b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Broadcom Starfighter 2 DSA switch CFP support |
| 4 | * |
| 5 | * Copyright (C) 2016, Broadcom |
| 6 | */ |
| 7 | |
| 8 | #include <linux/list.h> |
| 9 | #include <linux/ethtool.h> |
| 10 | #include <linux/if_ether.h> |
| 11 | #include <linux/in.h> |
| 12 | #include <linux/netdevice.h> |
| 13 | #include <net/dsa.h> |
| 14 | #include <linux/bitmap.h> |
| 15 | #include <net/flow_offload.h> |
| 16 | #include <net/switchdev.h> |
| 17 | #include <uapi/linux/if_bridge.h> |
| 18 | |
| 19 | #include "bcm_sf2.h" |
| 20 | #include "bcm_sf2_regs.h" |
| 21 | |
| 22 | struct cfp_rule { |
| 23 | int port; |
| 24 | struct ethtool_rx_flow_spec fs; |
| 25 | struct list_head next; |
| 26 | }; |
| 27 | |
| 28 | struct cfp_udf_slice_layout { |
| 29 | u8 slices[UDFS_PER_SLICE]; |
| 30 | u32 mask_value; |
| 31 | u32 base_offset; |
| 32 | }; |
| 33 | |
| 34 | struct cfp_udf_layout { |
| 35 | struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES]; |
| 36 | }; |
| 37 | |
| 38 | static const u8 zero_slice[UDFS_PER_SLICE] = { }; |
| 39 | |
| 40 | /* UDF slices layout for a TCPv4/UDPv4 specification */ |
| 41 | static const struct cfp_udf_layout udf_tcpip4_layout = { |
| 42 | .udfs = { |
| 43 | [1] = { |
| 44 | .slices = { |
| 45 | /* End of L2, byte offset 12, src IP[0:15] */ |
| 46 | CFG_UDF_EOL2 | 6, |
| 47 | /* End of L2, byte offset 14, src IP[16:31] */ |
| 48 | CFG_UDF_EOL2 | 7, |
| 49 | /* End of L2, byte offset 16, dst IP[0:15] */ |
| 50 | CFG_UDF_EOL2 | 8, |
| 51 | /* End of L2, byte offset 18, dst IP[16:31] */ |
| 52 | CFG_UDF_EOL2 | 9, |
| 53 | /* End of L3, byte offset 0, src port */ |
| 54 | CFG_UDF_EOL3 | 0, |
| 55 | /* End of L3, byte offset 2, dst port */ |
| 56 | CFG_UDF_EOL3 | 1, |
| 57 | 0, 0, 0 |
| 58 | }, |
| 59 | .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, |
| 60 | .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET, |
| 61 | }, |
| 62 | }, |
| 63 | }; |
| 64 | |
| 65 | /* UDF slices layout for a TCPv6/UDPv6 specification */ |
| 66 | static const struct cfp_udf_layout udf_tcpip6_layout = { |
| 67 | .udfs = { |
| 68 | [0] = { |
| 69 | .slices = { |
| 70 | /* End of L2, byte offset 8, src IP[0:15] */ |
| 71 | CFG_UDF_EOL2 | 4, |
| 72 | /* End of L2, byte offset 10, src IP[16:31] */ |
| 73 | CFG_UDF_EOL2 | 5, |
| 74 | /* End of L2, byte offset 12, src IP[32:47] */ |
| 75 | CFG_UDF_EOL2 | 6, |
| 76 | /* End of L2, byte offset 14, src IP[48:63] */ |
| 77 | CFG_UDF_EOL2 | 7, |
| 78 | /* End of L2, byte offset 16, src IP[64:79] */ |
| 79 | CFG_UDF_EOL2 | 8, |
| 80 | /* End of L2, byte offset 18, src IP[80:95] */ |
| 81 | CFG_UDF_EOL2 | 9, |
| 82 | /* End of L2, byte offset 20, src IP[96:111] */ |
| 83 | CFG_UDF_EOL2 | 10, |
| 84 | /* End of L2, byte offset 22, src IP[112:127] */ |
| 85 | CFG_UDF_EOL2 | 11, |
| 86 | /* End of L3, byte offset 0, src port */ |
| 87 | CFG_UDF_EOL3 | 0, |
| 88 | }, |
| 89 | .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, |
| 90 | .base_offset = CORE_UDF_0_B_0_8_PORT_0, |
| 91 | }, |
| 92 | [3] = { |
| 93 | .slices = { |
| 94 | /* End of L2, byte offset 24, dst IP[0:15] */ |
| 95 | CFG_UDF_EOL2 | 12, |
| 96 | /* End of L2, byte offset 26, dst IP[16:31] */ |
| 97 | CFG_UDF_EOL2 | 13, |
| 98 | /* End of L2, byte offset 28, dst IP[32:47] */ |
| 99 | CFG_UDF_EOL2 | 14, |
| 100 | /* End of L2, byte offset 30, dst IP[48:63] */ |
| 101 | CFG_UDF_EOL2 | 15, |
| 102 | /* End of L2, byte offset 32, dst IP[64:79] */ |
| 103 | CFG_UDF_EOL2 | 16, |
| 104 | /* End of L2, byte offset 34, dst IP[80:95] */ |
| 105 | CFG_UDF_EOL2 | 17, |
| 106 | /* End of L2, byte offset 36, dst IP[96:111] */ |
| 107 | CFG_UDF_EOL2 | 18, |
| 108 | /* End of L2, byte offset 38, dst IP[112:127] */ |
| 109 | CFG_UDF_EOL2 | 19, |
| 110 | /* End of L3, byte offset 2, dst port */ |
| 111 | CFG_UDF_EOL3 | 1, |
| 112 | }, |
| 113 | .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, |
| 114 | .base_offset = CORE_UDF_0_D_0_11_PORT_0, |
| 115 | }, |
| 116 | }, |
| 117 | }; |
| 118 | |
| 119 | static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) |
| 120 | { |
| 121 | unsigned int i, count = 0; |
| 122 | |
| 123 | for (i = 0; i < UDFS_PER_SLICE; i++) { |
| 124 | if (layout[i] != 0) |
| 125 | count++; |
| 126 | } |
| 127 | |
| 128 | return count; |
| 129 | } |
| 130 | |
| 131 | static inline u32 udf_upper_bits(unsigned int num_udf) |
| 132 | { |
| 133 | return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1); |
| 134 | } |
| 135 | |
| 136 | static inline u32 udf_lower_bits(unsigned int num_udf) |
| 137 | { |
| 138 | return (u8)GENMASK(num_udf - 1, 0); |
| 139 | } |
| 140 | |
| 141 | static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l, |
| 142 | unsigned int start) |
| 143 | { |
| 144 | const struct cfp_udf_slice_layout *slice_layout; |
| 145 | unsigned int slice_idx; |
| 146 | |
| 147 | for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) { |
| 148 | slice_layout = &l->udfs[slice_idx]; |
| 149 | if (memcmp(slice_layout->slices, zero_slice, |
| 150 | sizeof(zero_slice))) |
| 151 | break; |
| 152 | } |
| 153 | |
| 154 | return slice_idx; |
| 155 | } |
| 156 | |
| 157 | static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv, |
| 158 | const struct cfp_udf_layout *layout, |
| 159 | unsigned int slice_num) |
| 160 | { |
| 161 | u32 offset = layout->udfs[slice_num].base_offset; |
| 162 | unsigned int i; |
| 163 | |
| 164 | for (i = 0; i < UDFS_PER_SLICE; i++) |
| 165 | core_writel(priv, layout->udfs[slice_num].slices[i], |
| 166 | offset + i * 4); |
| 167 | } |
| 168 | |
| 169 | static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op) |
| 170 | { |
| 171 | unsigned int timeout = 1000; |
| 172 | u32 reg; |
| 173 | |
| 174 | reg = core_readl(priv, CORE_CFP_ACC); |
| 175 | reg &= ~(OP_SEL_MASK | RAM_SEL_MASK); |
| 176 | reg |= OP_STR_DONE | op; |
| 177 | core_writel(priv, reg, CORE_CFP_ACC); |
| 178 | |
| 179 | do { |
| 180 | reg = core_readl(priv, CORE_CFP_ACC); |
| 181 | if (!(reg & OP_STR_DONE)) |
| 182 | break; |
| 183 | |
| 184 | cpu_relax(); |
| 185 | } while (timeout--); |
| 186 | |
| 187 | if (!timeout) |
| 188 | return -ETIMEDOUT; |
| 189 | |
| 190 | return 0; |
| 191 | } |
| 192 | |
| 193 | static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv, |
| 194 | unsigned int addr) |
| 195 | { |
| 196 | u32 reg; |
| 197 | |
| 198 | WARN_ON(addr >= priv->num_cfp_rules); |
| 199 | |
| 200 | reg = core_readl(priv, CORE_CFP_ACC); |
| 201 | reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT); |
| 202 | reg |= addr << XCESS_ADDR_SHIFT; |
| 203 | core_writel(priv, reg, CORE_CFP_ACC); |
| 204 | } |
| 205 | |
| 206 | static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) |
| 207 | { |
| 208 | /* Entry #0 is reserved */ |
| 209 | return priv->num_cfp_rules - 1; |
| 210 | } |
| 211 | |
| 212 | static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, |
| 213 | unsigned int rule_index, |
| 214 | int src_port, |
| 215 | unsigned int port_num, |
| 216 | unsigned int queue_num, |
| 217 | bool fwd_map_change) |
| 218 | { |
| 219 | int ret; |
| 220 | u32 reg; |
| 221 | |
| 222 | /* Replace ARL derived destination with DST_MAP derived, define |
| 223 | * which port and queue this should be forwarded to. |
| 224 | */ |
| 225 | if (fwd_map_change) |
| 226 | reg = CHANGE_FWRD_MAP_IB_REP_ARL | |
| 227 | BIT(port_num + DST_MAP_IB_SHIFT) | |
| 228 | CHANGE_TC | queue_num << NEW_TC_SHIFT; |
| 229 | else |
| 230 | reg = 0; |
| 231 | |
| 232 | /* Enable looping back to the original port */ |
| 233 | if (src_port == port_num) |
| 234 | reg |= LOOP_BK_EN; |
| 235 | |
| 236 | core_writel(priv, reg, CORE_ACT_POL_DATA0); |
| 237 | |
| 238 | /* Set classification ID that needs to be put in Broadcom tag */ |
| 239 | core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1); |
| 240 | |
| 241 | core_writel(priv, 0, CORE_ACT_POL_DATA2); |
| 242 | |
| 243 | /* Configure policer RAM now */ |
| 244 | ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM); |
| 245 | if (ret) { |
| 246 | pr_err("Policer entry at %d failed\n", rule_index); |
| 247 | return ret; |
| 248 | } |
| 249 | |
| 250 | /* Disable the policer */ |
| 251 | core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0); |
| 252 | |
| 253 | /* Now the rate meter */ |
| 254 | ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM); |
| 255 | if (ret) { |
| 256 | pr_err("Meter entry at %d failed\n", rule_index); |
| 257 | return ret; |
| 258 | } |
| 259 | |
| 260 | return 0; |
| 261 | } |
| 262 | |
| 263 | static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv, |
| 264 | struct flow_dissector_key_ipv4_addrs *addrs, |
| 265 | struct flow_dissector_key_ports *ports, |
| 266 | const __be16 vlan_tci, |
| 267 | unsigned int slice_num, u8 num_udf, |
| 268 | bool mask) |
| 269 | { |
| 270 | u32 reg, offset; |
| 271 | |
| 272 | /* UDF_Valid[7:0] [31:24] |
| 273 | * S-Tag [23:8] |
| 274 | * C-Tag [7:0] |
| 275 | */ |
| 276 | reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8; |
| 277 | if (mask) |
| 278 | core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); |
| 279 | else |
| 280 | core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); |
| 281 | |
| 282 | /* C-Tag [31:24] |
| 283 | * UDF_n_A8 [23:8] |
| 284 | * UDF_n_A7 [7:0] |
| 285 | */ |
| 286 | reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; |
| 287 | if (mask) |
| 288 | offset = CORE_CFP_MASK_PORT(4); |
| 289 | else |
| 290 | offset = CORE_CFP_DATA_PORT(4); |
| 291 | core_writel(priv, reg, offset); |
| 292 | |
| 293 | /* UDF_n_A7 [31:24] |
| 294 | * UDF_n_A6 [23:8] |
| 295 | * UDF_n_A5 [7:0] |
| 296 | */ |
| 297 | reg = be16_to_cpu(ports->dst) >> 8; |
| 298 | if (mask) |
| 299 | offset = CORE_CFP_MASK_PORT(3); |
| 300 | else |
| 301 | offset = CORE_CFP_DATA_PORT(3); |
| 302 | core_writel(priv, reg, offset); |
| 303 | |
| 304 | /* UDF_n_A5 [31:24] |
| 305 | * UDF_n_A4 [23:8] |
| 306 | * UDF_n_A3 [7:0] |
| 307 | */ |
| 308 | reg = (be16_to_cpu(ports->dst) & 0xff) << 24 | |
| 309 | (u32)be16_to_cpu(ports->src) << 8 | |
| 310 | (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8; |
| 311 | if (mask) |
| 312 | offset = CORE_CFP_MASK_PORT(2); |
| 313 | else |
| 314 | offset = CORE_CFP_DATA_PORT(2); |
| 315 | core_writel(priv, reg, offset); |
| 316 | |
| 317 | /* UDF_n_A3 [31:24] |
| 318 | * UDF_n_A2 [23:8] |
| 319 | * UDF_n_A1 [7:0] |
| 320 | */ |
| 321 | reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 | |
| 322 | (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 | |
| 323 | (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8; |
| 324 | if (mask) |
| 325 | offset = CORE_CFP_MASK_PORT(1); |
| 326 | else |
| 327 | offset = CORE_CFP_DATA_PORT(1); |
| 328 | core_writel(priv, reg, offset); |
| 329 | |
| 330 | /* UDF_n_A1 [31:24] |
| 331 | * UDF_n_A0 [23:8] |
| 332 | * Reserved [7:4] |
| 333 | * Slice ID [3:2] |
| 334 | * Slice valid [1:0] |
| 335 | */ |
| 336 | reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 | |
| 337 | (u32)(be32_to_cpu(addrs->src) >> 16) << 8 | |
| 338 | SLICE_NUM(slice_num) | SLICE_VALID; |
| 339 | if (mask) |
| 340 | offset = CORE_CFP_MASK_PORT(0); |
| 341 | else |
| 342 | offset = CORE_CFP_DATA_PORT(0); |
| 343 | core_writel(priv, reg, offset); |
| 344 | } |
| 345 | |
| 346 | static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, |
| 347 | unsigned int port_num, |
| 348 | unsigned int queue_num, |
| 349 | struct ethtool_rx_flow_spec *fs) |
| 350 | { |
| 351 | struct ethtool_rx_flow_spec_input input = {}; |
| 352 | __be16 vlan_tci = 0 , vlan_m_tci = 0xffff; |
| 353 | const struct cfp_udf_layout *layout; |
| 354 | unsigned int slice_num, rule_index; |
| 355 | struct ethtool_rx_flow_rule *flow; |
| 356 | struct flow_match_ipv4_addrs ipv4; |
| 357 | struct flow_match_ports ports; |
| 358 | struct flow_match_ip ip; |
| 359 | u8 ip_proto, ip_frag; |
| 360 | u8 num_udf; |
| 361 | u32 reg; |
| 362 | int ret; |
| 363 | |
| 364 | switch (fs->flow_type & ~FLOW_EXT) { |
| 365 | case TCP_V4_FLOW: |
| 366 | ip_proto = IPPROTO_TCP; |
| 367 | break; |
| 368 | case UDP_V4_FLOW: |
| 369 | ip_proto = IPPROTO_UDP; |
| 370 | break; |
| 371 | default: |
| 372 | return -EINVAL; |
| 373 | } |
| 374 | |
| 375 | ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); |
| 376 | |
| 377 | /* Extract VLAN TCI */ |
| 378 | if (fs->flow_type & FLOW_EXT) { |
| 379 | vlan_tci = fs->h_ext.vlan_tci; |
| 380 | vlan_m_tci = fs->m_ext.vlan_tci; |
| 381 | } |
| 382 | |
| 383 | /* Locate the first rule available */ |
| 384 | if (fs->location == RX_CLS_LOC_ANY) |
| 385 | rule_index = find_first_zero_bit(priv->cfp.used, |
| 386 | priv->num_cfp_rules); |
| 387 | else |
| 388 | rule_index = fs->location; |
| 389 | |
| 390 | if (rule_index > bcm_sf2_cfp_rule_size(priv)) |
| 391 | return -ENOSPC; |
| 392 | |
| 393 | input.fs = fs; |
| 394 | flow = ethtool_rx_flow_rule_create(&input); |
| 395 | if (IS_ERR(flow)) |
| 396 | return PTR_ERR(flow); |
| 397 | |
| 398 | flow_rule_match_ipv4_addrs(flow->rule, &ipv4); |
| 399 | flow_rule_match_ports(flow->rule, &ports); |
| 400 | flow_rule_match_ip(flow->rule, &ip); |
| 401 | |
| 402 | layout = &udf_tcpip4_layout; |
| 403 | /* We only use one UDF slice for now */ |
| 404 | slice_num = bcm_sf2_get_slice_number(layout, 0); |
| 405 | if (slice_num == UDF_NUM_SLICES) { |
| 406 | ret = -EINVAL; |
| 407 | goto out_err_flow_rule; |
| 408 | } |
| 409 | |
| 410 | num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); |
| 411 | |
| 412 | /* Apply the UDF layout for this filter */ |
| 413 | bcm_sf2_cfp_udf_set(priv, layout, slice_num); |
| 414 | |
| 415 | /* Apply to all packets received through this port */ |
| 416 | core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); |
| 417 | |
| 418 | /* Source port map match */ |
| 419 | core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); |
| 420 | |
| 421 | /* S-Tag status [31:30] |
| 422 | * C-Tag status [29:28] |
| 423 | * L2 framing [27:26] |
| 424 | * L3 framing [25:24] |
| 425 | * IP ToS [23:16] |
| 426 | * IP proto [15:08] |
| 427 | * IP Fragm [7] |
| 428 | * Non 1st frag [6] |
| 429 | * IP Authen [5] |
| 430 | * TTL range [4:3] |
| 431 | * PPPoE session [2] |
| 432 | * Reserved [1] |
| 433 | * UDF_Valid[8] [0] |
| 434 | */ |
| 435 | core_writel(priv, ip.key->tos << IPTOS_SHIFT | |
| 436 | ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | |
| 437 | udf_upper_bits(num_udf), |
| 438 | CORE_CFP_DATA_PORT(6)); |
| 439 | |
| 440 | /* Mask with the specific layout for IPv4 packets */ |
| 441 | core_writel(priv, layout->udfs[slice_num].mask_value | |
| 442 | udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6)); |
| 443 | |
| 444 | /* Program the match and the mask */ |
| 445 | bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci, |
| 446 | slice_num, num_udf, false); |
| 447 | bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci, |
| 448 | SLICE_NUM_MASK, num_udf, true); |
| 449 | |
| 450 | /* Insert into TCAM now */ |
| 451 | bcm_sf2_cfp_rule_addr_set(priv, rule_index); |
| 452 | |
| 453 | ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); |
| 454 | if (ret) { |
| 455 | pr_err("TCAM entry at addr %d failed\n", rule_index); |
| 456 | goto out_err_flow_rule; |
| 457 | } |
| 458 | |
| 459 | /* Insert into Action and policer RAMs now */ |
| 460 | ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num, |
| 461 | queue_num, true); |
| 462 | if (ret) |
| 463 | goto out_err_flow_rule; |
| 464 | |
| 465 | /* Turn on CFP for this rule now */ |
| 466 | reg = core_readl(priv, CORE_CFP_CTL_REG); |
| 467 | reg |= BIT(port); |
| 468 | core_writel(priv, reg, CORE_CFP_CTL_REG); |
| 469 | |
| 470 | /* Flag the rule as being used and return it */ |
| 471 | set_bit(rule_index, priv->cfp.used); |
| 472 | set_bit(rule_index, priv->cfp.unique); |
| 473 | fs->location = rule_index; |
| 474 | |
| 475 | return 0; |
| 476 | |
| 477 | out_err_flow_rule: |
| 478 | ethtool_rx_flow_rule_destroy(flow); |
| 479 | return ret; |
| 480 | } |
| 481 | |
| 482 | static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv, |
| 483 | const __be32 *ip6_addr, const __be16 port, |
| 484 | const __be16 vlan_tci, |
| 485 | unsigned int slice_num, u32 udf_bits, |
| 486 | bool mask) |
| 487 | { |
| 488 | u32 reg, tmp, val, offset; |
| 489 | |
| 490 | /* UDF_Valid[7:0] [31:24] |
| 491 | * S-Tag [23:8] |
| 492 | * C-Tag [7:0] |
| 493 | */ |
| 494 | reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8; |
| 495 | if (mask) |
| 496 | core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); |
| 497 | else |
| 498 | core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); |
| 499 | |
| 500 | /* C-Tag [31:24] |
| 501 | * UDF_n_B8 [23:8] (port) |
| 502 | * UDF_n_B7 (upper) [7:0] (addr[15:8]) |
| 503 | */ |
| 504 | reg = be32_to_cpu(ip6_addr[3]); |
| 505 | val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff); |
| 506 | val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; |
| 507 | if (mask) |
| 508 | offset = CORE_CFP_MASK_PORT(4); |
| 509 | else |
| 510 | offset = CORE_CFP_DATA_PORT(4); |
| 511 | core_writel(priv, val, offset); |
| 512 | |
| 513 | /* UDF_n_B7 (lower) [31:24] (addr[7:0]) |
| 514 | * UDF_n_B6 [23:8] (addr[31:16]) |
| 515 | * UDF_n_B5 (upper) [7:0] (addr[47:40]) |
| 516 | */ |
| 517 | tmp = be32_to_cpu(ip6_addr[2]); |
| 518 | val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | |
| 519 | ((tmp >> 8) & 0xff); |
| 520 | if (mask) |
| 521 | offset = CORE_CFP_MASK_PORT(3); |
| 522 | else |
| 523 | offset = CORE_CFP_DATA_PORT(3); |
| 524 | core_writel(priv, val, offset); |
| 525 | |
| 526 | /* UDF_n_B5 (lower) [31:24] (addr[39:32]) |
| 527 | * UDF_n_B4 [23:8] (addr[63:48]) |
| 528 | * UDF_n_B3 (upper) [7:0] (addr[79:72]) |
| 529 | */ |
| 530 | reg = be32_to_cpu(ip6_addr[1]); |
| 531 | val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | |
| 532 | ((reg >> 8) & 0xff); |
| 533 | if (mask) |
| 534 | offset = CORE_CFP_MASK_PORT(2); |
| 535 | else |
| 536 | offset = CORE_CFP_DATA_PORT(2); |
| 537 | core_writel(priv, val, offset); |
| 538 | |
| 539 | /* UDF_n_B3 (lower) [31:24] (addr[71:64]) |
| 540 | * UDF_n_B2 [23:8] (addr[95:80]) |
| 541 | * UDF_n_B1 (upper) [7:0] (addr[111:104]) |
| 542 | */ |
| 543 | tmp = be32_to_cpu(ip6_addr[0]); |
| 544 | val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | |
| 545 | ((tmp >> 8) & 0xff); |
| 546 | if (mask) |
| 547 | offset = CORE_CFP_MASK_PORT(1); |
| 548 | else |
| 549 | offset = CORE_CFP_DATA_PORT(1); |
| 550 | core_writel(priv, val, offset); |
| 551 | |
| 552 | /* UDF_n_B1 (lower) [31:24] (addr[103:96]) |
| 553 | * UDF_n_B0 [23:8] (addr[127:112]) |
| 554 | * Reserved [7:4] |
| 555 | * Slice ID [3:2] |
| 556 | * Slice valid [1:0] |
| 557 | */ |
| 558 | reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | |
| 559 | SLICE_NUM(slice_num) | SLICE_VALID; |
| 560 | if (mask) |
| 561 | offset = CORE_CFP_MASK_PORT(0); |
| 562 | else |
| 563 | offset = CORE_CFP_DATA_PORT(0); |
| 564 | core_writel(priv, reg, offset); |
| 565 | } |
| 566 | |
| 567 | static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv, |
| 568 | int port, u32 location) |
| 569 | { |
| 570 | struct cfp_rule *rule; |
| 571 | |
| 572 | list_for_each_entry(rule, &priv->cfp.rules_list, next) { |
| 573 | if (rule->port == port && rule->fs.location == location) |
| 574 | return rule; |
| 575 | } |
| 576 | |
| 577 | return NULL; |
| 578 | } |
| 579 | |
| 580 | static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port, |
| 581 | struct ethtool_rx_flow_spec *fs) |
| 582 | { |
| 583 | struct cfp_rule *rule = NULL; |
| 584 | size_t fs_size = 0; |
| 585 | int ret = 1; |
| 586 | |
| 587 | if (list_empty(&priv->cfp.rules_list)) |
| 588 | return ret; |
| 589 | |
| 590 | list_for_each_entry(rule, &priv->cfp.rules_list, next) { |
| 591 | ret = 1; |
| 592 | if (rule->port != port) |
| 593 | continue; |
| 594 | |
| 595 | if (rule->fs.flow_type != fs->flow_type || |
| 596 | rule->fs.ring_cookie != fs->ring_cookie || |
| 597 | rule->fs.h_ext.data[0] != fs->h_ext.data[0]) |
| 598 | continue; |
| 599 | |
| 600 | switch (fs->flow_type & ~FLOW_EXT) { |
| 601 | case TCP_V6_FLOW: |
| 602 | case UDP_V6_FLOW: |
| 603 | fs_size = sizeof(struct ethtool_tcpip6_spec); |
| 604 | break; |
| 605 | case TCP_V4_FLOW: |
| 606 | case UDP_V4_FLOW: |
| 607 | fs_size = sizeof(struct ethtool_tcpip4_spec); |
| 608 | break; |
| 609 | default: |
| 610 | continue; |
| 611 | } |
| 612 | |
| 613 | ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size); |
| 614 | ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size); |
| 615 | /* Compare VLAN TCI values as well */ |
| 616 | if (rule->fs.flow_type & FLOW_EXT) { |
| 617 | ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci; |
| 618 | ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci; |
| 619 | } |
| 620 | if (ret == 0) |
| 621 | break; |
| 622 | } |
| 623 | |
| 624 | return ret; |
| 625 | } |
| 626 | |
| 627 | static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port, |
| 628 | unsigned int port_num, |
| 629 | unsigned int queue_num, |
| 630 | struct ethtool_rx_flow_spec *fs) |
| 631 | { |
| 632 | struct ethtool_rx_flow_spec_input input = {}; |
| 633 | __be16 vlan_tci = 0, vlan_m_tci = 0xffff; |
| 634 | unsigned int slice_num, rule_index[2]; |
| 635 | const struct cfp_udf_layout *layout; |
| 636 | struct ethtool_rx_flow_rule *flow; |
| 637 | struct flow_match_ipv6_addrs ipv6; |
| 638 | struct flow_match_ports ports; |
| 639 | u8 ip_proto, ip_frag; |
| 640 | int ret = 0; |
| 641 | u8 num_udf; |
| 642 | u32 reg; |
| 643 | |
| 644 | switch (fs->flow_type & ~FLOW_EXT) { |
| 645 | case TCP_V6_FLOW: |
| 646 | ip_proto = IPPROTO_TCP; |
| 647 | break; |
| 648 | case UDP_V6_FLOW: |
| 649 | ip_proto = IPPROTO_UDP; |
| 650 | break; |
| 651 | default: |
| 652 | return -EINVAL; |
| 653 | } |
| 654 | |
| 655 | ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); |
| 656 | |
| 657 | /* Extract VLAN TCI */ |
| 658 | if (fs->flow_type & FLOW_EXT) { |
| 659 | vlan_tci = fs->h_ext.vlan_tci; |
| 660 | vlan_m_tci = fs->m_ext.vlan_tci; |
| 661 | } |
| 662 | |
| 663 | layout = &udf_tcpip6_layout; |
| 664 | slice_num = bcm_sf2_get_slice_number(layout, 0); |
| 665 | if (slice_num == UDF_NUM_SLICES) |
| 666 | return -EINVAL; |
| 667 | |
| 668 | num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); |
| 669 | |
| 670 | /* Negotiate two indexes, one for the second half which we are chained |
| 671 | * from, which is what we will return to user-space, and a second one |
| 672 | * which is used to store its first half. That first half does not |
| 673 | * allow any choice of placement, so it just needs to find the next |
| 674 | * available bit. We return the second half as fs->location because |
| 675 | * that helps with the rule lookup later on since the second half is |
| 676 | * chained from its first half, we can easily identify IPv6 CFP rules |
| 677 | * by looking whether they carry a CHAIN_ID. |
| 678 | * |
| 679 | * We also want the second half to have a lower rule_index than its |
| 680 | * first half because the HW search is by incrementing addresses. |
| 681 | */ |
| 682 | if (fs->location == RX_CLS_LOC_ANY) |
| 683 | rule_index[1] = find_first_zero_bit(priv->cfp.used, |
| 684 | priv->num_cfp_rules); |
| 685 | else |
| 686 | rule_index[1] = fs->location; |
| 687 | if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) |
| 688 | return -ENOSPC; |
| 689 | |
| 690 | /* Flag it as used (cleared on error path) such that we can immediately |
| 691 | * obtain a second one to chain from. |
| 692 | */ |
| 693 | set_bit(rule_index[1], priv->cfp.used); |
| 694 | |
| 695 | rule_index[0] = find_first_zero_bit(priv->cfp.used, |
| 696 | priv->num_cfp_rules); |
| 697 | if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) { |
| 698 | ret = -ENOSPC; |
| 699 | goto out_err; |
| 700 | } |
| 701 | |
| 702 | input.fs = fs; |
| 703 | flow = ethtool_rx_flow_rule_create(&input); |
| 704 | if (IS_ERR(flow)) { |
| 705 | ret = PTR_ERR(flow); |
| 706 | goto out_err; |
| 707 | } |
| 708 | flow_rule_match_ipv6_addrs(flow->rule, &ipv6); |
| 709 | flow_rule_match_ports(flow->rule, &ports); |
| 710 | |
| 711 | /* Apply the UDF layout for this filter */ |
| 712 | bcm_sf2_cfp_udf_set(priv, layout, slice_num); |
| 713 | |
| 714 | /* Apply to all packets received through this port */ |
| 715 | core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); |
| 716 | |
| 717 | /* Source port map match */ |
| 718 | core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); |
| 719 | |
| 720 | /* S-Tag status [31:30] |
| 721 | * C-Tag status [29:28] |
| 722 | * L2 framing [27:26] |
| 723 | * L3 framing [25:24] |
| 724 | * IP ToS [23:16] |
| 725 | * IP proto [15:08] |
| 726 | * IP Fragm [7] |
| 727 | * Non 1st frag [6] |
| 728 | * IP Authen [5] |
| 729 | * TTL range [4:3] |
| 730 | * PPPoE session [2] |
| 731 | * Reserved [1] |
| 732 | * UDF_Valid[8] [0] |
| 733 | */ |
| 734 | reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT | |
| 735 | ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf); |
| 736 | core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); |
| 737 | |
| 738 | /* Mask with the specific layout for IPv6 packets including |
| 739 | * UDF_Valid[8] |
| 740 | */ |
| 741 | reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf); |
| 742 | core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); |
| 743 | |
| 744 | /* Slice the IPv6 source address and port */ |
| 745 | bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32, |
| 746 | ports.key->src, vlan_tci, slice_num, |
| 747 | udf_lower_bits(num_udf), false); |
| 748 | bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32, |
| 749 | ports.mask->src, vlan_m_tci, SLICE_NUM_MASK, |
| 750 | udf_lower_bits(num_udf), true); |
| 751 | |
| 752 | /* Insert into TCAM now because we need to insert a second rule */ |
| 753 | bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]); |
| 754 | |
| 755 | ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); |
| 756 | if (ret) { |
| 757 | pr_err("TCAM entry at addr %d failed\n", rule_index[0]); |
| 758 | goto out_err_flow_rule; |
| 759 | } |
| 760 | |
| 761 | /* Insert into Action and policer RAMs now */ |
| 762 | ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num, |
| 763 | queue_num, false); |
| 764 | if (ret) |
| 765 | goto out_err_flow_rule; |
| 766 | |
| 767 | /* Now deal with the second slice to chain this rule */ |
| 768 | slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1); |
| 769 | if (slice_num == UDF_NUM_SLICES) { |
| 770 | ret = -EINVAL; |
| 771 | goto out_err_flow_rule; |
| 772 | } |
| 773 | |
| 774 | num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); |
| 775 | |
| 776 | /* Apply the UDF layout for this filter */ |
| 777 | bcm_sf2_cfp_udf_set(priv, layout, slice_num); |
| 778 | |
| 779 | /* Chained rule, source port match is coming from the rule we are |
| 780 | * chained from. |
| 781 | */ |
| 782 | core_writel(priv, 0, CORE_CFP_DATA_PORT(7)); |
| 783 | core_writel(priv, 0, CORE_CFP_MASK_PORT(7)); |
| 784 | |
| 785 | /* |
| 786 | * CHAIN ID [31:24] chain to previous slice |
| 787 | * Reserved [23:20] |
| 788 | * UDF_Valid[11:8] [19:16] |
| 789 | * UDF_Valid[7:0] [15:8] |
| 790 | * UDF_n_D11 [7:0] |
| 791 | */ |
| 792 | reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 | |
| 793 | udf_lower_bits(num_udf) << 8; |
| 794 | core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); |
| 795 | |
| 796 | /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */ |
| 797 | reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 | |
| 798 | udf_lower_bits(num_udf) << 8; |
| 799 | core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); |
| 800 | |
| 801 | bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32, |
| 802 | ports.key->dst, 0, slice_num, |
| 803 | 0, false); |
| 804 | bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32, |
| 805 | ports.key->dst, 0, SLICE_NUM_MASK, |
| 806 | 0, true); |
| 807 | |
| 808 | /* Insert into TCAM now */ |
| 809 | bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]); |
| 810 | |
| 811 | ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); |
| 812 | if (ret) { |
| 813 | pr_err("TCAM entry at addr %d failed\n", rule_index[1]); |
| 814 | goto out_err_flow_rule; |
| 815 | } |
| 816 | |
| 817 | /* Insert into Action and policer RAMs now, set chain ID to |
| 818 | * the one we are chained to |
| 819 | */ |
| 820 | ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num, |
| 821 | queue_num, true); |
| 822 | if (ret) |
| 823 | goto out_err_flow_rule; |
| 824 | |
| 825 | /* Turn on CFP for this rule now */ |
| 826 | reg = core_readl(priv, CORE_CFP_CTL_REG); |
| 827 | reg |= BIT(port); |
| 828 | core_writel(priv, reg, CORE_CFP_CTL_REG); |
| 829 | |
| 830 | /* Flag the second half rule as being used now, return it as the |
| 831 | * location, and flag it as unique while dumping rules |
| 832 | */ |
| 833 | set_bit(rule_index[0], priv->cfp.used); |
| 834 | set_bit(rule_index[1], priv->cfp.unique); |
| 835 | fs->location = rule_index[1]; |
| 836 | |
| 837 | return ret; |
| 838 | |
| 839 | out_err_flow_rule: |
| 840 | ethtool_rx_flow_rule_destroy(flow); |
| 841 | out_err: |
| 842 | clear_bit(rule_index[1], priv->cfp.used); |
| 843 | return ret; |
| 844 | } |
| 845 | |
| 846 | static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port, |
| 847 | struct ethtool_rx_flow_spec *fs) |
| 848 | { |
| 849 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 850 | s8 cpu_port = ds->ports[port].cpu_dp->index; |
| 851 | __u64 ring_cookie = fs->ring_cookie; |
| 852 | struct switchdev_obj_port_vlan vlan; |
| 853 | unsigned int queue_num, port_num; |
| 854 | u16 vid; |
| 855 | int ret; |
| 856 | |
| 857 | /* This rule is a Wake-on-LAN filter and we must specifically |
| 858 | * target the CPU port in order for it to be working. |
| 859 | */ |
| 860 | if (ring_cookie == RX_CLS_FLOW_WAKE) |
| 861 | ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES; |
| 862 | |
| 863 | /* We do not support discarding packets, check that the |
| 864 | * destination port is enabled and that we are within the |
| 865 | * number of ports supported by the switch |
| 866 | */ |
| 867 | port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES; |
| 868 | |
| 869 | if (ring_cookie == RX_CLS_FLOW_DISC || |
| 870 | !(dsa_is_user_port(ds, port_num) || |
| 871 | dsa_is_cpu_port(ds, port_num)) || |
| 872 | port_num >= priv->hw_params.num_ports) |
| 873 | return -EINVAL; |
| 874 | |
| 875 | /* If the rule is matching a particular VLAN, make sure that we honor |
| 876 | * the matching and have it tagged or untagged on the destination port, |
| 877 | * we do this on egress with a VLAN entry. The egress tagging attribute |
| 878 | * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged, |
| 879 | * a 0 means tagged. |
| 880 | */ |
| 881 | if (fs->flow_type & FLOW_EXT) { |
| 882 | /* We cannot support matching multiple VLAN IDs yet */ |
| 883 | if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) != |
| 884 | VLAN_VID_MASK) |
| 885 | return -EINVAL; |
| 886 | |
| 887 | vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK; |
| 888 | vlan.vid_begin = vid; |
| 889 | vlan.vid_end = vid; |
| 890 | if (cpu_to_be32(fs->h_ext.data[1]) & 1) |
| 891 | vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED; |
| 892 | else |
| 893 | vlan.flags = 0; |
| 894 | |
| 895 | ret = ds->ops->port_vlan_prepare(ds, port_num, &vlan); |
| 896 | if (ret) |
| 897 | return ret; |
| 898 | |
| 899 | ds->ops->port_vlan_add(ds, port_num, &vlan); |
| 900 | } |
| 901 | |
| 902 | /* |
| 903 | * We have a small oddity where Port 6 just does not have a |
| 904 | * valid bit here (so we substract by one). |
| 905 | */ |
| 906 | queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES; |
| 907 | if (port_num >= 7) |
| 908 | port_num -= 1; |
| 909 | |
| 910 | switch (fs->flow_type & ~FLOW_EXT) { |
| 911 | case TCP_V4_FLOW: |
| 912 | case UDP_V4_FLOW: |
| 913 | ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, |
| 914 | queue_num, fs); |
| 915 | break; |
| 916 | case TCP_V6_FLOW: |
| 917 | case UDP_V6_FLOW: |
| 918 | ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num, |
| 919 | queue_num, fs); |
| 920 | break; |
| 921 | default: |
| 922 | ret = -EINVAL; |
| 923 | break; |
| 924 | } |
| 925 | |
| 926 | return ret; |
| 927 | } |
| 928 | |
| 929 | static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, |
| 930 | struct ethtool_rx_flow_spec *fs) |
| 931 | { |
| 932 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 933 | struct cfp_rule *rule = NULL; |
| 934 | int ret = -EINVAL; |
| 935 | |
| 936 | /* Check for unsupported extensions */ |
| 937 | if (fs->flow_type & FLOW_MAC_EXT) |
| 938 | return -EINVAL; |
| 939 | |
| 940 | if (fs->location != RX_CLS_LOC_ANY && |
| 941 | fs->location > bcm_sf2_cfp_rule_size(priv)) |
| 942 | return -EINVAL; |
| 943 | |
| 944 | if ((fs->flow_type & FLOW_EXT) && |
| 945 | !(ds->ops->port_vlan_prepare || ds->ops->port_vlan_add || |
| 946 | ds->ops->port_vlan_del)) |
| 947 | return -EOPNOTSUPP; |
| 948 | |
| 949 | if (fs->location != RX_CLS_LOC_ANY && |
| 950 | test_bit(fs->location, priv->cfp.used)) |
| 951 | return -EBUSY; |
| 952 | |
| 953 | ret = bcm_sf2_cfp_rule_cmp(priv, port, fs); |
| 954 | if (ret == 0) |
| 955 | return -EEXIST; |
| 956 | |
| 957 | rule = kzalloc(sizeof(*rule), GFP_KERNEL); |
| 958 | if (!rule) |
| 959 | return -ENOMEM; |
| 960 | |
| 961 | ret = bcm_sf2_cfp_rule_insert(ds, port, fs); |
| 962 | if (ret) { |
| 963 | kfree(rule); |
| 964 | return ret; |
| 965 | } |
| 966 | |
| 967 | rule->port = port; |
| 968 | memcpy(&rule->fs, fs, sizeof(*fs)); |
| 969 | list_add_tail(&rule->next, &priv->cfp.rules_list); |
| 970 | |
| 971 | return ret; |
| 972 | } |
| 973 | |
| 974 | static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port, |
| 975 | u32 loc, u32 *next_loc) |
| 976 | { |
| 977 | int ret; |
| 978 | u32 reg; |
| 979 | |
| 980 | /* Indicate which rule we want to read */ |
| 981 | bcm_sf2_cfp_rule_addr_set(priv, loc); |
| 982 | |
| 983 | ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); |
| 984 | if (ret) |
| 985 | return ret; |
| 986 | |
| 987 | /* Check if this is possibly an IPv6 rule that would |
| 988 | * indicate we need to delete its companion rule |
| 989 | * as well |
| 990 | */ |
| 991 | reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); |
| 992 | if (next_loc) |
| 993 | *next_loc = (reg >> 24) & CHAIN_ID_MASK; |
| 994 | |
| 995 | /* Clear its valid bits */ |
| 996 | reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); |
| 997 | reg &= ~SLICE_VALID; |
| 998 | core_writel(priv, reg, CORE_CFP_DATA_PORT(0)); |
| 999 | |
| 1000 | /* Write back this entry into the TCAM now */ |
| 1001 | ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); |
| 1002 | if (ret) |
| 1003 | return ret; |
| 1004 | |
| 1005 | clear_bit(loc, priv->cfp.used); |
| 1006 | clear_bit(loc, priv->cfp.unique); |
| 1007 | |
| 1008 | return 0; |
| 1009 | } |
| 1010 | |
| 1011 | static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port, |
| 1012 | u32 loc) |
| 1013 | { |
| 1014 | u32 next_loc = 0; |
| 1015 | int ret; |
| 1016 | |
| 1017 | ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc); |
| 1018 | if (ret) |
| 1019 | return ret; |
| 1020 | |
| 1021 | /* If this was an IPv6 rule, delete is companion rule too */ |
| 1022 | if (next_loc) |
| 1023 | ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL); |
| 1024 | |
| 1025 | return ret; |
| 1026 | } |
| 1027 | |
| 1028 | static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc) |
| 1029 | { |
| 1030 | struct cfp_rule *rule; |
| 1031 | int ret; |
| 1032 | |
| 1033 | if (loc > bcm_sf2_cfp_rule_size(priv)) |
| 1034 | return -EINVAL; |
| 1035 | |
| 1036 | /* Refuse deleting unused rules, and those that are not unique since |
| 1037 | * that could leave IPv6 rules with one of the chained rule in the |
| 1038 | * table. |
| 1039 | */ |
| 1040 | if (!test_bit(loc, priv->cfp.unique) || loc == 0) |
| 1041 | return -EINVAL; |
| 1042 | |
| 1043 | rule = bcm_sf2_cfp_rule_find(priv, port, loc); |
| 1044 | if (!rule) |
| 1045 | return -EINVAL; |
| 1046 | |
| 1047 | ret = bcm_sf2_cfp_rule_remove(priv, port, loc); |
| 1048 | |
| 1049 | list_del(&rule->next); |
| 1050 | kfree(rule); |
| 1051 | |
| 1052 | return ret; |
| 1053 | } |
| 1054 | |
| 1055 | static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) |
| 1056 | { |
| 1057 | unsigned int i; |
| 1058 | |
| 1059 | for (i = 0; i < sizeof(flow->m_u); i++) |
| 1060 | flow->m_u.hdata[i] ^= 0xff; |
| 1061 | |
| 1062 | flow->m_ext.vlan_etype ^= cpu_to_be16(~0); |
| 1063 | flow->m_ext.vlan_tci ^= cpu_to_be16(~0); |
| 1064 | flow->m_ext.data[0] ^= cpu_to_be32(~0); |
| 1065 | flow->m_ext.data[1] ^= cpu_to_be32(~0); |
| 1066 | } |
| 1067 | |
| 1068 | static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, |
| 1069 | struct ethtool_rxnfc *nfc) |
| 1070 | { |
| 1071 | struct cfp_rule *rule; |
| 1072 | |
| 1073 | rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location); |
| 1074 | if (!rule) |
| 1075 | return -EINVAL; |
| 1076 | |
| 1077 | memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs)); |
| 1078 | |
| 1079 | bcm_sf2_invert_masks(&nfc->fs); |
| 1080 | |
| 1081 | /* Put the TCAM size here */ |
| 1082 | nfc->data = bcm_sf2_cfp_rule_size(priv); |
| 1083 | |
| 1084 | return 0; |
| 1085 | } |
| 1086 | |
| 1087 | /* We implement the search doing a TCAM search operation */ |
| 1088 | static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, |
| 1089 | int port, struct ethtool_rxnfc *nfc, |
| 1090 | u32 *rule_locs) |
| 1091 | { |
| 1092 | unsigned int index = 1, rules_cnt = 0; |
| 1093 | |
| 1094 | for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) { |
| 1095 | rule_locs[rules_cnt] = index; |
| 1096 | rules_cnt++; |
| 1097 | } |
| 1098 | |
| 1099 | /* Put the TCAM size here */ |
| 1100 | nfc->data = bcm_sf2_cfp_rule_size(priv); |
| 1101 | nfc->rule_cnt = rules_cnt; |
| 1102 | |
| 1103 | return 0; |
| 1104 | } |
| 1105 | |
| 1106 | int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, |
| 1107 | struct ethtool_rxnfc *nfc, u32 *rule_locs) |
| 1108 | { |
| 1109 | struct net_device *p = ds->ports[port].cpu_dp->master; |
| 1110 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 1111 | int ret = 0; |
| 1112 | |
| 1113 | mutex_lock(&priv->cfp.lock); |
| 1114 | |
| 1115 | switch (nfc->cmd) { |
| 1116 | case ETHTOOL_GRXCLSRLCNT: |
| 1117 | /* Subtract the default, unusable rule */ |
| 1118 | nfc->rule_cnt = bitmap_weight(priv->cfp.unique, |
| 1119 | priv->num_cfp_rules) - 1; |
| 1120 | /* We support specifying rule locations */ |
| 1121 | nfc->data |= RX_CLS_LOC_SPECIAL; |
| 1122 | break; |
| 1123 | case ETHTOOL_GRXCLSRULE: |
| 1124 | ret = bcm_sf2_cfp_rule_get(priv, port, nfc); |
| 1125 | break; |
| 1126 | case ETHTOOL_GRXCLSRLALL: |
| 1127 | ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs); |
| 1128 | break; |
| 1129 | default: |
| 1130 | ret = -EOPNOTSUPP; |
| 1131 | break; |
| 1132 | } |
| 1133 | |
| 1134 | mutex_unlock(&priv->cfp.lock); |
| 1135 | |
| 1136 | if (ret) |
| 1137 | return ret; |
| 1138 | |
| 1139 | /* Pass up the commands to the attached master network device */ |
| 1140 | if (p->ethtool_ops->get_rxnfc) { |
| 1141 | ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs); |
| 1142 | if (ret == -EOPNOTSUPP) |
| 1143 | ret = 0; |
| 1144 | } |
| 1145 | |
| 1146 | return ret; |
| 1147 | } |
| 1148 | |
| 1149 | int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port, |
| 1150 | struct ethtool_rxnfc *nfc) |
| 1151 | { |
| 1152 | struct net_device *p = ds->ports[port].cpu_dp->master; |
| 1153 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 1154 | int ret = 0; |
| 1155 | |
| 1156 | mutex_lock(&priv->cfp.lock); |
| 1157 | |
| 1158 | switch (nfc->cmd) { |
| 1159 | case ETHTOOL_SRXCLSRLINS: |
| 1160 | ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs); |
| 1161 | break; |
| 1162 | |
| 1163 | case ETHTOOL_SRXCLSRLDEL: |
| 1164 | ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); |
| 1165 | break; |
| 1166 | default: |
| 1167 | ret = -EOPNOTSUPP; |
| 1168 | break; |
| 1169 | } |
| 1170 | |
| 1171 | mutex_unlock(&priv->cfp.lock); |
| 1172 | |
| 1173 | if (ret) |
| 1174 | return ret; |
| 1175 | |
| 1176 | /* Pass up the commands to the attached master network device. |
| 1177 | * This can fail, so rollback the operation if we need to. |
| 1178 | */ |
| 1179 | if (p->ethtool_ops->set_rxnfc) { |
| 1180 | ret = p->ethtool_ops->set_rxnfc(p, nfc); |
| 1181 | if (ret && ret != -EOPNOTSUPP) { |
| 1182 | mutex_lock(&priv->cfp.lock); |
| 1183 | bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); |
| 1184 | mutex_unlock(&priv->cfp.lock); |
| 1185 | } else { |
| 1186 | ret = 0; |
| 1187 | } |
| 1188 | } |
| 1189 | |
| 1190 | return ret; |
| 1191 | } |
| 1192 | |
| 1193 | int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv) |
| 1194 | { |
| 1195 | unsigned int timeout = 1000; |
| 1196 | u32 reg; |
| 1197 | |
| 1198 | reg = core_readl(priv, CORE_CFP_ACC); |
| 1199 | reg |= TCAM_RESET; |
| 1200 | core_writel(priv, reg, CORE_CFP_ACC); |
| 1201 | |
| 1202 | do { |
| 1203 | reg = core_readl(priv, CORE_CFP_ACC); |
| 1204 | if (!(reg & TCAM_RESET)) |
| 1205 | break; |
| 1206 | |
| 1207 | cpu_relax(); |
| 1208 | } while (timeout--); |
| 1209 | |
| 1210 | if (!timeout) |
| 1211 | return -ETIMEDOUT; |
| 1212 | |
| 1213 | return 0; |
| 1214 | } |
| 1215 | |
| 1216 | void bcm_sf2_cfp_exit(struct dsa_switch *ds) |
| 1217 | { |
| 1218 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 1219 | struct cfp_rule *rule, *n; |
| 1220 | |
| 1221 | if (list_empty(&priv->cfp.rules_list)) |
| 1222 | return; |
| 1223 | |
| 1224 | list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next) |
| 1225 | bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location); |
| 1226 | } |
| 1227 | |
| 1228 | int bcm_sf2_cfp_resume(struct dsa_switch *ds) |
| 1229 | { |
| 1230 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 1231 | struct cfp_rule *rule; |
| 1232 | int ret = 0; |
| 1233 | u32 reg; |
| 1234 | |
| 1235 | if (list_empty(&priv->cfp.rules_list)) |
| 1236 | return ret; |
| 1237 | |
| 1238 | reg = core_readl(priv, CORE_CFP_CTL_REG); |
| 1239 | reg &= ~CFP_EN_MAP_MASK; |
| 1240 | core_writel(priv, reg, CORE_CFP_CTL_REG); |
| 1241 | |
| 1242 | ret = bcm_sf2_cfp_rst(priv); |
| 1243 | if (ret) |
| 1244 | return ret; |
| 1245 | |
| 1246 | list_for_each_entry(rule, &priv->cfp.rules_list, next) { |
| 1247 | ret = bcm_sf2_cfp_rule_remove(priv, rule->port, |
| 1248 | rule->fs.location); |
| 1249 | if (ret) { |
| 1250 | dev_err(ds->dev, "failed to remove rule\n"); |
| 1251 | return ret; |
| 1252 | } |
| 1253 | |
| 1254 | ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs); |
| 1255 | if (ret) { |
| 1256 | dev_err(ds->dev, "failed to restore rule\n"); |
| 1257 | return ret; |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | return ret; |
| 1262 | } |
| 1263 | |
| 1264 | static const struct bcm_sf2_cfp_stat { |
| 1265 | unsigned int offset; |
| 1266 | unsigned int ram_loc; |
| 1267 | const char *name; |
| 1268 | } bcm_sf2_cfp_stats[] = { |
| 1269 | { |
| 1270 | .offset = CORE_STAT_GREEN_CNTR, |
| 1271 | .ram_loc = GREEN_STAT_RAM, |
| 1272 | .name = "Green" |
| 1273 | }, |
| 1274 | { |
| 1275 | .offset = CORE_STAT_YELLOW_CNTR, |
| 1276 | .ram_loc = YELLOW_STAT_RAM, |
| 1277 | .name = "Yellow" |
| 1278 | }, |
| 1279 | { |
| 1280 | .offset = CORE_STAT_RED_CNTR, |
| 1281 | .ram_loc = RED_STAT_RAM, |
| 1282 | .name = "Red" |
| 1283 | }, |
| 1284 | }; |
| 1285 | |
| 1286 | void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port, |
| 1287 | u32 stringset, uint8_t *data) |
| 1288 | { |
| 1289 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 1290 | unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); |
| 1291 | char buf[ETH_GSTRING_LEN]; |
| 1292 | unsigned int i, j, iter; |
| 1293 | |
| 1294 | if (stringset != ETH_SS_STATS) |
| 1295 | return; |
| 1296 | |
| 1297 | for (i = 1; i < priv->num_cfp_rules; i++) { |
| 1298 | for (j = 0; j < s; j++) { |
| 1299 | snprintf(buf, sizeof(buf), |
| 1300 | "CFP%03d_%sCntr", |
| 1301 | i, bcm_sf2_cfp_stats[j].name); |
| 1302 | iter = (i - 1) * s + j; |
| 1303 | strlcpy(data + iter * ETH_GSTRING_LEN, |
| 1304 | buf, ETH_GSTRING_LEN); |
| 1305 | } |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port, |
| 1310 | uint64_t *data) |
| 1311 | { |
| 1312 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 1313 | unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); |
| 1314 | const struct bcm_sf2_cfp_stat *stat; |
| 1315 | unsigned int i, j, iter; |
| 1316 | struct cfp_rule *rule; |
| 1317 | int ret; |
| 1318 | |
| 1319 | mutex_lock(&priv->cfp.lock); |
| 1320 | for (i = 1; i < priv->num_cfp_rules; i++) { |
| 1321 | rule = bcm_sf2_cfp_rule_find(priv, port, i); |
| 1322 | if (!rule) |
| 1323 | continue; |
| 1324 | |
| 1325 | for (j = 0; j < s; j++) { |
| 1326 | stat = &bcm_sf2_cfp_stats[j]; |
| 1327 | |
| 1328 | bcm_sf2_cfp_rule_addr_set(priv, i); |
| 1329 | ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ); |
| 1330 | if (ret) |
| 1331 | continue; |
| 1332 | |
| 1333 | iter = (i - 1) * s + j; |
| 1334 | data[iter] = core_readl(priv, stat->offset); |
| 1335 | } |
| 1336 | |
| 1337 | } |
| 1338 | mutex_unlock(&priv->cfp.lock); |
| 1339 | } |
| 1340 | |
| 1341 | int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset) |
| 1342 | { |
| 1343 | struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); |
| 1344 | |
| 1345 | if (sset != ETH_SS_STATS) |
| 1346 | return 0; |
| 1347 | |
| 1348 | /* 3 counters per CFP rules */ |
| 1349 | return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats); |
| 1350 | } |