b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com> |
| 3 | */ |
| 4 | #include "sja1105.h" |
| 5 | |
| 6 | /* The adjfine API clamps ppb between [-32,768,000, 32,768,000], and |
| 7 | * therefore scaled_ppm between [-2,147,483,648, 2,147,483,647]. |
| 8 | * Set the maximum supported ppb to a round value smaller than the maximum. |
| 9 | * |
| 10 | * Percentually speaking, this is a +/- 0.032x adjustment of the |
| 11 | * free-running counter (0.968x to 1.032x). |
| 12 | */ |
| 13 | #define SJA1105_MAX_ADJ_PPB 32000000 |
| 14 | #define SJA1105_SIZE_PTP_CMD 4 |
| 15 | |
| 16 | /* Timestamps are in units of 8 ns clock ticks (equivalent to a fixed |
| 17 | * 125 MHz clock) so the scale factor (MULT / SHIFT) needs to be 8. |
| 18 | * Furthermore, wisely pick SHIFT as 28 bits, which translates |
| 19 | * MULT into 2^31 (0x80000000). This is the same value around which |
| 20 | * the hardware PTPCLKRATE is centered, so the same ppb conversion |
| 21 | * arithmetic can be reused. |
| 22 | */ |
| 23 | #define SJA1105_CC_SHIFT 28 |
| 24 | #define SJA1105_CC_MULT (8 << SJA1105_CC_SHIFT) |
| 25 | |
| 26 | /* Having 33 bits of cycle counter left until a 64-bit overflow during delta |
| 27 | * conversion, we multiply this by the 8 ns counter resolution and arrive at |
| 28 | * a comfortable 68.71 second refresh interval until the delta would cause |
| 29 | * an integer overflow, in absence of any other readout. |
| 30 | * Approximate to 1 minute. |
| 31 | */ |
| 32 | #define SJA1105_REFRESH_INTERVAL (HZ * 60) |
| 33 | |
| 34 | /* This range is actually +/- SJA1105_MAX_ADJ_PPB |
| 35 | * divided by 1000 (ppb -> ppm) and with a 16-bit |
| 36 | * "fractional" part (actually fixed point). |
| 37 | * | |
| 38 | * v |
| 39 | * Convert scaled_ppm from the +/- ((10^6) << 16) range |
| 40 | * into the +/- (1 << 31) range. |
| 41 | * |
| 42 | * This forgoes a "ppb" numeric representation (up to NSEC_PER_SEC) |
| 43 | * and defines the scaling factor between scaled_ppm and the actual |
| 44 | * frequency adjustments (both cycle counter and hardware). |
| 45 | * |
| 46 | * ptpclkrate = scaled_ppm * 2^31 / (10^6 * 2^16) |
| 47 | * simplifies to |
| 48 | * ptpclkrate = scaled_ppm * 2^9 / 5^6 |
| 49 | */ |
| 50 | #define SJA1105_CC_MULT_NUM (1 << 9) |
| 51 | #define SJA1105_CC_MULT_DEM 15625 |
| 52 | |
| 53 | #define ptp_to_sja1105(d) container_of((d), struct sja1105_private, ptp_caps) |
| 54 | #define cc_to_sja1105(d) container_of((d), struct sja1105_private, tstamp_cc) |
| 55 | #define dw_to_sja1105(d) container_of((d), struct sja1105_private, refresh_work) |
| 56 | |
| 57 | struct sja1105_ptp_cmd { |
| 58 | u64 resptp; /* reset */ |
| 59 | }; |
| 60 | |
| 61 | int sja1105_get_ts_info(struct dsa_switch *ds, int port, |
| 62 | struct ethtool_ts_info *info) |
| 63 | { |
| 64 | struct sja1105_private *priv = ds->priv; |
| 65 | |
| 66 | /* Called during cleanup */ |
| 67 | if (!priv->clock) |
| 68 | return -ENODEV; |
| 69 | |
| 70 | info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | |
| 71 | SOF_TIMESTAMPING_RX_HARDWARE | |
| 72 | SOF_TIMESTAMPING_RAW_HARDWARE; |
| 73 | info->tx_types = (1 << HWTSTAMP_TX_OFF) | |
| 74 | (1 << HWTSTAMP_TX_ON); |
| 75 | info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | |
| 76 | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT); |
| 77 | info->phc_index = ptp_clock_index(priv->clock); |
| 78 | return 0; |
| 79 | } |
| 80 | |
| 81 | int sja1105et_ptp_cmd(const void *ctx, const void *data) |
| 82 | { |
| 83 | const struct sja1105_ptp_cmd *cmd = data; |
| 84 | const struct sja1105_private *priv = ctx; |
| 85 | const struct sja1105_regs *regs = priv->info->regs; |
| 86 | const int size = SJA1105_SIZE_PTP_CMD; |
| 87 | u8 buf[SJA1105_SIZE_PTP_CMD] = {0}; |
| 88 | /* No need to keep this as part of the structure */ |
| 89 | u64 valid = 1; |
| 90 | |
| 91 | sja1105_pack(buf, &valid, 31, 31, size); |
| 92 | sja1105_pack(buf, &cmd->resptp, 2, 2, size); |
| 93 | |
| 94 | return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control, |
| 95 | buf, SJA1105_SIZE_PTP_CMD); |
| 96 | } |
| 97 | |
| 98 | int sja1105pqrs_ptp_cmd(const void *ctx, const void *data) |
| 99 | { |
| 100 | const struct sja1105_ptp_cmd *cmd = data; |
| 101 | const struct sja1105_private *priv = ctx; |
| 102 | const struct sja1105_regs *regs = priv->info->regs; |
| 103 | const int size = SJA1105_SIZE_PTP_CMD; |
| 104 | u8 buf[SJA1105_SIZE_PTP_CMD] = {0}; |
| 105 | /* No need to keep this as part of the structure */ |
| 106 | u64 valid = 1; |
| 107 | |
| 108 | sja1105_pack(buf, &valid, 31, 31, size); |
| 109 | sja1105_pack(buf, &cmd->resptp, 3, 3, size); |
| 110 | |
| 111 | return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control, |
| 112 | buf, SJA1105_SIZE_PTP_CMD); |
| 113 | } |
| 114 | |
| 115 | /* The switch returns partial timestamps (24 bits for SJA1105 E/T, which wrap |
| 116 | * around in 0.135 seconds, and 32 bits for P/Q/R/S, wrapping around in 34.35 |
| 117 | * seconds). |
| 118 | * |
| 119 | * This receives the RX or TX MAC timestamps, provided by hardware as |
| 120 | * the lower bits of the cycle counter, sampled at the time the timestamp was |
| 121 | * collected. |
| 122 | * |
| 123 | * To reconstruct into a full 64-bit-wide timestamp, the cycle counter is |
| 124 | * read and the high-order bits are filled in. |
| 125 | * |
| 126 | * Must be called within one wraparound period of the partial timestamp since |
| 127 | * it was generated by the MAC. |
| 128 | */ |
| 129 | u64 sja1105_tstamp_reconstruct(struct sja1105_private *priv, u64 now, |
| 130 | u64 ts_partial) |
| 131 | { |
| 132 | u64 partial_tstamp_mask = CYCLECOUNTER_MASK(priv->info->ptp_ts_bits); |
| 133 | u64 ts_reconstructed; |
| 134 | |
| 135 | ts_reconstructed = (now & ~partial_tstamp_mask) | ts_partial; |
| 136 | |
| 137 | /* Check lower bits of current cycle counter against the timestamp. |
| 138 | * If the current cycle counter is lower than the partial timestamp, |
| 139 | * then wraparound surely occurred and must be accounted for. |
| 140 | */ |
| 141 | if ((now & partial_tstamp_mask) <= ts_partial) |
| 142 | ts_reconstructed -= (partial_tstamp_mask + 1); |
| 143 | |
| 144 | return ts_reconstructed; |
| 145 | } |
| 146 | |
| 147 | /* Reads the SPI interface for an egress timestamp generated by the switch |
| 148 | * for frames sent using management routes. |
| 149 | * |
| 150 | * SJA1105 E/T layout of the 4-byte SPI payload: |
| 151 | * |
| 152 | * 31 23 15 7 0 |
| 153 | * | | | | | |
| 154 | * +-----+-----+-----+ ^ |
| 155 | * ^ | |
| 156 | * | | |
| 157 | * 24-bit timestamp Update bit |
| 158 | * |
| 159 | * |
| 160 | * SJA1105 P/Q/R/S layout of the 8-byte SPI payload: |
| 161 | * |
| 162 | * 31 23 15 7 0 63 55 47 39 32 |
| 163 | * | | | | | | | | | | |
| 164 | * ^ +-----+-----+-----+-----+ |
| 165 | * | ^ |
| 166 | * | | |
| 167 | * Update bit 32-bit timestamp |
| 168 | * |
| 169 | * Notice that the update bit is in the same place. |
| 170 | * To have common code for E/T and P/Q/R/S for reading the timestamp, |
| 171 | * we need to juggle with the offset and the bit indices. |
| 172 | */ |
| 173 | int sja1105_ptpegr_ts_poll(struct sja1105_private *priv, int port, u64 *ts) |
| 174 | { |
| 175 | const struct sja1105_regs *regs = priv->info->regs; |
| 176 | int tstamp_bit_start, tstamp_bit_end; |
| 177 | int timeout = 10; |
| 178 | u8 packed_buf[8]; |
| 179 | u64 update; |
| 180 | int rc; |
| 181 | |
| 182 | do { |
| 183 | rc = sja1105_spi_send_packed_buf(priv, SPI_READ, |
| 184 | regs->ptpegr_ts[port], |
| 185 | packed_buf, |
| 186 | priv->info->ptpegr_ts_bytes); |
| 187 | if (rc < 0) |
| 188 | return rc; |
| 189 | |
| 190 | sja1105_unpack(packed_buf, &update, 0, 0, |
| 191 | priv->info->ptpegr_ts_bytes); |
| 192 | if (update) |
| 193 | break; |
| 194 | |
| 195 | usleep_range(10, 50); |
| 196 | } while (--timeout); |
| 197 | |
| 198 | if (!timeout) |
| 199 | return -ETIMEDOUT; |
| 200 | |
| 201 | /* Point the end bit to the second 32-bit word on P/Q/R/S, |
| 202 | * no-op on E/T. |
| 203 | */ |
| 204 | tstamp_bit_end = (priv->info->ptpegr_ts_bytes - 4) * 8; |
| 205 | /* Shift the 24-bit timestamp on E/T to be collected from 31:8. |
| 206 | * No-op on P/Q/R/S. |
| 207 | */ |
| 208 | tstamp_bit_end += 32 - priv->info->ptp_ts_bits; |
| 209 | tstamp_bit_start = tstamp_bit_end + priv->info->ptp_ts_bits - 1; |
| 210 | |
| 211 | *ts = 0; |
| 212 | |
| 213 | sja1105_unpack(packed_buf, ts, tstamp_bit_start, tstamp_bit_end, |
| 214 | priv->info->ptpegr_ts_bytes); |
| 215 | |
| 216 | return 0; |
| 217 | } |
| 218 | |
| 219 | int sja1105_ptp_reset(struct sja1105_private *priv) |
| 220 | { |
| 221 | struct dsa_switch *ds = priv->ds; |
| 222 | struct sja1105_ptp_cmd cmd = {0}; |
| 223 | int rc; |
| 224 | |
| 225 | mutex_lock(&priv->ptp_lock); |
| 226 | |
| 227 | cmd.resptp = 1; |
| 228 | dev_dbg(ds->dev, "Resetting PTP clock\n"); |
| 229 | rc = priv->info->ptp_cmd(priv, &cmd); |
| 230 | |
| 231 | timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc, |
| 232 | ktime_to_ns(ktime_get_real())); |
| 233 | |
| 234 | mutex_unlock(&priv->ptp_lock); |
| 235 | |
| 236 | return rc; |
| 237 | } |
| 238 | |
| 239 | static int sja1105_ptp_gettime(struct ptp_clock_info *ptp, |
| 240 | struct timespec64 *ts) |
| 241 | { |
| 242 | struct sja1105_private *priv = ptp_to_sja1105(ptp); |
| 243 | u64 ns; |
| 244 | |
| 245 | mutex_lock(&priv->ptp_lock); |
| 246 | ns = timecounter_read(&priv->tstamp_tc); |
| 247 | mutex_unlock(&priv->ptp_lock); |
| 248 | |
| 249 | *ts = ns_to_timespec64(ns); |
| 250 | |
| 251 | return 0; |
| 252 | } |
| 253 | |
| 254 | static int sja1105_ptp_settime(struct ptp_clock_info *ptp, |
| 255 | const struct timespec64 *ts) |
| 256 | { |
| 257 | struct sja1105_private *priv = ptp_to_sja1105(ptp); |
| 258 | u64 ns = timespec64_to_ns(ts); |
| 259 | |
| 260 | mutex_lock(&priv->ptp_lock); |
| 261 | timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc, ns); |
| 262 | mutex_unlock(&priv->ptp_lock); |
| 263 | |
| 264 | return 0; |
| 265 | } |
| 266 | |
| 267 | static int sja1105_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) |
| 268 | { |
| 269 | struct sja1105_private *priv = ptp_to_sja1105(ptp); |
| 270 | s64 clkrate; |
| 271 | |
| 272 | clkrate = (s64)scaled_ppm * SJA1105_CC_MULT_NUM; |
| 273 | clkrate = div_s64(clkrate, SJA1105_CC_MULT_DEM); |
| 274 | |
| 275 | mutex_lock(&priv->ptp_lock); |
| 276 | |
| 277 | /* Force a readout to update the timer *before* changing its frequency. |
| 278 | * |
| 279 | * This way, its corrected time curve can at all times be modeled |
| 280 | * as a linear "A * x + B" function, where: |
| 281 | * |
| 282 | * - B are past frequency adjustments and offset shifts, all |
| 283 | * accumulated into the cycle_last variable. |
| 284 | * |
| 285 | * - A is the new frequency adjustments we're just about to set. |
| 286 | * |
| 287 | * Reading now makes B accumulate the correct amount of time, |
| 288 | * corrected at the old rate, before changing it. |
| 289 | * |
| 290 | * Hardware timestamps then become simple points on the curve and |
| 291 | * are approximated using the above function. This is still better |
| 292 | * than letting the switch take the timestamps using the hardware |
| 293 | * rate-corrected clock (PTPCLKVAL) - the comparison in this case would |
| 294 | * be that we're shifting the ruler at the same time as we're taking |
| 295 | * measurements with it. |
| 296 | * |
| 297 | * The disadvantage is that it's possible to receive timestamps when |
| 298 | * a frequency adjustment took place in the near past. |
| 299 | * In this case they will be approximated using the new ppb value |
| 300 | * instead of a compound function made of two segments (one at the old |
| 301 | * and the other at the new rate) - introducing some inaccuracy. |
| 302 | */ |
| 303 | timecounter_read(&priv->tstamp_tc); |
| 304 | |
| 305 | priv->tstamp_cc.mult = SJA1105_CC_MULT + clkrate; |
| 306 | |
| 307 | mutex_unlock(&priv->ptp_lock); |
| 308 | |
| 309 | return 0; |
| 310 | } |
| 311 | |
| 312 | static int sja1105_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| 313 | { |
| 314 | struct sja1105_private *priv = ptp_to_sja1105(ptp); |
| 315 | |
| 316 | mutex_lock(&priv->ptp_lock); |
| 317 | timecounter_adjtime(&priv->tstamp_tc, delta); |
| 318 | mutex_unlock(&priv->ptp_lock); |
| 319 | |
| 320 | return 0; |
| 321 | } |
| 322 | |
| 323 | static u64 sja1105_ptptsclk_read(const struct cyclecounter *cc) |
| 324 | { |
| 325 | struct sja1105_private *priv = cc_to_sja1105(cc); |
| 326 | const struct sja1105_regs *regs = priv->info->regs; |
| 327 | u64 ptptsclk = 0; |
| 328 | int rc; |
| 329 | |
| 330 | rc = sja1105_spi_send_int(priv, SPI_READ, regs->ptptsclk, |
| 331 | &ptptsclk, 8); |
| 332 | if (rc < 0) |
| 333 | dev_err_ratelimited(priv->ds->dev, |
| 334 | "failed to read ptp cycle counter: %d\n", |
| 335 | rc); |
| 336 | return ptptsclk; |
| 337 | } |
| 338 | |
| 339 | static void sja1105_ptp_overflow_check(struct work_struct *work) |
| 340 | { |
| 341 | struct delayed_work *dw = to_delayed_work(work); |
| 342 | struct sja1105_private *priv = dw_to_sja1105(dw); |
| 343 | struct timespec64 ts; |
| 344 | |
| 345 | sja1105_ptp_gettime(&priv->ptp_caps, &ts); |
| 346 | |
| 347 | schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL); |
| 348 | } |
| 349 | |
| 350 | static const struct ptp_clock_info sja1105_ptp_caps = { |
| 351 | .owner = THIS_MODULE, |
| 352 | .name = "SJA1105 PHC", |
| 353 | .adjfine = sja1105_ptp_adjfine, |
| 354 | .adjtime = sja1105_ptp_adjtime, |
| 355 | .gettime64 = sja1105_ptp_gettime, |
| 356 | .settime64 = sja1105_ptp_settime, |
| 357 | .max_adj = SJA1105_MAX_ADJ_PPB, |
| 358 | }; |
| 359 | |
| 360 | int sja1105_ptp_clock_register(struct sja1105_private *priv) |
| 361 | { |
| 362 | struct dsa_switch *ds = priv->ds; |
| 363 | |
| 364 | /* Set up the cycle counter */ |
| 365 | priv->tstamp_cc = (struct cyclecounter) { |
| 366 | .read = sja1105_ptptsclk_read, |
| 367 | .mask = CYCLECOUNTER_MASK(64), |
| 368 | .shift = SJA1105_CC_SHIFT, |
| 369 | .mult = SJA1105_CC_MULT, |
| 370 | }; |
| 371 | mutex_init(&priv->ptp_lock); |
| 372 | priv->ptp_caps = sja1105_ptp_caps; |
| 373 | |
| 374 | priv->clock = ptp_clock_register(&priv->ptp_caps, ds->dev); |
| 375 | if (IS_ERR_OR_NULL(priv->clock)) |
| 376 | return PTR_ERR(priv->clock); |
| 377 | |
| 378 | INIT_DELAYED_WORK(&priv->refresh_work, sja1105_ptp_overflow_check); |
| 379 | schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL); |
| 380 | |
| 381 | return sja1105_ptp_reset(priv); |
| 382 | } |
| 383 | |
| 384 | void sja1105_ptp_clock_unregister(struct sja1105_private *priv) |
| 385 | { |
| 386 | if (IS_ERR_OR_NULL(priv->clock)) |
| 387 | return; |
| 388 | |
| 389 | cancel_delayed_work_sync(&priv->refresh_work); |
| 390 | ptp_clock_unregister(priv->clock); |
| 391 | priv->clock = NULL; |
| 392 | } |