b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright(c) 2009 - 2018 Intel Corporation. */ |
| 3 | |
| 4 | #include <linux/etherdevice.h> |
| 5 | |
| 6 | #include "vf.h" |
| 7 | |
| 8 | static s32 e1000_check_for_link_vf(struct e1000_hw *hw); |
| 9 | static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, |
| 10 | u16 *duplex); |
| 11 | static s32 e1000_init_hw_vf(struct e1000_hw *hw); |
| 12 | static s32 e1000_reset_hw_vf(struct e1000_hw *hw); |
| 13 | |
| 14 | static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, |
| 15 | u32, u32, u32); |
| 16 | static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); |
| 17 | static s32 e1000_read_mac_addr_vf(struct e1000_hw *); |
| 18 | static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr); |
| 19 | static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool); |
| 20 | |
| 21 | /** |
| 22 | * e1000_init_mac_params_vf - Inits MAC params |
| 23 | * @hw: pointer to the HW structure |
| 24 | **/ |
| 25 | static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) |
| 26 | { |
| 27 | struct e1000_mac_info *mac = &hw->mac; |
| 28 | |
| 29 | /* VF's have no MTA Registers - PF feature only */ |
| 30 | mac->mta_reg_count = 128; |
| 31 | /* VF's have no access to RAR entries */ |
| 32 | mac->rar_entry_count = 1; |
| 33 | |
| 34 | /* Function pointers */ |
| 35 | /* reset */ |
| 36 | mac->ops.reset_hw = e1000_reset_hw_vf; |
| 37 | /* hw initialization */ |
| 38 | mac->ops.init_hw = e1000_init_hw_vf; |
| 39 | /* check for link */ |
| 40 | mac->ops.check_for_link = e1000_check_for_link_vf; |
| 41 | /* link info */ |
| 42 | mac->ops.get_link_up_info = e1000_get_link_up_info_vf; |
| 43 | /* multicast address update */ |
| 44 | mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; |
| 45 | /* set mac address */ |
| 46 | mac->ops.rar_set = e1000_rar_set_vf; |
| 47 | /* read mac address */ |
| 48 | mac->ops.read_mac_addr = e1000_read_mac_addr_vf; |
| 49 | /* set mac filter */ |
| 50 | mac->ops.set_uc_addr = e1000_set_uc_addr_vf; |
| 51 | /* set vlan filter table array */ |
| 52 | mac->ops.set_vfta = e1000_set_vfta_vf; |
| 53 | |
| 54 | return E1000_SUCCESS; |
| 55 | } |
| 56 | |
| 57 | /** |
| 58 | * e1000_init_function_pointers_vf - Inits function pointers |
| 59 | * @hw: pointer to the HW structure |
| 60 | **/ |
| 61 | void e1000_init_function_pointers_vf(struct e1000_hw *hw) |
| 62 | { |
| 63 | hw->mac.ops.init_params = e1000_init_mac_params_vf; |
| 64 | hw->mbx.ops.init_params = e1000_init_mbx_params_vf; |
| 65 | } |
| 66 | |
| 67 | /** |
| 68 | * e1000_get_link_up_info_vf - Gets link info. |
| 69 | * @hw: pointer to the HW structure |
| 70 | * @speed: pointer to 16 bit value to store link speed. |
| 71 | * @duplex: pointer to 16 bit value to store duplex. |
| 72 | * |
| 73 | * Since we cannot read the PHY and get accurate link info, we must rely upon |
| 74 | * the status register's data which is often stale and inaccurate. |
| 75 | **/ |
| 76 | static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, |
| 77 | u16 *duplex) |
| 78 | { |
| 79 | s32 status; |
| 80 | |
| 81 | status = er32(STATUS); |
| 82 | if (status & E1000_STATUS_SPEED_1000) |
| 83 | *speed = SPEED_1000; |
| 84 | else if (status & E1000_STATUS_SPEED_100) |
| 85 | *speed = SPEED_100; |
| 86 | else |
| 87 | *speed = SPEED_10; |
| 88 | |
| 89 | if (status & E1000_STATUS_FD) |
| 90 | *duplex = FULL_DUPLEX; |
| 91 | else |
| 92 | *duplex = HALF_DUPLEX; |
| 93 | |
| 94 | return E1000_SUCCESS; |
| 95 | } |
| 96 | |
| 97 | /** |
| 98 | * e1000_reset_hw_vf - Resets the HW |
| 99 | * @hw: pointer to the HW structure |
| 100 | * |
| 101 | * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. |
| 102 | * This is all the reset we can perform on a VF. |
| 103 | **/ |
| 104 | static s32 e1000_reset_hw_vf(struct e1000_hw *hw) |
| 105 | { |
| 106 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 107 | u32 timeout = E1000_VF_INIT_TIMEOUT; |
| 108 | u32 ret_val = -E1000_ERR_MAC_INIT; |
| 109 | u32 msgbuf[3]; |
| 110 | u8 *addr = (u8 *)(&msgbuf[1]); |
| 111 | u32 ctrl; |
| 112 | |
| 113 | /* assert VF queue/interrupt reset */ |
| 114 | ctrl = er32(CTRL); |
| 115 | ew32(CTRL, ctrl | E1000_CTRL_RST); |
| 116 | |
| 117 | /* we cannot initialize while the RSTI / RSTD bits are asserted */ |
| 118 | while (!mbx->ops.check_for_rst(hw) && timeout) { |
| 119 | timeout--; |
| 120 | udelay(5); |
| 121 | } |
| 122 | |
| 123 | if (timeout) { |
| 124 | /* mailbox timeout can now become active */ |
| 125 | mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; |
| 126 | |
| 127 | /* notify PF of VF reset completion */ |
| 128 | msgbuf[0] = E1000_VF_RESET; |
| 129 | mbx->ops.write_posted(hw, msgbuf, 1); |
| 130 | |
| 131 | mdelay(10); |
| 132 | |
| 133 | /* set our "perm_addr" based on info provided by PF */ |
| 134 | ret_val = mbx->ops.read_posted(hw, msgbuf, 3); |
| 135 | if (!ret_val) { |
| 136 | switch (msgbuf[0]) { |
| 137 | case E1000_VF_RESET | E1000_VT_MSGTYPE_ACK: |
| 138 | memcpy(hw->mac.perm_addr, addr, ETH_ALEN); |
| 139 | break; |
| 140 | case E1000_VF_RESET | E1000_VT_MSGTYPE_NACK: |
| 141 | eth_zero_addr(hw->mac.perm_addr); |
| 142 | break; |
| 143 | default: |
| 144 | ret_val = -E1000_ERR_MAC_INIT; |
| 145 | } |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | return ret_val; |
| 150 | } |
| 151 | |
| 152 | /** |
| 153 | * e1000_init_hw_vf - Inits the HW |
| 154 | * @hw: pointer to the HW structure |
| 155 | * |
| 156 | * Not much to do here except clear the PF Reset indication if there is one. |
| 157 | **/ |
| 158 | static s32 e1000_init_hw_vf(struct e1000_hw *hw) |
| 159 | { |
| 160 | /* attempt to set and restore our mac address */ |
| 161 | e1000_rar_set_vf(hw, hw->mac.addr, 0); |
| 162 | |
| 163 | return E1000_SUCCESS; |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * e1000_hash_mc_addr_vf - Generate a multicast hash value |
| 168 | * @hw: pointer to the HW structure |
| 169 | * @mc_addr: pointer to a multicast address |
| 170 | * |
| 171 | * Generates a multicast address hash value which is used to determine |
| 172 | * the multicast filter table array address and new table value. See |
| 173 | * e1000_mta_set_generic() |
| 174 | **/ |
| 175 | static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) |
| 176 | { |
| 177 | u32 hash_value, hash_mask; |
| 178 | u8 bit_shift = 0; |
| 179 | |
| 180 | /* Register count multiplied by bits per register */ |
| 181 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; |
| 182 | |
| 183 | /* The bit_shift is the number of left-shifts |
| 184 | * where 0xFF would still fall within the hash mask. |
| 185 | */ |
| 186 | while (hash_mask >> bit_shift != 0xFF) |
| 187 | bit_shift++; |
| 188 | |
| 189 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | |
| 190 | (((u16)mc_addr[5]) << bit_shift))); |
| 191 | |
| 192 | return hash_value; |
| 193 | } |
| 194 | |
| 195 | /** |
| 196 | * e1000_update_mc_addr_list_vf - Update Multicast addresses |
| 197 | * @hw: pointer to the HW structure |
| 198 | * @mc_addr_list: array of multicast addresses to program |
| 199 | * @mc_addr_count: number of multicast addresses to program |
| 200 | * @rar_used_count: the first RAR register free to program |
| 201 | * @rar_count: total number of supported Receive Address Registers |
| 202 | * |
| 203 | * Updates the Receive Address Registers and Multicast Table Array. |
| 204 | * The caller must have a packed mc_addr_list of multicast addresses. |
| 205 | * The parameter rar_count will usually be hw->mac.rar_entry_count |
| 206 | * unless there are workarounds that change this. |
| 207 | **/ |
| 208 | static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, |
| 209 | u8 *mc_addr_list, u32 mc_addr_count, |
| 210 | u32 rar_used_count, u32 rar_count) |
| 211 | { |
| 212 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 213 | u32 msgbuf[E1000_VFMAILBOX_SIZE]; |
| 214 | u16 *hash_list = (u16 *)&msgbuf[1]; |
| 215 | u32 hash_value; |
| 216 | u32 cnt, i; |
| 217 | s32 ret_val; |
| 218 | |
| 219 | /* Each entry in the list uses 1 16 bit word. We have 30 |
| 220 | * 16 bit words available in our HW msg buffer (minus 1 for the |
| 221 | * msg type). That's 30 hash values if we pack 'em right. If |
| 222 | * there are more than 30 MC addresses to add then punt the |
| 223 | * extras for now and then add code to handle more than 30 later. |
| 224 | * It would be unusual for a server to request that many multi-cast |
| 225 | * addresses except for in large enterprise network environments. |
| 226 | */ |
| 227 | |
| 228 | cnt = (mc_addr_count > 30) ? 30 : mc_addr_count; |
| 229 | msgbuf[0] = E1000_VF_SET_MULTICAST; |
| 230 | msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT; |
| 231 | |
| 232 | for (i = 0; i < cnt; i++) { |
| 233 | hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); |
| 234 | hash_list[i] = hash_value & 0x0FFFF; |
| 235 | mc_addr_list += ETH_ALEN; |
| 236 | } |
| 237 | |
| 238 | ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE); |
| 239 | if (!ret_val) |
| 240 | mbx->ops.read_posted(hw, msgbuf, 1); |
| 241 | } |
| 242 | |
| 243 | /** |
| 244 | * e1000_set_vfta_vf - Set/Unset vlan filter table address |
| 245 | * @hw: pointer to the HW structure |
| 246 | * @vid: determines the vfta register and bit to set/unset |
| 247 | * @set: if true then set bit, else clear bit |
| 248 | **/ |
| 249 | static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set) |
| 250 | { |
| 251 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 252 | u32 msgbuf[2]; |
| 253 | s32 err; |
| 254 | |
| 255 | msgbuf[0] = E1000_VF_SET_VLAN; |
| 256 | msgbuf[1] = vid; |
| 257 | /* Setting the 8 bit field MSG INFO to true indicates "add" */ |
| 258 | if (set) |
| 259 | msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT); |
| 260 | |
| 261 | mbx->ops.write_posted(hw, msgbuf, 2); |
| 262 | |
| 263 | err = mbx->ops.read_posted(hw, msgbuf, 2); |
| 264 | |
| 265 | msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; |
| 266 | |
| 267 | /* if nacked the vlan was rejected */ |
| 268 | if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))) |
| 269 | err = -E1000_ERR_MAC_INIT; |
| 270 | |
| 271 | return err; |
| 272 | } |
| 273 | |
| 274 | /** |
| 275 | * e1000_rlpml_set_vf - Set the maximum receive packet length |
| 276 | * @hw: pointer to the HW structure |
| 277 | * @max_size: value to assign to max frame size |
| 278 | **/ |
| 279 | void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) |
| 280 | { |
| 281 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 282 | u32 msgbuf[2]; |
| 283 | s32 ret_val; |
| 284 | |
| 285 | msgbuf[0] = E1000_VF_SET_LPE; |
| 286 | msgbuf[1] = max_size; |
| 287 | |
| 288 | ret_val = mbx->ops.write_posted(hw, msgbuf, 2); |
| 289 | if (!ret_val) |
| 290 | mbx->ops.read_posted(hw, msgbuf, 1); |
| 291 | } |
| 292 | |
| 293 | /** |
| 294 | * e1000_rar_set_vf - set device MAC address |
| 295 | * @hw: pointer to the HW structure |
| 296 | * @addr: pointer to the receive address |
| 297 | * @index: receive address array register |
| 298 | **/ |
| 299 | static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index) |
| 300 | { |
| 301 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 302 | u32 msgbuf[3]; |
| 303 | u8 *msg_addr = (u8 *)(&msgbuf[1]); |
| 304 | s32 ret_val; |
| 305 | |
| 306 | memset(msgbuf, 0, 12); |
| 307 | msgbuf[0] = E1000_VF_SET_MAC_ADDR; |
| 308 | memcpy(msg_addr, addr, ETH_ALEN); |
| 309 | ret_val = mbx->ops.write_posted(hw, msgbuf, 3); |
| 310 | |
| 311 | if (!ret_val) |
| 312 | ret_val = mbx->ops.read_posted(hw, msgbuf, 3); |
| 313 | |
| 314 | msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; |
| 315 | |
| 316 | /* if nacked the address was rejected, use "perm_addr" */ |
| 317 | if (!ret_val && |
| 318 | (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) |
| 319 | e1000_read_mac_addr_vf(hw); |
| 320 | } |
| 321 | |
| 322 | /** |
| 323 | * e1000_read_mac_addr_vf - Read device MAC address |
| 324 | * @hw: pointer to the HW structure |
| 325 | **/ |
| 326 | static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) |
| 327 | { |
| 328 | memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN); |
| 329 | |
| 330 | return E1000_SUCCESS; |
| 331 | } |
| 332 | |
| 333 | /** |
| 334 | * e1000_set_uc_addr_vf - Set or clear unicast filters |
| 335 | * @hw: pointer to the HW structure |
| 336 | * @sub_cmd: add or clear filters |
| 337 | * @addr: pointer to the filter MAC address |
| 338 | **/ |
| 339 | static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr) |
| 340 | { |
| 341 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 342 | u32 msgbuf[3], msgbuf_chk; |
| 343 | u8 *msg_addr = (u8 *)(&msgbuf[1]); |
| 344 | s32 ret_val; |
| 345 | |
| 346 | memset(msgbuf, 0, sizeof(msgbuf)); |
| 347 | msgbuf[0] |= sub_cmd; |
| 348 | msgbuf[0] |= E1000_VF_SET_MAC_ADDR; |
| 349 | msgbuf_chk = msgbuf[0]; |
| 350 | |
| 351 | if (addr) |
| 352 | memcpy(msg_addr, addr, ETH_ALEN); |
| 353 | |
| 354 | ret_val = mbx->ops.write_posted(hw, msgbuf, 3); |
| 355 | |
| 356 | if (!ret_val) |
| 357 | ret_val = mbx->ops.read_posted(hw, msgbuf, 3); |
| 358 | |
| 359 | msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; |
| 360 | |
| 361 | if (!ret_val) { |
| 362 | msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; |
| 363 | |
| 364 | if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK)) |
| 365 | return -ENOSPC; |
| 366 | } |
| 367 | |
| 368 | return ret_val; |
| 369 | } |
| 370 | |
| 371 | /** |
| 372 | * e1000_check_for_link_vf - Check for link for a virtual interface |
| 373 | * @hw: pointer to the HW structure |
| 374 | * |
| 375 | * Checks to see if the underlying PF is still talking to the VF and |
| 376 | * if it is then it reports the link state to the hardware, otherwise |
| 377 | * it reports link down and returns an error. |
| 378 | **/ |
| 379 | static s32 e1000_check_for_link_vf(struct e1000_hw *hw) |
| 380 | { |
| 381 | struct e1000_mbx_info *mbx = &hw->mbx; |
| 382 | struct e1000_mac_info *mac = &hw->mac; |
| 383 | s32 ret_val = E1000_SUCCESS; |
| 384 | u32 in_msg = 0; |
| 385 | |
| 386 | /* We only want to run this if there has been a rst asserted. |
| 387 | * in this case that could mean a link change, device reset, |
| 388 | * or a virtual function reset |
| 389 | */ |
| 390 | |
| 391 | /* If we were hit with a reset or timeout drop the link */ |
| 392 | if (!mbx->ops.check_for_rst(hw) || !mbx->timeout) |
| 393 | mac->get_link_status = true; |
| 394 | |
| 395 | if (!mac->get_link_status) |
| 396 | goto out; |
| 397 | |
| 398 | /* if link status is down no point in checking to see if PF is up */ |
| 399 | if (!(er32(STATUS) & E1000_STATUS_LU)) |
| 400 | goto out; |
| 401 | |
| 402 | /* if the read failed it could just be a mailbox collision, best wait |
| 403 | * until we are called again and don't report an error |
| 404 | */ |
| 405 | if (mbx->ops.read(hw, &in_msg, 1)) |
| 406 | goto out; |
| 407 | |
| 408 | /* if incoming message isn't clear to send we are waiting on response */ |
| 409 | if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { |
| 410 | /* msg is not CTS and is NACK we must have lost CTS status */ |
| 411 | if (in_msg & E1000_VT_MSGTYPE_NACK) |
| 412 | ret_val = -E1000_ERR_MAC_INIT; |
| 413 | goto out; |
| 414 | } |
| 415 | |
| 416 | /* the PF is talking, if we timed out in the past we reinit */ |
| 417 | if (!mbx->timeout) { |
| 418 | ret_val = -E1000_ERR_MAC_INIT; |
| 419 | goto out; |
| 420 | } |
| 421 | |
| 422 | /* if we passed all the tests above then the link is up and we no |
| 423 | * longer need to check for link |
| 424 | */ |
| 425 | mac->get_link_status = false; |
| 426 | |
| 427 | out: |
| 428 | return ret_val; |
| 429 | } |
| 430 | |