b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved. |
| 3 | * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved. |
| 4 | * |
| 5 | * This software is available to you under a choice of one of two |
| 6 | * licenses. You may choose to be licensed under the terms of the GNU |
| 7 | * General Public License (GPL) Version 2, available from the file |
| 8 | * COPYING in the main directory of this source tree, or the |
| 9 | * OpenIB.org BSD license below: |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or |
| 12 | * without modification, are permitted provided that the following |
| 13 | * conditions are met: |
| 14 | * |
| 15 | * - Redistributions of source code must retain the above |
| 16 | * copyright notice, this list of conditions and the following |
| 17 | * disclaimer. |
| 18 | * |
| 19 | * - Redistributions in binary form must reproduce the above |
| 20 | * copyright notice, this list of conditions and the following |
| 21 | * disclaimer in the documentation and/or other materials |
| 22 | * provided with the distribution. |
| 23 | * |
| 24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 31 | * SOFTWARE. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/errno.h> |
| 35 | #include <linux/mm.h> |
| 36 | #include <linux/scatterlist.h> |
| 37 | #include <linux/slab.h> |
| 38 | |
| 39 | #include <linux/mlx4/cmd.h> |
| 40 | |
| 41 | #include "mlx4.h" |
| 42 | #include "icm.h" |
| 43 | #include "fw.h" |
| 44 | |
| 45 | /* |
| 46 | * We allocate in as big chunks as we can, up to a maximum of 256 KB |
| 47 | * per chunk. Note that the chunks are not necessarily in contiguous |
| 48 | * physical memory. |
| 49 | */ |
| 50 | enum { |
| 51 | MLX4_ICM_ALLOC_SIZE = 1 << 18, |
| 52 | MLX4_TABLE_CHUNK_SIZE = 1 << 18, |
| 53 | }; |
| 54 | |
| 55 | static void mlx4_free_icm_pages(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk) |
| 56 | { |
| 57 | int i; |
| 58 | |
| 59 | if (chunk->nsg > 0) |
| 60 | dma_unmap_sg(&dev->persist->pdev->dev, chunk->sg, chunk->npages, |
| 61 | DMA_BIDIRECTIONAL); |
| 62 | |
| 63 | for (i = 0; i < chunk->npages; ++i) |
| 64 | __free_pages(sg_page(&chunk->sg[i]), |
| 65 | get_order(chunk->sg[i].length)); |
| 66 | } |
| 67 | |
| 68 | static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk) |
| 69 | { |
| 70 | int i; |
| 71 | |
| 72 | for (i = 0; i < chunk->npages; ++i) |
| 73 | dma_free_coherent(&dev->persist->pdev->dev, |
| 74 | chunk->buf[i].size, |
| 75 | chunk->buf[i].addr, |
| 76 | chunk->buf[i].dma_addr); |
| 77 | } |
| 78 | |
| 79 | void mlx4_free_icm(struct mlx4_dev *dev, struct mlx4_icm *icm, int coherent) |
| 80 | { |
| 81 | struct mlx4_icm_chunk *chunk, *tmp; |
| 82 | |
| 83 | if (!icm) |
| 84 | return; |
| 85 | |
| 86 | list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) { |
| 87 | if (coherent) |
| 88 | mlx4_free_icm_coherent(dev, chunk); |
| 89 | else |
| 90 | mlx4_free_icm_pages(dev, chunk); |
| 91 | |
| 92 | kfree(chunk); |
| 93 | } |
| 94 | |
| 95 | kfree(icm); |
| 96 | } |
| 97 | |
| 98 | static int mlx4_alloc_icm_pages(struct scatterlist *mem, int order, |
| 99 | gfp_t gfp_mask, int node) |
| 100 | { |
| 101 | struct page *page; |
| 102 | |
| 103 | page = alloc_pages_node(node, gfp_mask, order); |
| 104 | if (!page) { |
| 105 | page = alloc_pages(gfp_mask, order); |
| 106 | if (!page) |
| 107 | return -ENOMEM; |
| 108 | } |
| 109 | |
| 110 | sg_set_page(mem, page, PAGE_SIZE << order, 0); |
| 111 | return 0; |
| 112 | } |
| 113 | |
| 114 | static int mlx4_alloc_icm_coherent(struct device *dev, struct mlx4_icm_buf *buf, |
| 115 | int order, gfp_t gfp_mask) |
| 116 | { |
| 117 | buf->addr = dma_alloc_coherent(dev, PAGE_SIZE << order, |
| 118 | &buf->dma_addr, gfp_mask); |
| 119 | if (!buf->addr) |
| 120 | return -ENOMEM; |
| 121 | |
| 122 | if (offset_in_page(buf->addr)) { |
| 123 | dma_free_coherent(dev, PAGE_SIZE << order, buf->addr, |
| 124 | buf->dma_addr); |
| 125 | return -ENOMEM; |
| 126 | } |
| 127 | |
| 128 | buf->size = PAGE_SIZE << order; |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages, |
| 133 | gfp_t gfp_mask, int coherent) |
| 134 | { |
| 135 | struct mlx4_icm *icm; |
| 136 | struct mlx4_icm_chunk *chunk = NULL; |
| 137 | int cur_order; |
| 138 | gfp_t mask; |
| 139 | int ret; |
| 140 | |
| 141 | /* We use sg_set_buf for coherent allocs, which assumes low memory */ |
| 142 | BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM)); |
| 143 | |
| 144 | icm = kmalloc_node(sizeof(*icm), |
| 145 | gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN), |
| 146 | dev->numa_node); |
| 147 | if (!icm) { |
| 148 | icm = kmalloc(sizeof(*icm), |
| 149 | gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN)); |
| 150 | if (!icm) |
| 151 | return NULL; |
| 152 | } |
| 153 | |
| 154 | icm->refcount = 0; |
| 155 | INIT_LIST_HEAD(&icm->chunk_list); |
| 156 | |
| 157 | cur_order = get_order(MLX4_ICM_ALLOC_SIZE); |
| 158 | |
| 159 | while (npages > 0) { |
| 160 | if (!chunk) { |
| 161 | chunk = kzalloc_node(sizeof(*chunk), |
| 162 | gfp_mask & ~(__GFP_HIGHMEM | |
| 163 | __GFP_NOWARN), |
| 164 | dev->numa_node); |
| 165 | if (!chunk) { |
| 166 | chunk = kzalloc(sizeof(*chunk), |
| 167 | gfp_mask & ~(__GFP_HIGHMEM | |
| 168 | __GFP_NOWARN)); |
| 169 | if (!chunk) |
| 170 | goto fail; |
| 171 | } |
| 172 | chunk->coherent = coherent; |
| 173 | |
| 174 | if (!coherent) |
| 175 | sg_init_table(chunk->sg, MLX4_ICM_CHUNK_LEN); |
| 176 | list_add_tail(&chunk->list, &icm->chunk_list); |
| 177 | } |
| 178 | |
| 179 | while (1 << cur_order > npages) |
| 180 | --cur_order; |
| 181 | |
| 182 | mask = gfp_mask; |
| 183 | if (cur_order) |
| 184 | mask &= ~__GFP_DIRECT_RECLAIM; |
| 185 | |
| 186 | if (coherent) |
| 187 | ret = mlx4_alloc_icm_coherent(&dev->persist->pdev->dev, |
| 188 | &chunk->buf[chunk->npages], |
| 189 | cur_order, mask); |
| 190 | else |
| 191 | ret = mlx4_alloc_icm_pages(&chunk->sg[chunk->npages], |
| 192 | cur_order, mask, |
| 193 | dev->numa_node); |
| 194 | |
| 195 | if (ret) { |
| 196 | if (--cur_order < 0) |
| 197 | goto fail; |
| 198 | else |
| 199 | continue; |
| 200 | } |
| 201 | |
| 202 | ++chunk->npages; |
| 203 | |
| 204 | if (coherent) |
| 205 | ++chunk->nsg; |
| 206 | else if (chunk->npages == MLX4_ICM_CHUNK_LEN) { |
| 207 | chunk->nsg = dma_map_sg(&dev->persist->pdev->dev, |
| 208 | chunk->sg, chunk->npages, |
| 209 | DMA_BIDIRECTIONAL); |
| 210 | |
| 211 | if (chunk->nsg <= 0) |
| 212 | goto fail; |
| 213 | } |
| 214 | |
| 215 | if (chunk->npages == MLX4_ICM_CHUNK_LEN) |
| 216 | chunk = NULL; |
| 217 | |
| 218 | npages -= 1 << cur_order; |
| 219 | } |
| 220 | |
| 221 | if (!coherent && chunk) { |
| 222 | chunk->nsg = dma_map_sg(&dev->persist->pdev->dev, chunk->sg, |
| 223 | chunk->npages, DMA_BIDIRECTIONAL); |
| 224 | |
| 225 | if (chunk->nsg <= 0) |
| 226 | goto fail; |
| 227 | } |
| 228 | |
| 229 | return icm; |
| 230 | |
| 231 | fail: |
| 232 | mlx4_free_icm(dev, icm, coherent); |
| 233 | return NULL; |
| 234 | } |
| 235 | |
| 236 | static int mlx4_MAP_ICM(struct mlx4_dev *dev, struct mlx4_icm *icm, u64 virt) |
| 237 | { |
| 238 | return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM, icm, virt); |
| 239 | } |
| 240 | |
| 241 | static int mlx4_UNMAP_ICM(struct mlx4_dev *dev, u64 virt, u32 page_count) |
| 242 | { |
| 243 | return mlx4_cmd(dev, virt, page_count, 0, MLX4_CMD_UNMAP_ICM, |
| 244 | MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE); |
| 245 | } |
| 246 | |
| 247 | int mlx4_MAP_ICM_AUX(struct mlx4_dev *dev, struct mlx4_icm *icm) |
| 248 | { |
| 249 | return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM_AUX, icm, -1); |
| 250 | } |
| 251 | |
| 252 | int mlx4_UNMAP_ICM_AUX(struct mlx4_dev *dev) |
| 253 | { |
| 254 | return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_UNMAP_ICM_AUX, |
| 255 | MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE); |
| 256 | } |
| 257 | |
| 258 | int mlx4_table_get(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj) |
| 259 | { |
| 260 | u32 i = (obj & (table->num_obj - 1)) / |
| 261 | (MLX4_TABLE_CHUNK_SIZE / table->obj_size); |
| 262 | int ret = 0; |
| 263 | |
| 264 | mutex_lock(&table->mutex); |
| 265 | |
| 266 | if (table->icm[i]) { |
| 267 | ++table->icm[i]->refcount; |
| 268 | goto out; |
| 269 | } |
| 270 | |
| 271 | table->icm[i] = mlx4_alloc_icm(dev, MLX4_TABLE_CHUNK_SIZE >> PAGE_SHIFT, |
| 272 | (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) | |
| 273 | __GFP_NOWARN, table->coherent); |
| 274 | if (!table->icm[i]) { |
| 275 | ret = -ENOMEM; |
| 276 | goto out; |
| 277 | } |
| 278 | |
| 279 | if (mlx4_MAP_ICM(dev, table->icm[i], table->virt + |
| 280 | (u64) i * MLX4_TABLE_CHUNK_SIZE)) { |
| 281 | mlx4_free_icm(dev, table->icm[i], table->coherent); |
| 282 | table->icm[i] = NULL; |
| 283 | ret = -ENOMEM; |
| 284 | goto out; |
| 285 | } |
| 286 | |
| 287 | ++table->icm[i]->refcount; |
| 288 | |
| 289 | out: |
| 290 | mutex_unlock(&table->mutex); |
| 291 | return ret; |
| 292 | } |
| 293 | |
| 294 | void mlx4_table_put(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj) |
| 295 | { |
| 296 | u32 i; |
| 297 | u64 offset; |
| 298 | |
| 299 | i = (obj & (table->num_obj - 1)) / (MLX4_TABLE_CHUNK_SIZE / table->obj_size); |
| 300 | |
| 301 | mutex_lock(&table->mutex); |
| 302 | |
| 303 | if (--table->icm[i]->refcount == 0) { |
| 304 | offset = (u64) i * MLX4_TABLE_CHUNK_SIZE; |
| 305 | mlx4_UNMAP_ICM(dev, table->virt + offset, |
| 306 | MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE); |
| 307 | mlx4_free_icm(dev, table->icm[i], table->coherent); |
| 308 | table->icm[i] = NULL; |
| 309 | } |
| 310 | |
| 311 | mutex_unlock(&table->mutex); |
| 312 | } |
| 313 | |
| 314 | void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj, |
| 315 | dma_addr_t *dma_handle) |
| 316 | { |
| 317 | int offset, dma_offset, i; |
| 318 | u64 idx; |
| 319 | struct mlx4_icm_chunk *chunk; |
| 320 | struct mlx4_icm *icm; |
| 321 | void *addr = NULL; |
| 322 | |
| 323 | if (!table->lowmem) |
| 324 | return NULL; |
| 325 | |
| 326 | mutex_lock(&table->mutex); |
| 327 | |
| 328 | idx = (u64) (obj & (table->num_obj - 1)) * table->obj_size; |
| 329 | icm = table->icm[idx / MLX4_TABLE_CHUNK_SIZE]; |
| 330 | dma_offset = offset = idx % MLX4_TABLE_CHUNK_SIZE; |
| 331 | |
| 332 | if (!icm) |
| 333 | goto out; |
| 334 | |
| 335 | list_for_each_entry(chunk, &icm->chunk_list, list) { |
| 336 | for (i = 0; i < chunk->npages; ++i) { |
| 337 | dma_addr_t dma_addr; |
| 338 | size_t len; |
| 339 | |
| 340 | if (table->coherent) { |
| 341 | len = chunk->buf[i].size; |
| 342 | dma_addr = chunk->buf[i].dma_addr; |
| 343 | addr = chunk->buf[i].addr; |
| 344 | } else { |
| 345 | struct page *page; |
| 346 | |
| 347 | len = sg_dma_len(&chunk->sg[i]); |
| 348 | dma_addr = sg_dma_address(&chunk->sg[i]); |
| 349 | |
| 350 | /* XXX: we should never do this for highmem |
| 351 | * allocation. This function either needs |
| 352 | * to be split, or the kernel virtual address |
| 353 | * return needs to be made optional. |
| 354 | */ |
| 355 | page = sg_page(&chunk->sg[i]); |
| 356 | addr = lowmem_page_address(page); |
| 357 | } |
| 358 | |
| 359 | if (dma_handle && dma_offset >= 0) { |
| 360 | if (len > dma_offset) |
| 361 | *dma_handle = dma_addr + dma_offset; |
| 362 | dma_offset -= len; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * DMA mapping can merge pages but not split them, |
| 367 | * so if we found the page, dma_handle has already |
| 368 | * been assigned to. |
| 369 | */ |
| 370 | if (len > offset) |
| 371 | goto out; |
| 372 | offset -= len; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | addr = NULL; |
| 377 | out: |
| 378 | mutex_unlock(&table->mutex); |
| 379 | return addr ? addr + offset : NULL; |
| 380 | } |
| 381 | |
| 382 | int mlx4_table_get_range(struct mlx4_dev *dev, struct mlx4_icm_table *table, |
| 383 | u32 start, u32 end) |
| 384 | { |
| 385 | int inc = MLX4_TABLE_CHUNK_SIZE / table->obj_size; |
| 386 | int err; |
| 387 | u32 i; |
| 388 | |
| 389 | for (i = start; i <= end; i += inc) { |
| 390 | err = mlx4_table_get(dev, table, i); |
| 391 | if (err) |
| 392 | goto fail; |
| 393 | } |
| 394 | |
| 395 | return 0; |
| 396 | |
| 397 | fail: |
| 398 | while (i > start) { |
| 399 | i -= inc; |
| 400 | mlx4_table_put(dev, table, i); |
| 401 | } |
| 402 | |
| 403 | return err; |
| 404 | } |
| 405 | |
| 406 | void mlx4_table_put_range(struct mlx4_dev *dev, struct mlx4_icm_table *table, |
| 407 | u32 start, u32 end) |
| 408 | { |
| 409 | u32 i; |
| 410 | |
| 411 | for (i = start; i <= end; i += MLX4_TABLE_CHUNK_SIZE / table->obj_size) |
| 412 | mlx4_table_put(dev, table, i); |
| 413 | } |
| 414 | |
| 415 | int mlx4_init_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table, |
| 416 | u64 virt, int obj_size, u32 nobj, int reserved, |
| 417 | int use_lowmem, int use_coherent) |
| 418 | { |
| 419 | int obj_per_chunk; |
| 420 | int num_icm; |
| 421 | unsigned chunk_size; |
| 422 | int i; |
| 423 | u64 size; |
| 424 | |
| 425 | obj_per_chunk = MLX4_TABLE_CHUNK_SIZE / obj_size; |
| 426 | if (WARN_ON(!obj_per_chunk)) |
| 427 | return -EINVAL; |
| 428 | num_icm = DIV_ROUND_UP(nobj, obj_per_chunk); |
| 429 | |
| 430 | table->icm = kvcalloc(num_icm, sizeof(*table->icm), GFP_KERNEL); |
| 431 | if (!table->icm) |
| 432 | return -ENOMEM; |
| 433 | table->virt = virt; |
| 434 | table->num_icm = num_icm; |
| 435 | table->num_obj = nobj; |
| 436 | table->obj_size = obj_size; |
| 437 | table->lowmem = use_lowmem; |
| 438 | table->coherent = use_coherent; |
| 439 | mutex_init(&table->mutex); |
| 440 | |
| 441 | size = (u64) nobj * obj_size; |
| 442 | for (i = 0; i * MLX4_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) { |
| 443 | chunk_size = MLX4_TABLE_CHUNK_SIZE; |
| 444 | if ((i + 1) * MLX4_TABLE_CHUNK_SIZE > size) |
| 445 | chunk_size = PAGE_ALIGN(size - |
| 446 | i * MLX4_TABLE_CHUNK_SIZE); |
| 447 | |
| 448 | table->icm[i] = mlx4_alloc_icm(dev, chunk_size >> PAGE_SHIFT, |
| 449 | (use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) | |
| 450 | __GFP_NOWARN, use_coherent); |
| 451 | if (!table->icm[i]) |
| 452 | goto err; |
| 453 | if (mlx4_MAP_ICM(dev, table->icm[i], virt + i * MLX4_TABLE_CHUNK_SIZE)) { |
| 454 | mlx4_free_icm(dev, table->icm[i], use_coherent); |
| 455 | table->icm[i] = NULL; |
| 456 | goto err; |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * Add a reference to this ICM chunk so that it never |
| 461 | * gets freed (since it contains reserved firmware objects). |
| 462 | */ |
| 463 | ++table->icm[i]->refcount; |
| 464 | } |
| 465 | |
| 466 | return 0; |
| 467 | |
| 468 | err: |
| 469 | for (i = 0; i < num_icm; ++i) |
| 470 | if (table->icm[i]) { |
| 471 | mlx4_UNMAP_ICM(dev, virt + i * MLX4_TABLE_CHUNK_SIZE, |
| 472 | MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE); |
| 473 | mlx4_free_icm(dev, table->icm[i], use_coherent); |
| 474 | } |
| 475 | |
| 476 | kvfree(table->icm); |
| 477 | |
| 478 | return -ENOMEM; |
| 479 | } |
| 480 | |
| 481 | void mlx4_cleanup_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table) |
| 482 | { |
| 483 | int i; |
| 484 | |
| 485 | for (i = 0; i < table->num_icm; ++i) |
| 486 | if (table->icm[i]) { |
| 487 | mlx4_UNMAP_ICM(dev, table->virt + i * MLX4_TABLE_CHUNK_SIZE, |
| 488 | MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE); |
| 489 | mlx4_free_icm(dev, table->icm[i], table->coherent); |
| 490 | } |
| 491 | |
| 492 | kvfree(table->icm); |
| 493 | } |