blob: f8d1742e09f066f82c4d718085053d0489068d71 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/delay.h>
5#include <linux/gpio/consumer.h>
6#include <linux/hwmon.h>
7#include <linux/i2c.h>
8#include <linux/interrupt.h>
9#include <linux/jiffies.h>
10#include <linux/mdio/mdio-i2c.h>
11#include <linux/module.h>
12#include <linux/mutex.h>
13#include <linux/of.h>
14#include <linux/phy.h>
15#include <linux/platform_device.h>
16#include <linux/rtnetlink.h>
17#include <linux/slab.h>
18#include <linux/workqueue.h>
19
20#include "sfp.h"
21#include "swphy.h"
22
23enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_ATTACH,
40 SFP_E_DEV_DETACH,
41 SFP_E_DEV_DOWN,
42 SFP_E_DEV_UP,
43 SFP_E_TX_FAULT,
44 SFP_E_TX_CLEAR,
45 SFP_E_LOS_HIGH,
46 SFP_E_LOS_LOW,
47 SFP_E_TIMEOUT,
48
49 SFP_MOD_EMPTY = 0,
50 SFP_MOD_ERROR,
51 SFP_MOD_PROBE,
52 SFP_MOD_WAITDEV,
53 SFP_MOD_HPOWER,
54 SFP_MOD_WAITPWR,
55 SFP_MOD_PRESENT,
56
57 SFP_DEV_DETACHED = 0,
58 SFP_DEV_DOWN,
59 SFP_DEV_UP,
60
61 SFP_S_DOWN = 0,
62 SFP_S_FAIL,
63 SFP_S_WAIT,
64 SFP_S_INIT,
65 SFP_S_INIT_PHY,
66 SFP_S_INIT_TX_FAULT,
67 SFP_S_WAIT_LOS,
68 SFP_S_LINK_UP,
69 SFP_S_TX_FAULT,
70 SFP_S_REINIT,
71 SFP_S_TX_DISABLE,
72};
73
74static const char * const mod_state_strings[] = {
75 [SFP_MOD_EMPTY] = "empty",
76 [SFP_MOD_ERROR] = "error",
77 [SFP_MOD_PROBE] = "probe",
78 [SFP_MOD_WAITDEV] = "waitdev",
79 [SFP_MOD_HPOWER] = "hpower",
80 [SFP_MOD_WAITPWR] = "waitpwr",
81 [SFP_MOD_PRESENT] = "present",
82};
83
84static const char *mod_state_to_str(unsigned short mod_state)
85{
86 if (mod_state >= ARRAY_SIZE(mod_state_strings))
87 return "Unknown module state";
88 return mod_state_strings[mod_state];
89}
90
91static const char * const dev_state_strings[] = {
92 [SFP_DEV_DETACHED] = "detached",
93 [SFP_DEV_DOWN] = "down",
94 [SFP_DEV_UP] = "up",
95};
96
97static const char *dev_state_to_str(unsigned short dev_state)
98{
99 if (dev_state >= ARRAY_SIZE(dev_state_strings))
100 return "Unknown device state";
101 return dev_state_strings[dev_state];
102}
103
104static const char * const event_strings[] = {
105 [SFP_E_INSERT] = "insert",
106 [SFP_E_REMOVE] = "remove",
107 [SFP_E_DEV_ATTACH] = "dev_attach",
108 [SFP_E_DEV_DETACH] = "dev_detach",
109 [SFP_E_DEV_DOWN] = "dev_down",
110 [SFP_E_DEV_UP] = "dev_up",
111 [SFP_E_TX_FAULT] = "tx_fault",
112 [SFP_E_TX_CLEAR] = "tx_clear",
113 [SFP_E_LOS_HIGH] = "los_high",
114 [SFP_E_LOS_LOW] = "los_low",
115 [SFP_E_TIMEOUT] = "timeout",
116};
117
118static const char *event_to_str(unsigned short event)
119{
120 if (event >= ARRAY_SIZE(event_strings))
121 return "Unknown event";
122 return event_strings[event];
123}
124
125static const char * const sm_state_strings[] = {
126 [SFP_S_DOWN] = "down",
127 [SFP_S_FAIL] = "fail",
128 [SFP_S_WAIT] = "wait",
129 [SFP_S_INIT] = "init",
130 [SFP_S_INIT_PHY] = "init_phy",
131 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132 [SFP_S_WAIT_LOS] = "wait_los",
133 [SFP_S_LINK_UP] = "link_up",
134 [SFP_S_TX_FAULT] = "tx_fault",
135 [SFP_S_REINIT] = "reinit",
136 [SFP_S_TX_DISABLE] = "tx_disable",
137};
138
139static const char *sm_state_to_str(unsigned short sm_state)
140{
141 if (sm_state >= ARRAY_SIZE(sm_state_strings))
142 return "Unknown state";
143 return sm_state_strings[sm_state];
144}
145
146static const char *gpio_of_names[] = {
147 "mod-def0",
148 "los",
149 "tx-fault",
150 "tx-disable",
151 "rate-select0",
152};
153
154static const enum gpiod_flags gpio_flags[] = {
155 GPIOD_IN,
156 GPIOD_IN,
157 GPIOD_IN,
158 GPIOD_ASIS,
159 GPIOD_ASIS,
160};
161
162/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163 * non-cooled module to initialise its laser safety circuitry. We wait
164 * an initial T_WAIT period before we check the tx fault to give any PHY
165 * on board (for a copper SFP) time to initialise.
166 */
167#define T_WAIT msecs_to_jiffies(50)
168#define T_START_UP msecs_to_jiffies(300)
169#define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
170
171/* t_reset is the time required to assert the TX_DISABLE signal to reset
172 * an indicated TX_FAULT.
173 */
174#define T_RESET_US 10
175#define T_FAULT_RECOVER msecs_to_jiffies(1000)
176
177/* N_FAULT_INIT is the number of recovery attempts at module initialisation
178 * time. If the TX_FAULT signal is not deasserted after this number of
179 * attempts at clearing it, we decide that the module is faulty.
180 * N_FAULT is the same but after the module has initialised.
181 */
182#define N_FAULT_INIT 5
183#define N_FAULT 5
184
185/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186 * R_PHY_RETRY is the number of attempts.
187 */
188#define T_PHY_RETRY msecs_to_jiffies(50)
189#define R_PHY_RETRY 12
190
191/* SFP module presence detection is poor: the three MOD DEF signals are
192 * the same length on the PCB, which means it's possible for MOD DEF 0 to
193 * connect before the I2C bus on MOD DEF 1/2.
194 *
195 * The SFF-8472 specifies t_serial ("Time from power on until module is
196 * ready for data transmission over the two wire serial bus.") as 300ms.
197 */
198#define T_SERIAL msecs_to_jiffies(300)
199#define T_HPOWER_LEVEL msecs_to_jiffies(300)
200#define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
201#define R_PROBE_RETRY_INIT 10
202#define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
203#define R_PROBE_RETRY_SLOW 12
204
205/* SFP modules appear to always have their PHY configured for bus address
206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207 */
208#define SFP_PHY_ADDR 22
209
210struct sff_data {
211 unsigned int gpios;
212 bool (*module_supported)(const struct sfp_eeprom_id *id);
213};
214
215struct sfp {
216 struct device *dev;
217 struct i2c_adapter *i2c;
218 struct mii_bus *i2c_mii;
219 struct sfp_bus *sfp_bus;
220 struct phy_device *mod_phy;
221 const struct sff_data *type;
222 size_t i2c_block_size;
223 u32 max_power_mW;
224
225 unsigned int (*get_state)(struct sfp *);
226 void (*set_state)(struct sfp *, unsigned int);
227 int (*read)(struct sfp *, bool, u8, void *, size_t);
228 int (*write)(struct sfp *, bool, u8, void *, size_t);
229
230 struct gpio_desc *gpio[GPIO_MAX];
231 int gpio_irq[GPIO_MAX];
232
233 bool need_poll;
234
235 struct mutex st_mutex; /* Protects state */
236 unsigned int state_soft_mask;
237 unsigned int state;
238 struct delayed_work poll;
239 struct delayed_work timeout;
240 struct mutex sm_mutex; /* Protects state machine */
241 unsigned char sm_mod_state;
242 unsigned char sm_mod_tries_init;
243 unsigned char sm_mod_tries;
244 unsigned char sm_dev_state;
245 unsigned short sm_state;
246 unsigned char sm_fault_retries;
247 unsigned char sm_phy_retries;
248
249 struct sfp_eeprom_id id;
250 unsigned int module_power_mW;
251 unsigned int module_t_start_up;
252
253#if IS_ENABLED(CONFIG_HWMON)
254 struct sfp_diag diag;
255 struct delayed_work hwmon_probe;
256 unsigned int hwmon_tries;
257 struct device *hwmon_dev;
258 char *hwmon_name;
259#endif
260
261};
262
263static bool sff_module_supported(const struct sfp_eeprom_id *id)
264{
265 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
266 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
267}
268
269static const struct sff_data sff_data = {
270 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
271 .module_supported = sff_module_supported,
272};
273
274static bool sfp_module_supported(const struct sfp_eeprom_id *id)
275{
276 if (id->base.phys_id == SFF8024_ID_SFP &&
277 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
278 return true;
279
280 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
281 * phys id SFF instead of SFP. Therefore mark this module explicitly
282 * as supported based on vendor name and pn match.
283 */
284 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
285 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
286 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
287 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
288 return true;
289
290 return false;
291}
292
293static const struct sff_data sfp_data = {
294 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
295 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
296 .module_supported = sfp_module_supported,
297};
298
299static const struct of_device_id sfp_of_match[] = {
300 { .compatible = "sff,sff", .data = &sff_data, },
301 { .compatible = "sff,sfp", .data = &sfp_data, },
302 { },
303};
304MODULE_DEVICE_TABLE(of, sfp_of_match);
305
306static unsigned long poll_jiffies;
307
308static unsigned int sfp_gpio_get_state(struct sfp *sfp)
309{
310 unsigned int i, state, v;
311
312 for (i = state = 0; i < GPIO_MAX; i++) {
313 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
314 continue;
315
316 v = gpiod_get_value_cansleep(sfp->gpio[i]);
317 if (v)
318 state |= BIT(i);
319 }
320
321 return state;
322}
323
324static unsigned int sff_gpio_get_state(struct sfp *sfp)
325{
326 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
327}
328
329static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
330{
331 if (state & SFP_F_PRESENT) {
332 /* If the module is present, drive the signals */
333 if (sfp->gpio[GPIO_TX_DISABLE])
334 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
335 state & SFP_F_TX_DISABLE);
336 if (state & SFP_F_RATE_SELECT)
337 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
338 state & SFP_F_RATE_SELECT);
339 } else {
340 /* Otherwise, let them float to the pull-ups */
341 if (sfp->gpio[GPIO_TX_DISABLE])
342 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
343 if (state & SFP_F_RATE_SELECT)
344 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
345 }
346}
347
348static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
349 size_t len)
350{
351 struct i2c_msg msgs[2];
352 u8 bus_addr = a2 ? 0x51 : 0x50;
353 size_t block_size = sfp->i2c_block_size;
354 size_t this_len;
355 int ret;
356
357 msgs[0].addr = bus_addr;
358 msgs[0].flags = 0;
359 msgs[0].len = 1;
360 msgs[0].buf = &dev_addr;
361 msgs[1].addr = bus_addr;
362 msgs[1].flags = I2C_M_RD;
363 msgs[1].len = len;
364 msgs[1].buf = buf;
365
366 while (len) {
367 this_len = len;
368 if (this_len > block_size)
369 this_len = block_size;
370
371 msgs[1].len = this_len;
372
373 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
374 if (ret < 0)
375 return ret;
376
377 if (ret != ARRAY_SIZE(msgs))
378 break;
379
380 msgs[1].buf += this_len;
381 dev_addr += this_len;
382 len -= this_len;
383 }
384
385 return msgs[1].buf - (u8 *)buf;
386}
387
388static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
389 size_t len)
390{
391 struct i2c_msg msgs[1];
392 u8 bus_addr = a2 ? 0x51 : 0x50;
393 int ret;
394
395 msgs[0].addr = bus_addr;
396 msgs[0].flags = 0;
397 msgs[0].len = 1 + len;
398 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
399 if (!msgs[0].buf)
400 return -ENOMEM;
401
402 msgs[0].buf[0] = dev_addr;
403 memcpy(&msgs[0].buf[1], buf, len);
404
405 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
406
407 kfree(msgs[0].buf);
408
409 if (ret < 0)
410 return ret;
411
412 return ret == ARRAY_SIZE(msgs) ? len : 0;
413}
414
415static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
416{
417 struct mii_bus *i2c_mii;
418 int ret;
419
420 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
421 return -EINVAL;
422
423 sfp->i2c = i2c;
424 sfp->read = sfp_i2c_read;
425 sfp->write = sfp_i2c_write;
426
427 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
428 if (IS_ERR(i2c_mii))
429 return PTR_ERR(i2c_mii);
430
431 i2c_mii->name = "SFP I2C Bus";
432 i2c_mii->phy_mask = ~0;
433
434 ret = mdiobus_register(i2c_mii);
435 if (ret < 0) {
436 mdiobus_free(i2c_mii);
437 return ret;
438 }
439
440 sfp->i2c_mii = i2c_mii;
441
442 return 0;
443}
444
445/* Interface */
446static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
447{
448 return sfp->read(sfp, a2, addr, buf, len);
449}
450
451static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
452{
453 return sfp->write(sfp, a2, addr, buf, len);
454}
455
456static unsigned int sfp_soft_get_state(struct sfp *sfp)
457{
458 unsigned int state = 0;
459 u8 status;
460
461 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
462 sizeof(status)) {
463 if (status & SFP_STATUS_RX_LOS)
464 state |= SFP_F_LOS;
465 if (status & SFP_STATUS_TX_FAULT)
466 state |= SFP_F_TX_FAULT;
467 }
468
469 return state & sfp->state_soft_mask;
470}
471
472static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
473{
474 u8 status;
475
476 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
477 sizeof(status)) {
478 if (state & SFP_F_TX_DISABLE)
479 status |= SFP_STATUS_TX_DISABLE_FORCE;
480 else
481 status &= ~SFP_STATUS_TX_DISABLE_FORCE;
482
483 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
484 }
485}
486
487static void sfp_soft_start_poll(struct sfp *sfp)
488{
489 const struct sfp_eeprom_id *id = &sfp->id;
490
491 sfp->state_soft_mask = 0;
492 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
493 !sfp->gpio[GPIO_TX_DISABLE])
494 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
495 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
496 !sfp->gpio[GPIO_TX_FAULT])
497 sfp->state_soft_mask |= SFP_F_TX_FAULT;
498 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
499 !sfp->gpio[GPIO_LOS])
500 sfp->state_soft_mask |= SFP_F_LOS;
501
502 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
503 !sfp->need_poll)
504 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
505}
506
507static void sfp_soft_stop_poll(struct sfp *sfp)
508{
509 sfp->state_soft_mask = 0;
510}
511
512static unsigned int sfp_get_state(struct sfp *sfp)
513{
514 unsigned int state = sfp->get_state(sfp);
515
516 if (state & SFP_F_PRESENT &&
517 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
518 state |= sfp_soft_get_state(sfp);
519
520 return state;
521}
522
523static void sfp_set_state(struct sfp *sfp, unsigned int state)
524{
525 sfp->set_state(sfp, state);
526
527 if (state & SFP_F_PRESENT &&
528 sfp->state_soft_mask & SFP_F_TX_DISABLE)
529 sfp_soft_set_state(sfp, state);
530}
531
532static unsigned int sfp_check(void *buf, size_t len)
533{
534 u8 *p, check;
535
536 for (p = buf, check = 0; len; p++, len--)
537 check += *p;
538
539 return check;
540}
541
542/* hwmon */
543#if IS_ENABLED(CONFIG_HWMON)
544static umode_t sfp_hwmon_is_visible(const void *data,
545 enum hwmon_sensor_types type,
546 u32 attr, int channel)
547{
548 const struct sfp *sfp = data;
549
550 switch (type) {
551 case hwmon_temp:
552 switch (attr) {
553 case hwmon_temp_min_alarm:
554 case hwmon_temp_max_alarm:
555 case hwmon_temp_lcrit_alarm:
556 case hwmon_temp_crit_alarm:
557 case hwmon_temp_min:
558 case hwmon_temp_max:
559 case hwmon_temp_lcrit:
560 case hwmon_temp_crit:
561 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
562 return 0;
563 /* fall through */
564 case hwmon_temp_input:
565 case hwmon_temp_label:
566 return 0444;
567 default:
568 return 0;
569 }
570 case hwmon_in:
571 switch (attr) {
572 case hwmon_in_min_alarm:
573 case hwmon_in_max_alarm:
574 case hwmon_in_lcrit_alarm:
575 case hwmon_in_crit_alarm:
576 case hwmon_in_min:
577 case hwmon_in_max:
578 case hwmon_in_lcrit:
579 case hwmon_in_crit:
580 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
581 return 0;
582 /* fall through */
583 case hwmon_in_input:
584 case hwmon_in_label:
585 return 0444;
586 default:
587 return 0;
588 }
589 case hwmon_curr:
590 switch (attr) {
591 case hwmon_curr_min_alarm:
592 case hwmon_curr_max_alarm:
593 case hwmon_curr_lcrit_alarm:
594 case hwmon_curr_crit_alarm:
595 case hwmon_curr_min:
596 case hwmon_curr_max:
597 case hwmon_curr_lcrit:
598 case hwmon_curr_crit:
599 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
600 return 0;
601 /* fall through */
602 case hwmon_curr_input:
603 case hwmon_curr_label:
604 return 0444;
605 default:
606 return 0;
607 }
608 case hwmon_power:
609 /* External calibration of receive power requires
610 * floating point arithmetic. Doing that in the kernel
611 * is not easy, so just skip it. If the module does
612 * not require external calibration, we can however
613 * show receiver power, since FP is then not needed.
614 */
615 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
616 channel == 1)
617 return 0;
618 switch (attr) {
619 case hwmon_power_min_alarm:
620 case hwmon_power_max_alarm:
621 case hwmon_power_lcrit_alarm:
622 case hwmon_power_crit_alarm:
623 case hwmon_power_min:
624 case hwmon_power_max:
625 case hwmon_power_lcrit:
626 case hwmon_power_crit:
627 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
628 return 0;
629 /* fall through */
630 case hwmon_power_input:
631 case hwmon_power_label:
632 return 0444;
633 default:
634 return 0;
635 }
636 default:
637 return 0;
638 }
639}
640
641static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
642{
643 __be16 val;
644 int err;
645
646 err = sfp_read(sfp, true, reg, &val, sizeof(val));
647 if (err < 0)
648 return err;
649
650 *value = be16_to_cpu(val);
651
652 return 0;
653}
654
655static void sfp_hwmon_to_rx_power(long *value)
656{
657 *value = DIV_ROUND_CLOSEST(*value, 10);
658}
659
660static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
661 long *value)
662{
663 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
664 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
665}
666
667static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
668{
669 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
670 be16_to_cpu(sfp->diag.cal_t_offset), value);
671
672 if (*value >= 0x8000)
673 *value -= 0x10000;
674
675 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
676}
677
678static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
679{
680 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
681 be16_to_cpu(sfp->diag.cal_v_offset), value);
682
683 *value = DIV_ROUND_CLOSEST(*value, 10);
684}
685
686static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
687{
688 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
689 be16_to_cpu(sfp->diag.cal_txi_offset), value);
690
691 *value = DIV_ROUND_CLOSEST(*value, 500);
692}
693
694static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
695{
696 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
697 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
698
699 *value = DIV_ROUND_CLOSEST(*value, 10);
700}
701
702static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
703{
704 int err;
705
706 err = sfp_hwmon_read_sensor(sfp, reg, value);
707 if (err < 0)
708 return err;
709
710 sfp_hwmon_calibrate_temp(sfp, value);
711
712 return 0;
713}
714
715static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
716{
717 int err;
718
719 err = sfp_hwmon_read_sensor(sfp, reg, value);
720 if (err < 0)
721 return err;
722
723 sfp_hwmon_calibrate_vcc(sfp, value);
724
725 return 0;
726}
727
728static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
729{
730 int err;
731
732 err = sfp_hwmon_read_sensor(sfp, reg, value);
733 if (err < 0)
734 return err;
735
736 sfp_hwmon_calibrate_bias(sfp, value);
737
738 return 0;
739}
740
741static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
742{
743 int err;
744
745 err = sfp_hwmon_read_sensor(sfp, reg, value);
746 if (err < 0)
747 return err;
748
749 sfp_hwmon_calibrate_tx_power(sfp, value);
750
751 return 0;
752}
753
754static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
755{
756 int err;
757
758 err = sfp_hwmon_read_sensor(sfp, reg, value);
759 if (err < 0)
760 return err;
761
762 sfp_hwmon_to_rx_power(value);
763
764 return 0;
765}
766
767static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
768{
769 u8 status;
770 int err;
771
772 switch (attr) {
773 case hwmon_temp_input:
774 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
775
776 case hwmon_temp_lcrit:
777 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
778 sfp_hwmon_calibrate_temp(sfp, value);
779 return 0;
780
781 case hwmon_temp_min:
782 *value = be16_to_cpu(sfp->diag.temp_low_warn);
783 sfp_hwmon_calibrate_temp(sfp, value);
784 return 0;
785 case hwmon_temp_max:
786 *value = be16_to_cpu(sfp->diag.temp_high_warn);
787 sfp_hwmon_calibrate_temp(sfp, value);
788 return 0;
789
790 case hwmon_temp_crit:
791 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
792 sfp_hwmon_calibrate_temp(sfp, value);
793 return 0;
794
795 case hwmon_temp_lcrit_alarm:
796 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
797 if (err < 0)
798 return err;
799
800 *value = !!(status & SFP_ALARM0_TEMP_LOW);
801 return 0;
802
803 case hwmon_temp_min_alarm:
804 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
805 if (err < 0)
806 return err;
807
808 *value = !!(status & SFP_WARN0_TEMP_LOW);
809 return 0;
810
811 case hwmon_temp_max_alarm:
812 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
813 if (err < 0)
814 return err;
815
816 *value = !!(status & SFP_WARN0_TEMP_HIGH);
817 return 0;
818
819 case hwmon_temp_crit_alarm:
820 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
821 if (err < 0)
822 return err;
823
824 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
825 return 0;
826 default:
827 return -EOPNOTSUPP;
828 }
829
830 return -EOPNOTSUPP;
831}
832
833static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
834{
835 u8 status;
836 int err;
837
838 switch (attr) {
839 case hwmon_in_input:
840 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
841
842 case hwmon_in_lcrit:
843 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
844 sfp_hwmon_calibrate_vcc(sfp, value);
845 return 0;
846
847 case hwmon_in_min:
848 *value = be16_to_cpu(sfp->diag.volt_low_warn);
849 sfp_hwmon_calibrate_vcc(sfp, value);
850 return 0;
851
852 case hwmon_in_max:
853 *value = be16_to_cpu(sfp->diag.volt_high_warn);
854 sfp_hwmon_calibrate_vcc(sfp, value);
855 return 0;
856
857 case hwmon_in_crit:
858 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
859 sfp_hwmon_calibrate_vcc(sfp, value);
860 return 0;
861
862 case hwmon_in_lcrit_alarm:
863 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
864 if (err < 0)
865 return err;
866
867 *value = !!(status & SFP_ALARM0_VCC_LOW);
868 return 0;
869
870 case hwmon_in_min_alarm:
871 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
872 if (err < 0)
873 return err;
874
875 *value = !!(status & SFP_WARN0_VCC_LOW);
876 return 0;
877
878 case hwmon_in_max_alarm:
879 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
880 if (err < 0)
881 return err;
882
883 *value = !!(status & SFP_WARN0_VCC_HIGH);
884 return 0;
885
886 case hwmon_in_crit_alarm:
887 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
888 if (err < 0)
889 return err;
890
891 *value = !!(status & SFP_ALARM0_VCC_HIGH);
892 return 0;
893 default:
894 return -EOPNOTSUPP;
895 }
896
897 return -EOPNOTSUPP;
898}
899
900static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
901{
902 u8 status;
903 int err;
904
905 switch (attr) {
906 case hwmon_curr_input:
907 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
908
909 case hwmon_curr_lcrit:
910 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
911 sfp_hwmon_calibrate_bias(sfp, value);
912 return 0;
913
914 case hwmon_curr_min:
915 *value = be16_to_cpu(sfp->diag.bias_low_warn);
916 sfp_hwmon_calibrate_bias(sfp, value);
917 return 0;
918
919 case hwmon_curr_max:
920 *value = be16_to_cpu(sfp->diag.bias_high_warn);
921 sfp_hwmon_calibrate_bias(sfp, value);
922 return 0;
923
924 case hwmon_curr_crit:
925 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
926 sfp_hwmon_calibrate_bias(sfp, value);
927 return 0;
928
929 case hwmon_curr_lcrit_alarm:
930 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
931 if (err < 0)
932 return err;
933
934 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
935 return 0;
936
937 case hwmon_curr_min_alarm:
938 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
939 if (err < 0)
940 return err;
941
942 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
943 return 0;
944
945 case hwmon_curr_max_alarm:
946 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
947 if (err < 0)
948 return err;
949
950 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
951 return 0;
952
953 case hwmon_curr_crit_alarm:
954 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
955 if (err < 0)
956 return err;
957
958 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
959 return 0;
960 default:
961 return -EOPNOTSUPP;
962 }
963
964 return -EOPNOTSUPP;
965}
966
967static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
968{
969 u8 status;
970 int err;
971
972 switch (attr) {
973 case hwmon_power_input:
974 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
975
976 case hwmon_power_lcrit:
977 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
978 sfp_hwmon_calibrate_tx_power(sfp, value);
979 return 0;
980
981 case hwmon_power_min:
982 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
983 sfp_hwmon_calibrate_tx_power(sfp, value);
984 return 0;
985
986 case hwmon_power_max:
987 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
988 sfp_hwmon_calibrate_tx_power(sfp, value);
989 return 0;
990
991 case hwmon_power_crit:
992 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
993 sfp_hwmon_calibrate_tx_power(sfp, value);
994 return 0;
995
996 case hwmon_power_lcrit_alarm:
997 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
998 if (err < 0)
999 return err;
1000
1001 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1002 return 0;
1003
1004 case hwmon_power_min_alarm:
1005 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1006 if (err < 0)
1007 return err;
1008
1009 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1010 return 0;
1011
1012 case hwmon_power_max_alarm:
1013 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1014 if (err < 0)
1015 return err;
1016
1017 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1018 return 0;
1019
1020 case hwmon_power_crit_alarm:
1021 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1022 if (err < 0)
1023 return err;
1024
1025 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1026 return 0;
1027 default:
1028 return -EOPNOTSUPP;
1029 }
1030
1031 return -EOPNOTSUPP;
1032}
1033
1034static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1035{
1036 u8 status;
1037 int err;
1038
1039 switch (attr) {
1040 case hwmon_power_input:
1041 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1042
1043 case hwmon_power_lcrit:
1044 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1045 sfp_hwmon_to_rx_power(value);
1046 return 0;
1047
1048 case hwmon_power_min:
1049 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1050 sfp_hwmon_to_rx_power(value);
1051 return 0;
1052
1053 case hwmon_power_max:
1054 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1055 sfp_hwmon_to_rx_power(value);
1056 return 0;
1057
1058 case hwmon_power_crit:
1059 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1060 sfp_hwmon_to_rx_power(value);
1061 return 0;
1062
1063 case hwmon_power_lcrit_alarm:
1064 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1065 if (err < 0)
1066 return err;
1067
1068 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1069 return 0;
1070
1071 case hwmon_power_min_alarm:
1072 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1073 if (err < 0)
1074 return err;
1075
1076 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1077 return 0;
1078
1079 case hwmon_power_max_alarm:
1080 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1081 if (err < 0)
1082 return err;
1083
1084 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1085 return 0;
1086
1087 case hwmon_power_crit_alarm:
1088 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1089 if (err < 0)
1090 return err;
1091
1092 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1093 return 0;
1094 default:
1095 return -EOPNOTSUPP;
1096 }
1097
1098 return -EOPNOTSUPP;
1099}
1100
1101static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1102 u32 attr, int channel, long *value)
1103{
1104 struct sfp *sfp = dev_get_drvdata(dev);
1105
1106 switch (type) {
1107 case hwmon_temp:
1108 return sfp_hwmon_temp(sfp, attr, value);
1109 case hwmon_in:
1110 return sfp_hwmon_vcc(sfp, attr, value);
1111 case hwmon_curr:
1112 return sfp_hwmon_bias(sfp, attr, value);
1113 case hwmon_power:
1114 switch (channel) {
1115 case 0:
1116 return sfp_hwmon_tx_power(sfp, attr, value);
1117 case 1:
1118 return sfp_hwmon_rx_power(sfp, attr, value);
1119 default:
1120 return -EOPNOTSUPP;
1121 }
1122 default:
1123 return -EOPNOTSUPP;
1124 }
1125}
1126
1127static const char *const sfp_hwmon_power_labels[] = {
1128 "TX_power",
1129 "RX_power",
1130};
1131
1132static int sfp_hwmon_read_string(struct device *dev,
1133 enum hwmon_sensor_types type,
1134 u32 attr, int channel, const char **str)
1135{
1136 switch (type) {
1137 case hwmon_curr:
1138 switch (attr) {
1139 case hwmon_curr_label:
1140 *str = "bias";
1141 return 0;
1142 default:
1143 return -EOPNOTSUPP;
1144 }
1145 break;
1146 case hwmon_temp:
1147 switch (attr) {
1148 case hwmon_temp_label:
1149 *str = "temperature";
1150 return 0;
1151 default:
1152 return -EOPNOTSUPP;
1153 }
1154 break;
1155 case hwmon_in:
1156 switch (attr) {
1157 case hwmon_in_label:
1158 *str = "VCC";
1159 return 0;
1160 default:
1161 return -EOPNOTSUPP;
1162 }
1163 break;
1164 case hwmon_power:
1165 switch (attr) {
1166 case hwmon_power_label:
1167 *str = sfp_hwmon_power_labels[channel];
1168 return 0;
1169 default:
1170 return -EOPNOTSUPP;
1171 }
1172 break;
1173 default:
1174 return -EOPNOTSUPP;
1175 }
1176
1177 return -EOPNOTSUPP;
1178}
1179
1180static const struct hwmon_ops sfp_hwmon_ops = {
1181 .is_visible = sfp_hwmon_is_visible,
1182 .read = sfp_hwmon_read,
1183 .read_string = sfp_hwmon_read_string,
1184};
1185
1186static u32 sfp_hwmon_chip_config[] = {
1187 HWMON_C_REGISTER_TZ,
1188 0,
1189};
1190
1191static const struct hwmon_channel_info sfp_hwmon_chip = {
1192 .type = hwmon_chip,
1193 .config = sfp_hwmon_chip_config,
1194};
1195
1196static u32 sfp_hwmon_temp_config[] = {
1197 HWMON_T_INPUT |
1198 HWMON_T_MAX | HWMON_T_MIN |
1199 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1200 HWMON_T_CRIT | HWMON_T_LCRIT |
1201 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1202 HWMON_T_LABEL,
1203 0,
1204};
1205
1206static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1207 .type = hwmon_temp,
1208 .config = sfp_hwmon_temp_config,
1209};
1210
1211static u32 sfp_hwmon_vcc_config[] = {
1212 HWMON_I_INPUT |
1213 HWMON_I_MAX | HWMON_I_MIN |
1214 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1215 HWMON_I_CRIT | HWMON_I_LCRIT |
1216 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1217 HWMON_I_LABEL,
1218 0,
1219};
1220
1221static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1222 .type = hwmon_in,
1223 .config = sfp_hwmon_vcc_config,
1224};
1225
1226static u32 sfp_hwmon_bias_config[] = {
1227 HWMON_C_INPUT |
1228 HWMON_C_MAX | HWMON_C_MIN |
1229 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1230 HWMON_C_CRIT | HWMON_C_LCRIT |
1231 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1232 HWMON_C_LABEL,
1233 0,
1234};
1235
1236static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1237 .type = hwmon_curr,
1238 .config = sfp_hwmon_bias_config,
1239};
1240
1241static u32 sfp_hwmon_power_config[] = {
1242 /* Transmit power */
1243 HWMON_P_INPUT |
1244 HWMON_P_MAX | HWMON_P_MIN |
1245 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1246 HWMON_P_CRIT | HWMON_P_LCRIT |
1247 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1248 HWMON_P_LABEL,
1249 /* Receive power */
1250 HWMON_P_INPUT |
1251 HWMON_P_MAX | HWMON_P_MIN |
1252 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1253 HWMON_P_CRIT | HWMON_P_LCRIT |
1254 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1255 HWMON_P_LABEL,
1256 0,
1257};
1258
1259static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1260 .type = hwmon_power,
1261 .config = sfp_hwmon_power_config,
1262};
1263
1264static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1265 &sfp_hwmon_chip,
1266 &sfp_hwmon_vcc_channel_info,
1267 &sfp_hwmon_temp_channel_info,
1268 &sfp_hwmon_bias_channel_info,
1269 &sfp_hwmon_power_channel_info,
1270 NULL,
1271};
1272
1273static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1274 .ops = &sfp_hwmon_ops,
1275 .info = sfp_hwmon_info,
1276};
1277
1278static void sfp_hwmon_probe(struct work_struct *work)
1279{
1280 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1281 int err, i;
1282
1283 /* hwmon interface needs to access 16bit registers in atomic way to
1284 * guarantee coherency of the diagnostic monitoring data. If it is not
1285 * possible to guarantee coherency because EEPROM is broken in such way
1286 * that does not support atomic 16bit read operation then we have to
1287 * skip registration of hwmon device.
1288 */
1289 if (sfp->i2c_block_size < 2) {
1290 dev_info(sfp->dev,
1291 "skipping hwmon device registration due to broken EEPROM\n");
1292 dev_info(sfp->dev,
1293 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1294 return;
1295 }
1296
1297 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1298 if (err < 0) {
1299 if (sfp->hwmon_tries--) {
1300 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1301 T_PROBE_RETRY_SLOW);
1302 } else {
1303 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1304 }
1305 return;
1306 }
1307
1308 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1309 if (!sfp->hwmon_name) {
1310 dev_err(sfp->dev, "out of memory for hwmon name\n");
1311 return;
1312 }
1313
1314 for (i = 0; sfp->hwmon_name[i]; i++)
1315 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1316 sfp->hwmon_name[i] = '_';
1317
1318 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1319 sfp->hwmon_name, sfp,
1320 &sfp_hwmon_chip_info,
1321 NULL);
1322 if (IS_ERR(sfp->hwmon_dev))
1323 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1324 PTR_ERR(sfp->hwmon_dev));
1325}
1326
1327static int sfp_hwmon_insert(struct sfp *sfp)
1328{
1329 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1330 return 0;
1331
1332 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1333 return 0;
1334
1335 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1336 /* This driver in general does not support address
1337 * change.
1338 */
1339 return 0;
1340
1341 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1342 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1343
1344 return 0;
1345}
1346
1347static void sfp_hwmon_remove(struct sfp *sfp)
1348{
1349 cancel_delayed_work_sync(&sfp->hwmon_probe);
1350 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1351 hwmon_device_unregister(sfp->hwmon_dev);
1352 sfp->hwmon_dev = NULL;
1353 kfree(sfp->hwmon_name);
1354 }
1355}
1356
1357static int sfp_hwmon_init(struct sfp *sfp)
1358{
1359 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1360
1361 return 0;
1362}
1363
1364static void sfp_hwmon_exit(struct sfp *sfp)
1365{
1366 cancel_delayed_work_sync(&sfp->hwmon_probe);
1367}
1368#else
1369static int sfp_hwmon_insert(struct sfp *sfp)
1370{
1371 return 0;
1372}
1373
1374static void sfp_hwmon_remove(struct sfp *sfp)
1375{
1376}
1377
1378static int sfp_hwmon_init(struct sfp *sfp)
1379{
1380 return 0;
1381}
1382
1383static void sfp_hwmon_exit(struct sfp *sfp)
1384{
1385}
1386#endif
1387
1388/* Helpers */
1389static void sfp_module_tx_disable(struct sfp *sfp)
1390{
1391 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1392 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1393 sfp->state |= SFP_F_TX_DISABLE;
1394 sfp_set_state(sfp, sfp->state);
1395}
1396
1397static void sfp_module_tx_enable(struct sfp *sfp)
1398{
1399 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1400 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1401 sfp->state &= ~SFP_F_TX_DISABLE;
1402 sfp_set_state(sfp, sfp->state);
1403}
1404
1405static void sfp_module_tx_fault_reset(struct sfp *sfp)
1406{
1407 unsigned int state = sfp->state;
1408
1409 if (state & SFP_F_TX_DISABLE)
1410 return;
1411
1412 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1413
1414 udelay(T_RESET_US);
1415
1416 sfp_set_state(sfp, state);
1417}
1418
1419/* SFP state machine */
1420static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1421{
1422 if (timeout)
1423 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1424 timeout);
1425 else
1426 cancel_delayed_work(&sfp->timeout);
1427}
1428
1429static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1430 unsigned int timeout)
1431{
1432 sfp->sm_state = state;
1433 sfp_sm_set_timer(sfp, timeout);
1434}
1435
1436static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1437 unsigned int timeout)
1438{
1439 sfp->sm_mod_state = state;
1440 sfp_sm_set_timer(sfp, timeout);
1441}
1442
1443static void sfp_sm_phy_detach(struct sfp *sfp)
1444{
1445 sfp_remove_phy(sfp->sfp_bus);
1446 phy_device_remove(sfp->mod_phy);
1447 phy_device_free(sfp->mod_phy);
1448 sfp->mod_phy = NULL;
1449}
1450
1451static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1452{
1453 struct phy_device *phy;
1454 int err;
1455
1456 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1457 if (phy == ERR_PTR(-ENODEV))
1458 return PTR_ERR(phy);
1459 if (IS_ERR(phy)) {
1460 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1461 return PTR_ERR(phy);
1462 }
1463
1464 err = phy_device_register(phy);
1465 if (err) {
1466 phy_device_free(phy);
1467 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1468 return err;
1469 }
1470
1471 err = sfp_add_phy(sfp->sfp_bus, phy);
1472 if (err) {
1473 phy_device_remove(phy);
1474 phy_device_free(phy);
1475 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1476 return err;
1477 }
1478
1479 sfp->mod_phy = phy;
1480
1481 return 0;
1482}
1483
1484static void sfp_sm_link_up(struct sfp *sfp)
1485{
1486 sfp_link_up(sfp->sfp_bus);
1487 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1488}
1489
1490static void sfp_sm_link_down(struct sfp *sfp)
1491{
1492 sfp_link_down(sfp->sfp_bus);
1493}
1494
1495static void sfp_sm_link_check_los(struct sfp *sfp)
1496{
1497 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1498 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1499 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1500 bool los = false;
1501
1502 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1503 * are set, we assume that no LOS signal is available. If both are
1504 * set, we assume LOS is not implemented (and is meaningless.)
1505 */
1506 if (los_options == los_inverted)
1507 los = !(sfp->state & SFP_F_LOS);
1508 else if (los_options == los_normal)
1509 los = !!(sfp->state & SFP_F_LOS);
1510
1511 if (los)
1512 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1513 else
1514 sfp_sm_link_up(sfp);
1515}
1516
1517static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1518{
1519 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1520 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1521 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1522
1523 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1524 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1525}
1526
1527static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1528{
1529 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1530 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1531 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1532
1533 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1534 (los_options == los_normal && event == SFP_E_LOS_LOW);
1535}
1536
1537static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1538{
1539 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1540 dev_err(sfp->dev,
1541 "module persistently indicates fault, disabling\n");
1542 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1543 } else {
1544 if (warn)
1545 dev_err(sfp->dev, "module transmit fault indicated\n");
1546
1547 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1548 }
1549}
1550
1551/* Probe a SFP for a PHY device if the module supports copper - the PHY
1552 * normally sits at I2C bus address 0x56, and may either be a clause 22
1553 * or clause 45 PHY.
1554 *
1555 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1556 * negotiation enabled, but some may be in 1000base-X - which is for the
1557 * PHY driver to determine.
1558 *
1559 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1560 * mode according to the negotiated line speed.
1561 */
1562static int sfp_sm_probe_for_phy(struct sfp *sfp)
1563{
1564 int err = 0;
1565
1566 switch (sfp->id.base.extended_cc) {
1567 case SFF8024_ECC_10GBASE_T_SFI:
1568 case SFF8024_ECC_10GBASE_T_SR:
1569 case SFF8024_ECC_5GBASE_T:
1570 case SFF8024_ECC_2_5GBASE_T:
1571 err = sfp_sm_probe_phy(sfp, true);
1572 break;
1573
1574 default:
1575 if (sfp->id.base.e1000_base_t)
1576 err = sfp_sm_probe_phy(sfp, false);
1577 break;
1578 }
1579 return err;
1580}
1581
1582static int sfp_module_parse_power(struct sfp *sfp)
1583{
1584 u32 power_mW = 1000;
1585
1586 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1587 power_mW = 1500;
1588 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1589 power_mW = 2000;
1590
1591 if (power_mW > sfp->max_power_mW) {
1592 /* Module power specification exceeds the allowed maximum. */
1593 if (sfp->id.ext.sff8472_compliance ==
1594 SFP_SFF8472_COMPLIANCE_NONE &&
1595 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1596 /* The module appears not to implement bus address
1597 * 0xa2, so assume that the module powers up in the
1598 * indicated mode.
1599 */
1600 dev_err(sfp->dev,
1601 "Host does not support %u.%uW modules\n",
1602 power_mW / 1000, (power_mW / 100) % 10);
1603 return -EINVAL;
1604 } else {
1605 dev_warn(sfp->dev,
1606 "Host does not support %u.%uW modules, module left in power mode 1\n",
1607 power_mW / 1000, (power_mW / 100) % 10);
1608 return 0;
1609 }
1610 }
1611
1612 /* If the module requires a higher power mode, but also requires
1613 * an address change sequence, warn the user that the module may
1614 * not be functional.
1615 */
1616 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1617 dev_warn(sfp->dev,
1618 "Address Change Sequence not supported but module requies %u.%uW, module may not be functional\n",
1619 power_mW / 1000, (power_mW / 100) % 10);
1620 return 0;
1621 }
1622
1623 sfp->module_power_mW = power_mW;
1624
1625 return 0;
1626}
1627
1628static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1629{
1630 u8 val;
1631 int err;
1632
1633 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1634 if (err != sizeof(val)) {
1635 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1636 return -EAGAIN;
1637 }
1638
1639 /* DM7052 reports as a high power module, responds to reads (with
1640 * all bytes 0xff) at 0x51 but does not accept writes. In any case,
1641 * if the bit is already set, we're already in high power mode.
1642 */
1643 if (!!(val & BIT(0)) == enable)
1644 return 0;
1645
1646 if (enable)
1647 val |= BIT(0);
1648 else
1649 val &= ~BIT(0);
1650
1651 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1652 if (err != sizeof(val)) {
1653 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1654 return -EAGAIN;
1655 }
1656
1657 if (enable)
1658 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1659 sfp->module_power_mW / 1000,
1660 (sfp->module_power_mW / 100) % 10);
1661
1662 return 0;
1663}
1664
1665/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1666 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1667 * not support multibyte reads from the EEPROM. Each multi-byte read
1668 * operation returns just one byte of EEPROM followed by zeros. There is
1669 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1670 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1671 * name and vendor id into EEPROM, so there is even no way to detect if
1672 * module is V-SOL V2801F. Therefore check for those zeros in the read
1673 * data and then based on check switch to reading EEPROM to one byte
1674 * at a time.
1675 */
1676static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1677{
1678 size_t i, block_size = sfp->i2c_block_size;
1679
1680 /* Already using byte IO */
1681 if (block_size == 1)
1682 return false;
1683
1684 for (i = 1; i < len; i += block_size) {
1685 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1686 return false;
1687 }
1688 return true;
1689}
1690
1691static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1692{
1693 /* SFP module inserted - read I2C data */
1694 struct sfp_eeprom_id id;
1695 bool cotsworks;
1696 u8 check;
1697 int ret;
1698
1699 /* Some SFP modules and also some Linux I2C drivers do not like reads
1700 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1701 * a time.
1702 */
1703 sfp->i2c_block_size = 16;
1704
1705 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1706 if (ret < 0) {
1707 if (report)
1708 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1709 return -EAGAIN;
1710 }
1711
1712 if (ret != sizeof(id.base)) {
1713 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1714 return -EAGAIN;
1715 }
1716
1717 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1718 * address 0x51 is just one byte at a time. Also SFF-8472 requires
1719 * that EEPROM supports atomic 16bit read operation for diagnostic
1720 * fields, so do not switch to one byte reading at a time unless it
1721 * is really required and we have no other option.
1722 */
1723 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1724 dev_info(sfp->dev,
1725 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1726 dev_info(sfp->dev,
1727 "Switching to reading EEPROM to one byte at a time\n");
1728 sfp->i2c_block_size = 1;
1729
1730 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1731 if (ret < 0) {
1732 if (report)
1733 dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1734 ret);
1735 return -EAGAIN;
1736 }
1737
1738 if (ret != sizeof(id.base)) {
1739 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1740 return -EAGAIN;
1741 }
1742 }
1743
1744 /* Cotsworks do not seem to update the checksums when they
1745 * do the final programming with the final module part number,
1746 * serial number and date code.
1747 */
1748 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1749
1750 /* Validate the checksum over the base structure */
1751 check = sfp_check(&id.base, sizeof(id.base) - 1);
1752 if (check != id.base.cc_base) {
1753 if (cotsworks) {
1754 dev_warn(sfp->dev,
1755 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1756 check, id.base.cc_base);
1757 } else {
1758 dev_err(sfp->dev,
1759 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1760 check, id.base.cc_base);
1761 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1762 16, 1, &id, sizeof(id), true);
1763 return -EINVAL;
1764 }
1765 }
1766
1767 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1768 if (ret < 0) {
1769 if (report)
1770 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1771 return -EAGAIN;
1772 }
1773
1774 if (ret != sizeof(id.ext)) {
1775 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1776 return -EAGAIN;
1777 }
1778
1779 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1780 if (check != id.ext.cc_ext) {
1781 if (cotsworks) {
1782 dev_warn(sfp->dev,
1783 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1784 check, id.ext.cc_ext);
1785 } else {
1786 dev_err(sfp->dev,
1787 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1788 check, id.ext.cc_ext);
1789 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1790 16, 1, &id, sizeof(id), true);
1791 memset(&id.ext, 0, sizeof(id.ext));
1792 }
1793 }
1794
1795 sfp->id = id;
1796
1797 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1798 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1799 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1800 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1801 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1802 (int)sizeof(id.ext.datecode), id.ext.datecode);
1803
1804 /* Check whether we support this module */
1805 if (!sfp->type->module_supported(&id)) {
1806 dev_err(sfp->dev,
1807 "module is not supported - phys id 0x%02x 0x%02x\n",
1808 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1809 return -EINVAL;
1810 }
1811
1812 /* If the module requires address swap mode, warn about it */
1813 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1814 dev_warn(sfp->dev,
1815 "module address swap to access page 0xA2 is not supported.\n");
1816
1817 /* Parse the module power requirement */
1818 ret = sfp_module_parse_power(sfp);
1819 if (ret < 0)
1820 return ret;
1821
1822 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) &&
1823 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16))
1824 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1825 else
1826 sfp->module_t_start_up = T_START_UP;
1827
1828 return 0;
1829}
1830
1831static void sfp_sm_mod_remove(struct sfp *sfp)
1832{
1833 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1834 sfp_module_remove(sfp->sfp_bus);
1835
1836 sfp_hwmon_remove(sfp);
1837
1838 memset(&sfp->id, 0, sizeof(sfp->id));
1839 sfp->module_power_mW = 0;
1840
1841 dev_info(sfp->dev, "module removed\n");
1842}
1843
1844/* This state machine tracks the upstream's state */
1845static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1846{
1847 switch (sfp->sm_dev_state) {
1848 default:
1849 if (event == SFP_E_DEV_ATTACH)
1850 sfp->sm_dev_state = SFP_DEV_DOWN;
1851 break;
1852
1853 case SFP_DEV_DOWN:
1854 if (event == SFP_E_DEV_DETACH)
1855 sfp->sm_dev_state = SFP_DEV_DETACHED;
1856 else if (event == SFP_E_DEV_UP)
1857 sfp->sm_dev_state = SFP_DEV_UP;
1858 break;
1859
1860 case SFP_DEV_UP:
1861 if (event == SFP_E_DEV_DETACH)
1862 sfp->sm_dev_state = SFP_DEV_DETACHED;
1863 else if (event == SFP_E_DEV_DOWN)
1864 sfp->sm_dev_state = SFP_DEV_DOWN;
1865 break;
1866 }
1867}
1868
1869/* This state machine tracks the insert/remove state of the module, probes
1870 * the on-board EEPROM, and sets up the power level.
1871 */
1872static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1873{
1874 int err;
1875
1876 /* Handle remove event globally, it resets this state machine */
1877 if (event == SFP_E_REMOVE) {
1878 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1879 sfp_sm_mod_remove(sfp);
1880 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1881 return;
1882 }
1883
1884 /* Handle device detach globally */
1885 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1886 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1887 if (sfp->module_power_mW > 1000 &&
1888 sfp->sm_mod_state > SFP_MOD_HPOWER)
1889 sfp_sm_mod_hpower(sfp, false);
1890 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1891 return;
1892 }
1893
1894 switch (sfp->sm_mod_state) {
1895 default:
1896 if (event == SFP_E_INSERT) {
1897 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1898 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1899 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1900 }
1901 break;
1902
1903 case SFP_MOD_PROBE:
1904 /* Wait for T_PROBE_INIT to time out */
1905 if (event != SFP_E_TIMEOUT)
1906 break;
1907
1908 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1909 if (err == -EAGAIN) {
1910 if (sfp->sm_mod_tries_init &&
1911 --sfp->sm_mod_tries_init) {
1912 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1913 break;
1914 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1915 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1916 dev_warn(sfp->dev,
1917 "please wait, module slow to respond\n");
1918 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1919 break;
1920 }
1921 }
1922 if (err < 0) {
1923 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1924 break;
1925 }
1926
1927 err = sfp_hwmon_insert(sfp);
1928 if (err)
1929 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1930
1931 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1932 /* fall through */
1933 case SFP_MOD_WAITDEV:
1934 /* Ensure that the device is attached before proceeding */
1935 if (sfp->sm_dev_state < SFP_DEV_DOWN)
1936 break;
1937
1938 /* Report the module insertion to the upstream device */
1939 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1940 if (err < 0) {
1941 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1942 break;
1943 }
1944
1945 /* If this is a power level 1 module, we are done */
1946 if (sfp->module_power_mW <= 1000)
1947 goto insert;
1948
1949 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1950 /* fall through */
1951 case SFP_MOD_HPOWER:
1952 /* Enable high power mode */
1953 err = sfp_sm_mod_hpower(sfp, true);
1954 if (err < 0) {
1955 if (err != -EAGAIN) {
1956 sfp_module_remove(sfp->sfp_bus);
1957 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1958 } else {
1959 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1960 }
1961 break;
1962 }
1963
1964 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1965 break;
1966
1967 case SFP_MOD_WAITPWR:
1968 /* Wait for T_HPOWER_LEVEL to time out */
1969 if (event != SFP_E_TIMEOUT)
1970 break;
1971
1972 insert:
1973 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1974 break;
1975
1976 case SFP_MOD_PRESENT:
1977 case SFP_MOD_ERROR:
1978 break;
1979 }
1980}
1981
1982static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1983{
1984 unsigned long timeout;
1985 int ret;
1986
1987 /* Some events are global */
1988 if (sfp->sm_state != SFP_S_DOWN &&
1989 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1990 sfp->sm_dev_state != SFP_DEV_UP)) {
1991 if (sfp->sm_state == SFP_S_LINK_UP &&
1992 sfp->sm_dev_state == SFP_DEV_UP)
1993 sfp_sm_link_down(sfp);
1994 if (sfp->sm_state > SFP_S_INIT)
1995 sfp_module_stop(sfp->sfp_bus);
1996 if (sfp->mod_phy)
1997 sfp_sm_phy_detach(sfp);
1998 sfp_module_tx_disable(sfp);
1999 sfp_soft_stop_poll(sfp);
2000 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2001 return;
2002 }
2003
2004 /* The main state machine */
2005 switch (sfp->sm_state) {
2006 case SFP_S_DOWN:
2007 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2008 sfp->sm_dev_state != SFP_DEV_UP)
2009 break;
2010
2011 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2012 sfp_soft_start_poll(sfp);
2013
2014 sfp_module_tx_enable(sfp);
2015
2016 /* Initialise the fault clearance retries */
2017 sfp->sm_fault_retries = N_FAULT_INIT;
2018
2019 /* We need to check the TX_FAULT state, which is not defined
2020 * while TX_DISABLE is asserted. The earliest we want to do
2021 * anything (such as probe for a PHY) is 50ms.
2022 */
2023 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2024 break;
2025
2026 case SFP_S_WAIT:
2027 if (event != SFP_E_TIMEOUT)
2028 break;
2029
2030 if (sfp->state & SFP_F_TX_FAULT) {
2031 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2032 * from the TX_DISABLE deassertion for the module to
2033 * initialise, which is indicated by TX_FAULT
2034 * deasserting.
2035 */
2036 timeout = sfp->module_t_start_up;
2037 if (timeout > T_WAIT)
2038 timeout -= T_WAIT;
2039 else
2040 timeout = 1;
2041
2042 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2043 } else {
2044 /* TX_FAULT is not asserted, assume the module has
2045 * finished initialising.
2046 */
2047 goto init_done;
2048 }
2049 break;
2050
2051 case SFP_S_INIT:
2052 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2053 /* TX_FAULT is still asserted after t_init or
2054 * or t_start_up, so assume there is a fault.
2055 */
2056 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2057 sfp->sm_fault_retries == N_FAULT_INIT);
2058 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2059 init_done:
2060 sfp->sm_phy_retries = R_PHY_RETRY;
2061 goto phy_probe;
2062 }
2063 break;
2064
2065 case SFP_S_INIT_PHY:
2066 if (event != SFP_E_TIMEOUT)
2067 break;
2068 phy_probe:
2069 /* TX_FAULT deasserted or we timed out with TX_FAULT
2070 * clear. Probe for the PHY and check the LOS state.
2071 */
2072 ret = sfp_sm_probe_for_phy(sfp);
2073 if (ret == -ENODEV) {
2074 if (--sfp->sm_phy_retries) {
2075 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2076 break;
2077 } else {
2078 dev_info(sfp->dev, "no PHY detected\n");
2079 }
2080 } else if (ret) {
2081 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2082 break;
2083 }
2084 if (sfp_module_start(sfp->sfp_bus)) {
2085 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2086 break;
2087 }
2088 sfp_sm_link_check_los(sfp);
2089
2090 /* Reset the fault retry count */
2091 sfp->sm_fault_retries = N_FAULT;
2092 break;
2093
2094 case SFP_S_INIT_TX_FAULT:
2095 if (event == SFP_E_TIMEOUT) {
2096 sfp_module_tx_fault_reset(sfp);
2097 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2098 }
2099 break;
2100
2101 case SFP_S_WAIT_LOS:
2102 if (event == SFP_E_TX_FAULT)
2103 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2104 else if (sfp_los_event_inactive(sfp, event))
2105 sfp_sm_link_up(sfp);
2106 break;
2107
2108 case SFP_S_LINK_UP:
2109 if (event == SFP_E_TX_FAULT) {
2110 sfp_sm_link_down(sfp);
2111 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2112 } else if (sfp_los_event_active(sfp, event)) {
2113 sfp_sm_link_down(sfp);
2114 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2115 }
2116 break;
2117
2118 case SFP_S_TX_FAULT:
2119 if (event == SFP_E_TIMEOUT) {
2120 sfp_module_tx_fault_reset(sfp);
2121 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2122 }
2123 break;
2124
2125 case SFP_S_REINIT:
2126 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2127 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2128 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2129 dev_info(sfp->dev, "module transmit fault recovered\n");
2130 sfp_sm_link_check_los(sfp);
2131 }
2132 break;
2133
2134 case SFP_S_TX_DISABLE:
2135 break;
2136 }
2137}
2138
2139static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2140{
2141 mutex_lock(&sfp->sm_mutex);
2142
2143 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2144 mod_state_to_str(sfp->sm_mod_state),
2145 dev_state_to_str(sfp->sm_dev_state),
2146 sm_state_to_str(sfp->sm_state),
2147 event_to_str(event));
2148
2149 sfp_sm_device(sfp, event);
2150 sfp_sm_module(sfp, event);
2151 sfp_sm_main(sfp, event);
2152
2153 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2154 mod_state_to_str(sfp->sm_mod_state),
2155 dev_state_to_str(sfp->sm_dev_state),
2156 sm_state_to_str(sfp->sm_state));
2157
2158 mutex_unlock(&sfp->sm_mutex);
2159}
2160
2161static void sfp_attach(struct sfp *sfp)
2162{
2163 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2164}
2165
2166static void sfp_detach(struct sfp *sfp)
2167{
2168 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2169}
2170
2171static void sfp_start(struct sfp *sfp)
2172{
2173 sfp_sm_event(sfp, SFP_E_DEV_UP);
2174}
2175
2176static void sfp_stop(struct sfp *sfp)
2177{
2178 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2179}
2180
2181static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2182{
2183 /* locking... and check module is present */
2184
2185 if (sfp->id.ext.sff8472_compliance &&
2186 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2187 modinfo->type = ETH_MODULE_SFF_8472;
2188 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2189 } else {
2190 modinfo->type = ETH_MODULE_SFF_8079;
2191 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2192 }
2193 return 0;
2194}
2195
2196static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2197 u8 *data)
2198{
2199 unsigned int first, last, len;
2200 int ret;
2201
2202 if (ee->len == 0)
2203 return -EINVAL;
2204
2205 first = ee->offset;
2206 last = ee->offset + ee->len;
2207 if (first < ETH_MODULE_SFF_8079_LEN) {
2208 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2209 len -= first;
2210
2211 ret = sfp_read(sfp, false, first, data, len);
2212 if (ret < 0)
2213 return ret;
2214
2215 first += len;
2216 data += len;
2217 }
2218 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2219 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2220 len -= first;
2221 first -= ETH_MODULE_SFF_8079_LEN;
2222
2223 ret = sfp_read(sfp, true, first, data, len);
2224 if (ret < 0)
2225 return ret;
2226 }
2227 return 0;
2228}
2229
2230static const struct sfp_socket_ops sfp_module_ops = {
2231 .attach = sfp_attach,
2232 .detach = sfp_detach,
2233 .start = sfp_start,
2234 .stop = sfp_stop,
2235 .module_info = sfp_module_info,
2236 .module_eeprom = sfp_module_eeprom,
2237};
2238
2239static void sfp_timeout(struct work_struct *work)
2240{
2241 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2242
2243 rtnl_lock();
2244 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2245 rtnl_unlock();
2246}
2247
2248static void sfp_check_state(struct sfp *sfp)
2249{
2250 unsigned int state, i, changed;
2251
2252 mutex_lock(&sfp->st_mutex);
2253 state = sfp_get_state(sfp);
2254 changed = state ^ sfp->state;
2255 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2256
2257 for (i = 0; i < GPIO_MAX; i++)
2258 if (changed & BIT(i))
2259 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2260 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2261
2262 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2263 sfp->state = state;
2264
2265 rtnl_lock();
2266 if (changed & SFP_F_PRESENT)
2267 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2268 SFP_E_INSERT : SFP_E_REMOVE);
2269
2270 if (changed & SFP_F_TX_FAULT)
2271 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2272 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2273
2274 if (changed & SFP_F_LOS)
2275 sfp_sm_event(sfp, state & SFP_F_LOS ?
2276 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2277 rtnl_unlock();
2278 mutex_unlock(&sfp->st_mutex);
2279}
2280
2281static irqreturn_t sfp_irq(int irq, void *data)
2282{
2283 struct sfp *sfp = data;
2284
2285 sfp_check_state(sfp);
2286
2287 return IRQ_HANDLED;
2288}
2289
2290static void sfp_poll(struct work_struct *work)
2291{
2292 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2293
2294 sfp_check_state(sfp);
2295
2296 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2297 sfp->need_poll)
2298 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2299}
2300
2301static struct sfp *sfp_alloc(struct device *dev)
2302{
2303 struct sfp *sfp;
2304
2305 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2306 if (!sfp)
2307 return ERR_PTR(-ENOMEM);
2308
2309 sfp->dev = dev;
2310
2311 mutex_init(&sfp->sm_mutex);
2312 mutex_init(&sfp->st_mutex);
2313 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2314 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2315
2316 sfp_hwmon_init(sfp);
2317
2318 return sfp;
2319}
2320
2321static void sfp_cleanup(void *data)
2322{
2323 struct sfp *sfp = data;
2324
2325 sfp_hwmon_exit(sfp);
2326
2327 cancel_delayed_work_sync(&sfp->poll);
2328 cancel_delayed_work_sync(&sfp->timeout);
2329 if (sfp->i2c_mii) {
2330 mdiobus_unregister(sfp->i2c_mii);
2331 mdiobus_free(sfp->i2c_mii);
2332 }
2333 if (sfp->i2c)
2334 i2c_put_adapter(sfp->i2c);
2335 kfree(sfp);
2336}
2337
2338static int sfp_probe(struct platform_device *pdev)
2339{
2340 const struct sff_data *sff;
2341 struct i2c_adapter *i2c;
2342 struct sfp *sfp;
2343 int err, i;
2344
2345 sfp = sfp_alloc(&pdev->dev);
2346 if (IS_ERR(sfp))
2347 return PTR_ERR(sfp);
2348
2349 platform_set_drvdata(pdev, sfp);
2350
2351 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2352 if (err < 0)
2353 return err;
2354
2355 sff = sfp->type = &sfp_data;
2356
2357 if (pdev->dev.of_node) {
2358 struct device_node *node = pdev->dev.of_node;
2359 const struct of_device_id *id;
2360 struct device_node *np;
2361
2362 id = of_match_node(sfp_of_match, node);
2363 if (WARN_ON(!id))
2364 return -EINVAL;
2365
2366 sff = sfp->type = id->data;
2367
2368 np = of_parse_phandle(node, "i2c-bus", 0);
2369 if (!np) {
2370 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2371 return -ENODEV;
2372 }
2373
2374 i2c = of_find_i2c_adapter_by_node(np);
2375 of_node_put(np);
2376 } else if (has_acpi_companion(&pdev->dev)) {
2377 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2378 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2379 struct fwnode_reference_args args;
2380 struct acpi_handle *acpi_handle;
2381 int ret;
2382
2383 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2384 if (ret || !is_acpi_device_node(args.fwnode)) {
2385 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2386 return -ENODEV;
2387 }
2388
2389 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2390 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2391 } else {
2392 return -EINVAL;
2393 }
2394
2395 if (!i2c)
2396 return -EPROBE_DEFER;
2397
2398 err = sfp_i2c_configure(sfp, i2c);
2399 if (err < 0) {
2400 i2c_put_adapter(i2c);
2401 return err;
2402 }
2403
2404 for (i = 0; i < GPIO_MAX; i++)
2405 if (sff->gpios & BIT(i)) {
2406 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2407 gpio_of_names[i], gpio_flags[i]);
2408 if (IS_ERR(sfp->gpio[i]))
2409 return PTR_ERR(sfp->gpio[i]);
2410 }
2411
2412 sfp->get_state = sfp_gpio_get_state;
2413 sfp->set_state = sfp_gpio_set_state;
2414
2415 /* Modules that have no detect signal are always present */
2416 if (!(sfp->gpio[GPIO_MODDEF0]))
2417 sfp->get_state = sff_gpio_get_state;
2418
2419 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2420 &sfp->max_power_mW);
2421 if (!sfp->max_power_mW)
2422 sfp->max_power_mW = 1000;
2423
2424 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2425 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2426
2427 /* Get the initial state, and always signal TX disable,
2428 * since the network interface will not be up.
2429 */
2430 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2431
2432 if (sfp->gpio[GPIO_RATE_SELECT] &&
2433 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2434 sfp->state |= SFP_F_RATE_SELECT;
2435 sfp_set_state(sfp, sfp->state);
2436 sfp_module_tx_disable(sfp);
2437 if (sfp->state & SFP_F_PRESENT) {
2438 rtnl_lock();
2439 sfp_sm_event(sfp, SFP_E_INSERT);
2440 rtnl_unlock();
2441 }
2442
2443 for (i = 0; i < GPIO_MAX; i++) {
2444 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2445 continue;
2446
2447 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2448 if (sfp->gpio_irq[i] < 0) {
2449 sfp->gpio_irq[i] = 0;
2450 sfp->need_poll = true;
2451 continue;
2452 }
2453
2454 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2455 NULL, sfp_irq,
2456 IRQF_ONESHOT |
2457 IRQF_TRIGGER_RISING |
2458 IRQF_TRIGGER_FALLING,
2459 dev_name(sfp->dev), sfp);
2460 if (err) {
2461 sfp->gpio_irq[i] = 0;
2462 sfp->need_poll = true;
2463 }
2464 }
2465
2466 if (sfp->need_poll)
2467 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2468
2469 /* We could have an issue in cases no Tx disable pin is available or
2470 * wired as modules using a laser as their light source will continue to
2471 * be active when the fiber is removed. This could be a safety issue and
2472 * we should at least warn the user about that.
2473 */
2474 if (!sfp->gpio[GPIO_TX_DISABLE])
2475 dev_warn(sfp->dev,
2476 "No tx_disable pin: SFP modules will always be emitting.\n");
2477
2478 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2479 if (!sfp->sfp_bus)
2480 return -ENOMEM;
2481
2482 return 0;
2483}
2484
2485static int sfp_remove(struct platform_device *pdev)
2486{
2487 struct sfp *sfp = platform_get_drvdata(pdev);
2488
2489 sfp_unregister_socket(sfp->sfp_bus);
2490
2491 rtnl_lock();
2492 sfp_sm_event(sfp, SFP_E_REMOVE);
2493 rtnl_unlock();
2494
2495 return 0;
2496}
2497
2498static void sfp_shutdown(struct platform_device *pdev)
2499{
2500 struct sfp *sfp = platform_get_drvdata(pdev);
2501 int i;
2502
2503 for (i = 0; i < GPIO_MAX; i++) {
2504 if (!sfp->gpio_irq[i])
2505 continue;
2506
2507 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2508 }
2509
2510 cancel_delayed_work_sync(&sfp->poll);
2511 cancel_delayed_work_sync(&sfp->timeout);
2512}
2513
2514static struct platform_driver sfp_driver = {
2515 .probe = sfp_probe,
2516 .remove = sfp_remove,
2517 .shutdown = sfp_shutdown,
2518 .driver = {
2519 .name = "sfp",
2520 .of_match_table = sfp_of_match,
2521 },
2522};
2523
2524static int sfp_init(void)
2525{
2526 poll_jiffies = msecs_to_jiffies(100);
2527
2528 return platform_driver_register(&sfp_driver);
2529}
2530module_init(sfp_init);
2531
2532static void sfp_exit(void)
2533{
2534 platform_driver_unregister(&sfp_driver);
2535}
2536module_exit(sfp_exit);
2537
2538MODULE_ALIAS("platform:sfp");
2539MODULE_AUTHOR("Russell King");
2540MODULE_LICENSE("GPL v2");