base = cqspi->iobase;
785 u32 reg, div;
786
787 /* Recalculate the baudrate divisor based on QSPI specification. */
788 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
789
790 reg = readl(reg_base + CQSPI_REG_CONFIG);
791 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
792 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
793 writel(reg, reg_base + CQSPI_REG_CONFIG);
794}
795
796static void cqspi_readdata_capture(struct cqspi_st *cqspi,
797 const bool bypass,
798 const unsigned int delay)
799{
800 void __iomem *reg_base = cqspi->iobase;
801 unsigned int reg;
802
803 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
804
805 if (bypass)
806 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
807 else
808 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
809
810 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
811 << CQSPI_REG_READCAPTURE_DELAY_LSB);
812
813 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
814 << CQSPI_REG_READCAPTURE_DELAY_LSB;
815
816 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
817}
818
819static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
820{
821 void __iomem *reg_base = cqspi->iobase;
822 unsigned int reg;
823
824 reg = readl(reg_base + CQSPI_REG_CONFIG);
825
826 if (enable)
827 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
828 else
829 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
830
831 writel(reg, reg_base + CQSPI_REG_CONFIG);
832}
833
834static void cqspi_configure(struct spi_nor *nor)
835{
836 struct cqspi_flash_pdata *f_pdata = nor->priv;
837 struct cqspi_st *cqspi = f_pdata->cqspi;
838 const unsigned int sclk = f_pdata->clk_rate;
839 int switch_cs = (cqspi->current_cs != f_pdata->cs);
840 int switch_ck = (cqspi->sclk != sclk);
841
842 if (switch_cs || switch_ck)
843 cqspi_controller_enable(cqspi, 0);
844
845 /* Switch chip select. */
846 if (switch_cs) {
847 cqspi->current_cs = f_pdata->cs;
848 cqspi_chipselect(nor);
849 }
850
851 /* Setup baudrate divisor and delays */
852 if (switch_ck) {
853 cqspi->sclk = sclk;
854 cqspi_config_baudrate_div(cqspi);
855 cqspi_delay(nor);
856 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
857 f_pdata->read_delay);
858 }
859
860 if (switch_cs || switch_ck)
861 cqspi_controller_enable(cqspi, 1);
862}
863
864static int cqspi_set_protocol(struct spi_nor *nor, const int read)
865{
866 struct cqspi_flash_pdata *f_pdata = nor->priv;
867
868 f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
869 f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
870 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
871
872 if (read) {
873 switch (nor->read_proto) {
874 case SNOR_PROTO_1_1_1:
875 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
876 break;
877 case SNOR_PROTO_1_1_2:
878 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
879 break;
880 case SNOR_PROTO_1_1_4:
881 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
882 break;
883 case SNOR_PROTO_1_1_8:
884 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
885 break;
886 default:
887 return -EINVAL;
888 }
889 }
890
891 cqspi_configure(nor);
892
893 return 0;
894}
895
896static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
897 size_t len, const u_char *buf)
898{
899 struct cqspi_flash_pdata *f_pdata = nor->priv;
900 struct cqspi_st *cqspi = f_pdata->cqspi;
901 int ret;
902
903 ret = cqspi_set_protocol(nor, 0);
904 if (ret)
905 return ret;
906
907 ret = cqspi_write_setup(nor);
908 if (ret)
909 return ret;
910
911 if (f_pdata->use_direct_mode) {
912 memcpy_toio(cqspi->ahb_base + to, buf, len);
913 ret = cqspi_wait_idle(cqspi);
914 } else {
915 ret = cqspi_indirect_write_execute(nor, to, buf, len);
916 }
917 if (ret)
918 return ret;
919
920 return len;
921}
922
923static void cqspi_rx_dma_callback(void *param)
924{
925 struct cqspi_st *cqspi = param;
926
927 complete(&cqspi->rx_dma_complete);
928}
929
930static int cqspi_direct_read_execute(struct spi_nor *nor, u_char *buf,
931 loff_t from, size_t len)
932{
933 struct cqspi_flash_pdata *f_pdata = nor->priv;
934 struct cqspi_st *cqspi = f_pdata->cqspi;
935 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
936 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
937 int ret = 0;
938 struct dma_async_tx_descriptor *tx;
939 dma_cookie_t cookie;
940 dma_addr_t dma_dst;
941
942 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
943 memcpy_fromio(buf, cqspi->ahb_base + from, len);
944 return 0;
945 }
946
947 dma_dst = dma_map_single(nor->dev, buf, len, DMA_FROM_DEVICE);
948 if (dma_mapping_error(nor->dev, dma_dst)) {
949 dev_err(nor->dev, "dma mapping failed\n");
950 return -ENOMEM;
951 }
952 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
953 len, flags);
954 if (!tx) {
955 dev_err(nor->dev, "device_prep_dma_memcpy error\n");
956 ret = -EIO;
957 goto err_unmap;
958 }
959
960 tx->callback = cqspi_rx_dma_callback;
961 tx->callback_param = cqspi;
962 cookie = tx->tx_submit(tx);
963 reinit_completion(&cqspi->rx_dma_complete);
964
965 ret = dma_submit_error(cookie);
966 if (ret) {
967 dev_err(nor->dev, "dma_submit_error %d\n", cookie);
968 ret = -EIO;
969 goto err_unmap;
970 }
971
972 dma_async_issue_pending(cqspi->rx_chan);
973 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
974 msecs_to_jiffies(len))) {
975 dmaengine_terminate_sync(cqspi->rx_chan);
976 dev_err(nor->dev, "DMA wait_for_completion_timeout\n");
977 ret = -ETIMEDOUT;
978 goto err_unmap;
979 }
980
981err_unmap:
982 dma_unmap_single(nor->dev, dma_dst, len, DMA_FROM_DEVICE);
983
984 return ret;
985}
986
987static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
988 size_t len, u_char *buf)
989{
990 struct cqspi_flash_pdata *f_pdata = nor->priv;
991 int ret;
992
993 ret = cqspi_set_protocol(nor, 1);
994 if (ret)
995 return ret;
996
997 ret = cqspi_read_setup(nor);
998 if (ret)
999 return ret;
1000
1001 if (f_pdata->use_direct_mode)
1002 ret = cqspi_direct_read_execute(nor, buf, from, len);
1003 else
1004 ret = cqspi_indirect_read_execute(nor, buf, from, len);
1005 if (ret)
1006 return ret;
1007
1008 return len;
1009}
1010
1011static int cqspi_erase(struct spi_nor *nor, loff_t offs)
1012{
1013 int ret;
1014
1015 ret = cqspi_set_protocol(nor, 0);
1016 if (ret)
1017 return ret;
1018
1019 /* Send write enable, then erase commands. */
1020 ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
1021 if (ret)
1022 return ret;
1023
1024 /* Set up command buffer. */
1025 ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
1026 if (ret)
1027 return ret;
1028
1029 return 0;
1030}
1031
1032static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
1033{
1034 struct cqspi_flash_pdata *f_pdata = nor->priv;
1035 struct cqspi_st *cqspi = f_pdata->cqspi;
1036
1037 mutex_lock(&cqspi->bus_mutex);
1038
1039 return 0;
1040}
1041
1042static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
1043{
1044 struct cqspi_flash_pdata *f_pdata = nor->priv;
1045 struct cqspi_st *cqspi = f_pdata->cqspi;
1046
1047 mutex_unlock(&cqspi->bus_mutex);
1048}
1049
1050static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
1051{
1052 int ret;
1053
1054 ret = cqspi_set_protocol(nor, 0);
1055 if (!ret)
1056 ret = cqspi_command_read(nor, &opcode, 1, buf, len);
1057
1058 return ret;
1059}
1060
1061static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
1062{
1063 int ret;
1064
1065 ret = cqspi_set_protocol(nor, 0);
1066 if (!ret)
1067 ret = cqspi_command_write(nor, opcode, buf, len);
1068
1069 return ret;
1070}
1071
1072static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1073 struct cqspi_flash_pdata *f_pdata,
1074 struct device_node *np)
1075{
1076 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1077 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1078 return -ENXIO;
1079 }
1080
1081 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1082 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1083 return -ENXIO;
1084 }
1085
1086 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1087 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1088 return -ENXIO;
1089 }
1090
1091 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1092 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1093 return -ENXIO;
1094 }
1095
1096 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1097 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1098 return -ENXIO;
1099 }
1100
1101 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1102 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1103 return -ENXIO;
1104 }
1105
1106 return 0;
1107}
1108
1109static int cqspi_of_get_pdata(struct platform_device *pdev)
1110{
1111 struct device_node *np = pdev->dev.of_node;
1112 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1113
1114 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1115
1116 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1117 dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
1118 return -ENXIO;
1119 }
1120
1121 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1122 dev_err(&pdev->dev, "couldn't determine fifo-width\n");
1123 return -ENXIO;
1124 }
1125
1126 if (of_property_read_u32(np, "cdns,trigger-address",
1127 &cqspi->trigger_address)) {
1128 dev_err(&pdev->dev, "couldn't determine trigger-address\n");
1129 return -ENXIO;
1130 }
1131
1132 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1133
1134 return 0;
1135}
1136
1137static void cqspi_controller_init(struct cqspi_st *cqspi)
1138{
1139 u32 reg;
1140
1141 cqspi_controller_enable(cqspi, 0);
1142
1143 /* Configure the remap address register, no remap */
1144 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1145
1146 /* Disable all interrupts. */
1147 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1148
1149 /* Configure the SRAM split to 1:1 . */
1150 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1151
1152 /* Load indirect trigger address. */
1153 writel(cqspi->trigger_address,
1154 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1155
1156 /* Program read watermark -- 1/2 of the FIFO. */
1157 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1158 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1159 /* Program write watermark -- 1/8 of the FIFO. */
1160 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1161 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1162
1163 /* Enable Direct Access Controller */
1164 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1165 reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1166 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1167
1168 cqspi_controller_enable(cqspi, 1);
1169}
1170
1171static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1172{
1173 dma_cap_mask_t mask;
1174
1175 dma_cap_zero(mask);
1176 dma_cap_set(DMA_MEMCPY, mask);
1177
1178 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1179 if (IS_ERR(cqspi->rx_chan)) {
1180 int ret = PTR_ERR(cqspi->rx_chan);
1181
1182 if (ret != -EPROBE_DEFER)
1183 dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
1184 cqspi->rx_chan = NULL;
1185 return ret;
1186 }
1187 init_completion(&cqspi->rx_dma_complete);
1188
1189 return 0;
1190}
1191
1192static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
1193{
1194 struct platform_device *pdev = cqspi->pdev;
1195 struct device *dev = &pdev->dev;
1196 const struct cqspi_driver_platdata *ddata;
1197 struct spi_nor_hwcaps hwcaps;
1198 struct cqspi_flash_pdata *f_pdata;
1199 struct spi_nor *nor;
1200 struct mtd_info *mtd;
1201 unsigned int cs;
1202 int i, ret;
1203
1204 ddata = of_device_get_match_data(dev);
1205 if (!ddata) {
1206 dev_err(dev, "Couldn't find driver data\n");
1207 return -EINVAL;
1208 }
1209 hwcaps.mask = ddata->hwcaps_mask;
1210
1211 /* Get flash device data */
1212 for_each_available_child_of_node(dev->of_node, np) {
1213 ret = of_property_read_u32(np, "reg", &cs);
1214 if (ret) {
1215 dev_err(dev, "Couldn't determine chip select.\n");
1216 goto err;
1217 }
1218
1219 if (cs >= CQSPI_MAX_CHIPSELECT) {
1220 ret = -EINVAL;
1221 dev_err(dev, "Chip select %d out of range.\n", cs);
1222 goto err;
1223 }
1224
1225 f_pdata = &cqspi->f_pdata[cs];
1226 f_pdata->cqspi = cqspi;
1227 f_pdata->cs = cs;
1228
1229 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1230 if (ret)
1231 goto err;
1232
1233 nor = &f_pdata->nor;
1234 mtd = &nor->mtd;
1235
1236 mtd->priv = nor;
1237
1238 nor->dev = dev;
1239 spi_nor_set_flash_node(nor, np);
1240 nor->priv = f_pdata;
1241
1242 nor->read_reg = cqspi_read_reg;
1243 nor->write_reg = cqspi_write_reg;
1244 nor->read = cqspi_read;
1245 nor->write = cqspi_write;
1246 nor->erase = cqspi_erase;
1247 nor->prepare = cqspi_prep;
1248 nor->unprepare = cqspi_unprep;
1249
1250 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
1251 dev_name(dev), cs);
1252 if (!mtd->name) {
1253 ret = -ENOMEM;
1254 goto err;
1255 }
1256
1257 ret = spi_nor_scan(nor, NULL, &hwcaps);
1258 if (ret)
1259 goto err;
1260
1261 ret = mtd_device_register(mtd, NULL, 0);
1262 if (ret)
1263 goto err;
1264
1265 f_pdata->registered = true;
1266
1267 if (mtd->size <= cqspi->ahb_size &&
1268 !(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1269 f_pdata->use_direct_mode = true;
1270 dev_dbg(nor->dev, "using direct mode for %s\n",
1271 mtd->name);
1272
1273 if (!cqspi->rx_chan) {
1274 ret = cqspi_request_mmap_dma(cqspi);
1275 if (ret == -EPROBE_DEFER)
1276 goto err;
1277 }
1278 }
1279 }
1280
1281 return 0;
1282
1283err:
1284 for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1285 if (cqspi->f_pdata[i].registered)
1286 mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1287 return ret;
1288}
1289
1290static int cqspi_probe(struct platform_device *pdev)
1291{
1292 struct device_node *np = pdev->dev.of_node;
1293 struct device *dev = &pdev->dev;
1294 struct cqspi_st *cqspi;
1295 struct resource *res;
1296 struct resource *res_ahb;
1297 struct reset_control *rstc, *rstc_ocp;
1298 const struct cqspi_driver_platdata *ddata;
1299 int ret;
1300 int irq;
1301
1302 cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
1303 if (!cqspi)
1304 return -ENOMEM;
1305
1306 mutex_init(&cqspi->bus_mutex);
1307 cqspi->pdev = pdev;
1308 platform_set_drvdata(pdev, cqspi);
1309
1310 /* Obtain configuration from OF. */
1311 ret = cqspi_of_get_pdata(pdev);
1312 if (ret) {
1313 dev_err(dev, "Cannot get mandatory OF data.\n");
1314 return -ENODEV;
1315 }
1316
1317 /* Obtain QSPI clock. */
1318 cqspi->clk = devm_clk_get(dev, NULL);
1319 if (IS_ERR(cqspi->clk)) {
1320 dev_err(dev, "Cannot claim QSPI clock.\n");
1321 return PTR_ERR(cqspi->clk);
1322 }
1323
1324 /* Obtain and remap controller address. */
1325 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1326 cqspi->iobase = devm_ioremap_resource(dev, res);
1327 if (IS_ERR(cqspi->iobase)) {
1328 dev_err(dev, "Cannot remap controller address.\n");
1329 return PTR_ERR(cqspi->iobase);
1330 }
1331
1332 /* Obtain and remap AHB address. */
1333 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1334 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1335 if (IS_ERR(cqspi->ahb_base)) {
1336 dev_err(dev, "Cannot remap AHB address.\n");
1337 return PTR_ERR(cqspi->ahb_base);
1338 }
1339 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1340 cqspi->ahb_size = resource_size(res_ahb);
1341
1342 init_completion(&cqspi->transfer_complete);
1343
1344 /* Obtain IRQ line. */
1345 irq = platform_get_irq(pdev, 0);
1346 if (irq < 0) {
1347 dev_err(dev, "Cannot obtain IRQ.\n");
1348 return -ENXIO;
1349 }
1350
1351 pm_runtime_enable(dev);
1352 ret = pm_runtime_get_sync(dev);
1353 if (ret < 0) {
1354 pm_runtime_put_noidle(dev);
1355 return ret;
1356 }
1357
1358 ret = clk_prepare_enable(cqspi->clk);
1359 if (ret) {
1360 dev_err(dev, "Cannot enable QSPI clock.\n");
1361 goto probe_clk_failed;
1362 }
1363
1364 /* Obtain QSPI reset control */
1365 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1366 if (IS_ERR(rstc)) {
1367 dev_err(dev, "Cannot get QSPI reset.\n");
1368 return PTR_ERR(rstc);
1369 }
1370
1371 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1372 if (IS_ERR(rstc_ocp)) {
1373 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1374 return PTR_ERR(rstc_ocp);
1375 }
1376
1377 reset_control_assert(rstc);
1378 reset_control_deassert(rstc);
1379
1380 reset_control_assert(rstc_ocp);
1381 reset_control_deassert(rstc_ocp);
1382
1383 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1384 ddata = of_device_get_match_data(dev);
1385 if (ddata && (ddata->quirks & CQSPI_NEEDS_WR_DELAY))
1386 cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1387 cqspi->master_ref_clk_hz);
1388
1389 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1390 pdev->name, cqspi);
1391 if (ret) {
1392 dev_err(dev, "Cannot request IRQ.\n");
1393 goto probe_irq_failed;
1394 }
1395
1396 cqspi_wait_idle(cqspi);
1397 cqspi_controller_init(cqspi);
1398 cqspi->current_cs = -1;
1399 cqspi->sclk = 0;
1400
1401 ret = cqspi_setup_flash(cqspi, np);
1402 if (ret) {
1403 dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
1404 goto probe_setup_failed;
1405 }
1406
1407 return ret;
1408probe_setup_failed:
1409 cqspi_controller_enable(cqspi, 0);
1410probe_irq_failed:
1411 clk_disable_unprepare(cqspi->clk);
1412probe_clk_failed:
1413 pm_runtime_put_sync(dev);
1414 pm_runtime_disable(dev);
1415 return ret;
1416}
1417
1418static int cqspi_remove(struct platform_device *pdev)
1419{
1420 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1421 int i;
1422
1423 for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1424 if (cqspi->f_pdata[i].registered)
1425 mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1426
1427 cqspi_controller_enable(cqspi, 0);
1428
1429 if (cqspi->rx_chan)
1430 dma_release_channel(cqspi->rx_chan);
1431
1432 clk_disable_unprepare(cqspi->clk);
1433
1434 pm_runtime_put_sync(&pdev->dev);
1435 pm_runtime_disable(&pdev->dev);
1436
1437 return 0;
1438}
1439
1440#ifdef CONFIG_PM_SLEEP
1441static int cqspi_suspend(struct device *dev)
1442{
1443 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1444 struct spi_master *master = dev_get_drvdata(dev);
1445 int ret;
1446
1447 ret = spi_master_suspend(master);
1448 cqspi_controller_enable(cqspi, 0);
1449
1450 clk_disable_unprepare(cqspi->clk);
1451
1452 return ret;
1453}
1454
1455static int cqspi_resume(struct device *dev)
1456{
1457 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1458 struct spi_master *master = dev_get_drvdata(dev);
1459
1460 clk_prepare_enable(cqspi->clk);
1461 cqspi_wait_idle(cqspi);
1462 cqspi_controller_init(cqspi);
1463
1464 cqspi->current_cs = -1;
1465 cqspi->sclk = 0;
1466
1467 return spi_master_resume(master);
1468}
1469
1470static const struct dev_pm_ops cqspi__dev_pm_ops = {
1471 .suspend = cqspi_suspend,
1472 .resume = cqspi_resume,
1473};
1474
1475#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
1476#else
1477#define CQSPI_DEV_PM_OPS NULL
1478#endif
1479
1480static const struct cqspi_driver_platdata cdns_qspi = {
1481 .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
1482 .quirks = CQSPI_DISABLE_DAC_MODE,
1483};
1484
1485static const struct cqspi_driver_platdata k2g_qspi = {
1486 .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
1487 .quirks = CQSPI_NEEDS_WR_DELAY,
1488};
1489
1490static const struct cqspi_driver_platdata am654_ospi = {
1491 .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK | SNOR_HWCAPS_READ_1_1_8,
1492 .quirks = CQSPI_NEEDS_WR_DELAY,
1493};
1494
1495static const struct of_device_id cqspi_dt_ids[] = {
1496 {
1497 .compatible = "cdns,qspi-nor",
1498 .data = &cdns_qspi,
1499 },
1500 {
1501 .compatible = "ti,k2g-qspi",
1502 .data = &k2g_qspi,
1503 },
1504 {
1505 .compatible = "ti,am654-ospi",
1506 .data = &am654_ospi,
1507 },
1508 { /* end of table */ }
1509};
1510
1511MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1512
1513static struct platform_driver cqspi_platform_driver = {
1514 .probe = cqspi_probe,
1515 .remove = cqspi_remove,
1516 .driver = {
1517 .name = CQSPI_NAME,
1518 .pm = CQSPI_DEV_PM_OPS,
1519 .of_match_table = cqspi_dt_ids,
1520 },
1521};
1522
1523module_platform_driver(cqspi_platform_driver);
1524
1525MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1526MODULE_LICENSE("GPL v2");
1527MODULE_ALIAS("platform:" CQSPI_NAME);
1528MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1529MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");