blob: ed1140ecca603a9dc81d3cd744876b90769f6a0a [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2011-2013 Solarflare Communications Inc.
5 */
6
7/* Theory of operation:
8 *
9 * PTP support is assisted by firmware running on the MC, which provides
10 * the hardware timestamping capabilities. Both transmitted and received
11 * PTP event packets are queued onto internal queues for subsequent processing;
12 * this is because the MC operations are relatively long and would block
13 * block NAPI/interrupt operation.
14 *
15 * Receive event processing:
16 * The event contains the packet's UUID and sequence number, together
17 * with the hardware timestamp. The PTP receive packet queue is searched
18 * for this UUID/sequence number and, if found, put on a pending queue.
19 * Packets not matching are delivered without timestamps (MCDI events will
20 * always arrive after the actual packet).
21 * It is important for the operation of the PTP protocol that the ordering
22 * of packets between the event and general port is maintained.
23 *
24 * Work queue processing:
25 * If work waiting, synchronise host/hardware time
26 *
27 * Transmit: send packet through MC, which returns the transmission time
28 * that is converted to an appropriate timestamp.
29 *
30 * Receive: the packet's reception time is converted to an appropriate
31 * timestamp.
32 */
33#include <linux/ip.h>
34#include <linux/udp.h>
35#include <linux/time.h>
36#include <linux/ktime.h>
37#include <linux/module.h>
38#include <linux/net_tstamp.h>
39#include <linux/pps_kernel.h>
40#include <linux/ptp_clock_kernel.h>
41#include "net_driver.h"
42#include "efx.h"
43#include "mcdi.h"
44#include "mcdi_pcol.h"
45#include "io.h"
46#include "farch_regs.h"
47#include "nic.h"
48
49/* Maximum number of events expected to make up a PTP event */
50#define MAX_EVENT_FRAGS 3
51
52/* Maximum delay, ms, to begin synchronisation */
53#define MAX_SYNCHRONISE_WAIT_MS 2
54
55/* How long, at most, to spend synchronising */
56#define SYNCHRONISE_PERIOD_NS 250000
57
58/* How often to update the shared memory time */
59#define SYNCHRONISATION_GRANULARITY_NS 200
60
61/* Minimum permitted length of a (corrected) synchronisation time */
62#define DEFAULT_MIN_SYNCHRONISATION_NS 120
63
64/* Maximum permitted length of a (corrected) synchronisation time */
65#define MAX_SYNCHRONISATION_NS 1000
66
67/* How many (MC) receive events that can be queued */
68#define MAX_RECEIVE_EVENTS 8
69
70/* Length of (modified) moving average. */
71#define AVERAGE_LENGTH 16
72
73/* How long an unmatched event or packet can be held */
74#define PKT_EVENT_LIFETIME_MS 10
75
76/* Offsets into PTP packet for identification. These offsets are from the
77 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
78 * PTP V2 permit the use of IPV4 options.
79 */
80#define PTP_DPORT_OFFSET 22
81
82#define PTP_V1_VERSION_LENGTH 2
83#define PTP_V1_VERSION_OFFSET 28
84
85#define PTP_V1_UUID_LENGTH 6
86#define PTP_V1_UUID_OFFSET 50
87
88#define PTP_V1_SEQUENCE_LENGTH 2
89#define PTP_V1_SEQUENCE_OFFSET 58
90
91/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
92 * includes IP header.
93 */
94#define PTP_V1_MIN_LENGTH 64
95
96#define PTP_V2_VERSION_LENGTH 1
97#define PTP_V2_VERSION_OFFSET 29
98
99#define PTP_V2_UUID_LENGTH 8
100#define PTP_V2_UUID_OFFSET 48
101
102/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
103 * the MC only captures the last six bytes of the clock identity. These values
104 * reflect those, not the ones used in the standard. The standard permits
105 * mapping of V1 UUIDs to V2 UUIDs with these same values.
106 */
107#define PTP_V2_MC_UUID_LENGTH 6
108#define PTP_V2_MC_UUID_OFFSET 50
109
110#define PTP_V2_SEQUENCE_LENGTH 2
111#define PTP_V2_SEQUENCE_OFFSET 58
112
113/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
114 * includes IP header.
115 */
116#define PTP_V2_MIN_LENGTH 63
117
118#define PTP_MIN_LENGTH 63
119
120#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
121#define PTP_EVENT_PORT 319
122#define PTP_GENERAL_PORT 320
123
124/* Annoyingly the format of the version numbers are different between
125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
126 */
127#define PTP_VERSION_V1 1
128
129#define PTP_VERSION_V2 2
130#define PTP_VERSION_V2_MASK 0x0f
131
132enum ptp_packet_state {
133 PTP_PACKET_STATE_UNMATCHED = 0,
134 PTP_PACKET_STATE_MATCHED,
135 PTP_PACKET_STATE_TIMED_OUT,
136 PTP_PACKET_STATE_MATCH_UNWANTED
137};
138
139/* NIC synchronised with single word of time only comprising
140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
141 */
142#define MC_NANOSECOND_BITS 30
143#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
144#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
145
146/* Maximum parts-per-billion adjustment that is acceptable */
147#define MAX_PPB 1000000
148
149/* Precalculate scale word to avoid long long division at runtime */
150/* This is equivalent to 2^66 / 10^9. */
151#define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
152
153/* How much to shift down after scaling to convert to FP40 */
154#define PPB_SHIFT_FP40 26
155/* ... and FP44. */
156#define PPB_SHIFT_FP44 22
157
158#define PTP_SYNC_ATTEMPTS 4
159
160/**
161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
162 * @words: UUID and (partial) sequence number
163 * @expiry: Time after which the packet should be delivered irrespective of
164 * event arrival.
165 * @state: The state of the packet - whether it is ready for processing or
166 * whether that is of no interest.
167 */
168struct efx_ptp_match {
169 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
170 unsigned long expiry;
171 enum ptp_packet_state state;
172};
173
174/**
175 * struct efx_ptp_event_rx - A PTP receive event (from MC)
176 * @seq0: First part of (PTP) UUID
177 * @seq1: Second part of (PTP) UUID and sequence number
178 * @hwtimestamp: Event timestamp
179 */
180struct efx_ptp_event_rx {
181 struct list_head link;
182 u32 seq0;
183 u32 seq1;
184 ktime_t hwtimestamp;
185 unsigned long expiry;
186};
187
188/**
189 * struct efx_ptp_timeset - Synchronisation between host and MC
190 * @host_start: Host time immediately before hardware timestamp taken
191 * @major: Hardware timestamp, major
192 * @minor: Hardware timestamp, minor
193 * @host_end: Host time immediately after hardware timestamp taken
194 * @wait: Number of NIC clock ticks between hardware timestamp being read and
195 * host end time being seen
196 * @window: Difference of host_end and host_start
197 * @valid: Whether this timeset is valid
198 */
199struct efx_ptp_timeset {
200 u32 host_start;
201 u32 major;
202 u32 minor;
203 u32 host_end;
204 u32 wait;
205 u32 window; /* Derived: end - start, allowing for wrap */
206};
207
208/**
209 * struct efx_ptp_data - Precision Time Protocol (PTP) state
210 * @efx: The NIC context
211 * @channel: The PTP channel (Siena only)
212 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
213 * separate events)
214 * @rxq: Receive SKB queue (awaiting timestamps)
215 * @txq: Transmit SKB queue
216 * @evt_list: List of MC receive events awaiting packets
217 * @evt_free_list: List of free events
218 * @evt_lock: Lock for manipulating evt_list and evt_free_list
219 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
220 * @workwq: Work queue for processing pending PTP operations
221 * @work: Work task
222 * @reset_required: A serious error has occurred and the PTP task needs to be
223 * reset (disable, enable).
224 * @rxfilter_event: Receive filter when operating
225 * @rxfilter_general: Receive filter when operating
226 * @config: Current timestamp configuration
227 * @enabled: PTP operation enabled
228 * @mode: Mode in which PTP operating (PTP version)
229 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
230 * @nic_to_kernel_time: Function to convert from NIC to kernel time
231 * @nic_time.minor_max: Wrap point for NIC minor times
232 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
233 * in packet prefix and last MCDI time sync event i.e. how much earlier than
234 * the last sync event time a packet timestamp can be.
235 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
236 * in packet prefix and last MCDI time sync event i.e. how much later than
237 * the last sync event time a packet timestamp can be.
238 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
239 * field in MCDI time sync event.
240 * @min_synchronisation_ns: Minimum acceptable corrected sync window
241 * @capabilities: Capabilities flags from the NIC
242 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
243 * timestamps
244 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
245 * timestamps
246 * @ts_corrections.pps_out: PPS output error (information only)
247 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
248 * @ts_corrections.general_tx: Required driver correction of general packet
249 * transmit timestamps
250 * @ts_corrections.general_rx: Required driver correction of general packet
251 * receive timestamps
252 * @evt_frags: Partly assembled PTP events
253 * @evt_frag_idx: Current fragment number
254 * @evt_code: Last event code
255 * @start: Address at which MC indicates ready for synchronisation
256 * @host_time_pps: Host time at last PPS
257 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
258 * frequency adjustment into a fixed point fractional nanosecond format.
259 * @current_adjfreq: Current ppb adjustment.
260 * @phc_clock: Pointer to registered phc device (if primary function)
261 * @phc_clock_info: Registration structure for phc device
262 * @pps_work: pps work task for handling pps events
263 * @pps_workwq: pps work queue
264 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
265 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
266 * allocations in main data path).
267 * @good_syncs: Number of successful synchronisations.
268 * @fast_syncs: Number of synchronisations requiring short delay
269 * @bad_syncs: Number of failed synchronisations.
270 * @sync_timeouts: Number of synchronisation timeouts
271 * @no_time_syncs: Number of synchronisations with no good times.
272 * @invalid_sync_windows: Number of sync windows with bad durations.
273 * @undersize_sync_windows: Number of corrected sync windows that are too small
274 * @oversize_sync_windows: Number of corrected sync windows that are too large
275 * @rx_no_timestamp: Number of packets received without a timestamp.
276 * @timeset: Last set of synchronisation statistics.
277 * @xmit_skb: Transmit SKB function.
278 */
279struct efx_ptp_data {
280 struct efx_nic *efx;
281 struct efx_channel *channel;
282 bool rx_ts_inline;
283 struct sk_buff_head rxq;
284 struct sk_buff_head txq;
285 struct list_head evt_list;
286 struct list_head evt_free_list;
287 spinlock_t evt_lock;
288 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
289 struct workqueue_struct *workwq;
290 struct work_struct work;
291 bool reset_required;
292 u32 rxfilter_event;
293 u32 rxfilter_general;
294 bool rxfilter_installed;
295 struct hwtstamp_config config;
296 bool enabled;
297 unsigned int mode;
298 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
299 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
300 s32 correction);
301 struct {
302 u32 minor_max;
303 u32 sync_event_diff_min;
304 u32 sync_event_diff_max;
305 unsigned int sync_event_minor_shift;
306 } nic_time;
307 unsigned int min_synchronisation_ns;
308 unsigned int capabilities;
309 struct {
310 s32 ptp_tx;
311 s32 ptp_rx;
312 s32 pps_out;
313 s32 pps_in;
314 s32 general_tx;
315 s32 general_rx;
316 } ts_corrections;
317 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
318 int evt_frag_idx;
319 int evt_code;
320 struct efx_buffer start;
321 struct pps_event_time host_time_pps;
322 unsigned int adjfreq_ppb_shift;
323 s64 current_adjfreq;
324 struct ptp_clock *phc_clock;
325 struct ptp_clock_info phc_clock_info;
326 struct work_struct pps_work;
327 struct workqueue_struct *pps_workwq;
328 bool nic_ts_enabled;
329 _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
330
331 unsigned int good_syncs;
332 unsigned int fast_syncs;
333 unsigned int bad_syncs;
334 unsigned int sync_timeouts;
335 unsigned int no_time_syncs;
336 unsigned int invalid_sync_windows;
337 unsigned int undersize_sync_windows;
338 unsigned int oversize_sync_windows;
339 unsigned int rx_no_timestamp;
340 struct efx_ptp_timeset
341 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
342 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
343};
344
345static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
346static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
347static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
348static int efx_phc_settime(struct ptp_clock_info *ptp,
349 const struct timespec64 *e_ts);
350static int efx_phc_enable(struct ptp_clock_info *ptp,
351 struct ptp_clock_request *request, int on);
352
353bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
354{
355 struct efx_ef10_nic_data *nic_data = efx->nic_data;
356
357 return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
358 (nic_data->datapath_caps2 &
359 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
360 ));
361}
362
363/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
365 */
366static bool efx_ptp_want_txqs(struct efx_channel *channel)
367{
368 return efx_ptp_use_mac_tx_timestamps(channel->efx);
369}
370
371#define PTP_SW_STAT(ext_name, field_name) \
372 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
373#define PTP_MC_STAT(ext_name, mcdi_name) \
374 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
375static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
376 PTP_SW_STAT(ptp_good_syncs, good_syncs),
377 PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
378 PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
379 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
380 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
381 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
382 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
383 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
384 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
385 PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
386 PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
387 PTP_MC_STAT(ptp_timestamp_packets, TS),
388 PTP_MC_STAT(ptp_filter_matches, FM),
389 PTP_MC_STAT(ptp_non_filter_matches, NFM),
390};
391#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
392static const unsigned long efx_ptp_stat_mask[] = {
393 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
394};
395
396size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
397{
398 if (!efx->ptp_data)
399 return 0;
400
401 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
402 efx_ptp_stat_mask, strings);
403}
404
405size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
406{
407 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
408 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
409 size_t i;
410 int rc;
411
412 if (!efx->ptp_data)
413 return 0;
414
415 /* Copy software statistics */
416 for (i = 0; i < PTP_STAT_COUNT; i++) {
417 if (efx_ptp_stat_desc[i].dma_width)
418 continue;
419 stats[i] = *(unsigned int *)((char *)efx->ptp_data +
420 efx_ptp_stat_desc[i].offset);
421 }
422
423 /* Fetch MC statistics. We *must* fill in all statistics or
424 * risk leaking kernel memory to userland, so if the MCDI
425 * request fails we pretend we got zeroes.
426 */
427 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
428 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
429 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
430 outbuf, sizeof(outbuf), NULL);
431 if (rc)
432 memset(outbuf, 0, sizeof(outbuf));
433 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
434 efx_ptp_stat_mask,
435 stats, _MCDI_PTR(outbuf, 0), false);
436
437 return PTP_STAT_COUNT;
438}
439
440/* For Siena platforms NIC time is s and ns */
441static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
442{
443 struct timespec64 ts = ns_to_timespec64(ns);
444 *nic_major = (u32)ts.tv_sec;
445 *nic_minor = ts.tv_nsec;
446}
447
448static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
449 s32 correction)
450{
451 ktime_t kt = ktime_set(nic_major, nic_minor);
452 if (correction >= 0)
453 kt = ktime_add_ns(kt, (u64)correction);
454 else
455 kt = ktime_sub_ns(kt, (u64)-correction);
456 return kt;
457}
458
459/* To convert from s27 format to ns we multiply then divide by a power of 2.
460 * For the conversion from ns to s27, the operation is also converted to a
461 * multiply and shift.
462 */
463#define S27_TO_NS_SHIFT (27)
464#define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
465#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
466#define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
467
468/* For Huntington platforms NIC time is in seconds and fractions of a second
469 * where the minor register only uses 27 bits in units of 2^-27s.
470 */
471static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
472{
473 struct timespec64 ts = ns_to_timespec64(ns);
474 u32 maj = (u32)ts.tv_sec;
475 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
476 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
477
478 /* The conversion can result in the minor value exceeding the maximum.
479 * In this case, round up to the next second.
480 */
481 if (min >= S27_MINOR_MAX) {
482 min -= S27_MINOR_MAX;
483 maj++;
484 }
485
486 *nic_major = maj;
487 *nic_minor = min;
488}
489
490static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
491{
492 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
493 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
494 return ktime_set(nic_major, ns);
495}
496
497static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
498 s32 correction)
499{
500 /* Apply the correction and deal with carry */
501 nic_minor += correction;
502 if ((s32)nic_minor < 0) {
503 nic_minor += S27_MINOR_MAX;
504 nic_major--;
505 } else if (nic_minor >= S27_MINOR_MAX) {
506 nic_minor -= S27_MINOR_MAX;
507 nic_major++;
508 }
509
510 return efx_ptp_s27_to_ktime(nic_major, nic_minor);
511}
512
513/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
514static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
515{
516 struct timespec64 ts = ns_to_timespec64(ns);
517
518 *nic_major = (u32)ts.tv_sec;
519 *nic_minor = ts.tv_nsec * 4;
520}
521
522static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
523 s32 correction)
524{
525 ktime_t kt;
526
527 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
528 correction = DIV_ROUND_CLOSEST(correction, 4);
529
530 kt = ktime_set(nic_major, nic_minor);
531
532 if (correction >= 0)
533 kt = ktime_add_ns(kt, (u64)correction);
534 else
535 kt = ktime_sub_ns(kt, (u64)-correction);
536 return kt;
537}
538
539struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
540{
541 return efx->ptp_data ? efx->ptp_data->channel : NULL;
542}
543
544static u32 last_sync_timestamp_major(struct efx_nic *efx)
545{
546 struct efx_channel *channel = efx_ptp_channel(efx);
547 u32 major = 0;
548
549 if (channel)
550 major = channel->sync_timestamp_major;
551 return major;
552}
553
554/* The 8000 series and later can provide the time from the MAC, which is only
555 * 48 bits long and provides meta-information in the top 2 bits.
556 */
557static ktime_t
558efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
559 struct efx_ptp_data *ptp,
560 u32 nic_major, u32 nic_minor,
561 s32 correction)
562{
563 u32 sync_timestamp;
564 ktime_t kt = { 0 };
565 s16 delta;
566
567 if (!(nic_major & 0x80000000)) {
568 WARN_ON_ONCE(nic_major >> 16);
569
570 /* Medford provides 48 bits of timestamp, so we must get the top
571 * 16 bits from the timesync event state.
572 *
573 * We only have the lower 16 bits of the time now, but we do
574 * have a full resolution timestamp at some point in past. As
575 * long as the difference between the (real) now and the sync
576 * is less than 2^15, then we can reconstruct the difference
577 * between those two numbers using only the lower 16 bits of
578 * each.
579 *
580 * Put another way
581 *
582 * a - b = ((a mod k) - b) mod k
583 *
584 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
585 * (a mod k) and b, so can calculate the delta, a - b.
586 *
587 */
588 sync_timestamp = last_sync_timestamp_major(efx);
589
590 /* Because delta is s16 this does an implicit mask down to
591 * 16 bits which is what we need, assuming
592 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
593 * we can deal with the (unlikely) case of sync timestamps
594 * arriving from the future.
595 */
596 delta = nic_major - sync_timestamp;
597
598 /* Recover the fully specified time now, by applying the offset
599 * to the (fully specified) sync time.
600 */
601 nic_major = sync_timestamp + delta;
602
603 kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
604 correction);
605 }
606 return kt;
607}
608
609ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
610{
611 struct efx_nic *efx = tx_queue->efx;
612 struct efx_ptp_data *ptp = efx->ptp_data;
613 ktime_t kt;
614
615 if (efx_ptp_use_mac_tx_timestamps(efx))
616 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
617 tx_queue->completed_timestamp_major,
618 tx_queue->completed_timestamp_minor,
619 ptp->ts_corrections.general_tx);
620 else
621 kt = ptp->nic_to_kernel_time(
622 tx_queue->completed_timestamp_major,
623 tx_queue->completed_timestamp_minor,
624 ptp->ts_corrections.general_tx);
625 return kt;
626}
627
628/* Get PTP attributes and set up time conversions */
629static int efx_ptp_get_attributes(struct efx_nic *efx)
630{
631 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
632 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
633 struct efx_ptp_data *ptp = efx->ptp_data;
634 int rc;
635 u32 fmt;
636 size_t out_len;
637
638 /* Get the PTP attributes. If the NIC doesn't support the operation we
639 * use the default format for compatibility with older NICs i.e.
640 * seconds and nanoseconds.
641 */
642 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
643 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
644 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
645 outbuf, sizeof(outbuf), &out_len);
646 if (rc == 0) {
647 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
648 } else if (rc == -EINVAL) {
649 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
650 } else if (rc == -EPERM) {
651 pci_info(efx->pci_dev, "no PTP support\n");
652 return rc;
653 } else {
654 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
655 outbuf, sizeof(outbuf), rc);
656 return rc;
657 }
658
659 switch (fmt) {
660 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
661 ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
662 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
663 ptp->nic_time.minor_max = 1 << 27;
664 ptp->nic_time.sync_event_minor_shift = 19;
665 break;
666 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
667 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
668 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
669 ptp->nic_time.minor_max = 1000000000;
670 ptp->nic_time.sync_event_minor_shift = 22;
671 break;
672 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
673 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
674 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
675 ptp->nic_time.minor_max = 4000000000UL;
676 ptp->nic_time.sync_event_minor_shift = 24;
677 break;
678 default:
679 return -ERANGE;
680 }
681
682 /* Precalculate acceptable difference between the minor time in the
683 * packet prefix and the last MCDI time sync event. We expect the
684 * packet prefix timestamp to be after of sync event by up to one
685 * sync event interval (0.25s) but we allow it to exceed this by a
686 * fuzz factor of (0.1s)
687 */
688 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
689 - (ptp->nic_time.minor_max / 10);
690 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
691 + (ptp->nic_time.minor_max / 10);
692
693 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
694 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
695 * a value to use for the minimum acceptable corrected synchronization
696 * window and may return further capabilities.
697 * If we have the extra information store it. For older firmware that
698 * does not implement the extended command use the default value.
699 */
700 if (rc == 0 &&
701 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
702 ptp->min_synchronisation_ns =
703 MCDI_DWORD(outbuf,
704 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
705 else
706 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
707
708 if (rc == 0 &&
709 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
710 ptp->capabilities = MCDI_DWORD(outbuf,
711 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
712 else
713 ptp->capabilities = 0;
714
715 /* Set up the shift for conversion between frequency
716 * adjustments in parts-per-billion and the fixed-point
717 * fractional ns format that the adapter uses.
718 */
719 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
720 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
721 else
722 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
723
724 return 0;
725}
726
727/* Get PTP timestamp corrections */
728static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
729{
730 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
731 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
732 int rc;
733 size_t out_len;
734
735 /* Get the timestamp corrections from the NIC. If this operation is
736 * not supported (older NICs) then no correction is required.
737 */
738 MCDI_SET_DWORD(inbuf, PTP_IN_OP,
739 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
740 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
741
742 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
743 outbuf, sizeof(outbuf), &out_len);
744 if (rc == 0) {
745 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
746 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
747 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
748 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
749 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
750 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
751 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
752 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
753
754 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
755 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
756 outbuf,
757 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
758 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
759 outbuf,
760 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
761 } else {
762 efx->ptp_data->ts_corrections.general_tx =
763 efx->ptp_data->ts_corrections.ptp_tx;
764 efx->ptp_data->ts_corrections.general_rx =
765 efx->ptp_data->ts_corrections.ptp_rx;
766 }
767 } else if (rc == -EINVAL) {
768 efx->ptp_data->ts_corrections.ptp_tx = 0;
769 efx->ptp_data->ts_corrections.ptp_rx = 0;
770 efx->ptp_data->ts_corrections.pps_out = 0;
771 efx->ptp_data->ts_corrections.pps_in = 0;
772 efx->ptp_data->ts_corrections.general_tx = 0;
773 efx->ptp_data->ts_corrections.general_rx = 0;
774 } else {
775 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
776 sizeof(outbuf), rc);
777 return rc;
778 }
779
780 return 0;
781}
782
783/* Enable MCDI PTP support. */
784static int efx_ptp_enable(struct efx_nic *efx)
785{
786 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
787 MCDI_DECLARE_BUF_ERR(outbuf);
788 int rc;
789
790 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
791 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
792 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
793 efx->ptp_data->channel ?
794 efx->ptp_data->channel->channel : 0);
795 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
796
797 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
798 outbuf, sizeof(outbuf), NULL);
799 rc = (rc == -EALREADY) ? 0 : rc;
800 if (rc)
801 efx_mcdi_display_error(efx, MC_CMD_PTP,
802 MC_CMD_PTP_IN_ENABLE_LEN,
803 outbuf, sizeof(outbuf), rc);
804 return rc;
805}
806
807/* Disable MCDI PTP support.
808 *
809 * Note that this function should never rely on the presence of ptp_data -
810 * may be called before that exists.
811 */
812static int efx_ptp_disable(struct efx_nic *efx)
813{
814 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
815 MCDI_DECLARE_BUF_ERR(outbuf);
816 int rc;
817
818 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
819 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
820 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
821 outbuf, sizeof(outbuf), NULL);
822 rc = (rc == -EALREADY) ? 0 : rc;
823 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
824 * should only have been called during probe.
825 */
826 if (rc == -ENOSYS || rc == -EPERM)
827 pci_info(efx->pci_dev, "no PTP support\n");
828 else if (rc)
829 efx_mcdi_display_error(efx, MC_CMD_PTP,
830 MC_CMD_PTP_IN_DISABLE_LEN,
831 outbuf, sizeof(outbuf), rc);
832 return rc;
833}
834
835static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
836{
837 struct sk_buff *skb;
838
839 while ((skb = skb_dequeue(q))) {
840 local_bh_disable();
841 netif_receive_skb(skb);
842 local_bh_enable();
843 }
844}
845
846static void efx_ptp_handle_no_channel(struct efx_nic *efx)
847{
848 netif_err(efx, drv, efx->net_dev,
849 "ERROR: PTP requires MSI-X and 1 additional interrupt"
850 "vector. PTP disabled\n");
851}
852
853/* Repeatedly send the host time to the MC which will capture the hardware
854 * time.
855 */
856static void efx_ptp_send_times(struct efx_nic *efx,
857 struct pps_event_time *last_time)
858{
859 struct pps_event_time now;
860 struct timespec64 limit;
861 struct efx_ptp_data *ptp = efx->ptp_data;
862 int *mc_running = ptp->start.addr;
863
864 pps_get_ts(&now);
865 limit = now.ts_real;
866 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
867
868 /* Write host time for specified period or until MC is done */
869 while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
870 READ_ONCE(*mc_running)) {
871 struct timespec64 update_time;
872 unsigned int host_time;
873
874 /* Don't update continuously to avoid saturating the PCIe bus */
875 update_time = now.ts_real;
876 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
877 do {
878 pps_get_ts(&now);
879 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
880 READ_ONCE(*mc_running));
881
882 /* Synchronise NIC with single word of time only */
883 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
884 now.ts_real.tv_nsec);
885 /* Update host time in NIC memory */
886 efx->type->ptp_write_host_time(efx, host_time);
887 }
888 *last_time = now;
889}
890
891/* Read a timeset from the MC's results and partial process. */
892static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
893 struct efx_ptp_timeset *timeset)
894{
895 unsigned start_ns, end_ns;
896
897 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
898 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
899 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
900 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
901 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
902
903 /* Ignore seconds */
904 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
905 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
906 /* Allow for rollover */
907 if (end_ns < start_ns)
908 end_ns += NSEC_PER_SEC;
909 /* Determine duration of operation */
910 timeset->window = end_ns - start_ns;
911}
912
913/* Process times received from MC.
914 *
915 * Extract times from returned results, and establish the minimum value
916 * seen. The minimum value represents the "best" possible time and events
917 * too much greater than this are rejected - the machine is, perhaps, too
918 * busy. A number of readings are taken so that, hopefully, at least one good
919 * synchronisation will be seen in the results.
920 */
921static int
922efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
923 size_t response_length,
924 const struct pps_event_time *last_time)
925{
926 unsigned number_readings =
927 MCDI_VAR_ARRAY_LEN(response_length,
928 PTP_OUT_SYNCHRONIZE_TIMESET);
929 unsigned i;
930 unsigned ngood = 0;
931 unsigned last_good = 0;
932 struct efx_ptp_data *ptp = efx->ptp_data;
933 u32 last_sec;
934 u32 start_sec;
935 struct timespec64 delta;
936 ktime_t mc_time;
937
938 if (number_readings == 0)
939 return -EAGAIN;
940
941 /* Read the set of results and find the last good host-MC
942 * synchronization result. The MC times when it finishes reading the
943 * host time so the corrected window time should be fairly constant
944 * for a given platform. Increment stats for any results that appear
945 * to be erroneous.
946 */
947 for (i = 0; i < number_readings; i++) {
948 s32 window, corrected;
949 struct timespec64 wait;
950
951 efx_ptp_read_timeset(
952 MCDI_ARRAY_STRUCT_PTR(synch_buf,
953 PTP_OUT_SYNCHRONIZE_TIMESET, i),
954 &ptp->timeset[i]);
955
956 wait = ktime_to_timespec64(
957 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
958 window = ptp->timeset[i].window;
959 corrected = window - wait.tv_nsec;
960
961 /* We expect the uncorrected synchronization window to be at
962 * least as large as the interval between host start and end
963 * times. If it is smaller than this then this is mostly likely
964 * to be a consequence of the host's time being adjusted.
965 * Check that the corrected sync window is in a reasonable
966 * range. If it is out of range it is likely to be because an
967 * interrupt or other delay occurred between reading the system
968 * time and writing it to MC memory.
969 */
970 if (window < SYNCHRONISATION_GRANULARITY_NS) {
971 ++ptp->invalid_sync_windows;
972 } else if (corrected >= MAX_SYNCHRONISATION_NS) {
973 ++ptp->oversize_sync_windows;
974 } else if (corrected < ptp->min_synchronisation_ns) {
975 ++ptp->undersize_sync_windows;
976 } else {
977 ngood++;
978 last_good = i;
979 }
980 }
981
982 if (ngood == 0) {
983 netif_warn(efx, drv, efx->net_dev,
984 "PTP no suitable synchronisations\n");
985 return -EAGAIN;
986 }
987
988 /* Calculate delay from last good sync (host time) to last_time.
989 * It is possible that the seconds rolled over between taking
990 * the start reading and the last value written by the host. The
991 * timescales are such that a gap of more than one second is never
992 * expected. delta is *not* normalised.
993 */
994 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
995 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
996 if (start_sec != last_sec &&
997 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
998 netif_warn(efx, hw, efx->net_dev,
999 "PTP bad synchronisation seconds\n");
1000 return -EAGAIN;
1001 }
1002 delta.tv_sec = (last_sec - start_sec) & 1;
1003 delta.tv_nsec =
1004 last_time->ts_real.tv_nsec -
1005 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1006
1007 /* Convert the NIC time at last good sync into kernel time.
1008 * No correction is required - this time is the output of a
1009 * firmware process.
1010 */
1011 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1012 ptp->timeset[last_good].minor, 0);
1013
1014 /* Calculate delay from NIC top of second to last_time */
1015 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1016
1017 /* Set PPS timestamp to match NIC top of second */
1018 ptp->host_time_pps = *last_time;
1019 pps_sub_ts(&ptp->host_time_pps, delta);
1020
1021 return 0;
1022}
1023
1024/* Synchronize times between the host and the MC */
1025static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1026{
1027 struct efx_ptp_data *ptp = efx->ptp_data;
1028 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1029 size_t response_length;
1030 int rc;
1031 unsigned long timeout;
1032 struct pps_event_time last_time = {};
1033 unsigned int loops = 0;
1034 int *start = ptp->start.addr;
1035
1036 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1037 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1038 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1039 num_readings);
1040 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1041 ptp->start.dma_addr);
1042
1043 /* Clear flag that signals MC ready */
1044 WRITE_ONCE(*start, 0);
1045 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1046 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1047 EFX_WARN_ON_ONCE_PARANOID(rc);
1048
1049 /* Wait for start from MCDI (or timeout) */
1050 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1051 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1052 udelay(20); /* Usually start MCDI execution quickly */
1053 loops++;
1054 }
1055
1056 if (loops <= 1)
1057 ++ptp->fast_syncs;
1058 if (!time_before(jiffies, timeout))
1059 ++ptp->sync_timeouts;
1060
1061 if (READ_ONCE(*start))
1062 efx_ptp_send_times(efx, &last_time);
1063
1064 /* Collect results */
1065 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1066 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1067 synch_buf, sizeof(synch_buf),
1068 &response_length);
1069 if (rc == 0) {
1070 rc = efx_ptp_process_times(efx, synch_buf, response_length,
1071 &last_time);
1072 if (rc == 0)
1073 ++ptp->good_syncs;
1074 else
1075 ++ptp->no_time_syncs;
1076 }
1077
1078 /* Increment the bad syncs counter if the synchronize fails, whatever
1079 * the reason.
1080 */
1081 if (rc != 0)
1082 ++ptp->bad_syncs;
1083
1084 return rc;
1085}
1086
1087/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1088static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1089{
1090 struct efx_ptp_data *ptp_data = efx->ptp_data;
1091 struct efx_tx_queue *tx_queue;
1092 u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1093
1094 tx_queue = &ptp_data->channel->tx_queue[type];
1095 if (tx_queue && tx_queue->timestamping) {
1096 /* This code invokes normal driver TX code which is always
1097 * protected from softirqs when called from generic TX code,
1098 * which in turn disables preemption. Look at __dev_queue_xmit
1099 * which uses rcu_read_lock_bh disabling preemption for RCU
1100 * plus disabling softirqs. We do not need RCU reader
1101 * protection here.
1102 *
1103 * Although it is theoretically safe for current PTP TX/RX code
1104 * running without disabling softirqs, there are three good
1105 * reasond for doing so:
1106 *
1107 * 1) The code invoked is mainly implemented for non-PTP
1108 * packets and it is always executed with softirqs
1109 * disabled.
1110 * 2) This being a single PTP packet, better to not
1111 * interrupt its processing by softirqs which can lead
1112 * to high latencies.
1113 * 3) netdev_xmit_more checks preemption is disabled and
1114 * triggers a BUG_ON if not.
1115 */
1116 local_bh_disable();
1117 efx_enqueue_skb(tx_queue, skb);
1118 local_bh_enable();
1119 } else {
1120 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1121 dev_kfree_skb_any(skb);
1122 }
1123}
1124
1125/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1126static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1127{
1128 struct efx_ptp_data *ptp_data = efx->ptp_data;
1129 struct skb_shared_hwtstamps timestamps;
1130 int rc = -EIO;
1131 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1132 size_t len;
1133
1134 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1135 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1136 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1137 if (skb_shinfo(skb)->nr_frags != 0) {
1138 rc = skb_linearize(skb);
1139 if (rc != 0)
1140 goto fail;
1141 }
1142
1143 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1144 rc = skb_checksum_help(skb);
1145 if (rc != 0)
1146 goto fail;
1147 }
1148 skb_copy_from_linear_data(skb,
1149 MCDI_PTR(ptp_data->txbuf,
1150 PTP_IN_TRANSMIT_PACKET),
1151 skb->len);
1152 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1153 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1154 txtime, sizeof(txtime), &len);
1155 if (rc != 0)
1156 goto fail;
1157
1158 memset(&timestamps, 0, sizeof(timestamps));
1159 timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1160 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1161 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1162 ptp_data->ts_corrections.ptp_tx);
1163
1164 skb_tstamp_tx(skb, &timestamps);
1165
1166 rc = 0;
1167
1168fail:
1169 dev_kfree_skb_any(skb);
1170
1171 return;
1172}
1173
1174static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1175{
1176 struct efx_ptp_data *ptp = efx->ptp_data;
1177 struct list_head *cursor;
1178 struct list_head *next;
1179
1180 if (ptp->rx_ts_inline)
1181 return;
1182
1183 /* Drop time-expired events */
1184 spin_lock_bh(&ptp->evt_lock);
1185 if (!list_empty(&ptp->evt_list)) {
1186 list_for_each_safe(cursor, next, &ptp->evt_list) {
1187 struct efx_ptp_event_rx *evt;
1188
1189 evt = list_entry(cursor, struct efx_ptp_event_rx,
1190 link);
1191 if (time_after(jiffies, evt->expiry)) {
1192 list_move(&evt->link, &ptp->evt_free_list);
1193 netif_warn(efx, hw, efx->net_dev,
1194 "PTP rx event dropped\n");
1195 }
1196 }
1197 }
1198 spin_unlock_bh(&ptp->evt_lock);
1199}
1200
1201static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1202 struct sk_buff *skb)
1203{
1204 struct efx_ptp_data *ptp = efx->ptp_data;
1205 bool evts_waiting;
1206 struct list_head *cursor;
1207 struct list_head *next;
1208 struct efx_ptp_match *match;
1209 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1210
1211 WARN_ON_ONCE(ptp->rx_ts_inline);
1212
1213 spin_lock_bh(&ptp->evt_lock);
1214 evts_waiting = !list_empty(&ptp->evt_list);
1215 spin_unlock_bh(&ptp->evt_lock);
1216
1217 if (!evts_waiting)
1218 return PTP_PACKET_STATE_UNMATCHED;
1219
1220 match = (struct efx_ptp_match *)skb->cb;
1221 /* Look for a matching timestamp in the event queue */
1222 spin_lock_bh(&ptp->evt_lock);
1223 list_for_each_safe(cursor, next, &ptp->evt_list) {
1224 struct efx_ptp_event_rx *evt;
1225
1226 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1227 if ((evt->seq0 == match->words[0]) &&
1228 (evt->seq1 == match->words[1])) {
1229 struct skb_shared_hwtstamps *timestamps;
1230
1231 /* Match - add in hardware timestamp */
1232 timestamps = skb_hwtstamps(skb);
1233 timestamps->hwtstamp = evt->hwtimestamp;
1234
1235 match->state = PTP_PACKET_STATE_MATCHED;
1236 rc = PTP_PACKET_STATE_MATCHED;
1237 list_move(&evt->link, &ptp->evt_free_list);
1238 break;
1239 }
1240 }
1241 spin_unlock_bh(&ptp->evt_lock);
1242
1243 return rc;
1244}
1245
1246/* Process any queued receive events and corresponding packets
1247 *
1248 * q is returned with all the packets that are ready for delivery.
1249 */
1250static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1251{
1252 struct efx_ptp_data *ptp = efx->ptp_data;
1253 struct sk_buff *skb;
1254
1255 while ((skb = skb_dequeue(&ptp->rxq))) {
1256 struct efx_ptp_match *match;
1257
1258 match = (struct efx_ptp_match *)skb->cb;
1259 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1260 __skb_queue_tail(q, skb);
1261 } else if (efx_ptp_match_rx(efx, skb) ==
1262 PTP_PACKET_STATE_MATCHED) {
1263 __skb_queue_tail(q, skb);
1264 } else if (time_after(jiffies, match->expiry)) {
1265 match->state = PTP_PACKET_STATE_TIMED_OUT;
1266 ++ptp->rx_no_timestamp;
1267 __skb_queue_tail(q, skb);
1268 } else {
1269 /* Replace unprocessed entry and stop */
1270 skb_queue_head(&ptp->rxq, skb);
1271 break;
1272 }
1273 }
1274}
1275
1276/* Complete processing of a received packet */
1277static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1278{
1279 local_bh_disable();
1280 netif_receive_skb(skb);
1281 local_bh_enable();
1282}
1283
1284static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1285{
1286 struct efx_ptp_data *ptp = efx->ptp_data;
1287
1288 if (ptp->rxfilter_installed) {
1289 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1290 ptp->rxfilter_general);
1291 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1292 ptp->rxfilter_event);
1293 ptp->rxfilter_installed = false;
1294 }
1295}
1296
1297static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1298{
1299 struct efx_ptp_data *ptp = efx->ptp_data;
1300 struct efx_filter_spec rxfilter;
1301 int rc;
1302
1303 if (!ptp->channel || ptp->rxfilter_installed)
1304 return 0;
1305
1306 /* Must filter on both event and general ports to ensure
1307 * that there is no packet re-ordering.
1308 */
1309 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1310 efx_rx_queue_index(
1311 efx_channel_get_rx_queue(ptp->channel)));
1312 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1313 htonl(PTP_ADDRESS),
1314 htons(PTP_EVENT_PORT));
1315 if (rc != 0)
1316 return rc;
1317
1318 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1319 if (rc < 0)
1320 return rc;
1321 ptp->rxfilter_event = rc;
1322
1323 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1324 efx_rx_queue_index(
1325 efx_channel_get_rx_queue(ptp->channel)));
1326 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1327 htonl(PTP_ADDRESS),
1328 htons(PTP_GENERAL_PORT));
1329 if (rc != 0)
1330 goto fail;
1331
1332 rc = efx_filter_insert_filter(efx, &rxfilter, true);
1333 if (rc < 0)
1334 goto fail;
1335 ptp->rxfilter_general = rc;
1336
1337 ptp->rxfilter_installed = true;
1338 return 0;
1339
1340fail:
1341 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1342 ptp->rxfilter_event);
1343 return rc;
1344}
1345
1346static int efx_ptp_start(struct efx_nic *efx)
1347{
1348 struct efx_ptp_data *ptp = efx->ptp_data;
1349 int rc;
1350
1351 ptp->reset_required = false;
1352
1353 rc = efx_ptp_insert_multicast_filters(efx);
1354 if (rc)
1355 return rc;
1356
1357 rc = efx_ptp_enable(efx);
1358 if (rc != 0)
1359 goto fail;
1360
1361 ptp->evt_frag_idx = 0;
1362 ptp->current_adjfreq = 0;
1363
1364 return 0;
1365
1366fail:
1367 efx_ptp_remove_multicast_filters(efx);
1368 return rc;
1369}
1370
1371static int efx_ptp_stop(struct efx_nic *efx)
1372{
1373 struct efx_ptp_data *ptp = efx->ptp_data;
1374 struct list_head *cursor;
1375 struct list_head *next;
1376 int rc;
1377
1378 if (ptp == NULL)
1379 return 0;
1380
1381 rc = efx_ptp_disable(efx);
1382
1383 efx_ptp_remove_multicast_filters(efx);
1384
1385 /* Make sure RX packets are really delivered */
1386 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1387 skb_queue_purge(&efx->ptp_data->txq);
1388
1389 /* Drop any pending receive events */
1390 spin_lock_bh(&efx->ptp_data->evt_lock);
1391 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1392 list_move(cursor, &efx->ptp_data->evt_free_list);
1393 }
1394 spin_unlock_bh(&efx->ptp_data->evt_lock);
1395
1396 return rc;
1397}
1398
1399static int efx_ptp_restart(struct efx_nic *efx)
1400{
1401 if (efx->ptp_data && efx->ptp_data->enabled)
1402 return efx_ptp_start(efx);
1403 return 0;
1404}
1405
1406static void efx_ptp_pps_worker(struct work_struct *work)
1407{
1408 struct efx_ptp_data *ptp =
1409 container_of(work, struct efx_ptp_data, pps_work);
1410 struct efx_nic *efx = ptp->efx;
1411 struct ptp_clock_event ptp_evt;
1412
1413 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1414 return;
1415
1416 ptp_evt.type = PTP_CLOCK_PPSUSR;
1417 ptp_evt.pps_times = ptp->host_time_pps;
1418 ptp_clock_event(ptp->phc_clock, &ptp_evt);
1419}
1420
1421static void efx_ptp_worker(struct work_struct *work)
1422{
1423 struct efx_ptp_data *ptp_data =
1424 container_of(work, struct efx_ptp_data, work);
1425 struct efx_nic *efx = ptp_data->efx;
1426 struct sk_buff *skb;
1427 struct sk_buff_head tempq;
1428
1429 if (ptp_data->reset_required) {
1430 efx_ptp_stop(efx);
1431 efx_ptp_start(efx);
1432 return;
1433 }
1434
1435 efx_ptp_drop_time_expired_events(efx);
1436
1437 __skb_queue_head_init(&tempq);
1438 efx_ptp_process_events(efx, &tempq);
1439
1440 while ((skb = skb_dequeue(&ptp_data->txq)))
1441 ptp_data->xmit_skb(efx, skb);
1442
1443 while ((skb = __skb_dequeue(&tempq)))
1444 efx_ptp_process_rx(efx, skb);
1445}
1446
1447static const struct ptp_clock_info efx_phc_clock_info = {
1448 .owner = THIS_MODULE,
1449 .name = "sfc",
1450 .max_adj = MAX_PPB,
1451 .n_alarm = 0,
1452 .n_ext_ts = 0,
1453 .n_per_out = 0,
1454 .n_pins = 0,
1455 .pps = 1,
1456 .adjfreq = efx_phc_adjfreq,
1457 .adjtime = efx_phc_adjtime,
1458 .gettime64 = efx_phc_gettime,
1459 .settime64 = efx_phc_settime,
1460 .enable = efx_phc_enable,
1461};
1462
1463/* Initialise PTP state. */
1464int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1465{
1466 struct efx_ptp_data *ptp;
1467 int rc = 0;
1468 unsigned int pos;
1469
1470 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1471 efx->ptp_data = ptp;
1472 if (!efx->ptp_data)
1473 return -ENOMEM;
1474
1475 ptp->efx = efx;
1476 ptp->channel = channel;
1477 ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1478
1479 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1480 if (rc != 0)
1481 goto fail1;
1482
1483 skb_queue_head_init(&ptp->rxq);
1484 skb_queue_head_init(&ptp->txq);
1485 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1486 if (!ptp->workwq) {
1487 rc = -ENOMEM;
1488 goto fail2;
1489 }
1490
1491 if (efx_ptp_use_mac_tx_timestamps(efx)) {
1492 ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1493 /* Request sync events on this channel. */
1494 channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1495 } else {
1496 ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1497 }
1498
1499 INIT_WORK(&ptp->work, efx_ptp_worker);
1500 ptp->config.flags = 0;
1501 ptp->config.tx_type = HWTSTAMP_TX_OFF;
1502 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1503 INIT_LIST_HEAD(&ptp->evt_list);
1504 INIT_LIST_HEAD(&ptp->evt_free_list);
1505 spin_lock_init(&ptp->evt_lock);
1506 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1507 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1508
1509 /* Get the NIC PTP attributes and set up time conversions */
1510 rc = efx_ptp_get_attributes(efx);
1511 if (rc < 0)
1512 goto fail3;
1513
1514 /* Get the timestamp corrections */
1515 rc = efx_ptp_get_timestamp_corrections(efx);
1516 if (rc < 0)
1517 goto fail3;
1518
1519 if (efx->mcdi->fn_flags &
1520 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1521 ptp->phc_clock_info = efx_phc_clock_info;
1522 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1523 &efx->pci_dev->dev);
1524 if (IS_ERR(ptp->phc_clock)) {
1525 rc = PTR_ERR(ptp->phc_clock);
1526 goto fail3;
1527 } else if (ptp->phc_clock) {
1528 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1529 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1530 if (!ptp->pps_workwq) {
1531 rc = -ENOMEM;
1532 goto fail4;
1533 }
1534 }
1535 }
1536 ptp->nic_ts_enabled = false;
1537
1538 return 0;
1539fail4:
1540 ptp_clock_unregister(efx->ptp_data->phc_clock);
1541
1542fail3:
1543 destroy_workqueue(efx->ptp_data->workwq);
1544
1545fail2:
1546 efx_nic_free_buffer(efx, &ptp->start);
1547
1548fail1:
1549 kfree(efx->ptp_data);
1550 efx->ptp_data = NULL;
1551
1552 return rc;
1553}
1554
1555/* Initialise PTP channel.
1556 *
1557 * Setting core_index to zero causes the queue to be initialised and doesn't
1558 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1559 */
1560static int efx_ptp_probe_channel(struct efx_channel *channel)
1561{
1562 struct efx_nic *efx = channel->efx;
1563 int rc;
1564
1565 channel->irq_moderation_us = 0;
1566 channel->rx_queue.core_index = 0;
1567
1568 rc = efx_ptp_probe(efx, channel);
1569 /* Failure to probe PTP is not fatal; this channel will just not be
1570 * used for anything.
1571 * In the case of EPERM, efx_ptp_probe will print its own message (in
1572 * efx_ptp_get_attributes()), so we don't need to.
1573 */
1574 if (rc && rc != -EPERM)
1575 netif_warn(efx, drv, efx->net_dev,
1576 "Failed to probe PTP, rc=%d\n", rc);
1577 return 0;
1578}
1579
1580void efx_ptp_remove(struct efx_nic *efx)
1581{
1582 if (!efx->ptp_data)
1583 return;
1584
1585 (void)efx_ptp_disable(efx);
1586
1587 cancel_work_sync(&efx->ptp_data->work);
1588 if (efx->ptp_data->pps_workwq)
1589 cancel_work_sync(&efx->ptp_data->pps_work);
1590
1591 skb_queue_purge(&efx->ptp_data->rxq);
1592 skb_queue_purge(&efx->ptp_data->txq);
1593
1594 if (efx->ptp_data->phc_clock) {
1595 destroy_workqueue(efx->ptp_data->pps_workwq);
1596 ptp_clock_unregister(efx->ptp_data->phc_clock);
1597 }
1598
1599 destroy_workqueue(efx->ptp_data->workwq);
1600
1601 efx_nic_free_buffer(efx, &efx->ptp_data->start);
1602 kfree(efx->ptp_data);
1603 efx->ptp_data = NULL;
1604}
1605
1606static void efx_ptp_remove_channel(struct efx_channel *channel)
1607{
1608 efx_ptp_remove(channel->efx);
1609}
1610
1611static void efx_ptp_get_channel_name(struct efx_channel *channel,
1612 char *buf, size_t len)
1613{
1614 snprintf(buf, len, "%s-ptp", channel->efx->name);
1615}
1616
1617/* Determine whether this packet should be processed by the PTP module
1618 * or transmitted conventionally.
1619 */
1620bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1621{
1622 return efx->ptp_data &&
1623 efx->ptp_data->enabled &&
1624 skb->len >= PTP_MIN_LENGTH &&
1625 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1626 likely(skb->protocol == htons(ETH_P_IP)) &&
1627 skb_transport_header_was_set(skb) &&
1628 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1629 ip_hdr(skb)->protocol == IPPROTO_UDP &&
1630 skb_headlen(skb) >=
1631 skb_transport_offset(skb) + sizeof(struct udphdr) &&
1632 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1633}
1634
1635/* Receive a PTP packet. Packets are queued until the arrival of
1636 * the receive timestamp from the MC - this will probably occur after the
1637 * packet arrival because of the processing in the MC.
1638 */
1639static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1640{
1641 struct efx_nic *efx = channel->efx;
1642 struct efx_ptp_data *ptp = efx->ptp_data;
1643 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1644 u8 *match_data_012, *match_data_345;
1645 unsigned int version;
1646 u8 *data;
1647
1648 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1649
1650 /* Correct version? */
1651 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1652 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1653 return false;
1654 }
1655 data = skb->data;
1656 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1657 if (version != PTP_VERSION_V1) {
1658 return false;
1659 }
1660
1661 /* PTP V1 uses all six bytes of the UUID to match the packet
1662 * to the timestamp
1663 */
1664 match_data_012 = data + PTP_V1_UUID_OFFSET;
1665 match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1666 } else {
1667 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1668 return false;
1669 }
1670 data = skb->data;
1671 version = data[PTP_V2_VERSION_OFFSET];
1672 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1673 return false;
1674 }
1675
1676 /* The original V2 implementation uses bytes 2-7 of
1677 * the UUID to match the packet to the timestamp. This
1678 * discards two of the bytes of the MAC address used
1679 * to create the UUID (SF bug 33070). The PTP V2
1680 * enhanced mode fixes this issue and uses bytes 0-2
1681 * and byte 5-7 of the UUID.
1682 */
1683 match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1684 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1685 match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1686 } else {
1687 match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1688 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1689 }
1690 }
1691
1692 /* Does this packet require timestamping? */
1693 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1694 match->state = PTP_PACKET_STATE_UNMATCHED;
1695
1696 /* We expect the sequence number to be in the same position in
1697 * the packet for PTP V1 and V2
1698 */
1699 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1700 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1701
1702 /* Extract UUID/Sequence information */
1703 match->words[0] = (match_data_012[0] |
1704 (match_data_012[1] << 8) |
1705 (match_data_012[2] << 16) |
1706 (match_data_345[0] << 24));
1707 match->words[1] = (match_data_345[1] |
1708 (match_data_345[2] << 8) |
1709 (data[PTP_V1_SEQUENCE_OFFSET +
1710 PTP_V1_SEQUENCE_LENGTH - 1] <<
1711 16));
1712 } else {
1713 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1714 }
1715
1716 skb_queue_tail(&ptp->rxq, skb);
1717 queue_work(ptp->workwq, &ptp->work);
1718
1719 return true;
1720}
1721
1722/* Transmit a PTP packet. This has to be transmitted by the MC
1723 * itself, through an MCDI call. MCDI calls aren't permitted
1724 * in the transmit path so defer the actual transmission to a suitable worker.
1725 */
1726int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1727{
1728 struct efx_ptp_data *ptp = efx->ptp_data;
1729
1730 skb_queue_tail(&ptp->txq, skb);
1731
1732 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1733 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1734 efx_xmit_hwtstamp_pending(skb);
1735 queue_work(ptp->workwq, &ptp->work);
1736
1737 return NETDEV_TX_OK;
1738}
1739
1740int efx_ptp_get_mode(struct efx_nic *efx)
1741{
1742 return efx->ptp_data->mode;
1743}
1744
1745int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1746 unsigned int new_mode)
1747{
1748 if ((enable_wanted != efx->ptp_data->enabled) ||
1749 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1750 int rc = 0;
1751
1752 if (enable_wanted) {
1753 /* Change of mode requires disable */
1754 if (efx->ptp_data->enabled &&
1755 (efx->ptp_data->mode != new_mode)) {
1756 efx->ptp_data->enabled = false;
1757 rc = efx_ptp_stop(efx);
1758 if (rc != 0)
1759 return rc;
1760 }
1761
1762 /* Set new operating mode and establish
1763 * baseline synchronisation, which must
1764 * succeed.
1765 */
1766 efx->ptp_data->mode = new_mode;
1767 if (netif_running(efx->net_dev))
1768 rc = efx_ptp_start(efx);
1769 if (rc == 0) {
1770 rc = efx_ptp_synchronize(efx,
1771 PTP_SYNC_ATTEMPTS * 2);
1772 if (rc != 0)
1773 efx_ptp_stop(efx);
1774 }
1775 } else {
1776 rc = efx_ptp_stop(efx);
1777 }
1778
1779 if (rc != 0)
1780 return rc;
1781
1782 efx->ptp_data->enabled = enable_wanted;
1783 }
1784
1785 return 0;
1786}
1787
1788static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1789{
1790 int rc;
1791
1792 if (init->flags)
1793 return -EINVAL;
1794
1795 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1796 (init->tx_type != HWTSTAMP_TX_ON))
1797 return -ERANGE;
1798
1799 rc = efx->type->ptp_set_ts_config(efx, init);
1800 if (rc)
1801 return rc;
1802
1803 efx->ptp_data->config = *init;
1804 return 0;
1805}
1806
1807void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1808{
1809 struct efx_ptp_data *ptp = efx->ptp_data;
1810 struct efx_nic *primary = efx->primary;
1811
1812 ASSERT_RTNL();
1813
1814 if (!ptp)
1815 return;
1816
1817 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1818 SOF_TIMESTAMPING_RX_HARDWARE |
1819 SOF_TIMESTAMPING_RAW_HARDWARE);
1820 /* Check licensed features. If we don't have the license for TX
1821 * timestamps, the NIC will not support them.
1822 */
1823 if (efx_ptp_use_mac_tx_timestamps(efx)) {
1824 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1825
1826 if (!(nic_data->licensed_features &
1827 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1828 ts_info->so_timestamping &=
1829 ~SOF_TIMESTAMPING_TX_HARDWARE;
1830 }
1831 if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1832 ts_info->phc_index =
1833 ptp_clock_index(primary->ptp_data->phc_clock);
1834 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1835 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1836}
1837
1838int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1839{
1840 struct hwtstamp_config config;
1841 int rc;
1842
1843 /* Not a PTP enabled port */
1844 if (!efx->ptp_data)
1845 return -EOPNOTSUPP;
1846
1847 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1848 return -EFAULT;
1849
1850 rc = efx_ptp_ts_init(efx, &config);
1851 if (rc != 0)
1852 return rc;
1853
1854 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1855 ? -EFAULT : 0;
1856}
1857
1858int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1859{
1860 if (!efx->ptp_data)
1861 return -EOPNOTSUPP;
1862
1863 return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1864 sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1865}
1866
1867static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1868{
1869 struct efx_ptp_data *ptp = efx->ptp_data;
1870
1871 netif_err(efx, hw, efx->net_dev,
1872 "PTP unexpected event length: got %d expected %d\n",
1873 ptp->evt_frag_idx, expected_frag_len);
1874 ptp->reset_required = true;
1875 queue_work(ptp->workwq, &ptp->work);
1876}
1877
1878/* Process a completed receive event. Put it on the event queue and
1879 * start worker thread. This is required because event and their
1880 * correspoding packets may come in either order.
1881 */
1882static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1883{
1884 struct efx_ptp_event_rx *evt = NULL;
1885
1886 if (WARN_ON_ONCE(ptp->rx_ts_inline))
1887 return;
1888
1889 if (ptp->evt_frag_idx != 3) {
1890 ptp_event_failure(efx, 3);
1891 return;
1892 }
1893
1894 spin_lock_bh(&ptp->evt_lock);
1895 if (!list_empty(&ptp->evt_free_list)) {
1896 evt = list_first_entry(&ptp->evt_free_list,
1897 struct efx_ptp_event_rx, link);
1898 list_del(&evt->link);
1899
1900 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1901 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1902 MCDI_EVENT_SRC) |
1903 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1904 MCDI_EVENT_SRC) << 8) |
1905 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1906 MCDI_EVENT_SRC) << 16));
1907 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1908 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1909 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1910 ptp->ts_corrections.ptp_rx);
1911 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1912 list_add_tail(&evt->link, &ptp->evt_list);
1913
1914 queue_work(ptp->workwq, &ptp->work);
1915 } else if (net_ratelimit()) {
1916 /* Log a rate-limited warning message. */
1917 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1918 }
1919 spin_unlock_bh(&ptp->evt_lock);
1920}
1921
1922static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1923{
1924 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1925 if (ptp->evt_frag_idx != 1) {
1926 ptp_event_failure(efx, 1);
1927 return;
1928 }
1929
1930 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1931}
1932
1933static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1934{
1935 if (ptp->nic_ts_enabled)
1936 queue_work(ptp->pps_workwq, &ptp->pps_work);
1937}
1938
1939void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1940{
1941 struct efx_ptp_data *ptp = efx->ptp_data;
1942 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1943
1944 if (!ptp) {
1945 if (!efx->ptp_warned) {
1946 netif_warn(efx, drv, efx->net_dev,
1947 "Received PTP event but PTP not set up\n");
1948 efx->ptp_warned = true;
1949 }
1950 return;
1951 }
1952
1953 if (!ptp->enabled)
1954 return;
1955
1956 if (ptp->evt_frag_idx == 0) {
1957 ptp->evt_code = code;
1958 } else if (ptp->evt_code != code) {
1959 netif_err(efx, hw, efx->net_dev,
1960 "PTP out of sequence event %d\n", code);
1961 ptp->evt_frag_idx = 0;
1962 }
1963
1964 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1965 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1966 /* Process resulting event */
1967 switch (code) {
1968 case MCDI_EVENT_CODE_PTP_RX:
1969 ptp_event_rx(efx, ptp);
1970 break;
1971 case MCDI_EVENT_CODE_PTP_FAULT:
1972 ptp_event_fault(efx, ptp);
1973 break;
1974 case MCDI_EVENT_CODE_PTP_PPS:
1975 ptp_event_pps(efx, ptp);
1976 break;
1977 default:
1978 netif_err(efx, hw, efx->net_dev,
1979 "PTP unknown event %d\n", code);
1980 break;
1981 }
1982 ptp->evt_frag_idx = 0;
1983 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1984 netif_err(efx, hw, efx->net_dev,
1985 "PTP too many event fragments\n");
1986 ptp->evt_frag_idx = 0;
1987 }
1988}
1989
1990void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1991{
1992 struct efx_nic *efx = channel->efx;
1993 struct efx_ptp_data *ptp = efx->ptp_data;
1994
1995 /* When extracting the sync timestamp minor value, we should discard
1996 * the least significant two bits. These are not required in order
1997 * to reconstruct full-range timestamps and they are optionally used
1998 * to report status depending on the options supplied when subscribing
1999 * for sync events.
2000 */
2001 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
2002 channel->sync_timestamp_minor =
2003 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
2004 << ptp->nic_time.sync_event_minor_shift;
2005
2006 /* if sync events have been disabled then we want to silently ignore
2007 * this event, so throw away result.
2008 */
2009 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
2010 SYNC_EVENTS_VALID);
2011}
2012
2013static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
2014{
2015#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2016 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
2017#else
2018 const u8 *data = eh + efx->rx_packet_ts_offset;
2019 return (u32)data[0] |
2020 (u32)data[1] << 8 |
2021 (u32)data[2] << 16 |
2022 (u32)data[3] << 24;
2023#endif
2024}
2025
2026void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2027 struct sk_buff *skb)
2028{
2029 struct efx_nic *efx = channel->efx;
2030 struct efx_ptp_data *ptp = efx->ptp_data;
2031 u32 pkt_timestamp_major, pkt_timestamp_minor;
2032 u32 diff, carry;
2033 struct skb_shared_hwtstamps *timestamps;
2034
2035 if (channel->sync_events_state != SYNC_EVENTS_VALID)
2036 return;
2037
2038 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2039
2040 /* get the difference between the packet and sync timestamps,
2041 * modulo one second
2042 */
2043 diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2044 if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2045 diff += ptp->nic_time.minor_max;
2046
2047 /* do we roll over a second boundary and need to carry the one? */
2048 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2049 1 : 0;
2050
2051 if (diff <= ptp->nic_time.sync_event_diff_max) {
2052 /* packet is ahead of the sync event by a quarter of a second or
2053 * less (allowing for fuzz)
2054 */
2055 pkt_timestamp_major = channel->sync_timestamp_major + carry;
2056 } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2057 /* packet is behind the sync event but within the fuzz factor.
2058 * This means the RX packet and sync event crossed as they were
2059 * placed on the event queue, which can sometimes happen.
2060 */
2061 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2062 } else {
2063 /* it's outside tolerance in both directions. this might be
2064 * indicative of us missing sync events for some reason, so
2065 * we'll call it an error rather than risk giving a bogus
2066 * timestamp.
2067 */
2068 netif_vdbg(efx, drv, efx->net_dev,
2069 "packet timestamp %x too far from sync event %x:%x\n",
2070 pkt_timestamp_minor, channel->sync_timestamp_major,
2071 channel->sync_timestamp_minor);
2072 return;
2073 }
2074
2075 /* attach the timestamps to the skb */
2076 timestamps = skb_hwtstamps(skb);
2077 timestamps->hwtstamp =
2078 ptp->nic_to_kernel_time(pkt_timestamp_major,
2079 pkt_timestamp_minor,
2080 ptp->ts_corrections.general_rx);
2081}
2082
2083static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2084{
2085 struct efx_ptp_data *ptp_data = container_of(ptp,
2086 struct efx_ptp_data,
2087 phc_clock_info);
2088 struct efx_nic *efx = ptp_data->efx;
2089 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2090 s64 adjustment_ns;
2091 int rc;
2092
2093 if (delta > MAX_PPB)
2094 delta = MAX_PPB;
2095 else if (delta < -MAX_PPB)
2096 delta = -MAX_PPB;
2097
2098 /* Convert ppb to fixed point ns taking care to round correctly. */
2099 adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2100 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2101 ptp_data->adjfreq_ppb_shift;
2102
2103 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2104 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2105 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2106 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2107 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2108 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2109 NULL, 0, NULL);
2110 if (rc != 0)
2111 return rc;
2112
2113 ptp_data->current_adjfreq = adjustment_ns;
2114 return 0;
2115}
2116
2117static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2118{
2119 u32 nic_major, nic_minor;
2120 struct efx_ptp_data *ptp_data = container_of(ptp,
2121 struct efx_ptp_data,
2122 phc_clock_info);
2123 struct efx_nic *efx = ptp_data->efx;
2124 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2125
2126 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2127
2128 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2129 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2130 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2131 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2132 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2133 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2134 NULL, 0, NULL);
2135}
2136
2137static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2138{
2139 struct efx_ptp_data *ptp_data = container_of(ptp,
2140 struct efx_ptp_data,
2141 phc_clock_info);
2142 struct efx_nic *efx = ptp_data->efx;
2143 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2144 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2145 int rc;
2146 ktime_t kt;
2147
2148 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2149 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2150
2151 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2152 outbuf, sizeof(outbuf), NULL);
2153 if (rc != 0)
2154 return rc;
2155
2156 kt = ptp_data->nic_to_kernel_time(
2157 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2158 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2159 *ts = ktime_to_timespec64(kt);
2160 return 0;
2161}
2162
2163static int efx_phc_settime(struct ptp_clock_info *ptp,
2164 const struct timespec64 *e_ts)
2165{
2166 /* Get the current NIC time, efx_phc_gettime.
2167 * Subtract from the desired time to get the offset
2168 * call efx_phc_adjtime with the offset
2169 */
2170 int rc;
2171 struct timespec64 time_now;
2172 struct timespec64 delta;
2173
2174 rc = efx_phc_gettime(ptp, &time_now);
2175 if (rc != 0)
2176 return rc;
2177
2178 delta = timespec64_sub(*e_ts, time_now);
2179
2180 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2181 if (rc != 0)
2182 return rc;
2183
2184 return 0;
2185}
2186
2187static int efx_phc_enable(struct ptp_clock_info *ptp,
2188 struct ptp_clock_request *request,
2189 int enable)
2190{
2191 struct efx_ptp_data *ptp_data = container_of(ptp,
2192 struct efx_ptp_data,
2193 phc_clock_info);
2194 if (request->type != PTP_CLK_REQ_PPS)
2195 return -EOPNOTSUPP;
2196
2197 ptp_data->nic_ts_enabled = !!enable;
2198 return 0;
2199}
2200
2201static const struct efx_channel_type efx_ptp_channel_type = {
2202 .handle_no_channel = efx_ptp_handle_no_channel,
2203 .pre_probe = efx_ptp_probe_channel,
2204 .post_remove = efx_ptp_remove_channel,
2205 .get_name = efx_ptp_get_channel_name,
2206 /* no copy operation; there is no need to reallocate this channel */
2207 .receive_skb = efx_ptp_rx,
2208 .want_txqs = efx_ptp_want_txqs,
2209 .keep_eventq = false,
2210};
2211
2212void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2213{
2214 /* Check whether PTP is implemented on this NIC. The DISABLE
2215 * operation will succeed if and only if it is implemented.
2216 */
2217 if (efx_ptp_disable(efx) == 0)
2218 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2219 &efx_ptp_channel_type;
2220}
2221
2222void efx_ptp_start_datapath(struct efx_nic *efx)
2223{
2224 if (efx_ptp_restart(efx))
2225 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2226 /* re-enable timestamping if it was previously enabled */
2227 if (efx->type->ptp_set_ts_sync_events)
2228 efx->type->ptp_set_ts_sync_events(efx, true, true);
2229}
2230
2231void efx_ptp_stop_datapath(struct efx_nic *efx)
2232{
2233 /* temporarily disable timestamping */
2234 if (efx->type->ptp_set_ts_sync_events)
2235 efx->type->ptp_set_ts_sync_events(efx, false, true);
2236 efx_ptp_stop(efx);
2237}