b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. |
| 4 | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| 5 | * |
| 6 | * Right now, I am very wasteful with the buffers. I allocate memory |
| 7 | * pages and then divide them into 2K frame buffers. This way I know I |
| 8 | * have buffers large enough to hold one frame within one buffer descriptor. |
| 9 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| 10 | * will be much more memory efficient and will easily handle lots of |
| 11 | * small packets. |
| 12 | * |
| 13 | * Much better multiple PHY support by Magnus Damm. |
| 14 | * Copyright (c) 2000 Ericsson Radio Systems AB. |
| 15 | * |
| 16 | * Support for FEC controller of ColdFire processors. |
| 17 | * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) |
| 18 | * |
| 19 | * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) |
| 20 | * Copyright (c) 2004-2006 Macq Electronique SA. |
| 21 | * |
| 22 | * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. |
| 23 | */ |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/kernel.h> |
| 27 | #include <linux/string.h> |
| 28 | #include <linux/pm_runtime.h> |
| 29 | #include <linux/ptrace.h> |
| 30 | #include <linux/errno.h> |
| 31 | #include <linux/ioport.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/interrupt.h> |
| 34 | #include <linux/delay.h> |
| 35 | #include <linux/netdevice.h> |
| 36 | #include <linux/etherdevice.h> |
| 37 | #include <linux/skbuff.h> |
| 38 | #include <linux/in.h> |
| 39 | #include <linux/ip.h> |
| 40 | #include <net/ip.h> |
| 41 | #include <net/tso.h> |
| 42 | #include <linux/tcp.h> |
| 43 | #include <linux/udp.h> |
| 44 | #include <linux/icmp.h> |
| 45 | #include <linux/spinlock.h> |
| 46 | #include <linux/workqueue.h> |
| 47 | #include <linux/bitops.h> |
| 48 | #include <linux/io.h> |
| 49 | #include <linux/irq.h> |
| 50 | #include <linux/clk.h> |
| 51 | #include <linux/crc32.h> |
| 52 | #include <linux/platform_device.h> |
| 53 | #include <linux/mdio.h> |
| 54 | #include <linux/phy.h> |
| 55 | #include <linux/fec.h> |
| 56 | #include <linux/of.h> |
| 57 | #include <linux/of_device.h> |
| 58 | #include <linux/of_gpio.h> |
| 59 | #include <linux/of_mdio.h> |
| 60 | #include <linux/of_net.h> |
| 61 | #include <linux/regulator/consumer.h> |
| 62 | #include <linux/if_vlan.h> |
| 63 | #include <linux/pinctrl/consumer.h> |
| 64 | #include <linux/prefetch.h> |
| 65 | #include <linux/mfd/syscon.h> |
| 66 | #include <linux/regmap.h> |
| 67 | #include <soc/imx/cpuidle.h> |
| 68 | |
| 69 | #include <asm/cacheflush.h> |
| 70 | |
| 71 | #include "fec.h" |
| 72 | |
| 73 | static void set_multicast_list(struct net_device *ndev); |
| 74 | static void fec_enet_itr_coal_init(struct net_device *ndev); |
| 75 | |
| 76 | #define DRIVER_NAME "fec" |
| 77 | |
| 78 | #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) |
| 79 | |
| 80 | /* Pause frame feild and FIFO threshold */ |
| 81 | #define FEC_ENET_FCE (1 << 5) |
| 82 | #define FEC_ENET_RSEM_V 0x84 |
| 83 | #define FEC_ENET_RSFL_V 16 |
| 84 | #define FEC_ENET_RAEM_V 0x8 |
| 85 | #define FEC_ENET_RAFL_V 0x8 |
| 86 | #define FEC_ENET_OPD_V 0xFFF0 |
| 87 | #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ |
| 88 | |
| 89 | struct fec_devinfo { |
| 90 | u32 quirks; |
| 91 | u8 stop_gpr_reg; |
| 92 | u8 stop_gpr_bit; |
| 93 | }; |
| 94 | |
| 95 | static const struct fec_devinfo fec_imx25_info = { |
| 96 | .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | |
| 97 | FEC_QUIRK_HAS_FRREG, |
| 98 | }; |
| 99 | |
| 100 | static const struct fec_devinfo fec_imx27_info = { |
| 101 | .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, |
| 102 | }; |
| 103 | |
| 104 | static const struct fec_devinfo fec_imx28_info = { |
| 105 | .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | |
| 106 | FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | |
| 107 | FEC_QUIRK_HAS_FRREG, |
| 108 | }; |
| 109 | |
| 110 | static const struct fec_devinfo fec_imx6q_info = { |
| 111 | .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | |
| 112 | FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | |
| 113 | FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | |
| 114 | FEC_QUIRK_HAS_RACC, |
| 115 | .stop_gpr_reg = 0x34, |
| 116 | .stop_gpr_bit = 27, |
| 117 | }; |
| 118 | |
| 119 | static const struct fec_devinfo fec_mvf600_info = { |
| 120 | .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, |
| 121 | }; |
| 122 | |
| 123 | static const struct fec_devinfo fec_imx6x_info = { |
| 124 | .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | |
| 125 | FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | |
| 126 | FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | |
| 127 | FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | |
| 128 | FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, |
| 129 | }; |
| 130 | |
| 131 | static const struct fec_devinfo fec_imx6ul_info = { |
| 132 | .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | |
| 133 | FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | |
| 134 | FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | |
| 135 | FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | |
| 136 | FEC_QUIRK_HAS_COALESCE, |
| 137 | }; |
| 138 | |
| 139 | static struct platform_device_id fec_devtype[] = { |
| 140 | { |
| 141 | /* keep it for coldfire */ |
| 142 | .name = DRIVER_NAME, |
| 143 | .driver_data = 0, |
| 144 | }, { |
| 145 | .name = "imx25-fec", |
| 146 | .driver_data = (kernel_ulong_t)&fec_imx25_info, |
| 147 | }, { |
| 148 | .name = "imx27-fec", |
| 149 | .driver_data = (kernel_ulong_t)&fec_imx27_info, |
| 150 | }, { |
| 151 | .name = "imx28-fec", |
| 152 | .driver_data = (kernel_ulong_t)&fec_imx28_info, |
| 153 | }, { |
| 154 | .name = "imx6q-fec", |
| 155 | .driver_data = (kernel_ulong_t)&fec_imx6q_info, |
| 156 | }, { |
| 157 | .name = "mvf600-fec", |
| 158 | .driver_data = (kernel_ulong_t)&fec_mvf600_info, |
| 159 | }, { |
| 160 | .name = "imx6sx-fec", |
| 161 | .driver_data = (kernel_ulong_t)&fec_imx6x_info, |
| 162 | }, { |
| 163 | .name = "imx6ul-fec", |
| 164 | .driver_data = (kernel_ulong_t)&fec_imx6ul_info, |
| 165 | }, { |
| 166 | /* sentinel */ |
| 167 | } |
| 168 | }; |
| 169 | MODULE_DEVICE_TABLE(platform, fec_devtype); |
| 170 | |
| 171 | enum imx_fec_type { |
| 172 | IMX25_FEC = 1, /* runs on i.mx25/50/53 */ |
| 173 | IMX27_FEC, /* runs on i.mx27/35/51 */ |
| 174 | IMX28_FEC, |
| 175 | IMX6Q_FEC, |
| 176 | MVF600_FEC, |
| 177 | IMX6SX_FEC, |
| 178 | IMX6UL_FEC, |
| 179 | }; |
| 180 | |
| 181 | static const struct of_device_id fec_dt_ids[] = { |
| 182 | { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, |
| 183 | { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, |
| 184 | { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, |
| 185 | { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, |
| 186 | { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, |
| 187 | { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, |
| 188 | { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, |
| 189 | { /* sentinel */ } |
| 190 | }; |
| 191 | MODULE_DEVICE_TABLE(of, fec_dt_ids); |
| 192 | |
| 193 | static unsigned char macaddr[ETH_ALEN]; |
| 194 | module_param_array(macaddr, byte, NULL, 0); |
| 195 | MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); |
| 196 | |
| 197 | #if defined(CONFIG_M5272) |
| 198 | /* |
| 199 | * Some hardware gets it MAC address out of local flash memory. |
| 200 | * if this is non-zero then assume it is the address to get MAC from. |
| 201 | */ |
| 202 | #if defined(CONFIG_NETtel) |
| 203 | #define FEC_FLASHMAC 0xf0006006 |
| 204 | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) |
| 205 | #define FEC_FLASHMAC 0xf0006000 |
| 206 | #elif defined(CONFIG_CANCam) |
| 207 | #define FEC_FLASHMAC 0xf0020000 |
| 208 | #elif defined (CONFIG_M5272C3) |
| 209 | #define FEC_FLASHMAC (0xffe04000 + 4) |
| 210 | #elif defined(CONFIG_MOD5272) |
| 211 | #define FEC_FLASHMAC 0xffc0406b |
| 212 | #else |
| 213 | #define FEC_FLASHMAC 0 |
| 214 | #endif |
| 215 | #endif /* CONFIG_M5272 */ |
| 216 | |
| 217 | /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. |
| 218 | * |
| 219 | * 2048 byte skbufs are allocated. However, alignment requirements |
| 220 | * varies between FEC variants. Worst case is 64, so round down by 64. |
| 221 | */ |
| 222 | #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) |
| 223 | #define PKT_MINBUF_SIZE 64 |
| 224 | |
| 225 | /* FEC receive acceleration */ |
| 226 | #define FEC_RACC_IPDIS BIT(1) |
| 227 | #define FEC_RACC_PRODIS BIT(2) |
| 228 | #define FEC_RACC_SHIFT16 BIT(7) |
| 229 | #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) |
| 230 | |
| 231 | /* MIB Control Register */ |
| 232 | #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) |
| 233 | |
| 234 | /* |
| 235 | * The 5270/5271/5280/5282/532x RX control register also contains maximum frame |
| 236 | * size bits. Other FEC hardware does not, so we need to take that into |
| 237 | * account when setting it. |
| 238 | */ |
| 239 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ |
| 240 | defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ |
| 241 | defined(CONFIG_ARM64) |
| 242 | #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) |
| 243 | #else |
| 244 | #define OPT_FRAME_SIZE 0 |
| 245 | #endif |
| 246 | |
| 247 | /* FEC MII MMFR bits definition */ |
| 248 | #define FEC_MMFR_ST (1 << 30) |
| 249 | #define FEC_MMFR_ST_C45 (0) |
| 250 | #define FEC_MMFR_OP_READ (2 << 28) |
| 251 | #define FEC_MMFR_OP_READ_C45 (3 << 28) |
| 252 | #define FEC_MMFR_OP_WRITE (1 << 28) |
| 253 | #define FEC_MMFR_OP_ADDR_WRITE (0) |
| 254 | #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) |
| 255 | #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) |
| 256 | #define FEC_MMFR_TA (2 << 16) |
| 257 | #define FEC_MMFR_DATA(v) (v & 0xffff) |
| 258 | /* FEC ECR bits definition */ |
| 259 | #define FEC_ECR_RESET BIT(0) |
| 260 | #define FEC_ECR_ETHEREN BIT(1) |
| 261 | #define FEC_ECR_MAGICEN BIT(2) |
| 262 | #define FEC_ECR_SLEEP BIT(3) |
| 263 | #define FEC_ECR_EN1588 BIT(4) |
| 264 | #define FEC_ECR_BYTESWP BIT(8) |
| 265 | /* FEC RCR bits definition */ |
| 266 | #define FEC_RCR_LOOP BIT(0) |
| 267 | #define FEC_RCR_HALFDPX BIT(1) |
| 268 | #define FEC_RCR_MII BIT(2) |
| 269 | #define FEC_RCR_PROMISC BIT(3) |
| 270 | #define FEC_RCR_BC_REJ BIT(4) |
| 271 | #define FEC_RCR_FLOWCTL BIT(5) |
| 272 | #define FEC_RCR_RMII BIT(8) |
| 273 | #define FEC_RCR_10BASET BIT(9) |
| 274 | /* TX WMARK bits */ |
| 275 | #define FEC_TXWMRK_STRFWD BIT(8) |
| 276 | |
| 277 | #define FEC_MII_TIMEOUT 30000 /* us */ |
| 278 | |
| 279 | /* Transmitter timeout */ |
| 280 | #define TX_TIMEOUT (2 * HZ) |
| 281 | |
| 282 | #define FEC_PAUSE_FLAG_AUTONEG 0x1 |
| 283 | #define FEC_PAUSE_FLAG_ENABLE 0x2 |
| 284 | #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) |
| 285 | #define FEC_WOL_FLAG_ENABLE (0x1 << 1) |
| 286 | #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) |
| 287 | |
| 288 | #define COPYBREAK_DEFAULT 256 |
| 289 | |
| 290 | /* Max number of allowed TCP segments for software TSO */ |
| 291 | #define FEC_MAX_TSO_SEGS 100 |
| 292 | #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) |
| 293 | |
| 294 | #define IS_TSO_HEADER(txq, addr) \ |
| 295 | ((addr >= txq->tso_hdrs_dma) && \ |
| 296 | (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) |
| 297 | |
| 298 | static int mii_cnt; |
| 299 | |
| 300 | static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, |
| 301 | struct bufdesc_prop *bd) |
| 302 | { |
| 303 | return (bdp >= bd->last) ? bd->base |
| 304 | : (struct bufdesc *)(((void *)bdp) + bd->dsize); |
| 305 | } |
| 306 | |
| 307 | static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, |
| 308 | struct bufdesc_prop *bd) |
| 309 | { |
| 310 | return (bdp <= bd->base) ? bd->last |
| 311 | : (struct bufdesc *)(((void *)bdp) - bd->dsize); |
| 312 | } |
| 313 | |
| 314 | static int fec_enet_get_bd_index(struct bufdesc *bdp, |
| 315 | struct bufdesc_prop *bd) |
| 316 | { |
| 317 | return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; |
| 318 | } |
| 319 | |
| 320 | static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) |
| 321 | { |
| 322 | int entries; |
| 323 | |
| 324 | entries = (((const char *)txq->dirty_tx - |
| 325 | (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; |
| 326 | |
| 327 | return entries >= 0 ? entries : entries + txq->bd.ring_size; |
| 328 | } |
| 329 | |
| 330 | static void swap_buffer(void *bufaddr, int len) |
| 331 | { |
| 332 | int i; |
| 333 | unsigned int *buf = bufaddr; |
| 334 | |
| 335 | for (i = 0; i < len; i += 4, buf++) |
| 336 | swab32s(buf); |
| 337 | } |
| 338 | |
| 339 | static void swap_buffer2(void *dst_buf, void *src_buf, int len) |
| 340 | { |
| 341 | int i; |
| 342 | unsigned int *src = src_buf; |
| 343 | unsigned int *dst = dst_buf; |
| 344 | |
| 345 | for (i = 0; i < len; i += 4, src++, dst++) |
| 346 | *dst = swab32p(src); |
| 347 | } |
| 348 | |
| 349 | static void fec_dump(struct net_device *ndev) |
| 350 | { |
| 351 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 352 | struct bufdesc *bdp; |
| 353 | struct fec_enet_priv_tx_q *txq; |
| 354 | int index = 0; |
| 355 | |
| 356 | netdev_info(ndev, "TX ring dump\n"); |
| 357 | pr_info("Nr SC addr len SKB\n"); |
| 358 | |
| 359 | txq = fep->tx_queue[0]; |
| 360 | bdp = txq->bd.base; |
| 361 | |
| 362 | do { |
| 363 | pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", |
| 364 | index, |
| 365 | bdp == txq->bd.cur ? 'S' : ' ', |
| 366 | bdp == txq->dirty_tx ? 'H' : ' ', |
| 367 | fec16_to_cpu(bdp->cbd_sc), |
| 368 | fec32_to_cpu(bdp->cbd_bufaddr), |
| 369 | fec16_to_cpu(bdp->cbd_datlen), |
| 370 | txq->tx_skbuff[index]); |
| 371 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 372 | index++; |
| 373 | } while (bdp != txq->bd.base); |
| 374 | } |
| 375 | |
| 376 | static inline bool is_ipv4_pkt(struct sk_buff *skb) |
| 377 | { |
| 378 | return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; |
| 379 | } |
| 380 | |
| 381 | static int |
| 382 | fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) |
| 383 | { |
| 384 | /* Only run for packets requiring a checksum. */ |
| 385 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 386 | return 0; |
| 387 | |
| 388 | if (unlikely(skb_cow_head(skb, 0))) |
| 389 | return -1; |
| 390 | |
| 391 | if (is_ipv4_pkt(skb)) |
| 392 | ip_hdr(skb)->check = 0; |
| 393 | *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; |
| 394 | |
| 395 | return 0; |
| 396 | } |
| 397 | |
| 398 | static struct bufdesc * |
| 399 | fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, |
| 400 | struct sk_buff *skb, |
| 401 | struct net_device *ndev) |
| 402 | { |
| 403 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 404 | struct bufdesc *bdp = txq->bd.cur; |
| 405 | struct bufdesc_ex *ebdp; |
| 406 | int nr_frags = skb_shinfo(skb)->nr_frags; |
| 407 | int frag, frag_len; |
| 408 | unsigned short status; |
| 409 | unsigned int estatus = 0; |
| 410 | skb_frag_t *this_frag; |
| 411 | unsigned int index; |
| 412 | void *bufaddr; |
| 413 | dma_addr_t addr; |
| 414 | int i; |
| 415 | |
| 416 | for (frag = 0; frag < nr_frags; frag++) { |
| 417 | this_frag = &skb_shinfo(skb)->frags[frag]; |
| 418 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 419 | ebdp = (struct bufdesc_ex *)bdp; |
| 420 | |
| 421 | status = fec16_to_cpu(bdp->cbd_sc); |
| 422 | status &= ~BD_ENET_TX_STATS; |
| 423 | status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); |
| 424 | frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); |
| 425 | |
| 426 | /* Handle the last BD specially */ |
| 427 | if (frag == nr_frags - 1) { |
| 428 | status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); |
| 429 | if (fep->bufdesc_ex) { |
| 430 | estatus |= BD_ENET_TX_INT; |
| 431 | if (unlikely(skb_shinfo(skb)->tx_flags & |
| 432 | SKBTX_HW_TSTAMP && fep->hwts_tx_en)) |
| 433 | estatus |= BD_ENET_TX_TS; |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | if (fep->bufdesc_ex) { |
| 438 | if (fep->quirks & FEC_QUIRK_HAS_AVB) |
| 439 | estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); |
| 440 | if (skb->ip_summed == CHECKSUM_PARTIAL) |
| 441 | estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; |
| 442 | ebdp->cbd_bdu = 0; |
| 443 | ebdp->cbd_esc = cpu_to_fec32(estatus); |
| 444 | } |
| 445 | |
| 446 | bufaddr = skb_frag_address(this_frag); |
| 447 | |
| 448 | index = fec_enet_get_bd_index(bdp, &txq->bd); |
| 449 | if (((unsigned long) bufaddr) & fep->tx_align || |
| 450 | fep->quirks & FEC_QUIRK_SWAP_FRAME) { |
| 451 | memcpy(txq->tx_bounce[index], bufaddr, frag_len); |
| 452 | bufaddr = txq->tx_bounce[index]; |
| 453 | |
| 454 | if (fep->quirks & FEC_QUIRK_SWAP_FRAME) |
| 455 | swap_buffer(bufaddr, frag_len); |
| 456 | } |
| 457 | |
| 458 | addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, |
| 459 | DMA_TO_DEVICE); |
| 460 | if (dma_mapping_error(&fep->pdev->dev, addr)) { |
| 461 | if (net_ratelimit()) |
| 462 | netdev_err(ndev, "Tx DMA memory map failed\n"); |
| 463 | goto dma_mapping_error; |
| 464 | } |
| 465 | |
| 466 | bdp->cbd_bufaddr = cpu_to_fec32(addr); |
| 467 | bdp->cbd_datlen = cpu_to_fec16(frag_len); |
| 468 | /* Make sure the updates to rest of the descriptor are |
| 469 | * performed before transferring ownership. |
| 470 | */ |
| 471 | wmb(); |
| 472 | bdp->cbd_sc = cpu_to_fec16(status); |
| 473 | } |
| 474 | |
| 475 | return bdp; |
| 476 | dma_mapping_error: |
| 477 | bdp = txq->bd.cur; |
| 478 | for (i = 0; i < frag; i++) { |
| 479 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 480 | dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), |
| 481 | fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); |
| 482 | } |
| 483 | return ERR_PTR(-ENOMEM); |
| 484 | } |
| 485 | |
| 486 | static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, |
| 487 | struct sk_buff *skb, struct net_device *ndev) |
| 488 | { |
| 489 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 490 | int nr_frags = skb_shinfo(skb)->nr_frags; |
| 491 | struct bufdesc *bdp, *last_bdp; |
| 492 | void *bufaddr; |
| 493 | dma_addr_t addr; |
| 494 | unsigned short status; |
| 495 | unsigned short buflen; |
| 496 | unsigned int estatus = 0; |
| 497 | unsigned int index; |
| 498 | int entries_free; |
| 499 | |
| 500 | entries_free = fec_enet_get_free_txdesc_num(txq); |
| 501 | if (entries_free < MAX_SKB_FRAGS + 1) { |
| 502 | dev_kfree_skb_any(skb); |
| 503 | if (net_ratelimit()) |
| 504 | netdev_err(ndev, "NOT enough BD for SG!\n"); |
| 505 | return NETDEV_TX_OK; |
| 506 | } |
| 507 | |
| 508 | /* Protocol checksum off-load for TCP and UDP. */ |
| 509 | if (fec_enet_clear_csum(skb, ndev)) { |
| 510 | dev_kfree_skb_any(skb); |
| 511 | return NETDEV_TX_OK; |
| 512 | } |
| 513 | |
| 514 | /* Fill in a Tx ring entry */ |
| 515 | bdp = txq->bd.cur; |
| 516 | last_bdp = bdp; |
| 517 | status = fec16_to_cpu(bdp->cbd_sc); |
| 518 | status &= ~BD_ENET_TX_STATS; |
| 519 | |
| 520 | /* Set buffer length and buffer pointer */ |
| 521 | bufaddr = skb->data; |
| 522 | buflen = skb_headlen(skb); |
| 523 | |
| 524 | index = fec_enet_get_bd_index(bdp, &txq->bd); |
| 525 | if (((unsigned long) bufaddr) & fep->tx_align || |
| 526 | fep->quirks & FEC_QUIRK_SWAP_FRAME) { |
| 527 | memcpy(txq->tx_bounce[index], skb->data, buflen); |
| 528 | bufaddr = txq->tx_bounce[index]; |
| 529 | |
| 530 | if (fep->quirks & FEC_QUIRK_SWAP_FRAME) |
| 531 | swap_buffer(bufaddr, buflen); |
| 532 | } |
| 533 | |
| 534 | /* Push the data cache so the CPM does not get stale memory data. */ |
| 535 | addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); |
| 536 | if (dma_mapping_error(&fep->pdev->dev, addr)) { |
| 537 | dev_kfree_skb_any(skb); |
| 538 | if (net_ratelimit()) |
| 539 | netdev_err(ndev, "Tx DMA memory map failed\n"); |
| 540 | return NETDEV_TX_OK; |
| 541 | } |
| 542 | |
| 543 | if (nr_frags) { |
| 544 | last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); |
| 545 | if (IS_ERR(last_bdp)) { |
| 546 | dma_unmap_single(&fep->pdev->dev, addr, |
| 547 | buflen, DMA_TO_DEVICE); |
| 548 | dev_kfree_skb_any(skb); |
| 549 | return NETDEV_TX_OK; |
| 550 | } |
| 551 | } else { |
| 552 | status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); |
| 553 | if (fep->bufdesc_ex) { |
| 554 | estatus = BD_ENET_TX_INT; |
| 555 | if (unlikely(skb_shinfo(skb)->tx_flags & |
| 556 | SKBTX_HW_TSTAMP && fep->hwts_tx_en)) |
| 557 | estatus |= BD_ENET_TX_TS; |
| 558 | } |
| 559 | } |
| 560 | bdp->cbd_bufaddr = cpu_to_fec32(addr); |
| 561 | bdp->cbd_datlen = cpu_to_fec16(buflen); |
| 562 | |
| 563 | if (fep->bufdesc_ex) { |
| 564 | |
| 565 | struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| 566 | |
| 567 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && |
| 568 | fep->hwts_tx_en)) |
| 569 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| 570 | |
| 571 | if (fep->quirks & FEC_QUIRK_HAS_AVB) |
| 572 | estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); |
| 573 | |
| 574 | if (skb->ip_summed == CHECKSUM_PARTIAL) |
| 575 | estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; |
| 576 | |
| 577 | ebdp->cbd_bdu = 0; |
| 578 | ebdp->cbd_esc = cpu_to_fec32(estatus); |
| 579 | } |
| 580 | |
| 581 | index = fec_enet_get_bd_index(last_bdp, &txq->bd); |
| 582 | /* Save skb pointer */ |
| 583 | txq->tx_skbuff[index] = skb; |
| 584 | |
| 585 | /* Make sure the updates to rest of the descriptor are performed before |
| 586 | * transferring ownership. |
| 587 | */ |
| 588 | wmb(); |
| 589 | |
| 590 | /* Send it on its way. Tell FEC it's ready, interrupt when done, |
| 591 | * it's the last BD of the frame, and to put the CRC on the end. |
| 592 | */ |
| 593 | status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); |
| 594 | bdp->cbd_sc = cpu_to_fec16(status); |
| 595 | |
| 596 | /* If this was the last BD in the ring, start at the beginning again. */ |
| 597 | bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); |
| 598 | |
| 599 | skb_tx_timestamp(skb); |
| 600 | |
| 601 | /* Make sure the update to bdp and tx_skbuff are performed before |
| 602 | * txq->bd.cur. |
| 603 | */ |
| 604 | wmb(); |
| 605 | txq->bd.cur = bdp; |
| 606 | |
| 607 | /* Trigger transmission start */ |
| 608 | writel(0, txq->bd.reg_desc_active); |
| 609 | |
| 610 | return 0; |
| 611 | } |
| 612 | |
| 613 | static int |
| 614 | fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, |
| 615 | struct net_device *ndev, |
| 616 | struct bufdesc *bdp, int index, char *data, |
| 617 | int size, bool last_tcp, bool is_last) |
| 618 | { |
| 619 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 620 | struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); |
| 621 | unsigned short status; |
| 622 | unsigned int estatus = 0; |
| 623 | dma_addr_t addr; |
| 624 | |
| 625 | status = fec16_to_cpu(bdp->cbd_sc); |
| 626 | status &= ~BD_ENET_TX_STATS; |
| 627 | |
| 628 | status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); |
| 629 | |
| 630 | if (((unsigned long) data) & fep->tx_align || |
| 631 | fep->quirks & FEC_QUIRK_SWAP_FRAME) { |
| 632 | memcpy(txq->tx_bounce[index], data, size); |
| 633 | data = txq->tx_bounce[index]; |
| 634 | |
| 635 | if (fep->quirks & FEC_QUIRK_SWAP_FRAME) |
| 636 | swap_buffer(data, size); |
| 637 | } |
| 638 | |
| 639 | addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); |
| 640 | if (dma_mapping_error(&fep->pdev->dev, addr)) { |
| 641 | dev_kfree_skb_any(skb); |
| 642 | if (net_ratelimit()) |
| 643 | netdev_err(ndev, "Tx DMA memory map failed\n"); |
| 644 | return NETDEV_TX_OK; |
| 645 | } |
| 646 | |
| 647 | bdp->cbd_datlen = cpu_to_fec16(size); |
| 648 | bdp->cbd_bufaddr = cpu_to_fec32(addr); |
| 649 | |
| 650 | if (fep->bufdesc_ex) { |
| 651 | if (fep->quirks & FEC_QUIRK_HAS_AVB) |
| 652 | estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); |
| 653 | if (skb->ip_summed == CHECKSUM_PARTIAL) |
| 654 | estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; |
| 655 | ebdp->cbd_bdu = 0; |
| 656 | ebdp->cbd_esc = cpu_to_fec32(estatus); |
| 657 | } |
| 658 | |
| 659 | /* Handle the last BD specially */ |
| 660 | if (last_tcp) |
| 661 | status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| 662 | if (is_last) { |
| 663 | status |= BD_ENET_TX_INTR; |
| 664 | if (fep->bufdesc_ex) |
| 665 | ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); |
| 666 | } |
| 667 | |
| 668 | bdp->cbd_sc = cpu_to_fec16(status); |
| 669 | |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | static int |
| 674 | fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, |
| 675 | struct sk_buff *skb, struct net_device *ndev, |
| 676 | struct bufdesc *bdp, int index) |
| 677 | { |
| 678 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 679 | int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| 680 | struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); |
| 681 | void *bufaddr; |
| 682 | unsigned long dmabuf; |
| 683 | unsigned short status; |
| 684 | unsigned int estatus = 0; |
| 685 | |
| 686 | status = fec16_to_cpu(bdp->cbd_sc); |
| 687 | status &= ~BD_ENET_TX_STATS; |
| 688 | status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); |
| 689 | |
| 690 | bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; |
| 691 | dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; |
| 692 | if (((unsigned long)bufaddr) & fep->tx_align || |
| 693 | fep->quirks & FEC_QUIRK_SWAP_FRAME) { |
| 694 | memcpy(txq->tx_bounce[index], skb->data, hdr_len); |
| 695 | bufaddr = txq->tx_bounce[index]; |
| 696 | |
| 697 | if (fep->quirks & FEC_QUIRK_SWAP_FRAME) |
| 698 | swap_buffer(bufaddr, hdr_len); |
| 699 | |
| 700 | dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, |
| 701 | hdr_len, DMA_TO_DEVICE); |
| 702 | if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { |
| 703 | dev_kfree_skb_any(skb); |
| 704 | if (net_ratelimit()) |
| 705 | netdev_err(ndev, "Tx DMA memory map failed\n"); |
| 706 | return NETDEV_TX_OK; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); |
| 711 | bdp->cbd_datlen = cpu_to_fec16(hdr_len); |
| 712 | |
| 713 | if (fep->bufdesc_ex) { |
| 714 | if (fep->quirks & FEC_QUIRK_HAS_AVB) |
| 715 | estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); |
| 716 | if (skb->ip_summed == CHECKSUM_PARTIAL) |
| 717 | estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; |
| 718 | ebdp->cbd_bdu = 0; |
| 719 | ebdp->cbd_esc = cpu_to_fec32(estatus); |
| 720 | } |
| 721 | |
| 722 | bdp->cbd_sc = cpu_to_fec16(status); |
| 723 | |
| 724 | return 0; |
| 725 | } |
| 726 | |
| 727 | static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, |
| 728 | struct sk_buff *skb, |
| 729 | struct net_device *ndev) |
| 730 | { |
| 731 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 732 | int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| 733 | int total_len, data_left; |
| 734 | struct bufdesc *bdp = txq->bd.cur; |
| 735 | struct tso_t tso; |
| 736 | unsigned int index = 0; |
| 737 | int ret; |
| 738 | |
| 739 | if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { |
| 740 | dev_kfree_skb_any(skb); |
| 741 | if (net_ratelimit()) |
| 742 | netdev_err(ndev, "NOT enough BD for TSO!\n"); |
| 743 | return NETDEV_TX_OK; |
| 744 | } |
| 745 | |
| 746 | /* Protocol checksum off-load for TCP and UDP. */ |
| 747 | if (fec_enet_clear_csum(skb, ndev)) { |
| 748 | dev_kfree_skb_any(skb); |
| 749 | return NETDEV_TX_OK; |
| 750 | } |
| 751 | |
| 752 | /* Initialize the TSO handler, and prepare the first payload */ |
| 753 | tso_start(skb, &tso); |
| 754 | |
| 755 | total_len = skb->len - hdr_len; |
| 756 | while (total_len > 0) { |
| 757 | char *hdr; |
| 758 | |
| 759 | index = fec_enet_get_bd_index(bdp, &txq->bd); |
| 760 | data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); |
| 761 | total_len -= data_left; |
| 762 | |
| 763 | /* prepare packet headers: MAC + IP + TCP */ |
| 764 | hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; |
| 765 | tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); |
| 766 | ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); |
| 767 | if (ret) |
| 768 | goto err_release; |
| 769 | |
| 770 | while (data_left > 0) { |
| 771 | int size; |
| 772 | |
| 773 | size = min_t(int, tso.size, data_left); |
| 774 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 775 | index = fec_enet_get_bd_index(bdp, &txq->bd); |
| 776 | ret = fec_enet_txq_put_data_tso(txq, skb, ndev, |
| 777 | bdp, index, |
| 778 | tso.data, size, |
| 779 | size == data_left, |
| 780 | total_len == 0); |
| 781 | if (ret) |
| 782 | goto err_release; |
| 783 | |
| 784 | data_left -= size; |
| 785 | tso_build_data(skb, &tso, size); |
| 786 | } |
| 787 | |
| 788 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 789 | } |
| 790 | |
| 791 | /* Save skb pointer */ |
| 792 | txq->tx_skbuff[index] = skb; |
| 793 | |
| 794 | skb_tx_timestamp(skb); |
| 795 | txq->bd.cur = bdp; |
| 796 | |
| 797 | /* Trigger transmission start */ |
| 798 | if (!(fep->quirks & FEC_QUIRK_ERR007885) || |
| 799 | !readl(txq->bd.reg_desc_active) || |
| 800 | !readl(txq->bd.reg_desc_active) || |
| 801 | !readl(txq->bd.reg_desc_active) || |
| 802 | !readl(txq->bd.reg_desc_active)) |
| 803 | writel(0, txq->bd.reg_desc_active); |
| 804 | |
| 805 | return 0; |
| 806 | |
| 807 | err_release: |
| 808 | /* TODO: Release all used data descriptors for TSO */ |
| 809 | return ret; |
| 810 | } |
| 811 | |
| 812 | static netdev_tx_t |
| 813 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| 814 | { |
| 815 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 816 | int entries_free; |
| 817 | unsigned short queue; |
| 818 | struct fec_enet_priv_tx_q *txq; |
| 819 | struct netdev_queue *nq; |
| 820 | int ret; |
| 821 | |
| 822 | queue = skb_get_queue_mapping(skb); |
| 823 | txq = fep->tx_queue[queue]; |
| 824 | nq = netdev_get_tx_queue(ndev, queue); |
| 825 | |
| 826 | if (skb_is_gso(skb)) |
| 827 | ret = fec_enet_txq_submit_tso(txq, skb, ndev); |
| 828 | else |
| 829 | ret = fec_enet_txq_submit_skb(txq, skb, ndev); |
| 830 | if (ret) |
| 831 | return ret; |
| 832 | |
| 833 | entries_free = fec_enet_get_free_txdesc_num(txq); |
| 834 | if (entries_free <= txq->tx_stop_threshold) |
| 835 | netif_tx_stop_queue(nq); |
| 836 | |
| 837 | return NETDEV_TX_OK; |
| 838 | } |
| 839 | |
| 840 | /* Init RX & TX buffer descriptors |
| 841 | */ |
| 842 | static void fec_enet_bd_init(struct net_device *dev) |
| 843 | { |
| 844 | struct fec_enet_private *fep = netdev_priv(dev); |
| 845 | struct fec_enet_priv_tx_q *txq; |
| 846 | struct fec_enet_priv_rx_q *rxq; |
| 847 | struct bufdesc *bdp; |
| 848 | unsigned int i; |
| 849 | unsigned int q; |
| 850 | |
| 851 | for (q = 0; q < fep->num_rx_queues; q++) { |
| 852 | /* Initialize the receive buffer descriptors. */ |
| 853 | rxq = fep->rx_queue[q]; |
| 854 | bdp = rxq->bd.base; |
| 855 | |
| 856 | for (i = 0; i < rxq->bd.ring_size; i++) { |
| 857 | |
| 858 | /* Initialize the BD for every fragment in the page. */ |
| 859 | if (bdp->cbd_bufaddr) |
| 860 | bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); |
| 861 | else |
| 862 | bdp->cbd_sc = cpu_to_fec16(0); |
| 863 | bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); |
| 864 | } |
| 865 | |
| 866 | /* Set the last buffer to wrap */ |
| 867 | bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); |
| 868 | bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); |
| 869 | |
| 870 | rxq->bd.cur = rxq->bd.base; |
| 871 | } |
| 872 | |
| 873 | for (q = 0; q < fep->num_tx_queues; q++) { |
| 874 | /* ...and the same for transmit */ |
| 875 | txq = fep->tx_queue[q]; |
| 876 | bdp = txq->bd.base; |
| 877 | txq->bd.cur = bdp; |
| 878 | |
| 879 | for (i = 0; i < txq->bd.ring_size; i++) { |
| 880 | /* Initialize the BD for every fragment in the page. */ |
| 881 | bdp->cbd_sc = cpu_to_fec16(0); |
| 882 | if (bdp->cbd_bufaddr && |
| 883 | !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) |
| 884 | dma_unmap_single(&fep->pdev->dev, |
| 885 | fec32_to_cpu(bdp->cbd_bufaddr), |
| 886 | fec16_to_cpu(bdp->cbd_datlen), |
| 887 | DMA_TO_DEVICE); |
| 888 | if (txq->tx_skbuff[i]) { |
| 889 | dev_kfree_skb_any(txq->tx_skbuff[i]); |
| 890 | txq->tx_skbuff[i] = NULL; |
| 891 | } |
| 892 | bdp->cbd_bufaddr = cpu_to_fec32(0); |
| 893 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 894 | } |
| 895 | |
| 896 | /* Set the last buffer to wrap */ |
| 897 | bdp = fec_enet_get_prevdesc(bdp, &txq->bd); |
| 898 | bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); |
| 899 | txq->dirty_tx = bdp; |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | static void fec_enet_active_rxring(struct net_device *ndev) |
| 904 | { |
| 905 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 906 | int i; |
| 907 | |
| 908 | for (i = 0; i < fep->num_rx_queues; i++) |
| 909 | writel(0, fep->rx_queue[i]->bd.reg_desc_active); |
| 910 | } |
| 911 | |
| 912 | static void fec_enet_enable_ring(struct net_device *ndev) |
| 913 | { |
| 914 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 915 | struct fec_enet_priv_tx_q *txq; |
| 916 | struct fec_enet_priv_rx_q *rxq; |
| 917 | int i; |
| 918 | |
| 919 | for (i = 0; i < fep->num_rx_queues; i++) { |
| 920 | rxq = fep->rx_queue[i]; |
| 921 | writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); |
| 922 | writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); |
| 923 | |
| 924 | /* enable DMA1/2 */ |
| 925 | if (i) |
| 926 | writel(RCMR_MATCHEN | RCMR_CMP(i), |
| 927 | fep->hwp + FEC_RCMR(i)); |
| 928 | } |
| 929 | |
| 930 | for (i = 0; i < fep->num_tx_queues; i++) { |
| 931 | txq = fep->tx_queue[i]; |
| 932 | writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); |
| 933 | |
| 934 | /* enable DMA1/2 */ |
| 935 | if (i) |
| 936 | writel(DMA_CLASS_EN | IDLE_SLOPE(i), |
| 937 | fep->hwp + FEC_DMA_CFG(i)); |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | static void fec_enet_reset_skb(struct net_device *ndev) |
| 942 | { |
| 943 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 944 | struct fec_enet_priv_tx_q *txq; |
| 945 | int i, j; |
| 946 | |
| 947 | for (i = 0; i < fep->num_tx_queues; i++) { |
| 948 | txq = fep->tx_queue[i]; |
| 949 | |
| 950 | for (j = 0; j < txq->bd.ring_size; j++) { |
| 951 | if (txq->tx_skbuff[j]) { |
| 952 | dev_kfree_skb_any(txq->tx_skbuff[j]); |
| 953 | txq->tx_skbuff[j] = NULL; |
| 954 | } |
| 955 | } |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | /* |
| 960 | * This function is called to start or restart the FEC during a link |
| 961 | * change, transmit timeout, or to reconfigure the FEC. The network |
| 962 | * packet processing for this device must be stopped before this call. |
| 963 | */ |
| 964 | static void |
| 965 | fec_restart(struct net_device *ndev) |
| 966 | { |
| 967 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 968 | u32 val; |
| 969 | u32 temp_mac[2]; |
| 970 | u32 rcntl = OPT_FRAME_SIZE | 0x04; |
| 971 | u32 ecntl = FEC_ECR_ETHEREN; |
| 972 | |
| 973 | /* Whack a reset. We should wait for this. |
| 974 | * For i.MX6SX SOC, enet use AXI bus, we use disable MAC |
| 975 | * instead of reset MAC itself. |
| 976 | */ |
| 977 | if (fep->quirks & FEC_QUIRK_HAS_AVB) { |
| 978 | writel(0, fep->hwp + FEC_ECNTRL); |
| 979 | } else { |
| 980 | writel(1, fep->hwp + FEC_ECNTRL); |
| 981 | udelay(10); |
| 982 | } |
| 983 | |
| 984 | /* |
| 985 | * enet-mac reset will reset mac address registers too, |
| 986 | * so need to reconfigure it. |
| 987 | */ |
| 988 | memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); |
| 989 | writel((__force u32)cpu_to_be32(temp_mac[0]), |
| 990 | fep->hwp + FEC_ADDR_LOW); |
| 991 | writel((__force u32)cpu_to_be32(temp_mac[1]), |
| 992 | fep->hwp + FEC_ADDR_HIGH); |
| 993 | |
| 994 | /* Clear any outstanding interrupt. */ |
| 995 | writel(0xffffffff, fep->hwp + FEC_IEVENT); |
| 996 | |
| 997 | fec_enet_bd_init(ndev); |
| 998 | |
| 999 | fec_enet_enable_ring(ndev); |
| 1000 | |
| 1001 | /* Reset tx SKB buffers. */ |
| 1002 | fec_enet_reset_skb(ndev); |
| 1003 | |
| 1004 | /* Enable MII mode */ |
| 1005 | if (fep->full_duplex == DUPLEX_FULL) { |
| 1006 | /* FD enable */ |
| 1007 | writel(0x04, fep->hwp + FEC_X_CNTRL); |
| 1008 | } else { |
| 1009 | /* No Rcv on Xmit */ |
| 1010 | rcntl |= 0x02; |
| 1011 | writel(0x0, fep->hwp + FEC_X_CNTRL); |
| 1012 | } |
| 1013 | |
| 1014 | /* Set MII speed */ |
| 1015 | writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| 1016 | |
| 1017 | #if !defined(CONFIG_M5272) |
| 1018 | if (fep->quirks & FEC_QUIRK_HAS_RACC) { |
| 1019 | val = readl(fep->hwp + FEC_RACC); |
| 1020 | /* align IP header */ |
| 1021 | val |= FEC_RACC_SHIFT16; |
| 1022 | if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) |
| 1023 | /* set RX checksum */ |
| 1024 | val |= FEC_RACC_OPTIONS; |
| 1025 | else |
| 1026 | val &= ~FEC_RACC_OPTIONS; |
| 1027 | writel(val, fep->hwp + FEC_RACC); |
| 1028 | writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); |
| 1029 | } |
| 1030 | #endif |
| 1031 | |
| 1032 | /* |
| 1033 | * The phy interface and speed need to get configured |
| 1034 | * differently on enet-mac. |
| 1035 | */ |
| 1036 | if (fep->quirks & FEC_QUIRK_ENET_MAC) { |
| 1037 | /* Enable flow control and length check */ |
| 1038 | rcntl |= 0x40000000 | 0x00000020; |
| 1039 | |
| 1040 | /* RGMII, RMII or MII */ |
| 1041 | if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || |
| 1042 | fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || |
| 1043 | fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || |
| 1044 | fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) |
| 1045 | rcntl |= (1 << 6); |
| 1046 | else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) |
| 1047 | rcntl |= FEC_RCR_RMII; |
| 1048 | else |
| 1049 | rcntl &= ~FEC_RCR_RMII; |
| 1050 | |
| 1051 | /* 1G, 100M or 10M */ |
| 1052 | if (ndev->phydev) { |
| 1053 | if (ndev->phydev->speed == SPEED_1000) |
| 1054 | ecntl |= (1 << 5); |
| 1055 | else if (ndev->phydev->speed == SPEED_100) |
| 1056 | rcntl &= ~FEC_RCR_10BASET; |
| 1057 | else |
| 1058 | rcntl |= FEC_RCR_10BASET; |
| 1059 | } |
| 1060 | } else { |
| 1061 | #ifdef FEC_MIIGSK_ENR |
| 1062 | if (fep->quirks & FEC_QUIRK_USE_GASKET) { |
| 1063 | u32 cfgr; |
| 1064 | /* disable the gasket and wait */ |
| 1065 | writel(0, fep->hwp + FEC_MIIGSK_ENR); |
| 1066 | while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) |
| 1067 | udelay(1); |
| 1068 | |
| 1069 | /* |
| 1070 | * configure the gasket: |
| 1071 | * RMII, 50 MHz, no loopback, no echo |
| 1072 | * MII, 25 MHz, no loopback, no echo |
| 1073 | */ |
| 1074 | cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) |
| 1075 | ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; |
| 1076 | if (ndev->phydev && ndev->phydev->speed == SPEED_10) |
| 1077 | cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; |
| 1078 | writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); |
| 1079 | |
| 1080 | /* re-enable the gasket */ |
| 1081 | writel(2, fep->hwp + FEC_MIIGSK_ENR); |
| 1082 | } |
| 1083 | #endif |
| 1084 | } |
| 1085 | |
| 1086 | #if !defined(CONFIG_M5272) |
| 1087 | /* enable pause frame*/ |
| 1088 | if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || |
| 1089 | ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && |
| 1090 | ndev->phydev && ndev->phydev->pause)) { |
| 1091 | rcntl |= FEC_ENET_FCE; |
| 1092 | |
| 1093 | /* set FIFO threshold parameter to reduce overrun */ |
| 1094 | writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); |
| 1095 | writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); |
| 1096 | writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); |
| 1097 | writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); |
| 1098 | |
| 1099 | /* OPD */ |
| 1100 | writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); |
| 1101 | } else { |
| 1102 | rcntl &= ~FEC_ENET_FCE; |
| 1103 | } |
| 1104 | #endif /* !defined(CONFIG_M5272) */ |
| 1105 | |
| 1106 | writel(rcntl, fep->hwp + FEC_R_CNTRL); |
| 1107 | |
| 1108 | /* Setup multicast filter. */ |
| 1109 | set_multicast_list(ndev); |
| 1110 | #ifndef CONFIG_M5272 |
| 1111 | writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); |
| 1112 | writel(0, fep->hwp + FEC_HASH_TABLE_LOW); |
| 1113 | #endif |
| 1114 | |
| 1115 | if (fep->quirks & FEC_QUIRK_ENET_MAC) { |
| 1116 | /* enable ENET endian swap */ |
| 1117 | ecntl |= FEC_ECR_BYTESWP; |
| 1118 | /* enable ENET store and forward mode */ |
| 1119 | writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK); |
| 1120 | } |
| 1121 | |
| 1122 | if (fep->bufdesc_ex) |
| 1123 | ecntl |= FEC_ECR_EN1588; |
| 1124 | |
| 1125 | #ifndef CONFIG_M5272 |
| 1126 | /* Enable the MIB statistic event counters */ |
| 1127 | writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); |
| 1128 | #endif |
| 1129 | |
| 1130 | /* And last, enable the transmit and receive processing */ |
| 1131 | writel(ecntl, fep->hwp + FEC_ECNTRL); |
| 1132 | fec_enet_active_rxring(ndev); |
| 1133 | |
| 1134 | if (fep->bufdesc_ex) |
| 1135 | fec_ptp_start_cyclecounter(ndev); |
| 1136 | |
| 1137 | /* Enable interrupts we wish to service */ |
| 1138 | if (fep->link) |
| 1139 | writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); |
| 1140 | else |
| 1141 | writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); |
| 1142 | |
| 1143 | /* Init the interrupt coalescing */ |
| 1144 | fec_enet_itr_coal_init(ndev); |
| 1145 | |
| 1146 | } |
| 1147 | |
| 1148 | static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) |
| 1149 | { |
| 1150 | struct fec_platform_data *pdata = fep->pdev->dev.platform_data; |
| 1151 | struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; |
| 1152 | |
| 1153 | if (stop_gpr->gpr) { |
| 1154 | if (enabled) |
| 1155 | regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, |
| 1156 | BIT(stop_gpr->bit), |
| 1157 | BIT(stop_gpr->bit)); |
| 1158 | else |
| 1159 | regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, |
| 1160 | BIT(stop_gpr->bit), 0); |
| 1161 | } else if (pdata && pdata->sleep_mode_enable) { |
| 1162 | pdata->sleep_mode_enable(enabled); |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | static void |
| 1167 | fec_stop(struct net_device *ndev) |
| 1168 | { |
| 1169 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1170 | u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII; |
| 1171 | u32 val; |
| 1172 | |
| 1173 | /* We cannot expect a graceful transmit stop without link !!! */ |
| 1174 | if (fep->link) { |
| 1175 | writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ |
| 1176 | udelay(10); |
| 1177 | if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) |
| 1178 | netdev_err(ndev, "Graceful transmit stop did not complete!\n"); |
| 1179 | } |
| 1180 | |
| 1181 | /* Whack a reset. We should wait for this. |
| 1182 | * For i.MX6SX SOC, enet use AXI bus, we use disable MAC |
| 1183 | * instead of reset MAC itself. |
| 1184 | */ |
| 1185 | if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { |
| 1186 | if (fep->quirks & FEC_QUIRK_HAS_AVB) { |
| 1187 | writel(0, fep->hwp + FEC_ECNTRL); |
| 1188 | } else { |
| 1189 | writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL); |
| 1190 | udelay(10); |
| 1191 | } |
| 1192 | writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); |
| 1193 | } else { |
| 1194 | writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); |
| 1195 | val = readl(fep->hwp + FEC_ECNTRL); |
| 1196 | val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); |
| 1197 | writel(val, fep->hwp + FEC_ECNTRL); |
| 1198 | fec_enet_stop_mode(fep, true); |
| 1199 | } |
| 1200 | writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| 1201 | |
| 1202 | /* We have to keep ENET enabled to have MII interrupt stay working */ |
| 1203 | if (fep->quirks & FEC_QUIRK_ENET_MAC && |
| 1204 | !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { |
| 1205 | writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL); |
| 1206 | writel(rmii_mode, fep->hwp + FEC_R_CNTRL); |
| 1207 | } |
| 1208 | |
| 1209 | if (fep->bufdesc_ex) { |
| 1210 | val = readl(fep->hwp + FEC_ECNTRL); |
| 1211 | val |= FEC_ECR_EN1588; |
| 1212 | writel(val, fep->hwp + FEC_ECNTRL); |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | static void |
| 1217 | fec_timeout(struct net_device *ndev) |
| 1218 | { |
| 1219 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1220 | |
| 1221 | fec_dump(ndev); |
| 1222 | |
| 1223 | ndev->stats.tx_errors++; |
| 1224 | |
| 1225 | schedule_work(&fep->tx_timeout_work); |
| 1226 | } |
| 1227 | |
| 1228 | static void fec_enet_timeout_work(struct work_struct *work) |
| 1229 | { |
| 1230 | struct fec_enet_private *fep = |
| 1231 | container_of(work, struct fec_enet_private, tx_timeout_work); |
| 1232 | struct net_device *ndev = fep->netdev; |
| 1233 | |
| 1234 | rtnl_lock(); |
| 1235 | if (netif_device_present(ndev) || netif_running(ndev)) { |
| 1236 | napi_disable(&fep->napi); |
| 1237 | netif_tx_lock_bh(ndev); |
| 1238 | fec_restart(ndev); |
| 1239 | netif_tx_wake_all_queues(ndev); |
| 1240 | netif_tx_unlock_bh(ndev); |
| 1241 | napi_enable(&fep->napi); |
| 1242 | } |
| 1243 | rtnl_unlock(); |
| 1244 | } |
| 1245 | |
| 1246 | static void |
| 1247 | fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, |
| 1248 | struct skb_shared_hwtstamps *hwtstamps) |
| 1249 | { |
| 1250 | unsigned long flags; |
| 1251 | u64 ns; |
| 1252 | |
| 1253 | spin_lock_irqsave(&fep->tmreg_lock, flags); |
| 1254 | ns = timecounter_cyc2time(&fep->tc, ts); |
| 1255 | spin_unlock_irqrestore(&fep->tmreg_lock, flags); |
| 1256 | |
| 1257 | memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| 1258 | hwtstamps->hwtstamp = ns_to_ktime(ns); |
| 1259 | } |
| 1260 | |
| 1261 | static void |
| 1262 | fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) |
| 1263 | { |
| 1264 | struct fec_enet_private *fep; |
| 1265 | struct bufdesc *bdp; |
| 1266 | unsigned short status; |
| 1267 | struct sk_buff *skb; |
| 1268 | struct fec_enet_priv_tx_q *txq; |
| 1269 | struct netdev_queue *nq; |
| 1270 | int index = 0; |
| 1271 | int entries_free; |
| 1272 | |
| 1273 | fep = netdev_priv(ndev); |
| 1274 | |
| 1275 | queue_id = FEC_ENET_GET_QUQUE(queue_id); |
| 1276 | |
| 1277 | txq = fep->tx_queue[queue_id]; |
| 1278 | /* get next bdp of dirty_tx */ |
| 1279 | nq = netdev_get_tx_queue(ndev, queue_id); |
| 1280 | bdp = txq->dirty_tx; |
| 1281 | |
| 1282 | /* get next bdp of dirty_tx */ |
| 1283 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 1284 | |
| 1285 | while (bdp != READ_ONCE(txq->bd.cur)) { |
| 1286 | /* Order the load of bd.cur and cbd_sc */ |
| 1287 | rmb(); |
| 1288 | status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); |
| 1289 | if (status & BD_ENET_TX_READY) |
| 1290 | break; |
| 1291 | |
| 1292 | index = fec_enet_get_bd_index(bdp, &txq->bd); |
| 1293 | |
| 1294 | skb = txq->tx_skbuff[index]; |
| 1295 | txq->tx_skbuff[index] = NULL; |
| 1296 | if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) |
| 1297 | dma_unmap_single(&fep->pdev->dev, |
| 1298 | fec32_to_cpu(bdp->cbd_bufaddr), |
| 1299 | fec16_to_cpu(bdp->cbd_datlen), |
| 1300 | DMA_TO_DEVICE); |
| 1301 | bdp->cbd_bufaddr = cpu_to_fec32(0); |
| 1302 | if (!skb) |
| 1303 | goto skb_done; |
| 1304 | |
| 1305 | /* Check for errors. */ |
| 1306 | if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | |
| 1307 | BD_ENET_TX_RL | BD_ENET_TX_UN | |
| 1308 | BD_ENET_TX_CSL)) { |
| 1309 | ndev->stats.tx_errors++; |
| 1310 | if (status & BD_ENET_TX_HB) /* No heartbeat */ |
| 1311 | ndev->stats.tx_heartbeat_errors++; |
| 1312 | if (status & BD_ENET_TX_LC) /* Late collision */ |
| 1313 | ndev->stats.tx_window_errors++; |
| 1314 | if (status & BD_ENET_TX_RL) /* Retrans limit */ |
| 1315 | ndev->stats.tx_aborted_errors++; |
| 1316 | if (status & BD_ENET_TX_UN) /* Underrun */ |
| 1317 | ndev->stats.tx_fifo_errors++; |
| 1318 | if (status & BD_ENET_TX_CSL) /* Carrier lost */ |
| 1319 | ndev->stats.tx_carrier_errors++; |
| 1320 | } else { |
| 1321 | ndev->stats.tx_packets++; |
| 1322 | ndev->stats.tx_bytes += skb->len; |
| 1323 | } |
| 1324 | |
| 1325 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && |
| 1326 | fep->bufdesc_ex) { |
| 1327 | struct skb_shared_hwtstamps shhwtstamps; |
| 1328 | struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| 1329 | |
| 1330 | fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); |
| 1331 | skb_tstamp_tx(skb, &shhwtstamps); |
| 1332 | } |
| 1333 | |
| 1334 | /* Deferred means some collisions occurred during transmit, |
| 1335 | * but we eventually sent the packet OK. |
| 1336 | */ |
| 1337 | if (status & BD_ENET_TX_DEF) |
| 1338 | ndev->stats.collisions++; |
| 1339 | |
| 1340 | /* Free the sk buffer associated with this last transmit */ |
| 1341 | dev_kfree_skb_any(skb); |
| 1342 | skb_done: |
| 1343 | /* Make sure the update to bdp and tx_skbuff are performed |
| 1344 | * before dirty_tx |
| 1345 | */ |
| 1346 | wmb(); |
| 1347 | txq->dirty_tx = bdp; |
| 1348 | |
| 1349 | /* Update pointer to next buffer descriptor to be transmitted */ |
| 1350 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 1351 | |
| 1352 | /* Since we have freed up a buffer, the ring is no longer full |
| 1353 | */ |
| 1354 | if (netif_tx_queue_stopped(nq)) { |
| 1355 | entries_free = fec_enet_get_free_txdesc_num(txq); |
| 1356 | if (entries_free >= txq->tx_wake_threshold) |
| 1357 | netif_tx_wake_queue(nq); |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | /* ERR006358: Keep the transmitter going */ |
| 1362 | if (bdp != txq->bd.cur && |
| 1363 | readl(txq->bd.reg_desc_active) == 0) |
| 1364 | writel(0, txq->bd.reg_desc_active); |
| 1365 | } |
| 1366 | |
| 1367 | static void |
| 1368 | fec_enet_tx(struct net_device *ndev) |
| 1369 | { |
| 1370 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1371 | u16 queue_id; |
| 1372 | /* First process class A queue, then Class B and Best Effort queue */ |
| 1373 | for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { |
| 1374 | clear_bit(queue_id, &fep->work_tx); |
| 1375 | fec_enet_tx_queue(ndev, queue_id); |
| 1376 | } |
| 1377 | return; |
| 1378 | } |
| 1379 | |
| 1380 | static int |
| 1381 | fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) |
| 1382 | { |
| 1383 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1384 | int off; |
| 1385 | |
| 1386 | off = ((unsigned long)skb->data) & fep->rx_align; |
| 1387 | if (off) |
| 1388 | skb_reserve(skb, fep->rx_align + 1 - off); |
| 1389 | |
| 1390 | bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); |
| 1391 | if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { |
| 1392 | if (net_ratelimit()) |
| 1393 | netdev_err(ndev, "Rx DMA memory map failed\n"); |
| 1394 | return -ENOMEM; |
| 1395 | } |
| 1396 | |
| 1397 | return 0; |
| 1398 | } |
| 1399 | |
| 1400 | static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, |
| 1401 | struct bufdesc *bdp, u32 length, bool swap) |
| 1402 | { |
| 1403 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1404 | struct sk_buff *new_skb; |
| 1405 | |
| 1406 | if (length > fep->rx_copybreak) |
| 1407 | return false; |
| 1408 | |
| 1409 | new_skb = netdev_alloc_skb(ndev, length); |
| 1410 | if (!new_skb) |
| 1411 | return false; |
| 1412 | |
| 1413 | dma_sync_single_for_cpu(&fep->pdev->dev, |
| 1414 | fec32_to_cpu(bdp->cbd_bufaddr), |
| 1415 | FEC_ENET_RX_FRSIZE - fep->rx_align, |
| 1416 | DMA_FROM_DEVICE); |
| 1417 | if (!swap) |
| 1418 | memcpy(new_skb->data, (*skb)->data, length); |
| 1419 | else |
| 1420 | swap_buffer2(new_skb->data, (*skb)->data, length); |
| 1421 | *skb = new_skb; |
| 1422 | |
| 1423 | return true; |
| 1424 | } |
| 1425 | |
| 1426 | /* During a receive, the bd_rx.cur points to the current incoming buffer. |
| 1427 | * When we update through the ring, if the next incoming buffer has |
| 1428 | * not been given to the system, we just set the empty indicator, |
| 1429 | * effectively tossing the packet. |
| 1430 | */ |
| 1431 | static int |
| 1432 | fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) |
| 1433 | { |
| 1434 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1435 | struct fec_enet_priv_rx_q *rxq; |
| 1436 | struct bufdesc *bdp; |
| 1437 | unsigned short status; |
| 1438 | struct sk_buff *skb_new = NULL; |
| 1439 | struct sk_buff *skb; |
| 1440 | ushort pkt_len; |
| 1441 | __u8 *data; |
| 1442 | int pkt_received = 0; |
| 1443 | struct bufdesc_ex *ebdp = NULL; |
| 1444 | bool vlan_packet_rcvd = false; |
| 1445 | u16 vlan_tag; |
| 1446 | int index = 0; |
| 1447 | bool is_copybreak; |
| 1448 | bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; |
| 1449 | |
| 1450 | #ifdef CONFIG_M532x |
| 1451 | flush_cache_all(); |
| 1452 | #endif |
| 1453 | queue_id = FEC_ENET_GET_QUQUE(queue_id); |
| 1454 | rxq = fep->rx_queue[queue_id]; |
| 1455 | |
| 1456 | /* First, grab all of the stats for the incoming packet. |
| 1457 | * These get messed up if we get called due to a busy condition. |
| 1458 | */ |
| 1459 | bdp = rxq->bd.cur; |
| 1460 | |
| 1461 | while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { |
| 1462 | |
| 1463 | if (pkt_received >= budget) |
| 1464 | break; |
| 1465 | pkt_received++; |
| 1466 | |
| 1467 | writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); |
| 1468 | |
| 1469 | /* Check for errors. */ |
| 1470 | status ^= BD_ENET_RX_LAST; |
| 1471 | if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | |
| 1472 | BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | |
| 1473 | BD_ENET_RX_CL)) { |
| 1474 | ndev->stats.rx_errors++; |
| 1475 | if (status & BD_ENET_RX_OV) { |
| 1476 | /* FIFO overrun */ |
| 1477 | ndev->stats.rx_fifo_errors++; |
| 1478 | goto rx_processing_done; |
| 1479 | } |
| 1480 | if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH |
| 1481 | | BD_ENET_RX_LAST)) { |
| 1482 | /* Frame too long or too short. */ |
| 1483 | ndev->stats.rx_length_errors++; |
| 1484 | if (status & BD_ENET_RX_LAST) |
| 1485 | netdev_err(ndev, "rcv is not +last\n"); |
| 1486 | } |
| 1487 | if (status & BD_ENET_RX_CR) /* CRC Error */ |
| 1488 | ndev->stats.rx_crc_errors++; |
| 1489 | /* Report late collisions as a frame error. */ |
| 1490 | if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) |
| 1491 | ndev->stats.rx_frame_errors++; |
| 1492 | goto rx_processing_done; |
| 1493 | } |
| 1494 | |
| 1495 | /* Process the incoming frame. */ |
| 1496 | ndev->stats.rx_packets++; |
| 1497 | pkt_len = fec16_to_cpu(bdp->cbd_datlen); |
| 1498 | ndev->stats.rx_bytes += pkt_len; |
| 1499 | |
| 1500 | index = fec_enet_get_bd_index(bdp, &rxq->bd); |
| 1501 | skb = rxq->rx_skbuff[index]; |
| 1502 | |
| 1503 | /* The packet length includes FCS, but we don't want to |
| 1504 | * include that when passing upstream as it messes up |
| 1505 | * bridging applications. |
| 1506 | */ |
| 1507 | is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, |
| 1508 | need_swap); |
| 1509 | if (!is_copybreak) { |
| 1510 | skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); |
| 1511 | if (unlikely(!skb_new)) { |
| 1512 | ndev->stats.rx_dropped++; |
| 1513 | goto rx_processing_done; |
| 1514 | } |
| 1515 | dma_unmap_single(&fep->pdev->dev, |
| 1516 | fec32_to_cpu(bdp->cbd_bufaddr), |
| 1517 | FEC_ENET_RX_FRSIZE - fep->rx_align, |
| 1518 | DMA_FROM_DEVICE); |
| 1519 | } |
| 1520 | |
| 1521 | prefetch(skb->data - NET_IP_ALIGN); |
| 1522 | skb_put(skb, pkt_len - 4); |
| 1523 | data = skb->data; |
| 1524 | |
| 1525 | if (!is_copybreak && need_swap) |
| 1526 | swap_buffer(data, pkt_len); |
| 1527 | |
| 1528 | #if !defined(CONFIG_M5272) |
| 1529 | if (fep->quirks & FEC_QUIRK_HAS_RACC) |
| 1530 | data = skb_pull_inline(skb, 2); |
| 1531 | #endif |
| 1532 | |
| 1533 | /* Extract the enhanced buffer descriptor */ |
| 1534 | ebdp = NULL; |
| 1535 | if (fep->bufdesc_ex) |
| 1536 | ebdp = (struct bufdesc_ex *)bdp; |
| 1537 | |
| 1538 | /* If this is a VLAN packet remove the VLAN Tag */ |
| 1539 | vlan_packet_rcvd = false; |
| 1540 | if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && |
| 1541 | fep->bufdesc_ex && |
| 1542 | (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { |
| 1543 | /* Push and remove the vlan tag */ |
| 1544 | struct vlan_hdr *vlan_header = |
| 1545 | (struct vlan_hdr *) (data + ETH_HLEN); |
| 1546 | vlan_tag = ntohs(vlan_header->h_vlan_TCI); |
| 1547 | |
| 1548 | vlan_packet_rcvd = true; |
| 1549 | |
| 1550 | memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); |
| 1551 | skb_pull(skb, VLAN_HLEN); |
| 1552 | } |
| 1553 | |
| 1554 | skb->protocol = eth_type_trans(skb, ndev); |
| 1555 | |
| 1556 | /* Get receive timestamp from the skb */ |
| 1557 | if (fep->hwts_rx_en && fep->bufdesc_ex) |
| 1558 | fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), |
| 1559 | skb_hwtstamps(skb)); |
| 1560 | |
| 1561 | if (fep->bufdesc_ex && |
| 1562 | (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { |
| 1563 | if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { |
| 1564 | /* don't check it */ |
| 1565 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 1566 | } else { |
| 1567 | skb_checksum_none_assert(skb); |
| 1568 | } |
| 1569 | } |
| 1570 | |
| 1571 | /* Handle received VLAN packets */ |
| 1572 | if (vlan_packet_rcvd) |
| 1573 | __vlan_hwaccel_put_tag(skb, |
| 1574 | htons(ETH_P_8021Q), |
| 1575 | vlan_tag); |
| 1576 | |
| 1577 | napi_gro_receive(&fep->napi, skb); |
| 1578 | |
| 1579 | if (is_copybreak) { |
| 1580 | dma_sync_single_for_device(&fep->pdev->dev, |
| 1581 | fec32_to_cpu(bdp->cbd_bufaddr), |
| 1582 | FEC_ENET_RX_FRSIZE - fep->rx_align, |
| 1583 | DMA_FROM_DEVICE); |
| 1584 | } else { |
| 1585 | rxq->rx_skbuff[index] = skb_new; |
| 1586 | fec_enet_new_rxbdp(ndev, bdp, skb_new); |
| 1587 | } |
| 1588 | |
| 1589 | rx_processing_done: |
| 1590 | /* Clear the status flags for this buffer */ |
| 1591 | status &= ~BD_ENET_RX_STATS; |
| 1592 | |
| 1593 | /* Mark the buffer empty */ |
| 1594 | status |= BD_ENET_RX_EMPTY; |
| 1595 | |
| 1596 | if (fep->bufdesc_ex) { |
| 1597 | struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| 1598 | |
| 1599 | ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); |
| 1600 | ebdp->cbd_prot = 0; |
| 1601 | ebdp->cbd_bdu = 0; |
| 1602 | } |
| 1603 | /* Make sure the updates to rest of the descriptor are |
| 1604 | * performed before transferring ownership. |
| 1605 | */ |
| 1606 | wmb(); |
| 1607 | bdp->cbd_sc = cpu_to_fec16(status); |
| 1608 | |
| 1609 | /* Update BD pointer to next entry */ |
| 1610 | bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); |
| 1611 | |
| 1612 | /* Doing this here will keep the FEC running while we process |
| 1613 | * incoming frames. On a heavily loaded network, we should be |
| 1614 | * able to keep up at the expense of system resources. |
| 1615 | */ |
| 1616 | writel(0, rxq->bd.reg_desc_active); |
| 1617 | } |
| 1618 | rxq->bd.cur = bdp; |
| 1619 | return pkt_received; |
| 1620 | } |
| 1621 | |
| 1622 | static int |
| 1623 | fec_enet_rx(struct net_device *ndev, int budget) |
| 1624 | { |
| 1625 | int pkt_received = 0; |
| 1626 | u16 queue_id; |
| 1627 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1628 | |
| 1629 | for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { |
| 1630 | int ret; |
| 1631 | |
| 1632 | ret = fec_enet_rx_queue(ndev, |
| 1633 | budget - pkt_received, queue_id); |
| 1634 | |
| 1635 | if (ret < budget - pkt_received) |
| 1636 | clear_bit(queue_id, &fep->work_rx); |
| 1637 | |
| 1638 | pkt_received += ret; |
| 1639 | } |
| 1640 | return pkt_received; |
| 1641 | } |
| 1642 | |
| 1643 | static bool |
| 1644 | fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) |
| 1645 | { |
| 1646 | if (int_events == 0) |
| 1647 | return false; |
| 1648 | |
| 1649 | if (int_events & FEC_ENET_RXF_0) |
| 1650 | fep->work_rx |= (1 << 2); |
| 1651 | if (int_events & FEC_ENET_RXF_1) |
| 1652 | fep->work_rx |= (1 << 0); |
| 1653 | if (int_events & FEC_ENET_RXF_2) |
| 1654 | fep->work_rx |= (1 << 1); |
| 1655 | |
| 1656 | if (int_events & FEC_ENET_TXF_0) |
| 1657 | fep->work_tx |= (1 << 2); |
| 1658 | if (int_events & FEC_ENET_TXF_1) |
| 1659 | fep->work_tx |= (1 << 0); |
| 1660 | if (int_events & FEC_ENET_TXF_2) |
| 1661 | fep->work_tx |= (1 << 1); |
| 1662 | |
| 1663 | return true; |
| 1664 | } |
| 1665 | |
| 1666 | static irqreturn_t |
| 1667 | fec_enet_interrupt(int irq, void *dev_id) |
| 1668 | { |
| 1669 | struct net_device *ndev = dev_id; |
| 1670 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1671 | uint int_events; |
| 1672 | irqreturn_t ret = IRQ_NONE; |
| 1673 | |
| 1674 | int_events = readl(fep->hwp + FEC_IEVENT); |
| 1675 | writel(int_events, fep->hwp + FEC_IEVENT); |
| 1676 | fec_enet_collect_events(fep, int_events); |
| 1677 | |
| 1678 | if ((fep->work_tx || fep->work_rx) && fep->link) { |
| 1679 | ret = IRQ_HANDLED; |
| 1680 | |
| 1681 | if (napi_schedule_prep(&fep->napi)) { |
| 1682 | /* Disable the NAPI interrupts */ |
| 1683 | writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK); |
| 1684 | __napi_schedule(&fep->napi); |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | if (int_events & FEC_ENET_MII) { |
| 1689 | ret = IRQ_HANDLED; |
| 1690 | complete(&fep->mdio_done); |
| 1691 | } |
| 1692 | return ret; |
| 1693 | } |
| 1694 | |
| 1695 | static int fec_enet_rx_napi(struct napi_struct *napi, int budget) |
| 1696 | { |
| 1697 | struct net_device *ndev = napi->dev; |
| 1698 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1699 | int pkts; |
| 1700 | |
| 1701 | pkts = fec_enet_rx(ndev, budget); |
| 1702 | |
| 1703 | fec_enet_tx(ndev); |
| 1704 | |
| 1705 | if (pkts < budget) { |
| 1706 | napi_complete_done(napi, pkts); |
| 1707 | writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); |
| 1708 | } |
| 1709 | return pkts; |
| 1710 | } |
| 1711 | |
| 1712 | /* ------------------------------------------------------------------------- */ |
| 1713 | static void fec_get_mac(struct net_device *ndev) |
| 1714 | { |
| 1715 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1716 | struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); |
| 1717 | unsigned char *iap, tmpaddr[ETH_ALEN]; |
| 1718 | |
| 1719 | /* |
| 1720 | * try to get mac address in following order: |
| 1721 | * |
| 1722 | * 1) module parameter via kernel command line in form |
| 1723 | * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 |
| 1724 | */ |
| 1725 | iap = macaddr; |
| 1726 | |
| 1727 | /* |
| 1728 | * 2) from device tree data |
| 1729 | */ |
| 1730 | if (!is_valid_ether_addr(iap)) { |
| 1731 | struct device_node *np = fep->pdev->dev.of_node; |
| 1732 | if (np) { |
| 1733 | const char *mac = of_get_mac_address(np); |
| 1734 | if (!IS_ERR(mac)) |
| 1735 | iap = (unsigned char *) mac; |
| 1736 | } |
| 1737 | } |
| 1738 | |
| 1739 | /* |
| 1740 | * 3) from flash or fuse (via platform data) |
| 1741 | */ |
| 1742 | if (!is_valid_ether_addr(iap)) { |
| 1743 | #ifdef CONFIG_M5272 |
| 1744 | if (FEC_FLASHMAC) |
| 1745 | iap = (unsigned char *)FEC_FLASHMAC; |
| 1746 | #else |
| 1747 | if (pdata) |
| 1748 | iap = (unsigned char *)&pdata->mac; |
| 1749 | #endif |
| 1750 | } |
| 1751 | |
| 1752 | /* |
| 1753 | * 4) FEC mac registers set by bootloader |
| 1754 | */ |
| 1755 | if (!is_valid_ether_addr(iap)) { |
| 1756 | *((__be32 *) &tmpaddr[0]) = |
| 1757 | cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); |
| 1758 | *((__be16 *) &tmpaddr[4]) = |
| 1759 | cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); |
| 1760 | iap = &tmpaddr[0]; |
| 1761 | } |
| 1762 | |
| 1763 | /* |
| 1764 | * 5) random mac address |
| 1765 | */ |
| 1766 | if (!is_valid_ether_addr(iap)) { |
| 1767 | /* Report it and use a random ethernet address instead */ |
| 1768 | dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); |
| 1769 | eth_hw_addr_random(ndev); |
| 1770 | dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", |
| 1771 | ndev->dev_addr); |
| 1772 | return; |
| 1773 | } |
| 1774 | |
| 1775 | memcpy(ndev->dev_addr, iap, ETH_ALEN); |
| 1776 | |
| 1777 | /* Adjust MAC if using macaddr */ |
| 1778 | if (iap == macaddr) |
| 1779 | ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; |
| 1780 | } |
| 1781 | |
| 1782 | /* ------------------------------------------------------------------------- */ |
| 1783 | |
| 1784 | /* |
| 1785 | * Phy section |
| 1786 | */ |
| 1787 | static void fec_enet_adjust_link(struct net_device *ndev) |
| 1788 | { |
| 1789 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1790 | struct phy_device *phy_dev = ndev->phydev; |
| 1791 | int status_change = 0; |
| 1792 | |
| 1793 | /* |
| 1794 | * If the netdev is down, or is going down, we're not interested |
| 1795 | * in link state events, so just mark our idea of the link as down |
| 1796 | * and ignore the event. |
| 1797 | */ |
| 1798 | if (!netif_running(ndev) || !netif_device_present(ndev)) { |
| 1799 | fep->link = 0; |
| 1800 | } else if (phy_dev->link) { |
| 1801 | if (!fep->link) { |
| 1802 | fep->link = phy_dev->link; |
| 1803 | status_change = 1; |
| 1804 | } |
| 1805 | |
| 1806 | if (fep->full_duplex != phy_dev->duplex) { |
| 1807 | fep->full_duplex = phy_dev->duplex; |
| 1808 | status_change = 1; |
| 1809 | } |
| 1810 | |
| 1811 | if (phy_dev->speed != fep->speed) { |
| 1812 | fep->speed = phy_dev->speed; |
| 1813 | status_change = 1; |
| 1814 | } |
| 1815 | |
| 1816 | /* if any of the above changed restart the FEC */ |
| 1817 | if (status_change) { |
| 1818 | netif_stop_queue(ndev); |
| 1819 | napi_disable(&fep->napi); |
| 1820 | netif_tx_lock_bh(ndev); |
| 1821 | fec_restart(ndev); |
| 1822 | netif_tx_wake_all_queues(ndev); |
| 1823 | netif_tx_unlock_bh(ndev); |
| 1824 | napi_enable(&fep->napi); |
| 1825 | } |
| 1826 | } else { |
| 1827 | if (fep->link) { |
| 1828 | netif_stop_queue(ndev); |
| 1829 | napi_disable(&fep->napi); |
| 1830 | netif_tx_lock_bh(ndev); |
| 1831 | fec_stop(ndev); |
| 1832 | netif_tx_unlock_bh(ndev); |
| 1833 | napi_enable(&fep->napi); |
| 1834 | fep->link = phy_dev->link; |
| 1835 | status_change = 1; |
| 1836 | } |
| 1837 | } |
| 1838 | |
| 1839 | if (status_change) |
| 1840 | phy_print_status(phy_dev); |
| 1841 | } |
| 1842 | |
| 1843 | static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) |
| 1844 | { |
| 1845 | struct fec_enet_private *fep = bus->priv; |
| 1846 | struct device *dev = &fep->pdev->dev; |
| 1847 | unsigned long time_left; |
| 1848 | int ret = 0, frame_start, frame_addr, frame_op; |
| 1849 | bool is_c45 = !!(regnum & MII_ADDR_C45); |
| 1850 | |
| 1851 | ret = pm_runtime_get_sync(dev); |
| 1852 | if (ret < 0) |
| 1853 | return ret; |
| 1854 | |
| 1855 | reinit_completion(&fep->mdio_done); |
| 1856 | |
| 1857 | if (is_c45) { |
| 1858 | frame_start = FEC_MMFR_ST_C45; |
| 1859 | |
| 1860 | /* write address */ |
| 1861 | frame_addr = (regnum >> 16); |
| 1862 | writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | |
| 1863 | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | |
| 1864 | FEC_MMFR_TA | (regnum & 0xFFFF), |
| 1865 | fep->hwp + FEC_MII_DATA); |
| 1866 | |
| 1867 | /* wait for end of transfer */ |
| 1868 | time_left = wait_for_completion_timeout(&fep->mdio_done, |
| 1869 | usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| 1870 | if (time_left == 0) { |
| 1871 | netdev_err(fep->netdev, "MDIO address write timeout\n"); |
| 1872 | ret = -ETIMEDOUT; |
| 1873 | goto out; |
| 1874 | } |
| 1875 | |
| 1876 | frame_op = FEC_MMFR_OP_READ_C45; |
| 1877 | |
| 1878 | } else { |
| 1879 | /* C22 read */ |
| 1880 | frame_op = FEC_MMFR_OP_READ; |
| 1881 | frame_start = FEC_MMFR_ST; |
| 1882 | frame_addr = regnum; |
| 1883 | } |
| 1884 | |
| 1885 | /* start a read op */ |
| 1886 | writel(frame_start | frame_op | |
| 1887 | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | |
| 1888 | FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); |
| 1889 | |
| 1890 | /* wait for end of transfer */ |
| 1891 | time_left = wait_for_completion_timeout(&fep->mdio_done, |
| 1892 | usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| 1893 | if (time_left == 0) { |
| 1894 | netdev_err(fep->netdev, "MDIO read timeout\n"); |
| 1895 | ret = -ETIMEDOUT; |
| 1896 | goto out; |
| 1897 | } |
| 1898 | |
| 1899 | ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); |
| 1900 | |
| 1901 | out: |
| 1902 | pm_runtime_mark_last_busy(dev); |
| 1903 | pm_runtime_put_autosuspend(dev); |
| 1904 | |
| 1905 | return ret; |
| 1906 | } |
| 1907 | |
| 1908 | static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, |
| 1909 | u16 value) |
| 1910 | { |
| 1911 | struct fec_enet_private *fep = bus->priv; |
| 1912 | struct device *dev = &fep->pdev->dev; |
| 1913 | unsigned long time_left; |
| 1914 | int ret, frame_start, frame_addr; |
| 1915 | bool is_c45 = !!(regnum & MII_ADDR_C45); |
| 1916 | |
| 1917 | ret = pm_runtime_get_sync(dev); |
| 1918 | if (ret < 0) |
| 1919 | return ret; |
| 1920 | else |
| 1921 | ret = 0; |
| 1922 | |
| 1923 | reinit_completion(&fep->mdio_done); |
| 1924 | |
| 1925 | if (is_c45) { |
| 1926 | frame_start = FEC_MMFR_ST_C45; |
| 1927 | |
| 1928 | /* write address */ |
| 1929 | frame_addr = (regnum >> 16); |
| 1930 | writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | |
| 1931 | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | |
| 1932 | FEC_MMFR_TA | (regnum & 0xFFFF), |
| 1933 | fep->hwp + FEC_MII_DATA); |
| 1934 | |
| 1935 | /* wait for end of transfer */ |
| 1936 | time_left = wait_for_completion_timeout(&fep->mdio_done, |
| 1937 | usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| 1938 | if (time_left == 0) { |
| 1939 | netdev_err(fep->netdev, "MDIO address write timeout\n"); |
| 1940 | ret = -ETIMEDOUT; |
| 1941 | goto out; |
| 1942 | } |
| 1943 | } else { |
| 1944 | /* C22 write */ |
| 1945 | frame_start = FEC_MMFR_ST; |
| 1946 | frame_addr = regnum; |
| 1947 | } |
| 1948 | |
| 1949 | /* start a write op */ |
| 1950 | writel(frame_start | FEC_MMFR_OP_WRITE | |
| 1951 | FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | |
| 1952 | FEC_MMFR_TA | FEC_MMFR_DATA(value), |
| 1953 | fep->hwp + FEC_MII_DATA); |
| 1954 | |
| 1955 | /* wait for end of transfer */ |
| 1956 | time_left = wait_for_completion_timeout(&fep->mdio_done, |
| 1957 | usecs_to_jiffies(FEC_MII_TIMEOUT)); |
| 1958 | if (time_left == 0) { |
| 1959 | netdev_err(fep->netdev, "MDIO write timeout\n"); |
| 1960 | ret = -ETIMEDOUT; |
| 1961 | } |
| 1962 | |
| 1963 | out: |
| 1964 | pm_runtime_mark_last_busy(dev); |
| 1965 | pm_runtime_put_autosuspend(dev); |
| 1966 | |
| 1967 | return ret; |
| 1968 | } |
| 1969 | |
| 1970 | static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) |
| 1971 | { |
| 1972 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1973 | struct phy_device *phy_dev = ndev->phydev; |
| 1974 | |
| 1975 | if (phy_dev) { |
| 1976 | phy_reset_after_clk_enable(phy_dev); |
| 1977 | } else if (fep->phy_node) { |
| 1978 | /* |
| 1979 | * If the PHY still is not bound to the MAC, but there is |
| 1980 | * OF PHY node and a matching PHY device instance already, |
| 1981 | * use the OF PHY node to obtain the PHY device instance, |
| 1982 | * and then use that PHY device instance when triggering |
| 1983 | * the PHY reset. |
| 1984 | */ |
| 1985 | phy_dev = of_phy_find_device(fep->phy_node); |
| 1986 | phy_reset_after_clk_enable(phy_dev); |
| 1987 | put_device(&phy_dev->mdio.dev); |
| 1988 | } |
| 1989 | } |
| 1990 | |
| 1991 | static int fec_enet_clk_enable(struct net_device *ndev, bool enable) |
| 1992 | { |
| 1993 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 1994 | int ret; |
| 1995 | |
| 1996 | if (enable) { |
| 1997 | ret = clk_prepare_enable(fep->clk_enet_out); |
| 1998 | if (ret) |
| 1999 | return ret; |
| 2000 | |
| 2001 | if (fep->clk_ptp) { |
| 2002 | mutex_lock(&fep->ptp_clk_mutex); |
| 2003 | ret = clk_prepare_enable(fep->clk_ptp); |
| 2004 | if (ret) { |
| 2005 | mutex_unlock(&fep->ptp_clk_mutex); |
| 2006 | goto failed_clk_ptp; |
| 2007 | } else { |
| 2008 | fep->ptp_clk_on = true; |
| 2009 | } |
| 2010 | mutex_unlock(&fep->ptp_clk_mutex); |
| 2011 | } |
| 2012 | |
| 2013 | ret = clk_prepare_enable(fep->clk_ref); |
| 2014 | if (ret) |
| 2015 | goto failed_clk_ref; |
| 2016 | |
| 2017 | fec_enet_phy_reset_after_clk_enable(ndev); |
| 2018 | } else { |
| 2019 | clk_disable_unprepare(fep->clk_enet_out); |
| 2020 | if (fep->clk_ptp) { |
| 2021 | mutex_lock(&fep->ptp_clk_mutex); |
| 2022 | clk_disable_unprepare(fep->clk_ptp); |
| 2023 | fep->ptp_clk_on = false; |
| 2024 | mutex_unlock(&fep->ptp_clk_mutex); |
| 2025 | } |
| 2026 | clk_disable_unprepare(fep->clk_ref); |
| 2027 | } |
| 2028 | |
| 2029 | return 0; |
| 2030 | |
| 2031 | failed_clk_ref: |
| 2032 | if (fep->clk_ref) |
| 2033 | clk_disable_unprepare(fep->clk_ref); |
| 2034 | failed_clk_ptp: |
| 2035 | if (fep->clk_enet_out) |
| 2036 | clk_disable_unprepare(fep->clk_enet_out); |
| 2037 | |
| 2038 | return ret; |
| 2039 | } |
| 2040 | |
| 2041 | static int fec_enet_mii_probe(struct net_device *ndev) |
| 2042 | { |
| 2043 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2044 | struct phy_device *phy_dev = NULL; |
| 2045 | char mdio_bus_id[MII_BUS_ID_SIZE]; |
| 2046 | char phy_name[MII_BUS_ID_SIZE + 3]; |
| 2047 | int phy_id; |
| 2048 | int dev_id = fep->dev_id; |
| 2049 | |
| 2050 | if (fep->phy_node) { |
| 2051 | phy_dev = of_phy_connect(ndev, fep->phy_node, |
| 2052 | &fec_enet_adjust_link, 0, |
| 2053 | fep->phy_interface); |
| 2054 | if (!phy_dev) { |
| 2055 | netdev_err(ndev, "Unable to connect to phy\n"); |
| 2056 | return -ENODEV; |
| 2057 | } |
| 2058 | } else { |
| 2059 | /* check for attached phy */ |
| 2060 | for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { |
| 2061 | if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) |
| 2062 | continue; |
| 2063 | if (dev_id--) |
| 2064 | continue; |
| 2065 | strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); |
| 2066 | break; |
| 2067 | } |
| 2068 | |
| 2069 | if (phy_id >= PHY_MAX_ADDR) { |
| 2070 | netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); |
| 2071 | strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); |
| 2072 | phy_id = 0; |
| 2073 | } |
| 2074 | |
| 2075 | snprintf(phy_name, sizeof(phy_name), |
| 2076 | PHY_ID_FMT, mdio_bus_id, phy_id); |
| 2077 | phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, |
| 2078 | fep->phy_interface); |
| 2079 | } |
| 2080 | |
| 2081 | if (IS_ERR(phy_dev)) { |
| 2082 | netdev_err(ndev, "could not attach to PHY\n"); |
| 2083 | return PTR_ERR(phy_dev); |
| 2084 | } |
| 2085 | |
| 2086 | /* mask with MAC supported features */ |
| 2087 | if (fep->quirks & FEC_QUIRK_HAS_GBIT) { |
| 2088 | phy_set_max_speed(phy_dev, 1000); |
| 2089 | phy_remove_link_mode(phy_dev, |
| 2090 | ETHTOOL_LINK_MODE_1000baseT_Half_BIT); |
| 2091 | #if !defined(CONFIG_M5272) |
| 2092 | phy_support_sym_pause(phy_dev); |
| 2093 | #endif |
| 2094 | } |
| 2095 | else |
| 2096 | phy_set_max_speed(phy_dev, 100); |
| 2097 | |
| 2098 | fep->link = 0; |
| 2099 | fep->full_duplex = 0; |
| 2100 | |
| 2101 | phy_attached_info(phy_dev); |
| 2102 | |
| 2103 | return 0; |
| 2104 | } |
| 2105 | |
| 2106 | static int fec_enet_mii_init(struct platform_device *pdev) |
| 2107 | { |
| 2108 | static struct mii_bus *fec0_mii_bus; |
| 2109 | struct net_device *ndev = platform_get_drvdata(pdev); |
| 2110 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2111 | struct device_node *node; |
| 2112 | int err = -ENXIO; |
| 2113 | u32 mii_speed, holdtime; |
| 2114 | |
| 2115 | /* |
| 2116 | * The i.MX28 dual fec interfaces are not equal. |
| 2117 | * Here are the differences: |
| 2118 | * |
| 2119 | * - fec0 supports MII & RMII modes while fec1 only supports RMII |
| 2120 | * - fec0 acts as the 1588 time master while fec1 is slave |
| 2121 | * - external phys can only be configured by fec0 |
| 2122 | * |
| 2123 | * That is to say fec1 can not work independently. It only works |
| 2124 | * when fec0 is working. The reason behind this design is that the |
| 2125 | * second interface is added primarily for Switch mode. |
| 2126 | * |
| 2127 | * Because of the last point above, both phys are attached on fec0 |
| 2128 | * mdio interface in board design, and need to be configured by |
| 2129 | * fec0 mii_bus. |
| 2130 | */ |
| 2131 | if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { |
| 2132 | /* fec1 uses fec0 mii_bus */ |
| 2133 | if (mii_cnt && fec0_mii_bus) { |
| 2134 | fep->mii_bus = fec0_mii_bus; |
| 2135 | mii_cnt++; |
| 2136 | return 0; |
| 2137 | } |
| 2138 | return -ENOENT; |
| 2139 | } |
| 2140 | |
| 2141 | /* |
| 2142 | * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) |
| 2143 | * |
| 2144 | * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while |
| 2145 | * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 |
| 2146 | * Reference Manual has an error on this, and gets fixed on i.MX6Q |
| 2147 | * document. |
| 2148 | */ |
| 2149 | mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000); |
| 2150 | if (fep->quirks & FEC_QUIRK_ENET_MAC) |
| 2151 | mii_speed--; |
| 2152 | if (mii_speed > 63) { |
| 2153 | dev_err(&pdev->dev, |
| 2154 | "fec clock (%lu) too fast to get right mii speed\n", |
| 2155 | clk_get_rate(fep->clk_ipg)); |
| 2156 | err = -EINVAL; |
| 2157 | goto err_out; |
| 2158 | } |
| 2159 | |
| 2160 | /* |
| 2161 | * The i.MX28 and i.MX6 types have another filed in the MSCR (aka |
| 2162 | * MII_SPEED) register that defines the MDIO output hold time. Earlier |
| 2163 | * versions are RAZ there, so just ignore the difference and write the |
| 2164 | * register always. |
| 2165 | * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. |
| 2166 | * HOLDTIME + 1 is the number of clk cycles the fec is holding the |
| 2167 | * output. |
| 2168 | * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). |
| 2169 | * Given that ceil(clkrate / 5000000) <= 64, the calculation for |
| 2170 | * holdtime cannot result in a value greater than 3. |
| 2171 | */ |
| 2172 | holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; |
| 2173 | |
| 2174 | fep->phy_speed = mii_speed << 1 | holdtime << 8; |
| 2175 | |
| 2176 | writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); |
| 2177 | |
| 2178 | fep->mii_bus = mdiobus_alloc(); |
| 2179 | if (fep->mii_bus == NULL) { |
| 2180 | err = -ENOMEM; |
| 2181 | goto err_out; |
| 2182 | } |
| 2183 | |
| 2184 | fep->mii_bus->name = "fec_enet_mii_bus"; |
| 2185 | fep->mii_bus->read = fec_enet_mdio_read; |
| 2186 | fep->mii_bus->write = fec_enet_mdio_write; |
| 2187 | snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", |
| 2188 | pdev->name, fep->dev_id + 1); |
| 2189 | fep->mii_bus->priv = fep; |
| 2190 | fep->mii_bus->parent = &pdev->dev; |
| 2191 | |
| 2192 | node = of_get_child_by_name(pdev->dev.of_node, "mdio"); |
| 2193 | err = of_mdiobus_register(fep->mii_bus, node); |
| 2194 | of_node_put(node); |
| 2195 | if (err) |
| 2196 | goto err_out_free_mdiobus; |
| 2197 | |
| 2198 | mii_cnt++; |
| 2199 | |
| 2200 | /* save fec0 mii_bus */ |
| 2201 | if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) |
| 2202 | fec0_mii_bus = fep->mii_bus; |
| 2203 | |
| 2204 | return 0; |
| 2205 | |
| 2206 | err_out_free_mdiobus: |
| 2207 | mdiobus_free(fep->mii_bus); |
| 2208 | err_out: |
| 2209 | return err; |
| 2210 | } |
| 2211 | |
| 2212 | static void fec_enet_mii_remove(struct fec_enet_private *fep) |
| 2213 | { |
| 2214 | if (--mii_cnt == 0) { |
| 2215 | mdiobus_unregister(fep->mii_bus); |
| 2216 | mdiobus_free(fep->mii_bus); |
| 2217 | } |
| 2218 | } |
| 2219 | |
| 2220 | static void fec_enet_get_drvinfo(struct net_device *ndev, |
| 2221 | struct ethtool_drvinfo *info) |
| 2222 | { |
| 2223 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2224 | |
| 2225 | strlcpy(info->driver, fep->pdev->dev.driver->name, |
| 2226 | sizeof(info->driver)); |
| 2227 | strlcpy(info->version, "Revision: 1.0", sizeof(info->version)); |
| 2228 | strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); |
| 2229 | } |
| 2230 | |
| 2231 | static int fec_enet_get_regs_len(struct net_device *ndev) |
| 2232 | { |
| 2233 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2234 | struct resource *r; |
| 2235 | int s = 0; |
| 2236 | |
| 2237 | r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); |
| 2238 | if (r) |
| 2239 | s = resource_size(r); |
| 2240 | |
| 2241 | return s; |
| 2242 | } |
| 2243 | |
| 2244 | /* List of registers that can be safety be read to dump them with ethtool */ |
| 2245 | #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ |
| 2246 | defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ |
| 2247 | defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) |
| 2248 | static __u32 fec_enet_register_version = 2; |
| 2249 | static u32 fec_enet_register_offset[] = { |
| 2250 | FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, |
| 2251 | FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, |
| 2252 | FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, |
| 2253 | FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, |
| 2254 | FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, |
| 2255 | FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, |
| 2256 | FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, |
| 2257 | FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, |
| 2258 | FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, |
| 2259 | FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, |
| 2260 | FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, |
| 2261 | FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, |
| 2262 | RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, |
| 2263 | RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, |
| 2264 | RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, |
| 2265 | RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, |
| 2266 | RMON_T_P_GTE2048, RMON_T_OCTETS, |
| 2267 | IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, |
| 2268 | IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, |
| 2269 | IEEE_T_FDXFC, IEEE_T_OCTETS_OK, |
| 2270 | RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, |
| 2271 | RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, |
| 2272 | RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, |
| 2273 | RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, |
| 2274 | RMON_R_P_GTE2048, RMON_R_OCTETS, |
| 2275 | IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, |
| 2276 | IEEE_R_FDXFC, IEEE_R_OCTETS_OK |
| 2277 | }; |
| 2278 | #else |
| 2279 | static __u32 fec_enet_register_version = 1; |
| 2280 | static u32 fec_enet_register_offset[] = { |
| 2281 | FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, |
| 2282 | FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, |
| 2283 | FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, |
| 2284 | FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, |
| 2285 | FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, |
| 2286 | FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, |
| 2287 | FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, |
| 2288 | FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, |
| 2289 | FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 |
| 2290 | }; |
| 2291 | #endif |
| 2292 | |
| 2293 | static void fec_enet_get_regs(struct net_device *ndev, |
| 2294 | struct ethtool_regs *regs, void *regbuf) |
| 2295 | { |
| 2296 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2297 | u32 __iomem *theregs = (u32 __iomem *)fep->hwp; |
| 2298 | struct device *dev = &fep->pdev->dev; |
| 2299 | u32 *buf = (u32 *)regbuf; |
| 2300 | u32 i, off; |
| 2301 | int ret; |
| 2302 | |
| 2303 | ret = pm_runtime_get_sync(dev); |
| 2304 | if (ret < 0) |
| 2305 | return; |
| 2306 | |
| 2307 | regs->version = fec_enet_register_version; |
| 2308 | |
| 2309 | memset(buf, 0, regs->len); |
| 2310 | |
| 2311 | for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { |
| 2312 | off = fec_enet_register_offset[i]; |
| 2313 | |
| 2314 | if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && |
| 2315 | !(fep->quirks & FEC_QUIRK_HAS_FRREG)) |
| 2316 | continue; |
| 2317 | |
| 2318 | off >>= 2; |
| 2319 | buf[off] = readl(&theregs[off]); |
| 2320 | } |
| 2321 | |
| 2322 | pm_runtime_mark_last_busy(dev); |
| 2323 | pm_runtime_put_autosuspend(dev); |
| 2324 | } |
| 2325 | |
| 2326 | static int fec_enet_get_ts_info(struct net_device *ndev, |
| 2327 | struct ethtool_ts_info *info) |
| 2328 | { |
| 2329 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2330 | |
| 2331 | if (fep->bufdesc_ex) { |
| 2332 | |
| 2333 | info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | |
| 2334 | SOF_TIMESTAMPING_RX_SOFTWARE | |
| 2335 | SOF_TIMESTAMPING_SOFTWARE | |
| 2336 | SOF_TIMESTAMPING_TX_HARDWARE | |
| 2337 | SOF_TIMESTAMPING_RX_HARDWARE | |
| 2338 | SOF_TIMESTAMPING_RAW_HARDWARE; |
| 2339 | if (fep->ptp_clock) |
| 2340 | info->phc_index = ptp_clock_index(fep->ptp_clock); |
| 2341 | else |
| 2342 | info->phc_index = -1; |
| 2343 | |
| 2344 | info->tx_types = (1 << HWTSTAMP_TX_OFF) | |
| 2345 | (1 << HWTSTAMP_TX_ON); |
| 2346 | |
| 2347 | info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | |
| 2348 | (1 << HWTSTAMP_FILTER_ALL); |
| 2349 | return 0; |
| 2350 | } else { |
| 2351 | return ethtool_op_get_ts_info(ndev, info); |
| 2352 | } |
| 2353 | } |
| 2354 | |
| 2355 | #if !defined(CONFIG_M5272) |
| 2356 | |
| 2357 | static void fec_enet_get_pauseparam(struct net_device *ndev, |
| 2358 | struct ethtool_pauseparam *pause) |
| 2359 | { |
| 2360 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2361 | |
| 2362 | pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; |
| 2363 | pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; |
| 2364 | pause->rx_pause = pause->tx_pause; |
| 2365 | } |
| 2366 | |
| 2367 | static int fec_enet_set_pauseparam(struct net_device *ndev, |
| 2368 | struct ethtool_pauseparam *pause) |
| 2369 | { |
| 2370 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2371 | |
| 2372 | if (!ndev->phydev) |
| 2373 | return -ENODEV; |
| 2374 | |
| 2375 | if (pause->tx_pause != pause->rx_pause) { |
| 2376 | netdev_info(ndev, |
| 2377 | "hardware only support enable/disable both tx and rx"); |
| 2378 | return -EINVAL; |
| 2379 | } |
| 2380 | |
| 2381 | fep->pause_flag = 0; |
| 2382 | |
| 2383 | /* tx pause must be same as rx pause */ |
| 2384 | fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; |
| 2385 | fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; |
| 2386 | |
| 2387 | phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, |
| 2388 | pause->autoneg); |
| 2389 | |
| 2390 | if (pause->autoneg) { |
| 2391 | if (netif_running(ndev)) |
| 2392 | fec_stop(ndev); |
| 2393 | phy_start_aneg(ndev->phydev); |
| 2394 | } |
| 2395 | if (netif_running(ndev)) { |
| 2396 | napi_disable(&fep->napi); |
| 2397 | netif_tx_lock_bh(ndev); |
| 2398 | fec_restart(ndev); |
| 2399 | netif_tx_wake_all_queues(ndev); |
| 2400 | netif_tx_unlock_bh(ndev); |
| 2401 | napi_enable(&fep->napi); |
| 2402 | } |
| 2403 | |
| 2404 | return 0; |
| 2405 | } |
| 2406 | |
| 2407 | static const struct fec_stat { |
| 2408 | char name[ETH_GSTRING_LEN]; |
| 2409 | u16 offset; |
| 2410 | } fec_stats[] = { |
| 2411 | /* RMON TX */ |
| 2412 | { "tx_dropped", RMON_T_DROP }, |
| 2413 | { "tx_packets", RMON_T_PACKETS }, |
| 2414 | { "tx_broadcast", RMON_T_BC_PKT }, |
| 2415 | { "tx_multicast", RMON_T_MC_PKT }, |
| 2416 | { "tx_crc_errors", RMON_T_CRC_ALIGN }, |
| 2417 | { "tx_undersize", RMON_T_UNDERSIZE }, |
| 2418 | { "tx_oversize", RMON_T_OVERSIZE }, |
| 2419 | { "tx_fragment", RMON_T_FRAG }, |
| 2420 | { "tx_jabber", RMON_T_JAB }, |
| 2421 | { "tx_collision", RMON_T_COL }, |
| 2422 | { "tx_64byte", RMON_T_P64 }, |
| 2423 | { "tx_65to127byte", RMON_T_P65TO127 }, |
| 2424 | { "tx_128to255byte", RMON_T_P128TO255 }, |
| 2425 | { "tx_256to511byte", RMON_T_P256TO511 }, |
| 2426 | { "tx_512to1023byte", RMON_T_P512TO1023 }, |
| 2427 | { "tx_1024to2047byte", RMON_T_P1024TO2047 }, |
| 2428 | { "tx_GTE2048byte", RMON_T_P_GTE2048 }, |
| 2429 | { "tx_octets", RMON_T_OCTETS }, |
| 2430 | |
| 2431 | /* IEEE TX */ |
| 2432 | { "IEEE_tx_drop", IEEE_T_DROP }, |
| 2433 | { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, |
| 2434 | { "IEEE_tx_1col", IEEE_T_1COL }, |
| 2435 | { "IEEE_tx_mcol", IEEE_T_MCOL }, |
| 2436 | { "IEEE_tx_def", IEEE_T_DEF }, |
| 2437 | { "IEEE_tx_lcol", IEEE_T_LCOL }, |
| 2438 | { "IEEE_tx_excol", IEEE_T_EXCOL }, |
| 2439 | { "IEEE_tx_macerr", IEEE_T_MACERR }, |
| 2440 | { "IEEE_tx_cserr", IEEE_T_CSERR }, |
| 2441 | { "IEEE_tx_sqe", IEEE_T_SQE }, |
| 2442 | { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, |
| 2443 | { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, |
| 2444 | |
| 2445 | /* RMON RX */ |
| 2446 | { "rx_packets", RMON_R_PACKETS }, |
| 2447 | { "rx_broadcast", RMON_R_BC_PKT }, |
| 2448 | { "rx_multicast", RMON_R_MC_PKT }, |
| 2449 | { "rx_crc_errors", RMON_R_CRC_ALIGN }, |
| 2450 | { "rx_undersize", RMON_R_UNDERSIZE }, |
| 2451 | { "rx_oversize", RMON_R_OVERSIZE }, |
| 2452 | { "rx_fragment", RMON_R_FRAG }, |
| 2453 | { "rx_jabber", RMON_R_JAB }, |
| 2454 | { "rx_64byte", RMON_R_P64 }, |
| 2455 | { "rx_65to127byte", RMON_R_P65TO127 }, |
| 2456 | { "rx_128to255byte", RMON_R_P128TO255 }, |
| 2457 | { "rx_256to511byte", RMON_R_P256TO511 }, |
| 2458 | { "rx_512to1023byte", RMON_R_P512TO1023 }, |
| 2459 | { "rx_1024to2047byte", RMON_R_P1024TO2047 }, |
| 2460 | { "rx_GTE2048byte", RMON_R_P_GTE2048 }, |
| 2461 | { "rx_octets", RMON_R_OCTETS }, |
| 2462 | |
| 2463 | /* IEEE RX */ |
| 2464 | { "IEEE_rx_drop", IEEE_R_DROP }, |
| 2465 | { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, |
| 2466 | { "IEEE_rx_crc", IEEE_R_CRC }, |
| 2467 | { "IEEE_rx_align", IEEE_R_ALIGN }, |
| 2468 | { "IEEE_rx_macerr", IEEE_R_MACERR }, |
| 2469 | { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, |
| 2470 | { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, |
| 2471 | }; |
| 2472 | |
| 2473 | #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) |
| 2474 | |
| 2475 | static void fec_enet_update_ethtool_stats(struct net_device *dev) |
| 2476 | { |
| 2477 | struct fec_enet_private *fep = netdev_priv(dev); |
| 2478 | int i; |
| 2479 | |
| 2480 | for (i = 0; i < ARRAY_SIZE(fec_stats); i++) |
| 2481 | fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); |
| 2482 | } |
| 2483 | |
| 2484 | static void fec_enet_get_ethtool_stats(struct net_device *dev, |
| 2485 | struct ethtool_stats *stats, u64 *data) |
| 2486 | { |
| 2487 | struct fec_enet_private *fep = netdev_priv(dev); |
| 2488 | |
| 2489 | if (netif_running(dev)) |
| 2490 | fec_enet_update_ethtool_stats(dev); |
| 2491 | |
| 2492 | memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); |
| 2493 | } |
| 2494 | |
| 2495 | static void fec_enet_get_strings(struct net_device *netdev, |
| 2496 | u32 stringset, u8 *data) |
| 2497 | { |
| 2498 | int i; |
| 2499 | switch (stringset) { |
| 2500 | case ETH_SS_STATS: |
| 2501 | for (i = 0; i < ARRAY_SIZE(fec_stats); i++) |
| 2502 | memcpy(data + i * ETH_GSTRING_LEN, |
| 2503 | fec_stats[i].name, ETH_GSTRING_LEN); |
| 2504 | break; |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | static int fec_enet_get_sset_count(struct net_device *dev, int sset) |
| 2509 | { |
| 2510 | switch (sset) { |
| 2511 | case ETH_SS_STATS: |
| 2512 | return ARRAY_SIZE(fec_stats); |
| 2513 | default: |
| 2514 | return -EOPNOTSUPP; |
| 2515 | } |
| 2516 | } |
| 2517 | |
| 2518 | static void fec_enet_clear_ethtool_stats(struct net_device *dev) |
| 2519 | { |
| 2520 | struct fec_enet_private *fep = netdev_priv(dev); |
| 2521 | int i; |
| 2522 | |
| 2523 | /* Disable MIB statistics counters */ |
| 2524 | writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); |
| 2525 | |
| 2526 | for (i = 0; i < ARRAY_SIZE(fec_stats); i++) |
| 2527 | writel(0, fep->hwp + fec_stats[i].offset); |
| 2528 | |
| 2529 | /* Don't disable MIB statistics counters */ |
| 2530 | writel(0, fep->hwp + FEC_MIB_CTRLSTAT); |
| 2531 | } |
| 2532 | |
| 2533 | #else /* !defined(CONFIG_M5272) */ |
| 2534 | #define FEC_STATS_SIZE 0 |
| 2535 | static inline void fec_enet_update_ethtool_stats(struct net_device *dev) |
| 2536 | { |
| 2537 | } |
| 2538 | |
| 2539 | static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) |
| 2540 | { |
| 2541 | } |
| 2542 | #endif /* !defined(CONFIG_M5272) */ |
| 2543 | |
| 2544 | /* ITR clock source is enet system clock (clk_ahb). |
| 2545 | * TCTT unit is cycle_ns * 64 cycle |
| 2546 | * So, the ICTT value = X us / (cycle_ns * 64) |
| 2547 | */ |
| 2548 | static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) |
| 2549 | { |
| 2550 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2551 | |
| 2552 | return us * (fep->itr_clk_rate / 64000) / 1000; |
| 2553 | } |
| 2554 | |
| 2555 | /* Set threshold for interrupt coalescing */ |
| 2556 | static void fec_enet_itr_coal_set(struct net_device *ndev) |
| 2557 | { |
| 2558 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2559 | int rx_itr, tx_itr; |
| 2560 | |
| 2561 | /* Must be greater than zero to avoid unpredictable behavior */ |
| 2562 | if (!fep->rx_time_itr || !fep->rx_pkts_itr || |
| 2563 | !fep->tx_time_itr || !fep->tx_pkts_itr) |
| 2564 | return; |
| 2565 | |
| 2566 | /* Select enet system clock as Interrupt Coalescing |
| 2567 | * timer Clock Source |
| 2568 | */ |
| 2569 | rx_itr = FEC_ITR_CLK_SEL; |
| 2570 | tx_itr = FEC_ITR_CLK_SEL; |
| 2571 | |
| 2572 | /* set ICFT and ICTT */ |
| 2573 | rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); |
| 2574 | rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); |
| 2575 | tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); |
| 2576 | tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); |
| 2577 | |
| 2578 | rx_itr |= FEC_ITR_EN; |
| 2579 | tx_itr |= FEC_ITR_EN; |
| 2580 | |
| 2581 | writel(tx_itr, fep->hwp + FEC_TXIC0); |
| 2582 | writel(rx_itr, fep->hwp + FEC_RXIC0); |
| 2583 | if (fep->quirks & FEC_QUIRK_HAS_AVB) { |
| 2584 | writel(tx_itr, fep->hwp + FEC_TXIC1); |
| 2585 | writel(rx_itr, fep->hwp + FEC_RXIC1); |
| 2586 | writel(tx_itr, fep->hwp + FEC_TXIC2); |
| 2587 | writel(rx_itr, fep->hwp + FEC_RXIC2); |
| 2588 | } |
| 2589 | } |
| 2590 | |
| 2591 | static int |
| 2592 | fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) |
| 2593 | { |
| 2594 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2595 | |
| 2596 | if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) |
| 2597 | return -EOPNOTSUPP; |
| 2598 | |
| 2599 | ec->rx_coalesce_usecs = fep->rx_time_itr; |
| 2600 | ec->rx_max_coalesced_frames = fep->rx_pkts_itr; |
| 2601 | |
| 2602 | ec->tx_coalesce_usecs = fep->tx_time_itr; |
| 2603 | ec->tx_max_coalesced_frames = fep->tx_pkts_itr; |
| 2604 | |
| 2605 | return 0; |
| 2606 | } |
| 2607 | |
| 2608 | static int |
| 2609 | fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) |
| 2610 | { |
| 2611 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2612 | struct device *dev = &fep->pdev->dev; |
| 2613 | unsigned int cycle; |
| 2614 | |
| 2615 | if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) |
| 2616 | return -EOPNOTSUPP; |
| 2617 | |
| 2618 | if (ec->rx_max_coalesced_frames > 255) { |
| 2619 | dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); |
| 2620 | return -EINVAL; |
| 2621 | } |
| 2622 | |
| 2623 | if (ec->tx_max_coalesced_frames > 255) { |
| 2624 | dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); |
| 2625 | return -EINVAL; |
| 2626 | } |
| 2627 | |
| 2628 | cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); |
| 2629 | if (cycle > 0xFFFF) { |
| 2630 | dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); |
| 2631 | return -EINVAL; |
| 2632 | } |
| 2633 | |
| 2634 | cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); |
| 2635 | if (cycle > 0xFFFF) { |
| 2636 | dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); |
| 2637 | return -EINVAL; |
| 2638 | } |
| 2639 | |
| 2640 | fep->rx_time_itr = ec->rx_coalesce_usecs; |
| 2641 | fep->rx_pkts_itr = ec->rx_max_coalesced_frames; |
| 2642 | |
| 2643 | fep->tx_time_itr = ec->tx_coalesce_usecs; |
| 2644 | fep->tx_pkts_itr = ec->tx_max_coalesced_frames; |
| 2645 | |
| 2646 | fec_enet_itr_coal_set(ndev); |
| 2647 | |
| 2648 | return 0; |
| 2649 | } |
| 2650 | |
| 2651 | static void fec_enet_itr_coal_init(struct net_device *ndev) |
| 2652 | { |
| 2653 | struct ethtool_coalesce ec; |
| 2654 | |
| 2655 | ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; |
| 2656 | ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; |
| 2657 | |
| 2658 | ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; |
| 2659 | ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; |
| 2660 | |
| 2661 | fec_enet_set_coalesce(ndev, &ec); |
| 2662 | } |
| 2663 | |
| 2664 | static int fec_enet_get_tunable(struct net_device *netdev, |
| 2665 | const struct ethtool_tunable *tuna, |
| 2666 | void *data) |
| 2667 | { |
| 2668 | struct fec_enet_private *fep = netdev_priv(netdev); |
| 2669 | int ret = 0; |
| 2670 | |
| 2671 | switch (tuna->id) { |
| 2672 | case ETHTOOL_RX_COPYBREAK: |
| 2673 | *(u32 *)data = fep->rx_copybreak; |
| 2674 | break; |
| 2675 | default: |
| 2676 | ret = -EINVAL; |
| 2677 | break; |
| 2678 | } |
| 2679 | |
| 2680 | return ret; |
| 2681 | } |
| 2682 | |
| 2683 | static int fec_enet_set_tunable(struct net_device *netdev, |
| 2684 | const struct ethtool_tunable *tuna, |
| 2685 | const void *data) |
| 2686 | { |
| 2687 | struct fec_enet_private *fep = netdev_priv(netdev); |
| 2688 | int ret = 0; |
| 2689 | |
| 2690 | switch (tuna->id) { |
| 2691 | case ETHTOOL_RX_COPYBREAK: |
| 2692 | fep->rx_copybreak = *(u32 *)data; |
| 2693 | break; |
| 2694 | default: |
| 2695 | ret = -EINVAL; |
| 2696 | break; |
| 2697 | } |
| 2698 | |
| 2699 | return ret; |
| 2700 | } |
| 2701 | |
| 2702 | static void |
| 2703 | fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) |
| 2704 | { |
| 2705 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2706 | |
| 2707 | if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { |
| 2708 | wol->supported = WAKE_MAGIC; |
| 2709 | wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; |
| 2710 | } else { |
| 2711 | wol->supported = wol->wolopts = 0; |
| 2712 | } |
| 2713 | } |
| 2714 | |
| 2715 | static int |
| 2716 | fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) |
| 2717 | { |
| 2718 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2719 | |
| 2720 | if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) |
| 2721 | return -EINVAL; |
| 2722 | |
| 2723 | if (wol->wolopts & ~WAKE_MAGIC) |
| 2724 | return -EINVAL; |
| 2725 | |
| 2726 | device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); |
| 2727 | if (device_may_wakeup(&ndev->dev)) { |
| 2728 | fep->wol_flag |= FEC_WOL_FLAG_ENABLE; |
| 2729 | if (fep->irq[0] > 0) |
| 2730 | enable_irq_wake(fep->irq[0]); |
| 2731 | } else { |
| 2732 | fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); |
| 2733 | if (fep->irq[0] > 0) |
| 2734 | disable_irq_wake(fep->irq[0]); |
| 2735 | } |
| 2736 | |
| 2737 | return 0; |
| 2738 | } |
| 2739 | |
| 2740 | static const struct ethtool_ops fec_enet_ethtool_ops = { |
| 2741 | .get_drvinfo = fec_enet_get_drvinfo, |
| 2742 | .get_regs_len = fec_enet_get_regs_len, |
| 2743 | .get_regs = fec_enet_get_regs, |
| 2744 | .nway_reset = phy_ethtool_nway_reset, |
| 2745 | .get_link = ethtool_op_get_link, |
| 2746 | .get_coalesce = fec_enet_get_coalesce, |
| 2747 | .set_coalesce = fec_enet_set_coalesce, |
| 2748 | #ifndef CONFIG_M5272 |
| 2749 | .get_pauseparam = fec_enet_get_pauseparam, |
| 2750 | .set_pauseparam = fec_enet_set_pauseparam, |
| 2751 | .get_strings = fec_enet_get_strings, |
| 2752 | .get_ethtool_stats = fec_enet_get_ethtool_stats, |
| 2753 | .get_sset_count = fec_enet_get_sset_count, |
| 2754 | #endif |
| 2755 | .get_ts_info = fec_enet_get_ts_info, |
| 2756 | .get_tunable = fec_enet_get_tunable, |
| 2757 | .set_tunable = fec_enet_set_tunable, |
| 2758 | .get_wol = fec_enet_get_wol, |
| 2759 | .set_wol = fec_enet_set_wol, |
| 2760 | .get_link_ksettings = phy_ethtool_get_link_ksettings, |
| 2761 | .set_link_ksettings = phy_ethtool_set_link_ksettings, |
| 2762 | }; |
| 2763 | |
| 2764 | static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) |
| 2765 | { |
| 2766 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2767 | struct phy_device *phydev = ndev->phydev; |
| 2768 | |
| 2769 | if (!netif_running(ndev)) |
| 2770 | return -EINVAL; |
| 2771 | |
| 2772 | if (!phydev) |
| 2773 | return -ENODEV; |
| 2774 | |
| 2775 | if (fep->bufdesc_ex) { |
| 2776 | if (cmd == SIOCSHWTSTAMP) |
| 2777 | return fec_ptp_set(ndev, rq); |
| 2778 | if (cmd == SIOCGHWTSTAMP) |
| 2779 | return fec_ptp_get(ndev, rq); |
| 2780 | } |
| 2781 | |
| 2782 | return phy_mii_ioctl(phydev, rq, cmd); |
| 2783 | } |
| 2784 | |
| 2785 | static void fec_enet_free_buffers(struct net_device *ndev) |
| 2786 | { |
| 2787 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2788 | unsigned int i; |
| 2789 | struct sk_buff *skb; |
| 2790 | struct bufdesc *bdp; |
| 2791 | struct fec_enet_priv_tx_q *txq; |
| 2792 | struct fec_enet_priv_rx_q *rxq; |
| 2793 | unsigned int q; |
| 2794 | |
| 2795 | for (q = 0; q < fep->num_rx_queues; q++) { |
| 2796 | rxq = fep->rx_queue[q]; |
| 2797 | bdp = rxq->bd.base; |
| 2798 | for (i = 0; i < rxq->bd.ring_size; i++) { |
| 2799 | skb = rxq->rx_skbuff[i]; |
| 2800 | rxq->rx_skbuff[i] = NULL; |
| 2801 | if (skb) { |
| 2802 | dma_unmap_single(&fep->pdev->dev, |
| 2803 | fec32_to_cpu(bdp->cbd_bufaddr), |
| 2804 | FEC_ENET_RX_FRSIZE - fep->rx_align, |
| 2805 | DMA_FROM_DEVICE); |
| 2806 | dev_kfree_skb(skb); |
| 2807 | } |
| 2808 | bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); |
| 2809 | } |
| 2810 | } |
| 2811 | |
| 2812 | for (q = 0; q < fep->num_tx_queues; q++) { |
| 2813 | txq = fep->tx_queue[q]; |
| 2814 | bdp = txq->bd.base; |
| 2815 | for (i = 0; i < txq->bd.ring_size; i++) { |
| 2816 | kfree(txq->tx_bounce[i]); |
| 2817 | txq->tx_bounce[i] = NULL; |
| 2818 | skb = txq->tx_skbuff[i]; |
| 2819 | txq->tx_skbuff[i] = NULL; |
| 2820 | dev_kfree_skb(skb); |
| 2821 | } |
| 2822 | } |
| 2823 | } |
| 2824 | |
| 2825 | static void fec_enet_free_queue(struct net_device *ndev) |
| 2826 | { |
| 2827 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2828 | int i; |
| 2829 | struct fec_enet_priv_tx_q *txq; |
| 2830 | |
| 2831 | for (i = 0; i < fep->num_tx_queues; i++) |
| 2832 | if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { |
| 2833 | txq = fep->tx_queue[i]; |
| 2834 | dma_free_coherent(&fep->pdev->dev, |
| 2835 | txq->bd.ring_size * TSO_HEADER_SIZE, |
| 2836 | txq->tso_hdrs, |
| 2837 | txq->tso_hdrs_dma); |
| 2838 | } |
| 2839 | |
| 2840 | for (i = 0; i < fep->num_rx_queues; i++) |
| 2841 | kfree(fep->rx_queue[i]); |
| 2842 | for (i = 0; i < fep->num_tx_queues; i++) |
| 2843 | kfree(fep->tx_queue[i]); |
| 2844 | } |
| 2845 | |
| 2846 | static int fec_enet_alloc_queue(struct net_device *ndev) |
| 2847 | { |
| 2848 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2849 | int i; |
| 2850 | int ret = 0; |
| 2851 | struct fec_enet_priv_tx_q *txq; |
| 2852 | |
| 2853 | for (i = 0; i < fep->num_tx_queues; i++) { |
| 2854 | txq = kzalloc(sizeof(*txq), GFP_KERNEL); |
| 2855 | if (!txq) { |
| 2856 | ret = -ENOMEM; |
| 2857 | goto alloc_failed; |
| 2858 | } |
| 2859 | |
| 2860 | fep->tx_queue[i] = txq; |
| 2861 | txq->bd.ring_size = TX_RING_SIZE; |
| 2862 | fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; |
| 2863 | |
| 2864 | txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; |
| 2865 | txq->tx_wake_threshold = |
| 2866 | (txq->bd.ring_size - txq->tx_stop_threshold) / 2; |
| 2867 | |
| 2868 | txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, |
| 2869 | txq->bd.ring_size * TSO_HEADER_SIZE, |
| 2870 | &txq->tso_hdrs_dma, |
| 2871 | GFP_KERNEL); |
| 2872 | if (!txq->tso_hdrs) { |
| 2873 | ret = -ENOMEM; |
| 2874 | goto alloc_failed; |
| 2875 | } |
| 2876 | } |
| 2877 | |
| 2878 | for (i = 0; i < fep->num_rx_queues; i++) { |
| 2879 | fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), |
| 2880 | GFP_KERNEL); |
| 2881 | if (!fep->rx_queue[i]) { |
| 2882 | ret = -ENOMEM; |
| 2883 | goto alloc_failed; |
| 2884 | } |
| 2885 | |
| 2886 | fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; |
| 2887 | fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; |
| 2888 | } |
| 2889 | return ret; |
| 2890 | |
| 2891 | alloc_failed: |
| 2892 | fec_enet_free_queue(ndev); |
| 2893 | return ret; |
| 2894 | } |
| 2895 | |
| 2896 | static int |
| 2897 | fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) |
| 2898 | { |
| 2899 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2900 | unsigned int i; |
| 2901 | struct sk_buff *skb; |
| 2902 | struct bufdesc *bdp; |
| 2903 | struct fec_enet_priv_rx_q *rxq; |
| 2904 | |
| 2905 | rxq = fep->rx_queue[queue]; |
| 2906 | bdp = rxq->bd.base; |
| 2907 | for (i = 0; i < rxq->bd.ring_size; i++) { |
| 2908 | skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); |
| 2909 | if (!skb) |
| 2910 | goto err_alloc; |
| 2911 | |
| 2912 | if (fec_enet_new_rxbdp(ndev, bdp, skb)) { |
| 2913 | dev_kfree_skb(skb); |
| 2914 | goto err_alloc; |
| 2915 | } |
| 2916 | |
| 2917 | rxq->rx_skbuff[i] = skb; |
| 2918 | bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); |
| 2919 | |
| 2920 | if (fep->bufdesc_ex) { |
| 2921 | struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| 2922 | ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); |
| 2923 | } |
| 2924 | |
| 2925 | bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); |
| 2926 | } |
| 2927 | |
| 2928 | /* Set the last buffer to wrap. */ |
| 2929 | bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); |
| 2930 | bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); |
| 2931 | return 0; |
| 2932 | |
| 2933 | err_alloc: |
| 2934 | fec_enet_free_buffers(ndev); |
| 2935 | return -ENOMEM; |
| 2936 | } |
| 2937 | |
| 2938 | static int |
| 2939 | fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) |
| 2940 | { |
| 2941 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2942 | unsigned int i; |
| 2943 | struct bufdesc *bdp; |
| 2944 | struct fec_enet_priv_tx_q *txq; |
| 2945 | |
| 2946 | txq = fep->tx_queue[queue]; |
| 2947 | bdp = txq->bd.base; |
| 2948 | for (i = 0; i < txq->bd.ring_size; i++) { |
| 2949 | txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); |
| 2950 | if (!txq->tx_bounce[i]) |
| 2951 | goto err_alloc; |
| 2952 | |
| 2953 | bdp->cbd_sc = cpu_to_fec16(0); |
| 2954 | bdp->cbd_bufaddr = cpu_to_fec32(0); |
| 2955 | |
| 2956 | if (fep->bufdesc_ex) { |
| 2957 | struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; |
| 2958 | ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); |
| 2959 | } |
| 2960 | |
| 2961 | bdp = fec_enet_get_nextdesc(bdp, &txq->bd); |
| 2962 | } |
| 2963 | |
| 2964 | /* Set the last buffer to wrap. */ |
| 2965 | bdp = fec_enet_get_prevdesc(bdp, &txq->bd); |
| 2966 | bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); |
| 2967 | |
| 2968 | return 0; |
| 2969 | |
| 2970 | err_alloc: |
| 2971 | fec_enet_free_buffers(ndev); |
| 2972 | return -ENOMEM; |
| 2973 | } |
| 2974 | |
| 2975 | static int fec_enet_alloc_buffers(struct net_device *ndev) |
| 2976 | { |
| 2977 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2978 | unsigned int i; |
| 2979 | |
| 2980 | for (i = 0; i < fep->num_rx_queues; i++) |
| 2981 | if (fec_enet_alloc_rxq_buffers(ndev, i)) |
| 2982 | return -ENOMEM; |
| 2983 | |
| 2984 | for (i = 0; i < fep->num_tx_queues; i++) |
| 2985 | if (fec_enet_alloc_txq_buffers(ndev, i)) |
| 2986 | return -ENOMEM; |
| 2987 | return 0; |
| 2988 | } |
| 2989 | |
| 2990 | static int |
| 2991 | fec_enet_open(struct net_device *ndev) |
| 2992 | { |
| 2993 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 2994 | int ret; |
| 2995 | bool reset_again; |
| 2996 | |
| 2997 | ret = pm_runtime_get_sync(&fep->pdev->dev); |
| 2998 | if (ret < 0) |
| 2999 | return ret; |
| 3000 | |
| 3001 | pinctrl_pm_select_default_state(&fep->pdev->dev); |
| 3002 | ret = fec_enet_clk_enable(ndev, true); |
| 3003 | if (ret) |
| 3004 | goto clk_enable; |
| 3005 | |
| 3006 | /* During the first fec_enet_open call the PHY isn't probed at this |
| 3007 | * point. Therefore the phy_reset_after_clk_enable() call within |
| 3008 | * fec_enet_clk_enable() fails. As we need this reset in order to be |
| 3009 | * sure the PHY is working correctly we check if we need to reset again |
| 3010 | * later when the PHY is probed |
| 3011 | */ |
| 3012 | if (ndev->phydev && ndev->phydev->drv) |
| 3013 | reset_again = false; |
| 3014 | else |
| 3015 | reset_again = true; |
| 3016 | |
| 3017 | /* I should reset the ring buffers here, but I don't yet know |
| 3018 | * a simple way to do that. |
| 3019 | */ |
| 3020 | |
| 3021 | ret = fec_enet_alloc_buffers(ndev); |
| 3022 | if (ret) |
| 3023 | goto err_enet_alloc; |
| 3024 | |
| 3025 | /* Init MAC prior to mii bus probe */ |
| 3026 | fec_restart(ndev); |
| 3027 | |
| 3028 | /* Call phy_reset_after_clk_enable() again if it failed during |
| 3029 | * phy_reset_after_clk_enable() before because the PHY wasn't probed. |
| 3030 | */ |
| 3031 | if (reset_again) |
| 3032 | fec_enet_phy_reset_after_clk_enable(ndev); |
| 3033 | |
| 3034 | /* Probe and connect to PHY when open the interface */ |
| 3035 | ret = fec_enet_mii_probe(ndev); |
| 3036 | if (ret) |
| 3037 | goto err_enet_mii_probe; |
| 3038 | |
| 3039 | if (fep->quirks & FEC_QUIRK_ERR006687) |
| 3040 | imx6q_cpuidle_fec_irqs_used(); |
| 3041 | |
| 3042 | napi_enable(&fep->napi); |
| 3043 | phy_start(ndev->phydev); |
| 3044 | netif_tx_start_all_queues(ndev); |
| 3045 | |
| 3046 | device_set_wakeup_enable(&ndev->dev, fep->wol_flag & |
| 3047 | FEC_WOL_FLAG_ENABLE); |
| 3048 | |
| 3049 | return 0; |
| 3050 | |
| 3051 | err_enet_mii_probe: |
| 3052 | fec_enet_free_buffers(ndev); |
| 3053 | err_enet_alloc: |
| 3054 | fec_enet_clk_enable(ndev, false); |
| 3055 | clk_enable: |
| 3056 | pm_runtime_mark_last_busy(&fep->pdev->dev); |
| 3057 | pm_runtime_put_autosuspend(&fep->pdev->dev); |
| 3058 | pinctrl_pm_select_sleep_state(&fep->pdev->dev); |
| 3059 | return ret; |
| 3060 | } |
| 3061 | |
| 3062 | static int |
| 3063 | fec_enet_close(struct net_device *ndev) |
| 3064 | { |
| 3065 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3066 | |
| 3067 | phy_stop(ndev->phydev); |
| 3068 | |
| 3069 | if (netif_device_present(ndev)) { |
| 3070 | napi_disable(&fep->napi); |
| 3071 | netif_tx_disable(ndev); |
| 3072 | fec_stop(ndev); |
| 3073 | } |
| 3074 | |
| 3075 | phy_disconnect(ndev->phydev); |
| 3076 | |
| 3077 | if (fep->quirks & FEC_QUIRK_ERR006687) |
| 3078 | imx6q_cpuidle_fec_irqs_unused(); |
| 3079 | |
| 3080 | fec_enet_update_ethtool_stats(ndev); |
| 3081 | |
| 3082 | fec_enet_clk_enable(ndev, false); |
| 3083 | pinctrl_pm_select_sleep_state(&fep->pdev->dev); |
| 3084 | pm_runtime_mark_last_busy(&fep->pdev->dev); |
| 3085 | pm_runtime_put_autosuspend(&fep->pdev->dev); |
| 3086 | |
| 3087 | fec_enet_free_buffers(ndev); |
| 3088 | |
| 3089 | return 0; |
| 3090 | } |
| 3091 | |
| 3092 | /* Set or clear the multicast filter for this adaptor. |
| 3093 | * Skeleton taken from sunlance driver. |
| 3094 | * The CPM Ethernet implementation allows Multicast as well as individual |
| 3095 | * MAC address filtering. Some of the drivers check to make sure it is |
| 3096 | * a group multicast address, and discard those that are not. I guess I |
| 3097 | * will do the same for now, but just remove the test if you want |
| 3098 | * individual filtering as well (do the upper net layers want or support |
| 3099 | * this kind of feature?). |
| 3100 | */ |
| 3101 | |
| 3102 | #define FEC_HASH_BITS 6 /* #bits in hash */ |
| 3103 | |
| 3104 | static void set_multicast_list(struct net_device *ndev) |
| 3105 | { |
| 3106 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3107 | struct netdev_hw_addr *ha; |
| 3108 | unsigned int crc, tmp; |
| 3109 | unsigned char hash; |
| 3110 | unsigned int hash_high = 0, hash_low = 0; |
| 3111 | |
| 3112 | if (ndev->flags & IFF_PROMISC) { |
| 3113 | tmp = readl(fep->hwp + FEC_R_CNTRL); |
| 3114 | tmp |= 0x8; |
| 3115 | writel(tmp, fep->hwp + FEC_R_CNTRL); |
| 3116 | return; |
| 3117 | } |
| 3118 | |
| 3119 | tmp = readl(fep->hwp + FEC_R_CNTRL); |
| 3120 | tmp &= ~0x8; |
| 3121 | writel(tmp, fep->hwp + FEC_R_CNTRL); |
| 3122 | |
| 3123 | if (ndev->flags & IFF_ALLMULTI) { |
| 3124 | /* Catch all multicast addresses, so set the |
| 3125 | * filter to all 1's |
| 3126 | */ |
| 3127 | writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| 3128 | writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| 3129 | |
| 3130 | return; |
| 3131 | } |
| 3132 | |
| 3133 | /* Add the addresses in hash register */ |
| 3134 | netdev_for_each_mc_addr(ha, ndev) { |
| 3135 | /* calculate crc32 value of mac address */ |
| 3136 | crc = ether_crc_le(ndev->addr_len, ha->addr); |
| 3137 | |
| 3138 | /* only upper 6 bits (FEC_HASH_BITS) are used |
| 3139 | * which point to specific bit in the hash registers |
| 3140 | */ |
| 3141 | hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; |
| 3142 | |
| 3143 | if (hash > 31) |
| 3144 | hash_high |= 1 << (hash - 32); |
| 3145 | else |
| 3146 | hash_low |= 1 << hash; |
| 3147 | } |
| 3148 | |
| 3149 | writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); |
| 3150 | writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); |
| 3151 | } |
| 3152 | |
| 3153 | /* Set a MAC change in hardware. */ |
| 3154 | static int |
| 3155 | fec_set_mac_address(struct net_device *ndev, void *p) |
| 3156 | { |
| 3157 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3158 | struct sockaddr *addr = p; |
| 3159 | |
| 3160 | if (addr) { |
| 3161 | if (!is_valid_ether_addr(addr->sa_data)) |
| 3162 | return -EADDRNOTAVAIL; |
| 3163 | memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); |
| 3164 | } |
| 3165 | |
| 3166 | /* Add netif status check here to avoid system hang in below case: |
| 3167 | * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; |
| 3168 | * After ethx down, fec all clocks are gated off and then register |
| 3169 | * access causes system hang. |
| 3170 | */ |
| 3171 | if (!netif_running(ndev)) |
| 3172 | return 0; |
| 3173 | |
| 3174 | writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | |
| 3175 | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), |
| 3176 | fep->hwp + FEC_ADDR_LOW); |
| 3177 | writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), |
| 3178 | fep->hwp + FEC_ADDR_HIGH); |
| 3179 | return 0; |
| 3180 | } |
| 3181 | |
| 3182 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 3183 | /** |
| 3184 | * fec_poll_controller - FEC Poll controller function |
| 3185 | * @dev: The FEC network adapter |
| 3186 | * |
| 3187 | * Polled functionality used by netconsole and others in non interrupt mode |
| 3188 | * |
| 3189 | */ |
| 3190 | static void fec_poll_controller(struct net_device *dev) |
| 3191 | { |
| 3192 | int i; |
| 3193 | struct fec_enet_private *fep = netdev_priv(dev); |
| 3194 | |
| 3195 | for (i = 0; i < FEC_IRQ_NUM; i++) { |
| 3196 | if (fep->irq[i] > 0) { |
| 3197 | disable_irq(fep->irq[i]); |
| 3198 | fec_enet_interrupt(fep->irq[i], dev); |
| 3199 | enable_irq(fep->irq[i]); |
| 3200 | } |
| 3201 | } |
| 3202 | } |
| 3203 | #endif |
| 3204 | |
| 3205 | static inline void fec_enet_set_netdev_features(struct net_device *netdev, |
| 3206 | netdev_features_t features) |
| 3207 | { |
| 3208 | struct fec_enet_private *fep = netdev_priv(netdev); |
| 3209 | netdev_features_t changed = features ^ netdev->features; |
| 3210 | |
| 3211 | netdev->features = features; |
| 3212 | |
| 3213 | /* Receive checksum has been changed */ |
| 3214 | if (changed & NETIF_F_RXCSUM) { |
| 3215 | if (features & NETIF_F_RXCSUM) |
| 3216 | fep->csum_flags |= FLAG_RX_CSUM_ENABLED; |
| 3217 | else |
| 3218 | fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; |
| 3219 | } |
| 3220 | } |
| 3221 | |
| 3222 | static int fec_set_features(struct net_device *netdev, |
| 3223 | netdev_features_t features) |
| 3224 | { |
| 3225 | struct fec_enet_private *fep = netdev_priv(netdev); |
| 3226 | netdev_features_t changed = features ^ netdev->features; |
| 3227 | |
| 3228 | if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { |
| 3229 | napi_disable(&fep->napi); |
| 3230 | netif_tx_lock_bh(netdev); |
| 3231 | fec_stop(netdev); |
| 3232 | fec_enet_set_netdev_features(netdev, features); |
| 3233 | fec_restart(netdev); |
| 3234 | netif_tx_wake_all_queues(netdev); |
| 3235 | netif_tx_unlock_bh(netdev); |
| 3236 | napi_enable(&fep->napi); |
| 3237 | } else { |
| 3238 | fec_enet_set_netdev_features(netdev, features); |
| 3239 | } |
| 3240 | |
| 3241 | return 0; |
| 3242 | } |
| 3243 | |
| 3244 | static const struct net_device_ops fec_netdev_ops = { |
| 3245 | .ndo_open = fec_enet_open, |
| 3246 | .ndo_stop = fec_enet_close, |
| 3247 | .ndo_start_xmit = fec_enet_start_xmit, |
| 3248 | .ndo_set_rx_mode = set_multicast_list, |
| 3249 | .ndo_validate_addr = eth_validate_addr, |
| 3250 | .ndo_tx_timeout = fec_timeout, |
| 3251 | .ndo_set_mac_address = fec_set_mac_address, |
| 3252 | .ndo_do_ioctl = fec_enet_ioctl, |
| 3253 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 3254 | .ndo_poll_controller = fec_poll_controller, |
| 3255 | #endif |
| 3256 | .ndo_set_features = fec_set_features, |
| 3257 | }; |
| 3258 | |
| 3259 | static const unsigned short offset_des_active_rxq[] = { |
| 3260 | FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 |
| 3261 | }; |
| 3262 | |
| 3263 | static const unsigned short offset_des_active_txq[] = { |
| 3264 | FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 |
| 3265 | }; |
| 3266 | |
| 3267 | /* |
| 3268 | * XXX: We need to clean up on failure exits here. |
| 3269 | * |
| 3270 | */ |
| 3271 | static int fec_enet_init(struct net_device *ndev) |
| 3272 | { |
| 3273 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3274 | struct bufdesc *cbd_base; |
| 3275 | dma_addr_t bd_dma; |
| 3276 | int bd_size; |
| 3277 | unsigned int i; |
| 3278 | unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : |
| 3279 | sizeof(struct bufdesc); |
| 3280 | unsigned dsize_log2 = __fls(dsize); |
| 3281 | int ret; |
| 3282 | |
| 3283 | WARN_ON(dsize != (1 << dsize_log2)); |
| 3284 | #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) |
| 3285 | fep->rx_align = 0xf; |
| 3286 | fep->tx_align = 0xf; |
| 3287 | #else |
| 3288 | fep->rx_align = 0x3; |
| 3289 | fep->tx_align = 0x3; |
| 3290 | #endif |
| 3291 | |
| 3292 | /* Check mask of the streaming and coherent API */ |
| 3293 | ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); |
| 3294 | if (ret < 0) { |
| 3295 | dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); |
| 3296 | return ret; |
| 3297 | } |
| 3298 | |
| 3299 | ret = fec_enet_alloc_queue(ndev); |
| 3300 | if (ret) |
| 3301 | return ret; |
| 3302 | |
| 3303 | bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; |
| 3304 | |
| 3305 | /* Allocate memory for buffer descriptors. */ |
| 3306 | cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, |
| 3307 | GFP_KERNEL); |
| 3308 | if (!cbd_base) { |
| 3309 | ret = -ENOMEM; |
| 3310 | goto free_queue_mem; |
| 3311 | } |
| 3312 | |
| 3313 | /* Get the Ethernet address */ |
| 3314 | fec_get_mac(ndev); |
| 3315 | /* make sure MAC we just acquired is programmed into the hw */ |
| 3316 | fec_set_mac_address(ndev, NULL); |
| 3317 | |
| 3318 | /* Set receive and transmit descriptor base. */ |
| 3319 | for (i = 0; i < fep->num_rx_queues; i++) { |
| 3320 | struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; |
| 3321 | unsigned size = dsize * rxq->bd.ring_size; |
| 3322 | |
| 3323 | rxq->bd.qid = i; |
| 3324 | rxq->bd.base = cbd_base; |
| 3325 | rxq->bd.cur = cbd_base; |
| 3326 | rxq->bd.dma = bd_dma; |
| 3327 | rxq->bd.dsize = dsize; |
| 3328 | rxq->bd.dsize_log2 = dsize_log2; |
| 3329 | rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; |
| 3330 | bd_dma += size; |
| 3331 | cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); |
| 3332 | rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); |
| 3333 | } |
| 3334 | |
| 3335 | for (i = 0; i < fep->num_tx_queues; i++) { |
| 3336 | struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; |
| 3337 | unsigned size = dsize * txq->bd.ring_size; |
| 3338 | |
| 3339 | txq->bd.qid = i; |
| 3340 | txq->bd.base = cbd_base; |
| 3341 | txq->bd.cur = cbd_base; |
| 3342 | txq->bd.dma = bd_dma; |
| 3343 | txq->bd.dsize = dsize; |
| 3344 | txq->bd.dsize_log2 = dsize_log2; |
| 3345 | txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; |
| 3346 | bd_dma += size; |
| 3347 | cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); |
| 3348 | txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); |
| 3349 | } |
| 3350 | |
| 3351 | |
| 3352 | /* The FEC Ethernet specific entries in the device structure */ |
| 3353 | ndev->watchdog_timeo = TX_TIMEOUT; |
| 3354 | ndev->netdev_ops = &fec_netdev_ops; |
| 3355 | ndev->ethtool_ops = &fec_enet_ethtool_ops; |
| 3356 | |
| 3357 | writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); |
| 3358 | netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); |
| 3359 | |
| 3360 | if (fep->quirks & FEC_QUIRK_HAS_VLAN) |
| 3361 | /* enable hw VLAN support */ |
| 3362 | ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; |
| 3363 | |
| 3364 | if (fep->quirks & FEC_QUIRK_HAS_CSUM) { |
| 3365 | ndev->gso_max_segs = FEC_MAX_TSO_SEGS; |
| 3366 | |
| 3367 | /* enable hw accelerator */ |
| 3368 | ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
| 3369 | | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); |
| 3370 | fep->csum_flags |= FLAG_RX_CSUM_ENABLED; |
| 3371 | } |
| 3372 | |
| 3373 | if (fep->quirks & FEC_QUIRK_HAS_AVB) { |
| 3374 | fep->tx_align = 0; |
| 3375 | fep->rx_align = 0x3f; |
| 3376 | } |
| 3377 | |
| 3378 | ndev->hw_features = ndev->features; |
| 3379 | |
| 3380 | fec_restart(ndev); |
| 3381 | |
| 3382 | if (fep->quirks & FEC_QUIRK_MIB_CLEAR) |
| 3383 | fec_enet_clear_ethtool_stats(ndev); |
| 3384 | else |
| 3385 | fec_enet_update_ethtool_stats(ndev); |
| 3386 | |
| 3387 | return 0; |
| 3388 | |
| 3389 | free_queue_mem: |
| 3390 | fec_enet_free_queue(ndev); |
| 3391 | return ret; |
| 3392 | } |
| 3393 | |
| 3394 | static void fec_enet_deinit(struct net_device *ndev) |
| 3395 | { |
| 3396 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3397 | |
| 3398 | netif_napi_del(&fep->napi); |
| 3399 | fec_enet_free_queue(ndev); |
| 3400 | } |
| 3401 | |
| 3402 | #ifdef CONFIG_OF |
| 3403 | static int fec_reset_phy(struct platform_device *pdev) |
| 3404 | { |
| 3405 | int err, phy_reset; |
| 3406 | bool active_high = false; |
| 3407 | int msec = 1, phy_post_delay = 0; |
| 3408 | struct device_node *np = pdev->dev.of_node; |
| 3409 | |
| 3410 | if (!np) |
| 3411 | return 0; |
| 3412 | |
| 3413 | err = of_property_read_u32(np, "phy-reset-duration", &msec); |
| 3414 | /* A sane reset duration should not be longer than 1s */ |
| 3415 | if (!err && msec > 1000) |
| 3416 | msec = 1; |
| 3417 | |
| 3418 | phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); |
| 3419 | if (phy_reset == -EPROBE_DEFER) |
| 3420 | return phy_reset; |
| 3421 | else if (!gpio_is_valid(phy_reset)) |
| 3422 | return 0; |
| 3423 | |
| 3424 | err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); |
| 3425 | /* valid reset duration should be less than 1s */ |
| 3426 | if (!err && phy_post_delay > 1000) |
| 3427 | return -EINVAL; |
| 3428 | |
| 3429 | active_high = of_property_read_bool(np, "phy-reset-active-high"); |
| 3430 | |
| 3431 | err = devm_gpio_request_one(&pdev->dev, phy_reset, |
| 3432 | active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, |
| 3433 | "phy-reset"); |
| 3434 | if (err) { |
| 3435 | dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); |
| 3436 | return err; |
| 3437 | } |
| 3438 | |
| 3439 | if (msec > 20) |
| 3440 | msleep(msec); |
| 3441 | else |
| 3442 | usleep_range(msec * 1000, msec * 1000 + 1000); |
| 3443 | |
| 3444 | gpio_set_value_cansleep(phy_reset, !active_high); |
| 3445 | |
| 3446 | if (!phy_post_delay) |
| 3447 | return 0; |
| 3448 | |
| 3449 | if (phy_post_delay > 20) |
| 3450 | msleep(phy_post_delay); |
| 3451 | else |
| 3452 | usleep_range(phy_post_delay * 1000, |
| 3453 | phy_post_delay * 1000 + 1000); |
| 3454 | |
| 3455 | return 0; |
| 3456 | } |
| 3457 | #else /* CONFIG_OF */ |
| 3458 | static int fec_reset_phy(struct platform_device *pdev) |
| 3459 | { |
| 3460 | /* |
| 3461 | * In case of platform probe, the reset has been done |
| 3462 | * by machine code. |
| 3463 | */ |
| 3464 | return 0; |
| 3465 | } |
| 3466 | #endif /* CONFIG_OF */ |
| 3467 | |
| 3468 | static void |
| 3469 | fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) |
| 3470 | { |
| 3471 | struct device_node *np = pdev->dev.of_node; |
| 3472 | |
| 3473 | *num_tx = *num_rx = 1; |
| 3474 | |
| 3475 | if (!np || !of_device_is_available(np)) |
| 3476 | return; |
| 3477 | |
| 3478 | /* parse the num of tx and rx queues */ |
| 3479 | of_property_read_u32(np, "fsl,num-tx-queues", num_tx); |
| 3480 | |
| 3481 | of_property_read_u32(np, "fsl,num-rx-queues", num_rx); |
| 3482 | |
| 3483 | if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { |
| 3484 | dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", |
| 3485 | *num_tx); |
| 3486 | *num_tx = 1; |
| 3487 | return; |
| 3488 | } |
| 3489 | |
| 3490 | if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { |
| 3491 | dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", |
| 3492 | *num_rx); |
| 3493 | *num_rx = 1; |
| 3494 | return; |
| 3495 | } |
| 3496 | |
| 3497 | } |
| 3498 | |
| 3499 | static int fec_enet_get_irq_cnt(struct platform_device *pdev) |
| 3500 | { |
| 3501 | int irq_cnt = platform_irq_count(pdev); |
| 3502 | |
| 3503 | if (irq_cnt > FEC_IRQ_NUM) |
| 3504 | irq_cnt = FEC_IRQ_NUM; /* last for pps */ |
| 3505 | else if (irq_cnt == 2) |
| 3506 | irq_cnt = 1; /* last for pps */ |
| 3507 | else if (irq_cnt <= 0) |
| 3508 | irq_cnt = 1; /* At least 1 irq is needed */ |
| 3509 | return irq_cnt; |
| 3510 | } |
| 3511 | |
| 3512 | static int fec_enet_init_stop_mode(struct fec_enet_private *fep, |
| 3513 | struct fec_devinfo *dev_info, |
| 3514 | struct device_node *np) |
| 3515 | { |
| 3516 | struct device_node *gpr_np; |
| 3517 | int ret = 0; |
| 3518 | |
| 3519 | if (!dev_info) |
| 3520 | return 0; |
| 3521 | |
| 3522 | gpr_np = of_parse_phandle(np, "gpr", 0); |
| 3523 | if (!gpr_np) |
| 3524 | return 0; |
| 3525 | |
| 3526 | fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); |
| 3527 | if (IS_ERR(fep->stop_gpr.gpr)) { |
| 3528 | dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); |
| 3529 | ret = PTR_ERR(fep->stop_gpr.gpr); |
| 3530 | fep->stop_gpr.gpr = NULL; |
| 3531 | goto out; |
| 3532 | } |
| 3533 | |
| 3534 | fep->stop_gpr.reg = dev_info->stop_gpr_reg; |
| 3535 | fep->stop_gpr.bit = dev_info->stop_gpr_bit; |
| 3536 | |
| 3537 | out: |
| 3538 | of_node_put(gpr_np); |
| 3539 | |
| 3540 | return ret; |
| 3541 | } |
| 3542 | |
| 3543 | static int |
| 3544 | fec_probe(struct platform_device *pdev) |
| 3545 | { |
| 3546 | struct fec_enet_private *fep; |
| 3547 | struct fec_platform_data *pdata; |
| 3548 | struct net_device *ndev; |
| 3549 | int i, irq, ret = 0; |
| 3550 | const struct of_device_id *of_id; |
| 3551 | static int dev_id; |
| 3552 | struct device_node *np = pdev->dev.of_node, *phy_node; |
| 3553 | int num_tx_qs; |
| 3554 | int num_rx_qs; |
| 3555 | char irq_name[8]; |
| 3556 | int irq_cnt; |
| 3557 | struct fec_devinfo *dev_info; |
| 3558 | |
| 3559 | fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); |
| 3560 | |
| 3561 | /* Init network device */ |
| 3562 | ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + |
| 3563 | FEC_STATS_SIZE, num_tx_qs, num_rx_qs); |
| 3564 | if (!ndev) |
| 3565 | return -ENOMEM; |
| 3566 | |
| 3567 | SET_NETDEV_DEV(ndev, &pdev->dev); |
| 3568 | |
| 3569 | /* setup board info structure */ |
| 3570 | fep = netdev_priv(ndev); |
| 3571 | |
| 3572 | of_id = of_match_device(fec_dt_ids, &pdev->dev); |
| 3573 | if (of_id) |
| 3574 | pdev->id_entry = of_id->data; |
| 3575 | dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; |
| 3576 | if (dev_info) |
| 3577 | fep->quirks = dev_info->quirks; |
| 3578 | |
| 3579 | fep->netdev = ndev; |
| 3580 | fep->num_rx_queues = num_rx_qs; |
| 3581 | fep->num_tx_queues = num_tx_qs; |
| 3582 | |
| 3583 | #if !defined(CONFIG_M5272) |
| 3584 | /* default enable pause frame auto negotiation */ |
| 3585 | if (fep->quirks & FEC_QUIRK_HAS_GBIT) |
| 3586 | fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; |
| 3587 | #endif |
| 3588 | |
| 3589 | /* Select default pin state */ |
| 3590 | pinctrl_pm_select_default_state(&pdev->dev); |
| 3591 | |
| 3592 | fep->hwp = devm_platform_ioremap_resource(pdev, 0); |
| 3593 | if (IS_ERR(fep->hwp)) { |
| 3594 | ret = PTR_ERR(fep->hwp); |
| 3595 | goto failed_ioremap; |
| 3596 | } |
| 3597 | |
| 3598 | fep->pdev = pdev; |
| 3599 | fep->dev_id = dev_id++; |
| 3600 | |
| 3601 | platform_set_drvdata(pdev, ndev); |
| 3602 | |
| 3603 | if ((of_machine_is_compatible("fsl,imx6q") || |
| 3604 | of_machine_is_compatible("fsl,imx6dl")) && |
| 3605 | !of_property_read_bool(np, "fsl,err006687-workaround-present")) |
| 3606 | fep->quirks |= FEC_QUIRK_ERR006687; |
| 3607 | |
| 3608 | if (of_get_property(np, "fsl,magic-packet", NULL)) |
| 3609 | fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; |
| 3610 | |
| 3611 | ret = fec_enet_init_stop_mode(fep, dev_info, np); |
| 3612 | if (ret) |
| 3613 | goto failed_stop_mode; |
| 3614 | |
| 3615 | phy_node = of_parse_phandle(np, "phy-handle", 0); |
| 3616 | if (!phy_node && of_phy_is_fixed_link(np)) { |
| 3617 | ret = of_phy_register_fixed_link(np); |
| 3618 | if (ret < 0) { |
| 3619 | dev_err(&pdev->dev, |
| 3620 | "broken fixed-link specification\n"); |
| 3621 | goto failed_phy; |
| 3622 | } |
| 3623 | phy_node = of_node_get(np); |
| 3624 | } |
| 3625 | fep->phy_node = phy_node; |
| 3626 | |
| 3627 | ret = of_get_phy_mode(pdev->dev.of_node); |
| 3628 | if (ret < 0) { |
| 3629 | pdata = dev_get_platdata(&pdev->dev); |
| 3630 | if (pdata) |
| 3631 | fep->phy_interface = pdata->phy; |
| 3632 | else |
| 3633 | fep->phy_interface = PHY_INTERFACE_MODE_MII; |
| 3634 | } else { |
| 3635 | fep->phy_interface = ret; |
| 3636 | } |
| 3637 | |
| 3638 | fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); |
| 3639 | if (IS_ERR(fep->clk_ipg)) { |
| 3640 | ret = PTR_ERR(fep->clk_ipg); |
| 3641 | goto failed_clk; |
| 3642 | } |
| 3643 | |
| 3644 | fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); |
| 3645 | if (IS_ERR(fep->clk_ahb)) { |
| 3646 | ret = PTR_ERR(fep->clk_ahb); |
| 3647 | goto failed_clk; |
| 3648 | } |
| 3649 | |
| 3650 | fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); |
| 3651 | |
| 3652 | /* enet_out is optional, depends on board */ |
| 3653 | fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); |
| 3654 | if (IS_ERR(fep->clk_enet_out)) |
| 3655 | fep->clk_enet_out = NULL; |
| 3656 | |
| 3657 | fep->ptp_clk_on = false; |
| 3658 | mutex_init(&fep->ptp_clk_mutex); |
| 3659 | |
| 3660 | /* clk_ref is optional, depends on board */ |
| 3661 | fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); |
| 3662 | if (IS_ERR(fep->clk_ref)) |
| 3663 | fep->clk_ref = NULL; |
| 3664 | |
| 3665 | fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; |
| 3666 | fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); |
| 3667 | if (IS_ERR(fep->clk_ptp)) { |
| 3668 | fep->clk_ptp = NULL; |
| 3669 | fep->bufdesc_ex = false; |
| 3670 | } |
| 3671 | |
| 3672 | ret = fec_enet_clk_enable(ndev, true); |
| 3673 | if (ret) |
| 3674 | goto failed_clk; |
| 3675 | |
| 3676 | ret = clk_prepare_enable(fep->clk_ipg); |
| 3677 | if (ret) |
| 3678 | goto failed_clk_ipg; |
| 3679 | ret = clk_prepare_enable(fep->clk_ahb); |
| 3680 | if (ret) |
| 3681 | goto failed_clk_ahb; |
| 3682 | |
| 3683 | fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); |
| 3684 | if (!IS_ERR(fep->reg_phy)) { |
| 3685 | ret = regulator_enable(fep->reg_phy); |
| 3686 | if (ret) { |
| 3687 | dev_err(&pdev->dev, |
| 3688 | "Failed to enable phy regulator: %d\n", ret); |
| 3689 | goto failed_regulator; |
| 3690 | } |
| 3691 | } else { |
| 3692 | if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { |
| 3693 | ret = -EPROBE_DEFER; |
| 3694 | goto failed_regulator; |
| 3695 | } |
| 3696 | fep->reg_phy = NULL; |
| 3697 | } |
| 3698 | |
| 3699 | pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); |
| 3700 | pm_runtime_use_autosuspend(&pdev->dev); |
| 3701 | pm_runtime_get_noresume(&pdev->dev); |
| 3702 | pm_runtime_set_active(&pdev->dev); |
| 3703 | pm_runtime_enable(&pdev->dev); |
| 3704 | |
| 3705 | ret = fec_reset_phy(pdev); |
| 3706 | if (ret) |
| 3707 | goto failed_reset; |
| 3708 | |
| 3709 | irq_cnt = fec_enet_get_irq_cnt(pdev); |
| 3710 | if (fep->bufdesc_ex) |
| 3711 | fec_ptp_init(pdev, irq_cnt); |
| 3712 | |
| 3713 | ret = fec_enet_init(ndev); |
| 3714 | if (ret) |
| 3715 | goto failed_init; |
| 3716 | |
| 3717 | for (i = 0; i < irq_cnt; i++) { |
| 3718 | snprintf(irq_name, sizeof(irq_name), "int%d", i); |
| 3719 | irq = platform_get_irq_byname_optional(pdev, irq_name); |
| 3720 | if (irq < 0) |
| 3721 | irq = platform_get_irq(pdev, i); |
| 3722 | if (irq < 0) { |
| 3723 | ret = irq; |
| 3724 | goto failed_irq; |
| 3725 | } |
| 3726 | ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, |
| 3727 | 0, pdev->name, ndev); |
| 3728 | if (ret) |
| 3729 | goto failed_irq; |
| 3730 | |
| 3731 | fep->irq[i] = irq; |
| 3732 | } |
| 3733 | |
| 3734 | init_completion(&fep->mdio_done); |
| 3735 | ret = fec_enet_mii_init(pdev); |
| 3736 | if (ret) |
| 3737 | goto failed_mii_init; |
| 3738 | |
| 3739 | /* Carrier starts down, phylib will bring it up */ |
| 3740 | netif_carrier_off(ndev); |
| 3741 | fec_enet_clk_enable(ndev, false); |
| 3742 | pinctrl_pm_select_sleep_state(&pdev->dev); |
| 3743 | |
| 3744 | ret = register_netdev(ndev); |
| 3745 | if (ret) |
| 3746 | goto failed_register; |
| 3747 | |
| 3748 | device_init_wakeup(&ndev->dev, fep->wol_flag & |
| 3749 | FEC_WOL_HAS_MAGIC_PACKET); |
| 3750 | |
| 3751 | if (fep->bufdesc_ex && fep->ptp_clock) |
| 3752 | netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); |
| 3753 | |
| 3754 | fep->rx_copybreak = COPYBREAK_DEFAULT; |
| 3755 | INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); |
| 3756 | |
| 3757 | pm_runtime_mark_last_busy(&pdev->dev); |
| 3758 | pm_runtime_put_autosuspend(&pdev->dev); |
| 3759 | |
| 3760 | return 0; |
| 3761 | |
| 3762 | failed_register: |
| 3763 | fec_enet_mii_remove(fep); |
| 3764 | failed_mii_init: |
| 3765 | failed_irq: |
| 3766 | fec_enet_deinit(ndev); |
| 3767 | failed_init: |
| 3768 | fec_ptp_stop(pdev); |
| 3769 | failed_reset: |
| 3770 | pm_runtime_put_noidle(&pdev->dev); |
| 3771 | pm_runtime_disable(&pdev->dev); |
| 3772 | if (fep->reg_phy) |
| 3773 | regulator_disable(fep->reg_phy); |
| 3774 | failed_regulator: |
| 3775 | clk_disable_unprepare(fep->clk_ahb); |
| 3776 | failed_clk_ahb: |
| 3777 | clk_disable_unprepare(fep->clk_ipg); |
| 3778 | failed_clk_ipg: |
| 3779 | fec_enet_clk_enable(ndev, false); |
| 3780 | failed_clk: |
| 3781 | if (of_phy_is_fixed_link(np)) |
| 3782 | of_phy_deregister_fixed_link(np); |
| 3783 | of_node_put(phy_node); |
| 3784 | failed_stop_mode: |
| 3785 | failed_phy: |
| 3786 | dev_id--; |
| 3787 | failed_ioremap: |
| 3788 | free_netdev(ndev); |
| 3789 | |
| 3790 | return ret; |
| 3791 | } |
| 3792 | |
| 3793 | static int |
| 3794 | fec_drv_remove(struct platform_device *pdev) |
| 3795 | { |
| 3796 | struct net_device *ndev = platform_get_drvdata(pdev); |
| 3797 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3798 | struct device_node *np = pdev->dev.of_node; |
| 3799 | int ret; |
| 3800 | |
| 3801 | ret = pm_runtime_get_sync(&pdev->dev); |
| 3802 | if (ret < 0) |
| 3803 | dev_err(&pdev->dev, |
| 3804 | "Failed to resume device in remove callback (%pe)\n", |
| 3805 | ERR_PTR(ret)); |
| 3806 | |
| 3807 | cancel_work_sync(&fep->tx_timeout_work); |
| 3808 | fec_ptp_stop(pdev); |
| 3809 | unregister_netdev(ndev); |
| 3810 | fec_enet_mii_remove(fep); |
| 3811 | if (fep->reg_phy) |
| 3812 | regulator_disable(fep->reg_phy); |
| 3813 | |
| 3814 | if (of_phy_is_fixed_link(np)) |
| 3815 | of_phy_deregister_fixed_link(np); |
| 3816 | of_node_put(fep->phy_node); |
| 3817 | |
| 3818 | /* After pm_runtime_get_sync() failed, the clks are still off, so skip |
| 3819 | * disabling them again. |
| 3820 | */ |
| 3821 | if (ret >= 0) { |
| 3822 | clk_disable_unprepare(fep->clk_ahb); |
| 3823 | clk_disable_unprepare(fep->clk_ipg); |
| 3824 | } |
| 3825 | pm_runtime_put_noidle(&pdev->dev); |
| 3826 | pm_runtime_disable(&pdev->dev); |
| 3827 | |
| 3828 | fec_enet_deinit(ndev); |
| 3829 | free_netdev(ndev); |
| 3830 | return 0; |
| 3831 | } |
| 3832 | |
| 3833 | static int __maybe_unused fec_suspend(struct device *dev) |
| 3834 | { |
| 3835 | struct net_device *ndev = dev_get_drvdata(dev); |
| 3836 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3837 | |
| 3838 | rtnl_lock(); |
| 3839 | if (netif_running(ndev)) { |
| 3840 | if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) |
| 3841 | fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; |
| 3842 | phy_stop(ndev->phydev); |
| 3843 | napi_disable(&fep->napi); |
| 3844 | netif_tx_lock_bh(ndev); |
| 3845 | netif_device_detach(ndev); |
| 3846 | netif_tx_unlock_bh(ndev); |
| 3847 | fec_stop(ndev); |
| 3848 | fec_enet_clk_enable(ndev, false); |
| 3849 | if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) |
| 3850 | pinctrl_pm_select_sleep_state(&fep->pdev->dev); |
| 3851 | } |
| 3852 | rtnl_unlock(); |
| 3853 | |
| 3854 | if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) |
| 3855 | regulator_disable(fep->reg_phy); |
| 3856 | |
| 3857 | /* SOC supply clock to phy, when clock is disabled, phy link down |
| 3858 | * SOC control phy regulator, when regulator is disabled, phy link down |
| 3859 | */ |
| 3860 | if (fep->clk_enet_out || fep->reg_phy) |
| 3861 | fep->link = 0; |
| 3862 | |
| 3863 | return 0; |
| 3864 | } |
| 3865 | |
| 3866 | static int __maybe_unused fec_resume(struct device *dev) |
| 3867 | { |
| 3868 | struct net_device *ndev = dev_get_drvdata(dev); |
| 3869 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3870 | int ret; |
| 3871 | int val; |
| 3872 | |
| 3873 | if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { |
| 3874 | ret = regulator_enable(fep->reg_phy); |
| 3875 | if (ret) |
| 3876 | return ret; |
| 3877 | } |
| 3878 | |
| 3879 | rtnl_lock(); |
| 3880 | if (netif_running(ndev)) { |
| 3881 | ret = fec_enet_clk_enable(ndev, true); |
| 3882 | if (ret) { |
| 3883 | rtnl_unlock(); |
| 3884 | goto failed_clk; |
| 3885 | } |
| 3886 | if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { |
| 3887 | fec_enet_stop_mode(fep, false); |
| 3888 | |
| 3889 | val = readl(fep->hwp + FEC_ECNTRL); |
| 3890 | val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); |
| 3891 | writel(val, fep->hwp + FEC_ECNTRL); |
| 3892 | fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; |
| 3893 | } else { |
| 3894 | pinctrl_pm_select_default_state(&fep->pdev->dev); |
| 3895 | } |
| 3896 | fec_restart(ndev); |
| 3897 | netif_tx_lock_bh(ndev); |
| 3898 | netif_device_attach(ndev); |
| 3899 | netif_tx_unlock_bh(ndev); |
| 3900 | napi_enable(&fep->napi); |
| 3901 | phy_start(ndev->phydev); |
| 3902 | } |
| 3903 | rtnl_unlock(); |
| 3904 | |
| 3905 | return 0; |
| 3906 | |
| 3907 | failed_clk: |
| 3908 | if (fep->reg_phy) |
| 3909 | regulator_disable(fep->reg_phy); |
| 3910 | return ret; |
| 3911 | } |
| 3912 | |
| 3913 | static int __maybe_unused fec_runtime_suspend(struct device *dev) |
| 3914 | { |
| 3915 | struct net_device *ndev = dev_get_drvdata(dev); |
| 3916 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3917 | |
| 3918 | clk_disable_unprepare(fep->clk_ahb); |
| 3919 | clk_disable_unprepare(fep->clk_ipg); |
| 3920 | |
| 3921 | return 0; |
| 3922 | } |
| 3923 | |
| 3924 | static int __maybe_unused fec_runtime_resume(struct device *dev) |
| 3925 | { |
| 3926 | struct net_device *ndev = dev_get_drvdata(dev); |
| 3927 | struct fec_enet_private *fep = netdev_priv(ndev); |
| 3928 | int ret; |
| 3929 | |
| 3930 | ret = clk_prepare_enable(fep->clk_ahb); |
| 3931 | if (ret) |
| 3932 | return ret; |
| 3933 | ret = clk_prepare_enable(fep->clk_ipg); |
| 3934 | if (ret) |
| 3935 | goto failed_clk_ipg; |
| 3936 | |
| 3937 | return 0; |
| 3938 | |
| 3939 | failed_clk_ipg: |
| 3940 | clk_disable_unprepare(fep->clk_ahb); |
| 3941 | return ret; |
| 3942 | } |
| 3943 | |
| 3944 | static const struct dev_pm_ops fec_pm_ops = { |
| 3945 | SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) |
| 3946 | SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) |
| 3947 | }; |
| 3948 | |
| 3949 | static struct platform_driver fec_driver = { |
| 3950 | .driver = { |
| 3951 | .name = DRIVER_NAME, |
| 3952 | .pm = &fec_pm_ops, |
| 3953 | .of_match_table = fec_dt_ids, |
| 3954 | }, |
| 3955 | .id_table = fec_devtype, |
| 3956 | .probe = fec_probe, |
| 3957 | .remove = fec_drv_remove, |
| 3958 | }; |
| 3959 | |
| 3960 | module_platform_driver(fec_driver); |
| 3961 | |
| 3962 | MODULE_ALIAS("platform:"DRIVER_NAME); |
| 3963 | MODULE_LICENSE("GPL"); |