b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com> |
| 3 | */ |
| 4 | #include "sja1105.h" |
| 5 | |
| 6 | #define SJA1105_TAS_CLKSRC_DISABLED 0 |
| 7 | #define SJA1105_TAS_CLKSRC_STANDALONE 1 |
| 8 | #define SJA1105_TAS_CLKSRC_AS6802 2 |
| 9 | #define SJA1105_TAS_CLKSRC_PTP 3 |
| 10 | #define SJA1105_TAS_MAX_DELTA BIT(19) |
| 11 | #define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0) |
| 12 | |
| 13 | /* This is not a preprocessor macro because the "ns" argument may or may not be |
| 14 | * s64 at caller side. This ensures it is properly type-cast before div_s64. |
| 15 | */ |
| 16 | static s64 ns_to_sja1105_delta(s64 ns) |
| 17 | { |
| 18 | return div_s64(ns, 200); |
| 19 | } |
| 20 | |
| 21 | /* Lo and behold: the egress scheduler from hell. |
| 22 | * |
| 23 | * At the hardware level, the Time-Aware Shaper holds a global linear arrray of |
| 24 | * all schedule entries for all ports. These are the Gate Control List (GCL) |
| 25 | * entries, let's call them "timeslots" for short. This linear array of |
| 26 | * timeslots is held in BLK_IDX_SCHEDULE. |
| 27 | * |
| 28 | * Then there are a maximum of 8 "execution threads" inside the switch, which |
| 29 | * iterate cyclically through the "schedule". Each "cycle" has an entry point |
| 30 | * and an exit point, both being timeslot indices in the schedule table. The |
| 31 | * hardware calls each cycle a "subschedule". |
| 32 | * |
| 33 | * Subschedule (cycle) i starts when |
| 34 | * ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta. |
| 35 | * |
| 36 | * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from |
| 37 | * k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to |
| 38 | * k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i] |
| 39 | * |
| 40 | * For each schedule entry (timeslot) k, the engine executes the gate control |
| 41 | * list entry for the duration of BLK_IDX_SCHEDULE[k].delta. |
| 42 | * |
| 43 | * +---------+ |
| 44 | * | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS |
| 45 | * +---------+ |
| 46 | * | |
| 47 | * +-----------------+ |
| 48 | * | .actsubsch |
| 49 | * BLK_IDX_SCHEDULE_ENTRY_POINTS v |
| 50 | * +-------+-------+ |
| 51 | * |cycle 0|cycle 1| |
| 52 | * +-------+-------+ |
| 53 | * | | | | |
| 54 | * +----------------+ | | +-------------------------------------+ |
| 55 | * | .subschindx | | .subschindx | |
| 56 | * | | +---------------+ | |
| 57 | * | .address | .address | | |
| 58 | * | | | | |
| 59 | * | | | | |
| 60 | * | BLK_IDX_SCHEDULE v v | |
| 61 | * | +-------+-------+-------+-------+-------+------+ | |
| 62 | * | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| | |
| 63 | * | +-------+-------+-------+-------+-------+------+ | |
| 64 | * | ^ ^ ^ ^ | |
| 65 | * | | | | | | |
| 66 | * | +-------------------------+ | | | | |
| 67 | * | | +-------------------------------+ | | | |
| 68 | * | | | +-------------------+ | | |
| 69 | * | | | | | | |
| 70 | * | +---------------------------------------------------------------+ | |
| 71 | * | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| | |
| 72 | * | +---------------------------------------------------------------+ | |
| 73 | * | ^ ^ BLK_IDX_SCHEDULE_PARAMS | |
| 74 | * | | | | |
| 75 | * +--------+ +-------------------------------------------+ |
| 76 | * |
| 77 | * In the above picture there are two subschedules (cycles): |
| 78 | * |
| 79 | * - cycle 0: iterates the schedule table from 0 to 2 (and back) |
| 80 | * - cycle 1: iterates the schedule table from 3 to 5 (and back) |
| 81 | * |
| 82 | * All other possible execution threads must be marked as unused by making |
| 83 | * their "subschedule end index" (subscheind) equal to the last valid |
| 84 | * subschedule's end index (in this case 5). |
| 85 | */ |
| 86 | static int sja1105_init_scheduling(struct sja1105_private *priv) |
| 87 | { |
| 88 | struct sja1105_schedule_entry_points_entry *schedule_entry_points; |
| 89 | struct sja1105_schedule_entry_points_params_entry |
| 90 | *schedule_entry_points_params; |
| 91 | struct sja1105_schedule_params_entry *schedule_params; |
| 92 | struct sja1105_tas_data *tas_data = &priv->tas_data; |
| 93 | struct sja1105_schedule_entry *schedule; |
| 94 | struct sja1105_table *table; |
| 95 | int schedule_start_idx; |
| 96 | s64 entry_point_delta; |
| 97 | int schedule_end_idx; |
| 98 | int num_entries = 0; |
| 99 | int num_cycles = 0; |
| 100 | int cycle = 0; |
| 101 | int i, k = 0; |
| 102 | int port; |
| 103 | |
| 104 | /* Discard previous Schedule Table */ |
| 105 | table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; |
| 106 | if (table->entry_count) { |
| 107 | kfree(table->entries); |
| 108 | table->entry_count = 0; |
| 109 | } |
| 110 | |
| 111 | /* Discard previous Schedule Entry Points Parameters Table */ |
| 112 | table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; |
| 113 | if (table->entry_count) { |
| 114 | kfree(table->entries); |
| 115 | table->entry_count = 0; |
| 116 | } |
| 117 | |
| 118 | /* Discard previous Schedule Parameters Table */ |
| 119 | table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; |
| 120 | if (table->entry_count) { |
| 121 | kfree(table->entries); |
| 122 | table->entry_count = 0; |
| 123 | } |
| 124 | |
| 125 | /* Discard previous Schedule Entry Points Table */ |
| 126 | table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; |
| 127 | if (table->entry_count) { |
| 128 | kfree(table->entries); |
| 129 | table->entry_count = 0; |
| 130 | } |
| 131 | |
| 132 | /* Figure out the dimensioning of the problem */ |
| 133 | for (port = 0; port < SJA1105_NUM_PORTS; port++) { |
| 134 | if (tas_data->offload[port]) { |
| 135 | num_entries += tas_data->offload[port]->num_entries; |
| 136 | num_cycles++; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | /* Nothing to do */ |
| 141 | if (!num_cycles) |
| 142 | return 0; |
| 143 | |
| 144 | /* Pre-allocate space in the static config tables */ |
| 145 | |
| 146 | /* Schedule Table */ |
| 147 | table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; |
| 148 | table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size, |
| 149 | GFP_KERNEL); |
| 150 | if (!table->entries) |
| 151 | return -ENOMEM; |
| 152 | table->entry_count = num_entries; |
| 153 | schedule = table->entries; |
| 154 | |
| 155 | /* Schedule Points Parameters Table */ |
| 156 | table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; |
| 157 | table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT, |
| 158 | table->ops->unpacked_entry_size, GFP_KERNEL); |
| 159 | if (!table->entries) |
| 160 | /* Previously allocated memory will be freed automatically in |
| 161 | * sja1105_static_config_free. This is true for all early |
| 162 | * returns below. |
| 163 | */ |
| 164 | return -ENOMEM; |
| 165 | table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT; |
| 166 | schedule_entry_points_params = table->entries; |
| 167 | |
| 168 | /* Schedule Parameters Table */ |
| 169 | table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; |
| 170 | table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT, |
| 171 | table->ops->unpacked_entry_size, GFP_KERNEL); |
| 172 | if (!table->entries) |
| 173 | return -ENOMEM; |
| 174 | table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT; |
| 175 | schedule_params = table->entries; |
| 176 | |
| 177 | /* Schedule Entry Points Table */ |
| 178 | table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; |
| 179 | table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size, |
| 180 | GFP_KERNEL); |
| 181 | if (!table->entries) |
| 182 | return -ENOMEM; |
| 183 | table->entry_count = num_cycles; |
| 184 | schedule_entry_points = table->entries; |
| 185 | |
| 186 | /* Finally start populating the static config tables */ |
| 187 | schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_STANDALONE; |
| 188 | schedule_entry_points_params->actsubsch = num_cycles - 1; |
| 189 | |
| 190 | for (port = 0; port < SJA1105_NUM_PORTS; port++) { |
| 191 | const struct tc_taprio_qopt_offload *offload; |
| 192 | |
| 193 | offload = tas_data->offload[port]; |
| 194 | if (!offload) |
| 195 | continue; |
| 196 | |
| 197 | schedule_start_idx = k; |
| 198 | schedule_end_idx = k + offload->num_entries - 1; |
| 199 | /* TODO this is the base time for the port's subschedule, |
| 200 | * relative to PTPSCHTM. But as we're using the standalone |
| 201 | * clock source and not PTP clock as time reference, there's |
| 202 | * little point in even trying to put more logic into this, |
| 203 | * like preserving the phases between the subschedules of |
| 204 | * different ports. We'll get all of that when switching to the |
| 205 | * PTP clock source. |
| 206 | */ |
| 207 | entry_point_delta = 1; |
| 208 | |
| 209 | schedule_entry_points[cycle].subschindx = cycle; |
| 210 | schedule_entry_points[cycle].delta = entry_point_delta; |
| 211 | schedule_entry_points[cycle].address = schedule_start_idx; |
| 212 | |
| 213 | /* The subschedule end indices need to be |
| 214 | * monotonically increasing. |
| 215 | */ |
| 216 | for (i = cycle; i < 8; i++) |
| 217 | schedule_params->subscheind[i] = schedule_end_idx; |
| 218 | |
| 219 | for (i = 0; i < offload->num_entries; i++, k++) { |
| 220 | s64 delta_ns = offload->entries[i].interval; |
| 221 | |
| 222 | schedule[k].delta = ns_to_sja1105_delta(delta_ns); |
| 223 | schedule[k].destports = BIT(port); |
| 224 | schedule[k].resmedia_en = true; |
| 225 | schedule[k].resmedia = SJA1105_GATE_MASK & |
| 226 | ~offload->entries[i].gate_mask; |
| 227 | } |
| 228 | cycle++; |
| 229 | } |
| 230 | |
| 231 | return 0; |
| 232 | } |
| 233 | |
| 234 | /* Be there 2 port subschedules, each executing an arbitrary number of gate |
| 235 | * open/close events cyclically. |
| 236 | * None of those gate events must ever occur at the exact same time, otherwise |
| 237 | * the switch is known to act in exotically strange ways. |
| 238 | * However the hardware doesn't bother performing these integrity checks. |
| 239 | * So here we are with the task of validating whether the new @admin offload |
| 240 | * has any conflict with the already established TAS configuration in |
| 241 | * tas_data->offload. We already know the other ports are in harmony with one |
| 242 | * another, otherwise we wouldn't have saved them. |
| 243 | * Each gate event executes periodically, with a period of @cycle_time and a |
| 244 | * phase given by its cycle's @base_time plus its offset within the cycle |
| 245 | * (which in turn is given by the length of the events prior to it). |
| 246 | * There are two aspects to possible collisions: |
| 247 | * - Collisions within one cycle's (actually the longest cycle's) time frame. |
| 248 | * For that, we need to compare the cartesian product of each possible |
| 249 | * occurrence of each event within one cycle time. |
| 250 | * - Collisions in the future. Events may not collide within one cycle time, |
| 251 | * but if two port schedules don't have the same periodicity (aka the cycle |
| 252 | * times aren't multiples of one another), they surely will some time in the |
| 253 | * future (actually they will collide an infinite amount of times). |
| 254 | */ |
| 255 | static bool |
| 256 | sja1105_tas_check_conflicts(struct sja1105_private *priv, int port, |
| 257 | const struct tc_taprio_qopt_offload *admin) |
| 258 | { |
| 259 | struct sja1105_tas_data *tas_data = &priv->tas_data; |
| 260 | const struct tc_taprio_qopt_offload *offload; |
| 261 | s64 max_cycle_time, min_cycle_time; |
| 262 | s64 delta1, delta2; |
| 263 | s64 rbt1, rbt2; |
| 264 | s64 stop_time; |
| 265 | s64 t1, t2; |
| 266 | int i, j; |
| 267 | s32 rem; |
| 268 | |
| 269 | offload = tas_data->offload[port]; |
| 270 | if (!offload) |
| 271 | return false; |
| 272 | |
| 273 | /* Check if the two cycle times are multiples of one another. |
| 274 | * If they aren't, then they will surely collide. |
| 275 | */ |
| 276 | max_cycle_time = max(offload->cycle_time, admin->cycle_time); |
| 277 | min_cycle_time = min(offload->cycle_time, admin->cycle_time); |
| 278 | div_s64_rem(max_cycle_time, min_cycle_time, &rem); |
| 279 | if (rem) |
| 280 | return true; |
| 281 | |
| 282 | /* Calculate the "reduced" base time of each of the two cycles |
| 283 | * (transposed back as close to 0 as possible) by dividing to |
| 284 | * the cycle time. |
| 285 | */ |
| 286 | div_s64_rem(offload->base_time, offload->cycle_time, &rem); |
| 287 | rbt1 = rem; |
| 288 | |
| 289 | div_s64_rem(admin->base_time, admin->cycle_time, &rem); |
| 290 | rbt2 = rem; |
| 291 | |
| 292 | stop_time = max_cycle_time + max(rbt1, rbt2); |
| 293 | |
| 294 | /* delta1 is the relative base time of each GCL entry within |
| 295 | * the established ports' TAS config. |
| 296 | */ |
| 297 | for (i = 0, delta1 = 0; |
| 298 | i < offload->num_entries; |
| 299 | delta1 += offload->entries[i].interval, i++) { |
| 300 | /* delta2 is the relative base time of each GCL entry |
| 301 | * within the newly added TAS config. |
| 302 | */ |
| 303 | for (j = 0, delta2 = 0; |
| 304 | j < admin->num_entries; |
| 305 | delta2 += admin->entries[j].interval, j++) { |
| 306 | /* t1 follows all possible occurrences of the |
| 307 | * established ports' GCL entry i within the |
| 308 | * first cycle time. |
| 309 | */ |
| 310 | for (t1 = rbt1 + delta1; |
| 311 | t1 <= stop_time; |
| 312 | t1 += offload->cycle_time) { |
| 313 | /* t2 follows all possible occurrences |
| 314 | * of the newly added GCL entry j |
| 315 | * within the first cycle time. |
| 316 | */ |
| 317 | for (t2 = rbt2 + delta2; |
| 318 | t2 <= stop_time; |
| 319 | t2 += admin->cycle_time) { |
| 320 | if (t1 == t2) { |
| 321 | dev_warn(priv->ds->dev, |
| 322 | "GCL entry %d collides with entry %d of port %d\n", |
| 323 | j, i, port); |
| 324 | return true; |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | return false; |
| 332 | } |
| 333 | |
| 334 | int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port, |
| 335 | struct tc_taprio_qopt_offload *admin) |
| 336 | { |
| 337 | struct sja1105_private *priv = ds->priv; |
| 338 | struct sja1105_tas_data *tas_data = &priv->tas_data; |
| 339 | int other_port, rc, i; |
| 340 | |
| 341 | /* Can't change an already configured port (must delete qdisc first). |
| 342 | * Can't delete the qdisc from an unconfigured port. |
| 343 | */ |
| 344 | if (!!tas_data->offload[port] == admin->enable) |
| 345 | return -EINVAL; |
| 346 | |
| 347 | if (!admin->enable) { |
| 348 | taprio_offload_free(tas_data->offload[port]); |
| 349 | tas_data->offload[port] = NULL; |
| 350 | |
| 351 | rc = sja1105_init_scheduling(priv); |
| 352 | if (rc < 0) |
| 353 | return rc; |
| 354 | |
| 355 | return sja1105_static_config_reload(priv); |
| 356 | } |
| 357 | |
| 358 | /* The cycle time extension is the amount of time the last cycle from |
| 359 | * the old OPER needs to be extended in order to phase-align with the |
| 360 | * base time of the ADMIN when that becomes the new OPER. |
| 361 | * But of course our switch needs to be reset to switch-over between |
| 362 | * the ADMIN and the OPER configs - so much for a seamless transition. |
| 363 | * So don't add insult over injury and just say we don't support cycle |
| 364 | * time extension. |
| 365 | */ |
| 366 | if (admin->cycle_time_extension) |
| 367 | return -ENOTSUPP; |
| 368 | |
| 369 | if (!ns_to_sja1105_delta(admin->base_time)) { |
| 370 | dev_err(ds->dev, "A base time of zero is not hardware-allowed\n"); |
| 371 | return -ERANGE; |
| 372 | } |
| 373 | |
| 374 | for (i = 0; i < admin->num_entries; i++) { |
| 375 | s64 delta_ns = admin->entries[i].interval; |
| 376 | s64 delta_cycles = ns_to_sja1105_delta(delta_ns); |
| 377 | bool too_long, too_short; |
| 378 | |
| 379 | too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA); |
| 380 | too_short = (delta_cycles == 0); |
| 381 | if (too_long || too_short) { |
| 382 | dev_err(priv->ds->dev, |
| 383 | "Interval %llu too %s for GCL entry %d\n", |
| 384 | delta_ns, too_long ? "long" : "short", i); |
| 385 | return -ERANGE; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | for (other_port = 0; other_port < SJA1105_NUM_PORTS; other_port++) { |
| 390 | if (other_port == port) |
| 391 | continue; |
| 392 | |
| 393 | if (sja1105_tas_check_conflicts(priv, other_port, admin)) |
| 394 | return -ERANGE; |
| 395 | } |
| 396 | |
| 397 | tas_data->offload[port] = taprio_offload_get(admin); |
| 398 | |
| 399 | rc = sja1105_init_scheduling(priv); |
| 400 | if (rc < 0) |
| 401 | return rc; |
| 402 | |
| 403 | return sja1105_static_config_reload(priv); |
| 404 | } |
| 405 | |
| 406 | void sja1105_tas_setup(struct dsa_switch *ds) |
| 407 | { |
| 408 | } |
| 409 | |
| 410 | void sja1105_tas_teardown(struct dsa_switch *ds) |
| 411 | { |
| 412 | struct sja1105_private *priv = ds->priv; |
| 413 | struct tc_taprio_qopt_offload *offload; |
| 414 | int port; |
| 415 | |
| 416 | for (port = 0; port < SJA1105_NUM_PORTS; port++) { |
| 417 | offload = priv->tas_data.offload[port]; |
| 418 | if (!offload) |
| 419 | continue; |
| 420 | |
| 421 | taprio_offload_free(offload); |
| 422 | } |
| 423 | } |