blob: 464dd0246a97dbf593e7c4182262e44307b716ca [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 */
6
7#include <linux/pci.h>
8#include <linux/module.h>
9#include <linux/interrupt.h>
10#include <linux/spinlock.h>
11#include <linux/bitops.h>
12
13#include "core.h"
14#include "debug.h"
15#include "coredump.h"
16
17#include "targaddrs.h"
18#include "bmi.h"
19
20#include "hif.h"
21#include "htc.h"
22
23#include "ce.h"
24#include "pci.h"
25
26enum ath10k_pci_reset_mode {
27 ATH10K_PCI_RESET_AUTO = 0,
28 ATH10K_PCI_RESET_WARM_ONLY = 1,
29};
30
31static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
32static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
33
34module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
35MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
36
37module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
38MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
39
40/* how long wait to wait for target to initialise, in ms */
41#define ATH10K_PCI_TARGET_WAIT 3000
42#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
43
44/* Maximum number of bytes that can be handled atomically by
45 * diag read and write.
46 */
47#define ATH10K_DIAG_TRANSFER_LIMIT 0x5000
48
49#define QCA99X0_PCIE_BAR0_START_REG 0x81030
50#define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c
51#define QCA99X0_CPU_MEM_DATA_REG 0x4d010
52
53static const struct pci_device_id ath10k_pci_id_table[] = {
54 /* PCI-E QCA988X V2 (Ubiquiti branded) */
55 { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
56
57 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
58 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
59 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
60 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
61 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
62 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
63 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
64 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
65 {0}
66};
67
68static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
69 /* QCA988X pre 2.0 chips are not supported because they need some nasty
70 * hacks. ath10k doesn't have them and these devices crash horribly
71 * because of that.
72 */
73 { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
74 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75
76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81
82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87
88 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89
90 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
91
92 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
93
94 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
95 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
96
97 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
98};
99
100static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
101static int ath10k_pci_cold_reset(struct ath10k *ar);
102static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
103static int ath10k_pci_init_irq(struct ath10k *ar);
104static int ath10k_pci_deinit_irq(struct ath10k *ar);
105static int ath10k_pci_request_irq(struct ath10k *ar);
106static void ath10k_pci_free_irq(struct ath10k *ar);
107static int ath10k_pci_bmi_wait(struct ath10k *ar,
108 struct ath10k_ce_pipe *tx_pipe,
109 struct ath10k_ce_pipe *rx_pipe,
110 struct bmi_xfer *xfer);
111static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
112static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
113static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
115static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
116static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
117static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
118
119static struct ce_attr host_ce_config_wlan[] = {
120 /* CE0: host->target HTC control and raw streams */
121 {
122 .flags = CE_ATTR_FLAGS,
123 .src_nentries = 16,
124 .src_sz_max = 256,
125 .dest_nentries = 0,
126 .send_cb = ath10k_pci_htc_tx_cb,
127 },
128
129 /* CE1: target->host HTT + HTC control */
130 {
131 .flags = CE_ATTR_FLAGS,
132 .src_nentries = 0,
133 .src_sz_max = 2048,
134 .dest_nentries = 512,
135 .recv_cb = ath10k_pci_htt_htc_rx_cb,
136 },
137
138 /* CE2: target->host WMI */
139 {
140 .flags = CE_ATTR_FLAGS,
141 .src_nentries = 0,
142 .src_sz_max = 2048,
143 .dest_nentries = 128,
144 .recv_cb = ath10k_pci_htc_rx_cb,
145 },
146
147 /* CE3: host->target WMI */
148 {
149 .flags = CE_ATTR_FLAGS,
150 .src_nentries = 32,
151 .src_sz_max = 2048,
152 .dest_nentries = 0,
153 .send_cb = ath10k_pci_htc_tx_cb,
154 },
155
156 /* CE4: host->target HTT */
157 {
158 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
159 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
160 .src_sz_max = 256,
161 .dest_nentries = 0,
162 .send_cb = ath10k_pci_htt_tx_cb,
163 },
164
165 /* CE5: target->host HTT (HIF->HTT) */
166 {
167 .flags = CE_ATTR_FLAGS,
168 .src_nentries = 0,
169 .src_sz_max = 512,
170 .dest_nentries = 512,
171 .recv_cb = ath10k_pci_htt_rx_cb,
172 },
173
174 /* CE6: target autonomous hif_memcpy */
175 {
176 .flags = CE_ATTR_FLAGS,
177 .src_nentries = 0,
178 .src_sz_max = 0,
179 .dest_nentries = 0,
180 },
181
182 /* CE7: ce_diag, the Diagnostic Window */
183 {
184 .flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
185 .src_nentries = 2,
186 .src_sz_max = DIAG_TRANSFER_LIMIT,
187 .dest_nentries = 2,
188 },
189
190 /* CE8: target->host pktlog */
191 {
192 .flags = CE_ATTR_FLAGS,
193 .src_nentries = 0,
194 .src_sz_max = 2048,
195 .dest_nentries = 128,
196 .recv_cb = ath10k_pci_pktlog_rx_cb,
197 },
198
199 /* CE9 target autonomous qcache memcpy */
200 {
201 .flags = CE_ATTR_FLAGS,
202 .src_nentries = 0,
203 .src_sz_max = 0,
204 .dest_nentries = 0,
205 },
206
207 /* CE10: target autonomous hif memcpy */
208 {
209 .flags = CE_ATTR_FLAGS,
210 .src_nentries = 0,
211 .src_sz_max = 0,
212 .dest_nentries = 0,
213 },
214
215 /* CE11: target autonomous hif memcpy */
216 {
217 .flags = CE_ATTR_FLAGS,
218 .src_nentries = 0,
219 .src_sz_max = 0,
220 .dest_nentries = 0,
221 },
222};
223
224/* Target firmware's Copy Engine configuration. */
225static struct ce_pipe_config target_ce_config_wlan[] = {
226 /* CE0: host->target HTC control and raw streams */
227 {
228 .pipenum = __cpu_to_le32(0),
229 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
230 .nentries = __cpu_to_le32(32),
231 .nbytes_max = __cpu_to_le32(256),
232 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
233 .reserved = __cpu_to_le32(0),
234 },
235
236 /* CE1: target->host HTT + HTC control */
237 {
238 .pipenum = __cpu_to_le32(1),
239 .pipedir = __cpu_to_le32(PIPEDIR_IN),
240 .nentries = __cpu_to_le32(32),
241 .nbytes_max = __cpu_to_le32(2048),
242 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
243 .reserved = __cpu_to_le32(0),
244 },
245
246 /* CE2: target->host WMI */
247 {
248 .pipenum = __cpu_to_le32(2),
249 .pipedir = __cpu_to_le32(PIPEDIR_IN),
250 .nentries = __cpu_to_le32(64),
251 .nbytes_max = __cpu_to_le32(2048),
252 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
253 .reserved = __cpu_to_le32(0),
254 },
255
256 /* CE3: host->target WMI */
257 {
258 .pipenum = __cpu_to_le32(3),
259 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
260 .nentries = __cpu_to_le32(32),
261 .nbytes_max = __cpu_to_le32(2048),
262 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
263 .reserved = __cpu_to_le32(0),
264 },
265
266 /* CE4: host->target HTT */
267 {
268 .pipenum = __cpu_to_le32(4),
269 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
270 .nentries = __cpu_to_le32(256),
271 .nbytes_max = __cpu_to_le32(256),
272 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
273 .reserved = __cpu_to_le32(0),
274 },
275
276 /* NB: 50% of src nentries, since tx has 2 frags */
277
278 /* CE5: target->host HTT (HIF->HTT) */
279 {
280 .pipenum = __cpu_to_le32(5),
281 .pipedir = __cpu_to_le32(PIPEDIR_IN),
282 .nentries = __cpu_to_le32(32),
283 .nbytes_max = __cpu_to_le32(512),
284 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
285 .reserved = __cpu_to_le32(0),
286 },
287
288 /* CE6: Reserved for target autonomous hif_memcpy */
289 {
290 .pipenum = __cpu_to_le32(6),
291 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
292 .nentries = __cpu_to_le32(32),
293 .nbytes_max = __cpu_to_le32(4096),
294 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
295 .reserved = __cpu_to_le32(0),
296 },
297
298 /* CE7 used only by Host */
299 {
300 .pipenum = __cpu_to_le32(7),
301 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
302 .nentries = __cpu_to_le32(0),
303 .nbytes_max = __cpu_to_le32(0),
304 .flags = __cpu_to_le32(0),
305 .reserved = __cpu_to_le32(0),
306 },
307
308 /* CE8 target->host packtlog */
309 {
310 .pipenum = __cpu_to_le32(8),
311 .pipedir = __cpu_to_le32(PIPEDIR_IN),
312 .nentries = __cpu_to_le32(64),
313 .nbytes_max = __cpu_to_le32(2048),
314 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
315 .reserved = __cpu_to_le32(0),
316 },
317
318 /* CE9 target autonomous qcache memcpy */
319 {
320 .pipenum = __cpu_to_le32(9),
321 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
322 .nentries = __cpu_to_le32(32),
323 .nbytes_max = __cpu_to_le32(2048),
324 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
325 .reserved = __cpu_to_le32(0),
326 },
327
328 /* It not necessary to send target wlan configuration for CE10 & CE11
329 * as these CEs are not actively used in target.
330 */
331};
332
333/*
334 * Map from service/endpoint to Copy Engine.
335 * This table is derived from the CE_PCI TABLE, above.
336 * It is passed to the Target at startup for use by firmware.
337 */
338static struct service_to_pipe target_service_to_ce_map_wlan[] = {
339 {
340 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
341 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
342 __cpu_to_le32(3),
343 },
344 {
345 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
346 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
347 __cpu_to_le32(2),
348 },
349 {
350 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
351 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
352 __cpu_to_le32(3),
353 },
354 {
355 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
356 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
357 __cpu_to_le32(2),
358 },
359 {
360 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
361 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
362 __cpu_to_le32(3),
363 },
364 {
365 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
366 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
367 __cpu_to_le32(2),
368 },
369 {
370 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
371 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
372 __cpu_to_le32(3),
373 },
374 {
375 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
376 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
377 __cpu_to_le32(2),
378 },
379 {
380 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
381 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
382 __cpu_to_le32(3),
383 },
384 {
385 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
386 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
387 __cpu_to_le32(2),
388 },
389 {
390 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
391 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
392 __cpu_to_le32(0),
393 },
394 {
395 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
396 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
397 __cpu_to_le32(1),
398 },
399 { /* not used */
400 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
401 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
402 __cpu_to_le32(0),
403 },
404 { /* not used */
405 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
406 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
407 __cpu_to_le32(1),
408 },
409 {
410 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
411 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
412 __cpu_to_le32(4),
413 },
414 {
415 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
416 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
417 __cpu_to_le32(5),
418 },
419
420 /* (Additions here) */
421
422 { /* must be last */
423 __cpu_to_le32(0),
424 __cpu_to_le32(0),
425 __cpu_to_le32(0),
426 },
427};
428
429static bool ath10k_pci_is_awake(struct ath10k *ar)
430{
431 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
433 RTC_STATE_ADDRESS);
434
435 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
436}
437
438static void __ath10k_pci_wake(struct ath10k *ar)
439{
440 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
441
442 lockdep_assert_held(&ar_pci->ps_lock);
443
444 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
445 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
446
447 iowrite32(PCIE_SOC_WAKE_V_MASK,
448 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
449 PCIE_SOC_WAKE_ADDRESS);
450}
451
452static void __ath10k_pci_sleep(struct ath10k *ar)
453{
454 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
455
456 lockdep_assert_held(&ar_pci->ps_lock);
457
458 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
459 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
460
461 iowrite32(PCIE_SOC_WAKE_RESET,
462 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
463 PCIE_SOC_WAKE_ADDRESS);
464 ar_pci->ps_awake = false;
465}
466
467static int ath10k_pci_wake_wait(struct ath10k *ar)
468{
469 int tot_delay = 0;
470 int curr_delay = 5;
471
472 while (tot_delay < PCIE_WAKE_TIMEOUT) {
473 if (ath10k_pci_is_awake(ar)) {
474 if (tot_delay > PCIE_WAKE_LATE_US)
475 ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
476 tot_delay / 1000);
477 return 0;
478 }
479
480 udelay(curr_delay);
481 tot_delay += curr_delay;
482
483 if (curr_delay < 50)
484 curr_delay += 5;
485 }
486
487 return -ETIMEDOUT;
488}
489
490static int ath10k_pci_force_wake(struct ath10k *ar)
491{
492 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
493 unsigned long flags;
494 int ret = 0;
495
496 if (ar_pci->pci_ps)
497 return ret;
498
499 spin_lock_irqsave(&ar_pci->ps_lock, flags);
500
501 if (!ar_pci->ps_awake) {
502 iowrite32(PCIE_SOC_WAKE_V_MASK,
503 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
504 PCIE_SOC_WAKE_ADDRESS);
505
506 ret = ath10k_pci_wake_wait(ar);
507 if (ret == 0)
508 ar_pci->ps_awake = true;
509 }
510
511 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
512
513 return ret;
514}
515
516static void ath10k_pci_force_sleep(struct ath10k *ar)
517{
518 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
519 unsigned long flags;
520
521 spin_lock_irqsave(&ar_pci->ps_lock, flags);
522
523 iowrite32(PCIE_SOC_WAKE_RESET,
524 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
525 PCIE_SOC_WAKE_ADDRESS);
526 ar_pci->ps_awake = false;
527
528 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
529}
530
531static int ath10k_pci_wake(struct ath10k *ar)
532{
533 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
534 unsigned long flags;
535 int ret = 0;
536
537 if (ar_pci->pci_ps == 0)
538 return ret;
539
540 spin_lock_irqsave(&ar_pci->ps_lock, flags);
541
542 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
543 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
544
545 /* This function can be called very frequently. To avoid excessive
546 * CPU stalls for MMIO reads use a cache var to hold the device state.
547 */
548 if (!ar_pci->ps_awake) {
549 __ath10k_pci_wake(ar);
550
551 ret = ath10k_pci_wake_wait(ar);
552 if (ret == 0)
553 ar_pci->ps_awake = true;
554 }
555
556 if (ret == 0) {
557 ar_pci->ps_wake_refcount++;
558 WARN_ON(ar_pci->ps_wake_refcount == 0);
559 }
560
561 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
562
563 return ret;
564}
565
566static void ath10k_pci_sleep(struct ath10k *ar)
567{
568 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
569 unsigned long flags;
570
571 if (ar_pci->pci_ps == 0)
572 return;
573
574 spin_lock_irqsave(&ar_pci->ps_lock, flags);
575
576 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
577 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
578
579 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
580 goto skip;
581
582 ar_pci->ps_wake_refcount--;
583
584 mod_timer(&ar_pci->ps_timer, jiffies +
585 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
586
587skip:
588 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
589}
590
591static void ath10k_pci_ps_timer(struct timer_list *t)
592{
593 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
594 struct ath10k *ar = ar_pci->ar;
595 unsigned long flags;
596
597 spin_lock_irqsave(&ar_pci->ps_lock, flags);
598
599 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
600 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
601
602 if (ar_pci->ps_wake_refcount > 0)
603 goto skip;
604
605 __ath10k_pci_sleep(ar);
606
607skip:
608 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
609}
610
611static void ath10k_pci_sleep_sync(struct ath10k *ar)
612{
613 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
614 unsigned long flags;
615
616 if (ar_pci->pci_ps == 0) {
617 ath10k_pci_force_sleep(ar);
618 return;
619 }
620
621 del_timer_sync(&ar_pci->ps_timer);
622
623 spin_lock_irqsave(&ar_pci->ps_lock, flags);
624 WARN_ON(ar_pci->ps_wake_refcount > 0);
625 __ath10k_pci_sleep(ar);
626 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
627}
628
629static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
630{
631 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
632 int ret;
633
634 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
635 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
636 offset, offset + sizeof(value), ar_pci->mem_len);
637 return;
638 }
639
640 ret = ath10k_pci_wake(ar);
641 if (ret) {
642 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
643 value, offset, ret);
644 return;
645 }
646
647 iowrite32(value, ar_pci->mem + offset);
648 ath10k_pci_sleep(ar);
649}
650
651static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
652{
653 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
654 u32 val;
655 int ret;
656
657 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
658 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
659 offset, offset + sizeof(val), ar_pci->mem_len);
660 return 0;
661 }
662
663 ret = ath10k_pci_wake(ar);
664 if (ret) {
665 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
666 offset, ret);
667 return 0xffffffff;
668 }
669
670 val = ioread32(ar_pci->mem + offset);
671 ath10k_pci_sleep(ar);
672
673 return val;
674}
675
676inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
677{
678 struct ath10k_ce *ce = ath10k_ce_priv(ar);
679
680 ce->bus_ops->write32(ar, offset, value);
681}
682
683inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
684{
685 struct ath10k_ce *ce = ath10k_ce_priv(ar);
686
687 return ce->bus_ops->read32(ar, offset);
688}
689
690u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
691{
692 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
693}
694
695void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
696{
697 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
698}
699
700u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
701{
702 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
703}
704
705void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
706{
707 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
708}
709
710bool ath10k_pci_irq_pending(struct ath10k *ar)
711{
712 u32 cause;
713
714 /* Check if the shared legacy irq is for us */
715 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
716 PCIE_INTR_CAUSE_ADDRESS);
717 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
718 return true;
719
720 return false;
721}
722
723void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
724{
725 /* IMPORTANT: INTR_CLR register has to be set after
726 * INTR_ENABLE is set to 0, otherwise interrupt can not be
727 * really cleared.
728 */
729 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
730 0);
731 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
732 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
733
734 /* IMPORTANT: this extra read transaction is required to
735 * flush the posted write buffer.
736 */
737 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
738 PCIE_INTR_ENABLE_ADDRESS);
739}
740
741void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
742{
743 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
744 PCIE_INTR_ENABLE_ADDRESS,
745 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
746
747 /* IMPORTANT: this extra read transaction is required to
748 * flush the posted write buffer.
749 */
750 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
751 PCIE_INTR_ENABLE_ADDRESS);
752}
753
754static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
755{
756 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
757
758 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
759 return "msi";
760
761 return "legacy";
762}
763
764static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
765{
766 struct ath10k *ar = pipe->hif_ce_state;
767 struct ath10k_ce *ce = ath10k_ce_priv(ar);
768 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
769 struct sk_buff *skb;
770 dma_addr_t paddr;
771 int ret;
772
773 skb = dev_alloc_skb(pipe->buf_sz);
774 if (!skb)
775 return -ENOMEM;
776
777 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
778
779 paddr = dma_map_single(ar->dev, skb->data,
780 skb->len + skb_tailroom(skb),
781 DMA_FROM_DEVICE);
782 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
783 ath10k_warn(ar, "failed to dma map pci rx buf\n");
784 dev_kfree_skb_any(skb);
785 return -EIO;
786 }
787
788 ATH10K_SKB_RXCB(skb)->paddr = paddr;
789
790 spin_lock_bh(&ce->ce_lock);
791 ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
792 spin_unlock_bh(&ce->ce_lock);
793 if (ret) {
794 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
795 DMA_FROM_DEVICE);
796 dev_kfree_skb_any(skb);
797 return ret;
798 }
799
800 return 0;
801}
802
803static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
804{
805 struct ath10k *ar = pipe->hif_ce_state;
806 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
807 struct ath10k_ce *ce = ath10k_ce_priv(ar);
808 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
809 int ret, num;
810
811 if (pipe->buf_sz == 0)
812 return;
813
814 if (!ce_pipe->dest_ring)
815 return;
816
817 spin_lock_bh(&ce->ce_lock);
818 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
819 spin_unlock_bh(&ce->ce_lock);
820
821 while (num >= 0) {
822 ret = __ath10k_pci_rx_post_buf(pipe);
823 if (ret) {
824 if (ret == -ENOSPC)
825 break;
826 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
827 mod_timer(&ar_pci->rx_post_retry, jiffies +
828 ATH10K_PCI_RX_POST_RETRY_MS);
829 break;
830 }
831 num--;
832 }
833}
834
835void ath10k_pci_rx_post(struct ath10k *ar)
836{
837 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
838 int i;
839
840 for (i = 0; i < CE_COUNT; i++)
841 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
842}
843
844void ath10k_pci_rx_replenish_retry(struct timer_list *t)
845{
846 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
847 struct ath10k *ar = ar_pci->ar;
848
849 ath10k_pci_rx_post(ar);
850}
851
852static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
853{
854 u32 val = 0, region = addr & 0xfffff;
855
856 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
857 & 0x7ff) << 21;
858 val |= 0x100000 | region;
859 return val;
860}
861
862/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
863 * Support to access target space below 1M for qca6174 and qca9377.
864 * If target space is below 1M, the bit[20] of converted CE addr is 0.
865 * Otherwise bit[20] of converted CE addr is 1.
866 */
867static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
868{
869 u32 val = 0, region = addr & 0xfffff;
870
871 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
872 & 0x7ff) << 21;
873 val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
874 return val;
875}
876
877static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
878{
879 u32 val = 0, region = addr & 0xfffff;
880
881 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
882 val |= 0x100000 | region;
883 return val;
884}
885
886static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
887{
888 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
889
890 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
891 return -ENOTSUPP;
892
893 return ar_pci->targ_cpu_to_ce_addr(ar, addr);
894}
895
896/*
897 * Diagnostic read/write access is provided for startup/config/debug usage.
898 * Caller must guarantee proper alignment, when applicable, and single user
899 * at any moment.
900 */
901static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
902 int nbytes)
903{
904 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
905 int ret = 0;
906 u32 *buf;
907 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
908 struct ath10k_ce_pipe *ce_diag;
909 /* Host buffer address in CE space */
910 u32 ce_data;
911 dma_addr_t ce_data_base = 0;
912 void *data_buf;
913 int i;
914
915 mutex_lock(&ar_pci->ce_diag_mutex);
916 ce_diag = ar_pci->ce_diag;
917
918 /*
919 * Allocate a temporary bounce buffer to hold caller's data
920 * to be DMA'ed from Target. This guarantees
921 * 1) 4-byte alignment
922 * 2) Buffer in DMA-able space
923 */
924 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
925
926 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
927 GFP_ATOMIC);
928 if (!data_buf) {
929 ret = -ENOMEM;
930 goto done;
931 }
932
933 /* The address supplied by the caller is in the
934 * Target CPU virtual address space.
935 *
936 * In order to use this address with the diagnostic CE,
937 * convert it from Target CPU virtual address space
938 * to CE address space
939 */
940 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
941
942 remaining_bytes = nbytes;
943 ce_data = ce_data_base;
944 while (remaining_bytes) {
945 nbytes = min_t(unsigned int, remaining_bytes,
946 DIAG_TRANSFER_LIMIT);
947
948 ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
949 if (ret != 0)
950 goto done;
951
952 /* Request CE to send from Target(!) address to Host buffer */
953 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
954 if (ret)
955 goto done;
956
957 i = 0;
958 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
959 udelay(DIAG_ACCESS_CE_WAIT_US);
960 i += DIAG_ACCESS_CE_WAIT_US;
961
962 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
963 ret = -EBUSY;
964 goto done;
965 }
966 }
967
968 i = 0;
969 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
970 &completed_nbytes) != 0) {
971 udelay(DIAG_ACCESS_CE_WAIT_US);
972 i += DIAG_ACCESS_CE_WAIT_US;
973
974 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
975 ret = -EBUSY;
976 goto done;
977 }
978 }
979
980 if (nbytes != completed_nbytes) {
981 ret = -EIO;
982 goto done;
983 }
984
985 if (*buf != ce_data) {
986 ret = -EIO;
987 goto done;
988 }
989
990 remaining_bytes -= nbytes;
991 memcpy(data, data_buf, nbytes);
992
993 address += nbytes;
994 data += nbytes;
995 }
996
997done:
998
999 if (data_buf)
1000 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1001 ce_data_base);
1002
1003 mutex_unlock(&ar_pci->ce_diag_mutex);
1004
1005 return ret;
1006}
1007
1008static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1009{
1010 __le32 val = 0;
1011 int ret;
1012
1013 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014 *value = __le32_to_cpu(val);
1015
1016 return ret;
1017}
1018
1019static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1020 u32 src, u32 len)
1021{
1022 u32 host_addr, addr;
1023 int ret;
1024
1025 host_addr = host_interest_item_address(src);
1026
1027 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1028 if (ret != 0) {
1029 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1030 src, ret);
1031 return ret;
1032 }
1033
1034 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1035 if (ret != 0) {
1036 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1037 addr, len, ret);
1038 return ret;
1039 }
1040
1041 return 0;
1042}
1043
1044#define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1045 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1046
1047int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048 const void *data, int nbytes)
1049{
1050 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051 int ret = 0;
1052 u32 *buf;
1053 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1054 struct ath10k_ce_pipe *ce_diag;
1055 void *data_buf;
1056 dma_addr_t ce_data_base = 0;
1057 int i;
1058
1059 mutex_lock(&ar_pci->ce_diag_mutex);
1060 ce_diag = ar_pci->ce_diag;
1061
1062 /*
1063 * Allocate a temporary bounce buffer to hold caller's data
1064 * to be DMA'ed to Target. This guarantees
1065 * 1) 4-byte alignment
1066 * 2) Buffer in DMA-able space
1067 */
1068 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1069
1070 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1071 GFP_ATOMIC);
1072 if (!data_buf) {
1073 ret = -ENOMEM;
1074 goto done;
1075 }
1076
1077 /*
1078 * The address supplied by the caller is in the
1079 * Target CPU virtual address space.
1080 *
1081 * In order to use this address with the diagnostic CE,
1082 * convert it from
1083 * Target CPU virtual address space
1084 * to
1085 * CE address space
1086 */
1087 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1088
1089 remaining_bytes = nbytes;
1090 while (remaining_bytes) {
1091 /* FIXME: check cast */
1092 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1093
1094 /* Copy caller's data to allocated DMA buf */
1095 memcpy(data_buf, data, nbytes);
1096
1097 /* Set up to receive directly into Target(!) address */
1098 ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1099 if (ret != 0)
1100 goto done;
1101
1102 /*
1103 * Request CE to send caller-supplied data that
1104 * was copied to bounce buffer to Target(!) address.
1105 */
1106 ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1107 if (ret != 0)
1108 goto done;
1109
1110 i = 0;
1111 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112 udelay(DIAG_ACCESS_CE_WAIT_US);
1113 i += DIAG_ACCESS_CE_WAIT_US;
1114
1115 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1116 ret = -EBUSY;
1117 goto done;
1118 }
1119 }
1120
1121 i = 0;
1122 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123 &completed_nbytes) != 0) {
1124 udelay(DIAG_ACCESS_CE_WAIT_US);
1125 i += DIAG_ACCESS_CE_WAIT_US;
1126
1127 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1128 ret = -EBUSY;
1129 goto done;
1130 }
1131 }
1132
1133 if (nbytes != completed_nbytes) {
1134 ret = -EIO;
1135 goto done;
1136 }
1137
1138 if (*buf != address) {
1139 ret = -EIO;
1140 goto done;
1141 }
1142
1143 remaining_bytes -= nbytes;
1144 address += nbytes;
1145 data += nbytes;
1146 }
1147
1148done:
1149 if (data_buf) {
1150 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1151 ce_data_base);
1152 }
1153
1154 if (ret != 0)
1155 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1156 address, ret);
1157
1158 mutex_unlock(&ar_pci->ce_diag_mutex);
1159
1160 return ret;
1161}
1162
1163static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1164{
1165 __le32 val = __cpu_to_le32(value);
1166
1167 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1168}
1169
1170/* Called by lower (CE) layer when a send to Target completes. */
1171static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1172{
1173 struct ath10k *ar = ce_state->ar;
1174 struct sk_buff_head list;
1175 struct sk_buff *skb;
1176
1177 __skb_queue_head_init(&list);
1178 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179 /* no need to call tx completion for NULL pointers */
1180 if (skb == NULL)
1181 continue;
1182
1183 __skb_queue_tail(&list, skb);
1184 }
1185
1186 while ((skb = __skb_dequeue(&list)))
1187 ath10k_htc_tx_completion_handler(ar, skb);
1188}
1189
1190static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191 void (*callback)(struct ath10k *ar,
1192 struct sk_buff *skb))
1193{
1194 struct ath10k *ar = ce_state->ar;
1195 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1197 struct sk_buff *skb;
1198 struct sk_buff_head list;
1199 void *transfer_context;
1200 unsigned int nbytes, max_nbytes;
1201
1202 __skb_queue_head_init(&list);
1203 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1204 &nbytes) == 0) {
1205 skb = transfer_context;
1206 max_nbytes = skb->len + skb_tailroom(skb);
1207 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208 max_nbytes, DMA_FROM_DEVICE);
1209
1210 if (unlikely(max_nbytes < nbytes)) {
1211 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212 nbytes, max_nbytes);
1213 dev_kfree_skb_any(skb);
1214 continue;
1215 }
1216
1217 skb_put(skb, nbytes);
1218 __skb_queue_tail(&list, skb);
1219 }
1220
1221 while ((skb = __skb_dequeue(&list))) {
1222 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223 ce_state->id, skb->len);
1224 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225 skb->data, skb->len);
1226
1227 callback(ar, skb);
1228 }
1229
1230 ath10k_pci_rx_post_pipe(pipe_info);
1231}
1232
1233static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234 void (*callback)(struct ath10k *ar,
1235 struct sk_buff *skb))
1236{
1237 struct ath10k *ar = ce_state->ar;
1238 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1240 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241 struct sk_buff *skb;
1242 struct sk_buff_head list;
1243 void *transfer_context;
1244 unsigned int nbytes, max_nbytes, nentries;
1245 int orig_len;
1246
1247 /* No need to aquire ce_lock for CE5, since this is the only place CE5
1248 * is processed other than init and deinit. Before releasing CE5
1249 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1250 */
1251 __skb_queue_head_init(&list);
1252 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1253 &nbytes) == 0) {
1254 skb = transfer_context;
1255 max_nbytes = skb->len + skb_tailroom(skb);
1256
1257 if (unlikely(max_nbytes < nbytes)) {
1258 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259 nbytes, max_nbytes);
1260 continue;
1261 }
1262
1263 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264 max_nbytes, DMA_FROM_DEVICE);
1265 skb_put(skb, nbytes);
1266 __skb_queue_tail(&list, skb);
1267 }
1268
1269 nentries = skb_queue_len(&list);
1270 while ((skb = __skb_dequeue(&list))) {
1271 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272 ce_state->id, skb->len);
1273 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274 skb->data, skb->len);
1275
1276 orig_len = skb->len;
1277 callback(ar, skb);
1278 skb_push(skb, orig_len - skb->len);
1279 skb_reset_tail_pointer(skb);
1280 skb_trim(skb, 0);
1281
1282 /*let device gain the buffer again*/
1283 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284 skb->len + skb_tailroom(skb),
1285 DMA_FROM_DEVICE);
1286 }
1287 ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1288}
1289
1290/* Called by lower (CE) layer when data is received from the Target. */
1291static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292{
1293 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1294}
1295
1296static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1297{
1298 /* CE4 polling needs to be done whenever CE pipe which transports
1299 * HTT Rx (target->host) is processed.
1300 */
1301 ath10k_ce_per_engine_service(ce_state->ar, 4);
1302
1303 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304}
1305
1306/* Called by lower (CE) layer when data is received from the Target.
1307 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1308 */
1309static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1310{
1311 ath10k_pci_process_rx_cb(ce_state,
1312 ath10k_htt_rx_pktlog_completion_handler);
1313}
1314
1315/* Called by lower (CE) layer when a send to HTT Target completes. */
1316static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1317{
1318 struct ath10k *ar = ce_state->ar;
1319 struct sk_buff *skb;
1320
1321 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322 /* no need to call tx completion for NULL pointers */
1323 if (!skb)
1324 continue;
1325
1326 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327 skb->len, DMA_TO_DEVICE);
1328 ath10k_htt_hif_tx_complete(ar, skb);
1329 }
1330}
1331
1332static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1333{
1334 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335 ath10k_htt_t2h_msg_handler(ar, skb);
1336}
1337
1338/* Called by lower (CE) layer when HTT data is received from the Target. */
1339static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1340{
1341 /* CE4 polling needs to be done whenever CE pipe which transports
1342 * HTT Rx (target->host) is processed.
1343 */
1344 ath10k_ce_per_engine_service(ce_state->ar, 4);
1345
1346 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1347}
1348
1349int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350 struct ath10k_hif_sg_item *items, int n_items)
1351{
1352 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357 unsigned int nentries_mask;
1358 unsigned int sw_index;
1359 unsigned int write_index;
1360 int err, i = 0;
1361
1362 spin_lock_bh(&ce->ce_lock);
1363
1364 nentries_mask = src_ring->nentries_mask;
1365 sw_index = src_ring->sw_index;
1366 write_index = src_ring->write_index;
1367
1368 if (unlikely(CE_RING_DELTA(nentries_mask,
1369 write_index, sw_index - 1) < n_items)) {
1370 err = -ENOBUFS;
1371 goto err;
1372 }
1373
1374 for (i = 0; i < n_items - 1; i++) {
1375 ath10k_dbg(ar, ATH10K_DBG_PCI,
1376 "pci tx item %d paddr %pad len %d n_items %d\n",
1377 i, &items[i].paddr, items[i].len, n_items);
1378 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379 items[i].vaddr, items[i].len);
1380
1381 err = ath10k_ce_send_nolock(ce_pipe,
1382 items[i].transfer_context,
1383 items[i].paddr,
1384 items[i].len,
1385 items[i].transfer_id,
1386 CE_SEND_FLAG_GATHER);
1387 if (err)
1388 goto err;
1389 }
1390
1391 /* `i` is equal to `n_items -1` after for() */
1392
1393 ath10k_dbg(ar, ATH10K_DBG_PCI,
1394 "pci tx item %d paddr %pad len %d n_items %d\n",
1395 i, &items[i].paddr, items[i].len, n_items);
1396 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397 items[i].vaddr, items[i].len);
1398
1399 err = ath10k_ce_send_nolock(ce_pipe,
1400 items[i].transfer_context,
1401 items[i].paddr,
1402 items[i].len,
1403 items[i].transfer_id,
1404 0);
1405 if (err)
1406 goto err;
1407
1408 spin_unlock_bh(&ce->ce_lock);
1409 return 0;
1410
1411err:
1412 for (; i > 0; i--)
1413 __ath10k_ce_send_revert(ce_pipe);
1414
1415 spin_unlock_bh(&ce->ce_lock);
1416 return err;
1417}
1418
1419int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1420 size_t buf_len)
1421{
1422 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1423}
1424
1425u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1426{
1427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1428
1429 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1430
1431 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1432}
1433
1434static void ath10k_pci_dump_registers(struct ath10k *ar,
1435 struct ath10k_fw_crash_data *crash_data)
1436{
1437 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1438 int i, ret;
1439
1440 lockdep_assert_held(&ar->dump_mutex);
1441
1442 ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1443 hi_failure_state,
1444 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1445 if (ret) {
1446 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1447 return;
1448 }
1449
1450 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1451
1452 ath10k_err(ar, "firmware register dump:\n");
1453 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1455 i,
1456 __le32_to_cpu(reg_dump_values[i]),
1457 __le32_to_cpu(reg_dump_values[i + 1]),
1458 __le32_to_cpu(reg_dump_values[i + 2]),
1459 __le32_to_cpu(reg_dump_values[i + 3]));
1460
1461 if (!crash_data)
1462 return;
1463
1464 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465 crash_data->registers[i] = reg_dump_values[i];
1466}
1467
1468static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469 const struct ath10k_mem_region *mem_region,
1470 u8 *buf, size_t buf_len)
1471{
1472 const struct ath10k_mem_section *cur_section, *next_section;
1473 unsigned int count, section_size, skip_size;
1474 int ret, i, j;
1475
1476 if (!mem_region || !buf)
1477 return 0;
1478
1479 cur_section = &mem_region->section_table.sections[0];
1480
1481 if (mem_region->start > cur_section->start) {
1482 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483 mem_region->start, cur_section->start);
1484 return 0;
1485 }
1486
1487 skip_size = cur_section->start - mem_region->start;
1488
1489 /* fill the gap between the first register section and register
1490 * start address
1491 */
1492 for (i = 0; i < skip_size; i++) {
1493 *buf = ATH10K_MAGIC_NOT_COPIED;
1494 buf++;
1495 }
1496
1497 count = 0;
1498
1499 for (i = 0; cur_section != NULL; i++) {
1500 section_size = cur_section->end - cur_section->start;
1501
1502 if (section_size <= 0) {
1503 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1504 cur_section->start,
1505 cur_section->end);
1506 break;
1507 }
1508
1509 if ((i + 1) == mem_region->section_table.size) {
1510 /* last section */
1511 next_section = NULL;
1512 skip_size = 0;
1513 } else {
1514 next_section = cur_section + 1;
1515
1516 if (cur_section->end > next_section->start) {
1517 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518 next_section->start,
1519 cur_section->end);
1520 break;
1521 }
1522
1523 skip_size = next_section->start - cur_section->end;
1524 }
1525
1526 if (buf_len < (skip_size + section_size)) {
1527 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1528 break;
1529 }
1530
1531 buf_len -= skip_size + section_size;
1532
1533 /* read section to dest memory */
1534 ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1535 buf, section_size);
1536 if (ret) {
1537 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538 cur_section->start, ret);
1539 break;
1540 }
1541
1542 buf += section_size;
1543 count += section_size;
1544
1545 /* fill in the gap between this section and the next */
1546 for (j = 0; j < skip_size; j++) {
1547 *buf = ATH10K_MAGIC_NOT_COPIED;
1548 buf++;
1549 }
1550
1551 count += skip_size;
1552
1553 if (!next_section)
1554 /* this was the last section */
1555 break;
1556
1557 cur_section = next_section;
1558 }
1559
1560 return count;
1561}
1562
1563static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1564{
1565 u32 val;
1566
1567 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568 FW_RAM_CONFIG_ADDRESS, config);
1569
1570 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571 FW_RAM_CONFIG_ADDRESS);
1572 if (val != config) {
1573 ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1574 val, config);
1575 return -EIO;
1576 }
1577
1578 return 0;
1579}
1580
1581/* if an error happened returns < 0, otherwise the length */
1582static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583 const struct ath10k_mem_region *region,
1584 u8 *buf)
1585{
1586 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1587 u32 base_addr, i;
1588
1589 base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590 base_addr += region->start;
1591
1592 for (i = 0; i < region->len; i += 4) {
1593 iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594 *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1595 }
1596
1597 return region->len;
1598}
1599
1600/* if an error happened returns < 0, otherwise the length */
1601static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602 const struct ath10k_mem_region *region,
1603 u8 *buf)
1604{
1605 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1606 u32 i;
1607 int ret;
1608
1609 mutex_lock(&ar->conf_mutex);
1610 if (ar->state != ATH10K_STATE_ON) {
1611 ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1612 ret = -EIO;
1613 goto done;
1614 }
1615
1616 for (i = 0; i < region->len; i += 4)
1617 *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1618
1619 ret = region->len;
1620done:
1621 mutex_unlock(&ar->conf_mutex);
1622 return ret;
1623}
1624
1625/* if an error happened returns < 0, otherwise the length */
1626static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1627 const struct ath10k_mem_region *current_region,
1628 u8 *buf)
1629{
1630 int ret;
1631
1632 if (current_region->section_table.size > 0)
1633 /* Copy each section individually. */
1634 return ath10k_pci_dump_memory_section(ar,
1635 current_region,
1636 buf,
1637 current_region->len);
1638
1639 /* No individiual memory sections defined so we can
1640 * copy the entire memory region.
1641 */
1642 ret = ath10k_pci_diag_read_mem(ar,
1643 current_region->start,
1644 buf,
1645 current_region->len);
1646 if (ret) {
1647 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1648 current_region->name, ret);
1649 return ret;
1650 }
1651
1652 return current_region->len;
1653}
1654
1655static void ath10k_pci_dump_memory(struct ath10k *ar,
1656 struct ath10k_fw_crash_data *crash_data)
1657{
1658 const struct ath10k_hw_mem_layout *mem_layout;
1659 const struct ath10k_mem_region *current_region;
1660 struct ath10k_dump_ram_data_hdr *hdr;
1661 u32 count, shift;
1662 size_t buf_len;
1663 int ret, i;
1664 u8 *buf;
1665
1666 lockdep_assert_held(&ar->dump_mutex);
1667
1668 if (!crash_data)
1669 return;
1670
1671 mem_layout = ath10k_coredump_get_mem_layout(ar);
1672 if (!mem_layout)
1673 return;
1674
1675 current_region = &mem_layout->region_table.regions[0];
1676
1677 buf = crash_data->ramdump_buf;
1678 buf_len = crash_data->ramdump_buf_len;
1679
1680 memset(buf, 0, buf_len);
1681
1682 for (i = 0; i < mem_layout->region_table.size; i++) {
1683 count = 0;
1684
1685 if (current_region->len > buf_len) {
1686 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1687 current_region->name,
1688 current_region->len,
1689 buf_len);
1690 break;
1691 }
1692
1693 /* To get IRAM dump, the host driver needs to switch target
1694 * ram config from DRAM to IRAM.
1695 */
1696 if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1697 current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1698 shift = current_region->start >> 20;
1699
1700 ret = ath10k_pci_set_ram_config(ar, shift);
1701 if (ret) {
1702 ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1703 current_region->name, ret);
1704 break;
1705 }
1706 }
1707
1708 /* Reserve space for the header. */
1709 hdr = (void *)buf;
1710 buf += sizeof(*hdr);
1711 buf_len -= sizeof(*hdr);
1712
1713 switch (current_region->type) {
1714 case ATH10K_MEM_REGION_TYPE_IOSRAM:
1715 count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1716 break;
1717 case ATH10K_MEM_REGION_TYPE_IOREG:
1718 ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1719 if (ret < 0)
1720 break;
1721
1722 count = ret;
1723 break;
1724 default:
1725 ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1726 if (ret < 0)
1727 break;
1728
1729 count = ret;
1730 break;
1731 }
1732
1733 hdr->region_type = cpu_to_le32(current_region->type);
1734 hdr->start = cpu_to_le32(current_region->start);
1735 hdr->length = cpu_to_le32(count);
1736
1737 if (count == 0)
1738 /* Note: the header remains, just with zero length. */
1739 break;
1740
1741 buf += count;
1742 buf_len -= count;
1743
1744 current_region++;
1745 }
1746}
1747
1748static void ath10k_pci_fw_dump_work(struct work_struct *work)
1749{
1750 struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1751 dump_work);
1752 struct ath10k_fw_crash_data *crash_data;
1753 struct ath10k *ar = ar_pci->ar;
1754 char guid[UUID_STRING_LEN + 1];
1755
1756 mutex_lock(&ar->dump_mutex);
1757
1758 spin_lock_bh(&ar->data_lock);
1759 ar->stats.fw_crash_counter++;
1760 spin_unlock_bh(&ar->data_lock);
1761
1762 crash_data = ath10k_coredump_new(ar);
1763
1764 if (crash_data)
1765 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1766 else
1767 scnprintf(guid, sizeof(guid), "n/a");
1768
1769 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1770 ath10k_print_driver_info(ar);
1771 ath10k_pci_dump_registers(ar, crash_data);
1772 ath10k_ce_dump_registers(ar, crash_data);
1773 ath10k_pci_dump_memory(ar, crash_data);
1774
1775 mutex_unlock(&ar->dump_mutex);
1776
1777 queue_work(ar->workqueue, &ar->restart_work);
1778}
1779
1780static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1781{
1782 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1783
1784 queue_work(ar->workqueue, &ar_pci->dump_work);
1785}
1786
1787void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1788 int force)
1789{
1790 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1791
1792 if (!force) {
1793 int resources;
1794 /*
1795 * Decide whether to actually poll for completions, or just
1796 * wait for a later chance.
1797 * If there seem to be plenty of resources left, then just wait
1798 * since checking involves reading a CE register, which is a
1799 * relatively expensive operation.
1800 */
1801 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1802
1803 /*
1804 * If at least 50% of the total resources are still available,
1805 * don't bother checking again yet.
1806 */
1807 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1808 return;
1809 }
1810 ath10k_ce_per_engine_service(ar, pipe);
1811}
1812
1813static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1814{
1815 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1816
1817 del_timer_sync(&ar_pci->rx_post_retry);
1818}
1819
1820int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1821 u8 *ul_pipe, u8 *dl_pipe)
1822{
1823 const struct service_to_pipe *entry;
1824 bool ul_set = false, dl_set = false;
1825 int i;
1826
1827 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1828
1829 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1830 entry = &target_service_to_ce_map_wlan[i];
1831
1832 if (__le32_to_cpu(entry->service_id) != service_id)
1833 continue;
1834
1835 switch (__le32_to_cpu(entry->pipedir)) {
1836 case PIPEDIR_NONE:
1837 break;
1838 case PIPEDIR_IN:
1839 WARN_ON(dl_set);
1840 *dl_pipe = __le32_to_cpu(entry->pipenum);
1841 dl_set = true;
1842 break;
1843 case PIPEDIR_OUT:
1844 WARN_ON(ul_set);
1845 *ul_pipe = __le32_to_cpu(entry->pipenum);
1846 ul_set = true;
1847 break;
1848 case PIPEDIR_INOUT:
1849 WARN_ON(dl_set);
1850 WARN_ON(ul_set);
1851 *dl_pipe = __le32_to_cpu(entry->pipenum);
1852 *ul_pipe = __le32_to_cpu(entry->pipenum);
1853 dl_set = true;
1854 ul_set = true;
1855 break;
1856 }
1857 }
1858
1859 if (!ul_set || !dl_set)
1860 return -ENOENT;
1861
1862 return 0;
1863}
1864
1865void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1866 u8 *ul_pipe, u8 *dl_pipe)
1867{
1868 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1869
1870 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1871 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1872 ul_pipe, dl_pipe);
1873}
1874
1875void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1876{
1877 u32 val;
1878
1879 switch (ar->hw_rev) {
1880 case ATH10K_HW_QCA988X:
1881 case ATH10K_HW_QCA9887:
1882 case ATH10K_HW_QCA6174:
1883 case ATH10K_HW_QCA9377:
1884 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1885 CORE_CTRL_ADDRESS);
1886 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1887 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1888 CORE_CTRL_ADDRESS, val);
1889 break;
1890 case ATH10K_HW_QCA99X0:
1891 case ATH10K_HW_QCA9984:
1892 case ATH10K_HW_QCA9888:
1893 case ATH10K_HW_QCA4019:
1894 /* TODO: Find appropriate register configuration for QCA99X0
1895 * to mask irq/MSI.
1896 */
1897 break;
1898 case ATH10K_HW_WCN3990:
1899 break;
1900 }
1901}
1902
1903static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1904{
1905 u32 val;
1906
1907 switch (ar->hw_rev) {
1908 case ATH10K_HW_QCA988X:
1909 case ATH10K_HW_QCA9887:
1910 case ATH10K_HW_QCA6174:
1911 case ATH10K_HW_QCA9377:
1912 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1913 CORE_CTRL_ADDRESS);
1914 val |= CORE_CTRL_PCIE_REG_31_MASK;
1915 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1916 CORE_CTRL_ADDRESS, val);
1917 break;
1918 case ATH10K_HW_QCA99X0:
1919 case ATH10K_HW_QCA9984:
1920 case ATH10K_HW_QCA9888:
1921 case ATH10K_HW_QCA4019:
1922 /* TODO: Find appropriate register configuration for QCA99X0
1923 * to unmask irq/MSI.
1924 */
1925 break;
1926 case ATH10K_HW_WCN3990:
1927 break;
1928 }
1929}
1930
1931static void ath10k_pci_irq_disable(struct ath10k *ar)
1932{
1933 ath10k_ce_disable_interrupts(ar);
1934 ath10k_pci_disable_and_clear_legacy_irq(ar);
1935 ath10k_pci_irq_msi_fw_mask(ar);
1936}
1937
1938static void ath10k_pci_irq_sync(struct ath10k *ar)
1939{
1940 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1941
1942 synchronize_irq(ar_pci->pdev->irq);
1943}
1944
1945static void ath10k_pci_irq_enable(struct ath10k *ar)
1946{
1947 ath10k_ce_enable_interrupts(ar);
1948 ath10k_pci_enable_legacy_irq(ar);
1949 ath10k_pci_irq_msi_fw_unmask(ar);
1950}
1951
1952static int ath10k_pci_hif_start(struct ath10k *ar)
1953{
1954 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1955
1956 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1957
1958 napi_enable(&ar->napi);
1959
1960 ath10k_pci_irq_enable(ar);
1961 ath10k_pci_rx_post(ar);
1962
1963 pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1964 PCI_EXP_LNKCTL_ASPMC,
1965 ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1966
1967 return 0;
1968}
1969
1970static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1971{
1972 struct ath10k *ar;
1973 struct ath10k_ce_pipe *ce_pipe;
1974 struct ath10k_ce_ring *ce_ring;
1975 struct sk_buff *skb;
1976 int i;
1977
1978 ar = pci_pipe->hif_ce_state;
1979 ce_pipe = pci_pipe->ce_hdl;
1980 ce_ring = ce_pipe->dest_ring;
1981
1982 if (!ce_ring)
1983 return;
1984
1985 if (!pci_pipe->buf_sz)
1986 return;
1987
1988 for (i = 0; i < ce_ring->nentries; i++) {
1989 skb = ce_ring->per_transfer_context[i];
1990 if (!skb)
1991 continue;
1992
1993 ce_ring->per_transfer_context[i] = NULL;
1994
1995 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1996 skb->len + skb_tailroom(skb),
1997 DMA_FROM_DEVICE);
1998 dev_kfree_skb_any(skb);
1999 }
2000}
2001
2002static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2003{
2004 struct ath10k *ar;
2005 struct ath10k_ce_pipe *ce_pipe;
2006 struct ath10k_ce_ring *ce_ring;
2007 struct sk_buff *skb;
2008 int i;
2009
2010 ar = pci_pipe->hif_ce_state;
2011 ce_pipe = pci_pipe->ce_hdl;
2012 ce_ring = ce_pipe->src_ring;
2013
2014 if (!ce_ring)
2015 return;
2016
2017 if (!pci_pipe->buf_sz)
2018 return;
2019
2020 for (i = 0; i < ce_ring->nentries; i++) {
2021 skb = ce_ring->per_transfer_context[i];
2022 if (!skb)
2023 continue;
2024
2025 ce_ring->per_transfer_context[i] = NULL;
2026
2027 ath10k_htc_tx_completion_handler(ar, skb);
2028 }
2029}
2030
2031/*
2032 * Cleanup residual buffers for device shutdown:
2033 * buffers that were enqueued for receive
2034 * buffers that were to be sent
2035 * Note: Buffers that had completed but which were
2036 * not yet processed are on a completion queue. They
2037 * are handled when the completion thread shuts down.
2038 */
2039static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2040{
2041 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2042 int pipe_num;
2043
2044 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2045 struct ath10k_pci_pipe *pipe_info;
2046
2047 pipe_info = &ar_pci->pipe_info[pipe_num];
2048 ath10k_pci_rx_pipe_cleanup(pipe_info);
2049 ath10k_pci_tx_pipe_cleanup(pipe_info);
2050 }
2051}
2052
2053void ath10k_pci_ce_deinit(struct ath10k *ar)
2054{
2055 int i;
2056
2057 for (i = 0; i < CE_COUNT; i++)
2058 ath10k_ce_deinit_pipe(ar, i);
2059}
2060
2061void ath10k_pci_flush(struct ath10k *ar)
2062{
2063 ath10k_pci_rx_retry_sync(ar);
2064 ath10k_pci_buffer_cleanup(ar);
2065}
2066
2067static void ath10k_pci_hif_stop(struct ath10k *ar)
2068{
2069 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2070 unsigned long flags;
2071
2072 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2073
2074 ath10k_pci_irq_disable(ar);
2075 ath10k_pci_irq_sync(ar);
2076 napi_synchronize(&ar->napi);
2077 napi_disable(&ar->napi);
2078 cancel_work_sync(&ar_pci->dump_work);
2079
2080 /* Most likely the device has HTT Rx ring configured. The only way to
2081 * prevent the device from accessing (and possible corrupting) host
2082 * memory is to reset the chip now.
2083 *
2084 * There's also no known way of masking MSI interrupts on the device.
2085 * For ranged MSI the CE-related interrupts can be masked. However
2086 * regardless how many MSI interrupts are assigned the first one
2087 * is always used for firmware indications (crashes) and cannot be
2088 * masked. To prevent the device from asserting the interrupt reset it
2089 * before proceeding with cleanup.
2090 */
2091 ath10k_pci_safe_chip_reset(ar);
2092
2093 ath10k_pci_flush(ar);
2094
2095 spin_lock_irqsave(&ar_pci->ps_lock, flags);
2096 WARN_ON(ar_pci->ps_wake_refcount > 0);
2097 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2098}
2099
2100int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2101 void *req, u32 req_len,
2102 void *resp, u32 *resp_len)
2103{
2104 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2105 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2106 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2107 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2108 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2109 dma_addr_t req_paddr = 0;
2110 dma_addr_t resp_paddr = 0;
2111 struct bmi_xfer xfer = {};
2112 void *treq, *tresp = NULL;
2113 int ret = 0;
2114
2115 might_sleep();
2116
2117 if (resp && !resp_len)
2118 return -EINVAL;
2119
2120 if (resp && resp_len && *resp_len == 0)
2121 return -EINVAL;
2122
2123 treq = kmemdup(req, req_len, GFP_KERNEL);
2124 if (!treq)
2125 return -ENOMEM;
2126
2127 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2128 ret = dma_mapping_error(ar->dev, req_paddr);
2129 if (ret) {
2130 ret = -EIO;
2131 goto err_dma;
2132 }
2133
2134 if (resp && resp_len) {
2135 tresp = kzalloc(*resp_len, GFP_KERNEL);
2136 if (!tresp) {
2137 ret = -ENOMEM;
2138 goto err_req;
2139 }
2140
2141 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2142 DMA_FROM_DEVICE);
2143 ret = dma_mapping_error(ar->dev, resp_paddr);
2144 if (ret) {
2145 ret = -EIO;
2146 goto err_req;
2147 }
2148
2149 xfer.wait_for_resp = true;
2150 xfer.resp_len = 0;
2151
2152 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2153 }
2154
2155 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2156 if (ret)
2157 goto err_resp;
2158
2159 ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2160 if (ret) {
2161 dma_addr_t unused_buffer;
2162 unsigned int unused_nbytes;
2163 unsigned int unused_id;
2164
2165 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2166 &unused_nbytes, &unused_id);
2167 } else {
2168 /* non-zero means we did not time out */
2169 ret = 0;
2170 }
2171
2172err_resp:
2173 if (resp) {
2174 dma_addr_t unused_buffer;
2175
2176 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2177 dma_unmap_single(ar->dev, resp_paddr,
2178 *resp_len, DMA_FROM_DEVICE);
2179 }
2180err_req:
2181 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2182
2183 if (ret == 0 && resp_len) {
2184 *resp_len = min(*resp_len, xfer.resp_len);
2185 memcpy(resp, tresp, xfer.resp_len);
2186 }
2187err_dma:
2188 kfree(treq);
2189 kfree(tresp);
2190
2191 return ret;
2192}
2193
2194static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2195{
2196 struct bmi_xfer *xfer;
2197
2198 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2199 return;
2200
2201 xfer->tx_done = true;
2202}
2203
2204static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2205{
2206 struct ath10k *ar = ce_state->ar;
2207 struct bmi_xfer *xfer;
2208 unsigned int nbytes;
2209
2210 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2211 &nbytes))
2212 return;
2213
2214 if (WARN_ON_ONCE(!xfer))
2215 return;
2216
2217 if (!xfer->wait_for_resp) {
2218 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2219 return;
2220 }
2221
2222 xfer->resp_len = nbytes;
2223 xfer->rx_done = true;
2224}
2225
2226static int ath10k_pci_bmi_wait(struct ath10k *ar,
2227 struct ath10k_ce_pipe *tx_pipe,
2228 struct ath10k_ce_pipe *rx_pipe,
2229 struct bmi_xfer *xfer)
2230{
2231 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2232 unsigned long started = jiffies;
2233 unsigned long dur;
2234 int ret;
2235
2236 while (time_before_eq(jiffies, timeout)) {
2237 ath10k_pci_bmi_send_done(tx_pipe);
2238 ath10k_pci_bmi_recv_data(rx_pipe);
2239
2240 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2241 ret = 0;
2242 goto out;
2243 }
2244
2245 schedule();
2246 }
2247
2248 ret = -ETIMEDOUT;
2249
2250out:
2251 dur = jiffies - started;
2252 if (dur > HZ)
2253 ath10k_dbg(ar, ATH10K_DBG_BMI,
2254 "bmi cmd took %lu jiffies hz %d ret %d\n",
2255 dur, HZ, ret);
2256 return ret;
2257}
2258
2259/*
2260 * Send an interrupt to the device to wake up the Target CPU
2261 * so it has an opportunity to notice any changed state.
2262 */
2263static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2264{
2265 u32 addr, val;
2266
2267 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2268 val = ath10k_pci_read32(ar, addr);
2269 val |= CORE_CTRL_CPU_INTR_MASK;
2270 ath10k_pci_write32(ar, addr, val);
2271
2272 return 0;
2273}
2274
2275static int ath10k_pci_get_num_banks(struct ath10k *ar)
2276{
2277 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2278
2279 switch (ar_pci->pdev->device) {
2280 case QCA988X_2_0_DEVICE_ID_UBNT:
2281 case QCA988X_2_0_DEVICE_ID:
2282 case QCA99X0_2_0_DEVICE_ID:
2283 case QCA9888_2_0_DEVICE_ID:
2284 case QCA9984_1_0_DEVICE_ID:
2285 case QCA9887_1_0_DEVICE_ID:
2286 return 1;
2287 case QCA6164_2_1_DEVICE_ID:
2288 case QCA6174_2_1_DEVICE_ID:
2289 switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2290 case QCA6174_HW_1_0_CHIP_ID_REV:
2291 case QCA6174_HW_1_1_CHIP_ID_REV:
2292 case QCA6174_HW_2_1_CHIP_ID_REV:
2293 case QCA6174_HW_2_2_CHIP_ID_REV:
2294 return 3;
2295 case QCA6174_HW_1_3_CHIP_ID_REV:
2296 return 2;
2297 case QCA6174_HW_3_0_CHIP_ID_REV:
2298 case QCA6174_HW_3_1_CHIP_ID_REV:
2299 case QCA6174_HW_3_2_CHIP_ID_REV:
2300 return 9;
2301 }
2302 break;
2303 case QCA9377_1_0_DEVICE_ID:
2304 return 9;
2305 }
2306
2307 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2308 return 1;
2309}
2310
2311static int ath10k_bus_get_num_banks(struct ath10k *ar)
2312{
2313 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2314
2315 return ce->bus_ops->get_num_banks(ar);
2316}
2317
2318int ath10k_pci_init_config(struct ath10k *ar)
2319{
2320 u32 interconnect_targ_addr;
2321 u32 pcie_state_targ_addr = 0;
2322 u32 pipe_cfg_targ_addr = 0;
2323 u32 svc_to_pipe_map = 0;
2324 u32 pcie_config_flags = 0;
2325 u32 ealloc_value;
2326 u32 ealloc_targ_addr;
2327 u32 flag2_value;
2328 u32 flag2_targ_addr;
2329 int ret = 0;
2330
2331 /* Download to Target the CE Config and the service-to-CE map */
2332 interconnect_targ_addr =
2333 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2334
2335 /* Supply Target-side CE configuration */
2336 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2337 &pcie_state_targ_addr);
2338 if (ret != 0) {
2339 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2340 return ret;
2341 }
2342
2343 if (pcie_state_targ_addr == 0) {
2344 ret = -EIO;
2345 ath10k_err(ar, "Invalid pcie state addr\n");
2346 return ret;
2347 }
2348
2349 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2350 offsetof(struct pcie_state,
2351 pipe_cfg_addr)),
2352 &pipe_cfg_targ_addr);
2353 if (ret != 0) {
2354 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2355 return ret;
2356 }
2357
2358 if (pipe_cfg_targ_addr == 0) {
2359 ret = -EIO;
2360 ath10k_err(ar, "Invalid pipe cfg addr\n");
2361 return ret;
2362 }
2363
2364 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2365 target_ce_config_wlan,
2366 sizeof(struct ce_pipe_config) *
2367 NUM_TARGET_CE_CONFIG_WLAN);
2368
2369 if (ret != 0) {
2370 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2371 return ret;
2372 }
2373
2374 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2375 offsetof(struct pcie_state,
2376 svc_to_pipe_map)),
2377 &svc_to_pipe_map);
2378 if (ret != 0) {
2379 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2380 return ret;
2381 }
2382
2383 if (svc_to_pipe_map == 0) {
2384 ret = -EIO;
2385 ath10k_err(ar, "Invalid svc_to_pipe map\n");
2386 return ret;
2387 }
2388
2389 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2390 target_service_to_ce_map_wlan,
2391 sizeof(target_service_to_ce_map_wlan));
2392 if (ret != 0) {
2393 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2394 return ret;
2395 }
2396
2397 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2398 offsetof(struct pcie_state,
2399 config_flags)),
2400 &pcie_config_flags);
2401 if (ret != 0) {
2402 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2403 return ret;
2404 }
2405
2406 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2407
2408 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2409 offsetof(struct pcie_state,
2410 config_flags)),
2411 pcie_config_flags);
2412 if (ret != 0) {
2413 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2414 return ret;
2415 }
2416
2417 /* configure early allocation */
2418 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2419
2420 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2421 if (ret != 0) {
2422 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2423 return ret;
2424 }
2425
2426 /* first bank is switched to IRAM */
2427 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2428 HI_EARLY_ALLOC_MAGIC_MASK);
2429 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2430 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2431 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2432
2433 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2434 if (ret != 0) {
2435 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2436 return ret;
2437 }
2438
2439 /* Tell Target to proceed with initialization */
2440 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2441
2442 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2443 if (ret != 0) {
2444 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2445 return ret;
2446 }
2447
2448 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2449
2450 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2451 if (ret != 0) {
2452 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2453 return ret;
2454 }
2455
2456 return 0;
2457}
2458
2459static void ath10k_pci_override_ce_config(struct ath10k *ar)
2460{
2461 struct ce_attr *attr;
2462 struct ce_pipe_config *config;
2463
2464 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2465 * since it is currently used for other feature.
2466 */
2467
2468 /* Override Host's Copy Engine 5 configuration */
2469 attr = &host_ce_config_wlan[5];
2470 attr->src_sz_max = 0;
2471 attr->dest_nentries = 0;
2472
2473 /* Override Target firmware's Copy Engine configuration */
2474 config = &target_ce_config_wlan[5];
2475 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2476 config->nbytes_max = __cpu_to_le32(2048);
2477
2478 /* Map from service/endpoint to Copy Engine */
2479 target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2480}
2481
2482int ath10k_pci_alloc_pipes(struct ath10k *ar)
2483{
2484 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2485 struct ath10k_pci_pipe *pipe;
2486 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2487 int i, ret;
2488
2489 for (i = 0; i < CE_COUNT; i++) {
2490 pipe = &ar_pci->pipe_info[i];
2491 pipe->ce_hdl = &ce->ce_states[i];
2492 pipe->pipe_num = i;
2493 pipe->hif_ce_state = ar;
2494
2495 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2496 if (ret) {
2497 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2498 i, ret);
2499 return ret;
2500 }
2501
2502 /* Last CE is Diagnostic Window */
2503 if (i == CE_DIAG_PIPE) {
2504 ar_pci->ce_diag = pipe->ce_hdl;
2505 continue;
2506 }
2507
2508 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2509 }
2510
2511 return 0;
2512}
2513
2514void ath10k_pci_free_pipes(struct ath10k *ar)
2515{
2516 int i;
2517
2518 for (i = 0; i < CE_COUNT; i++)
2519 ath10k_ce_free_pipe(ar, i);
2520}
2521
2522int ath10k_pci_init_pipes(struct ath10k *ar)
2523{
2524 int i, ret;
2525
2526 for (i = 0; i < CE_COUNT; i++) {
2527 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2528 if (ret) {
2529 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2530 i, ret);
2531 return ret;
2532 }
2533 }
2534
2535 return 0;
2536}
2537
2538static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2539{
2540 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2541 FW_IND_EVENT_PENDING;
2542}
2543
2544static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2545{
2546 u32 val;
2547
2548 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2549 val &= ~FW_IND_EVENT_PENDING;
2550 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2551}
2552
2553static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2554{
2555 u32 val;
2556
2557 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2558 return (val == 0xffffffff);
2559}
2560
2561/* this function effectively clears target memory controller assert line */
2562static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2563{
2564 u32 val;
2565
2566 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2567 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2568 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2569 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2570
2571 msleep(10);
2572
2573 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2574 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2575 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2576 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2577
2578 msleep(10);
2579}
2580
2581static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2582{
2583 u32 val;
2584
2585 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2586
2587 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2588 SOC_RESET_CONTROL_ADDRESS);
2589 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2590 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2591}
2592
2593static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2594{
2595 u32 val;
2596
2597 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2598 SOC_RESET_CONTROL_ADDRESS);
2599
2600 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2601 val | SOC_RESET_CONTROL_CE_RST_MASK);
2602 msleep(10);
2603 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2604 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2605}
2606
2607static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2608{
2609 u32 val;
2610
2611 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2612 SOC_LF_TIMER_CONTROL0_ADDRESS);
2613 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2614 SOC_LF_TIMER_CONTROL0_ADDRESS,
2615 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2616}
2617
2618static int ath10k_pci_warm_reset(struct ath10k *ar)
2619{
2620 int ret;
2621
2622 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2623
2624 spin_lock_bh(&ar->data_lock);
2625 ar->stats.fw_warm_reset_counter++;
2626 spin_unlock_bh(&ar->data_lock);
2627
2628 ath10k_pci_irq_disable(ar);
2629
2630 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2631 * were to access copy engine while host performs copy engine reset
2632 * then it is possible for the device to confuse pci-e controller to
2633 * the point of bringing host system to a complete stop (i.e. hang).
2634 */
2635 ath10k_pci_warm_reset_si0(ar);
2636 ath10k_pci_warm_reset_cpu(ar);
2637 ath10k_pci_init_pipes(ar);
2638 ath10k_pci_wait_for_target_init(ar);
2639
2640 ath10k_pci_warm_reset_clear_lf(ar);
2641 ath10k_pci_warm_reset_ce(ar);
2642 ath10k_pci_warm_reset_cpu(ar);
2643 ath10k_pci_init_pipes(ar);
2644
2645 ret = ath10k_pci_wait_for_target_init(ar);
2646 if (ret) {
2647 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2648 return ret;
2649 }
2650
2651 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2652
2653 return 0;
2654}
2655
2656static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2657{
2658 ath10k_pci_irq_disable(ar);
2659 return ath10k_pci_qca99x0_chip_reset(ar);
2660}
2661
2662static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2663{
2664 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2665
2666 if (!ar_pci->pci_soft_reset)
2667 return -ENOTSUPP;
2668
2669 return ar_pci->pci_soft_reset(ar);
2670}
2671
2672static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2673{
2674 int i, ret;
2675 u32 val;
2676
2677 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2678
2679 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2680 * It is thus preferred to use warm reset which is safer but may not be
2681 * able to recover the device from all possible fail scenarios.
2682 *
2683 * Warm reset doesn't always work on first try so attempt it a few
2684 * times before giving up.
2685 */
2686 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2687 ret = ath10k_pci_warm_reset(ar);
2688 if (ret) {
2689 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2690 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2691 ret);
2692 continue;
2693 }
2694
2695 /* FIXME: Sometimes copy engine doesn't recover after warm
2696 * reset. In most cases this needs cold reset. In some of these
2697 * cases the device is in such a state that a cold reset may
2698 * lock up the host.
2699 *
2700 * Reading any host interest register via copy engine is
2701 * sufficient to verify if device is capable of booting
2702 * firmware blob.
2703 */
2704 ret = ath10k_pci_init_pipes(ar);
2705 if (ret) {
2706 ath10k_warn(ar, "failed to init copy engine: %d\n",
2707 ret);
2708 continue;
2709 }
2710
2711 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2712 &val);
2713 if (ret) {
2714 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2715 ret);
2716 continue;
2717 }
2718
2719 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2720 return 0;
2721 }
2722
2723 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2724 ath10k_warn(ar, "refusing cold reset as requested\n");
2725 return -EPERM;
2726 }
2727
2728 ret = ath10k_pci_cold_reset(ar);
2729 if (ret) {
2730 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2731 return ret;
2732 }
2733
2734 ret = ath10k_pci_wait_for_target_init(ar);
2735 if (ret) {
2736 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2737 ret);
2738 return ret;
2739 }
2740
2741 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2742
2743 return 0;
2744}
2745
2746static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2747{
2748 int ret;
2749
2750 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2751
2752 /* FIXME: QCA6174 requires cold + warm reset to work. */
2753
2754 ret = ath10k_pci_cold_reset(ar);
2755 if (ret) {
2756 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2757 return ret;
2758 }
2759
2760 ret = ath10k_pci_wait_for_target_init(ar);
2761 if (ret) {
2762 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2763 ret);
2764 return ret;
2765 }
2766
2767 ret = ath10k_pci_warm_reset(ar);
2768 if (ret) {
2769 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2770 return ret;
2771 }
2772
2773 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2774
2775 return 0;
2776}
2777
2778static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2779{
2780 int ret;
2781
2782 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2783
2784 ret = ath10k_pci_cold_reset(ar);
2785 if (ret) {
2786 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2787 return ret;
2788 }
2789
2790 ret = ath10k_pci_wait_for_target_init(ar);
2791 if (ret) {
2792 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2793 ret);
2794 return ret;
2795 }
2796
2797 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2798
2799 return 0;
2800}
2801
2802static int ath10k_pci_chip_reset(struct ath10k *ar)
2803{
2804 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2805
2806 if (WARN_ON(!ar_pci->pci_hard_reset))
2807 return -ENOTSUPP;
2808
2809 return ar_pci->pci_hard_reset(ar);
2810}
2811
2812static int ath10k_pci_hif_power_up(struct ath10k *ar,
2813 enum ath10k_firmware_mode fw_mode)
2814{
2815 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2816 int ret;
2817
2818 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2819
2820 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2821 &ar_pci->link_ctl);
2822 pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2823 PCI_EXP_LNKCTL_ASPMC);
2824
2825 /*
2826 * Bring the target up cleanly.
2827 *
2828 * The target may be in an undefined state with an AUX-powered Target
2829 * and a Host in WoW mode. If the Host crashes, loses power, or is
2830 * restarted (without unloading the driver) then the Target is left
2831 * (aux) powered and running. On a subsequent driver load, the Target
2832 * is in an unexpected state. We try to catch that here in order to
2833 * reset the Target and retry the probe.
2834 */
2835 ret = ath10k_pci_chip_reset(ar);
2836 if (ret) {
2837 if (ath10k_pci_has_fw_crashed(ar)) {
2838 ath10k_warn(ar, "firmware crashed during chip reset\n");
2839 ath10k_pci_fw_crashed_clear(ar);
2840 ath10k_pci_fw_crashed_dump(ar);
2841 }
2842
2843 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2844 goto err_sleep;
2845 }
2846
2847 ret = ath10k_pci_init_pipes(ar);
2848 if (ret) {
2849 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2850 goto err_sleep;
2851 }
2852
2853 ret = ath10k_pci_init_config(ar);
2854 if (ret) {
2855 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2856 goto err_ce;
2857 }
2858
2859 ret = ath10k_pci_wake_target_cpu(ar);
2860 if (ret) {
2861 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2862 goto err_ce;
2863 }
2864
2865 return 0;
2866
2867err_ce:
2868 ath10k_pci_ce_deinit(ar);
2869
2870err_sleep:
2871 return ret;
2872}
2873
2874void ath10k_pci_hif_power_down(struct ath10k *ar)
2875{
2876 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2877
2878 /* Currently hif_power_up performs effectively a reset and hif_stop
2879 * resets the chip as well so there's no point in resetting here.
2880 */
2881}
2882
2883static int ath10k_pci_hif_suspend(struct ath10k *ar)
2884{
2885 /* Nothing to do; the important stuff is in the driver suspend. */
2886 return 0;
2887}
2888
2889static int ath10k_pci_suspend(struct ath10k *ar)
2890{
2891 /* The grace timer can still be counting down and ar->ps_awake be true.
2892 * It is known that the device may be asleep after resuming regardless
2893 * of the SoC powersave state before suspending. Hence make sure the
2894 * device is asleep before proceeding.
2895 */
2896 ath10k_pci_sleep_sync(ar);
2897
2898 return 0;
2899}
2900
2901static int ath10k_pci_hif_resume(struct ath10k *ar)
2902{
2903 /* Nothing to do; the important stuff is in the driver resume. */
2904 return 0;
2905}
2906
2907static int ath10k_pci_resume(struct ath10k *ar)
2908{
2909 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2910 struct pci_dev *pdev = ar_pci->pdev;
2911 u32 val;
2912 int ret = 0;
2913
2914 ret = ath10k_pci_force_wake(ar);
2915 if (ret) {
2916 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2917 return ret;
2918 }
2919
2920 /* Suspend/Resume resets the PCI configuration space, so we have to
2921 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2922 * from interfering with C3 CPU state. pci_restore_state won't help
2923 * here since it only restores the first 64 bytes pci config header.
2924 */
2925 pci_read_config_dword(pdev, 0x40, &val);
2926 if ((val & 0x0000ff00) != 0)
2927 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2928
2929 return ret;
2930}
2931
2932static bool ath10k_pci_validate_cal(void *data, size_t size)
2933{
2934 __le16 *cal_words = data;
2935 u16 checksum = 0;
2936 size_t i;
2937
2938 if (size % 2 != 0)
2939 return false;
2940
2941 for (i = 0; i < size / 2; i++)
2942 checksum ^= le16_to_cpu(cal_words[i]);
2943
2944 return checksum == 0xffff;
2945}
2946
2947static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2948{
2949 /* Enable SI clock */
2950 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2951
2952 /* Configure GPIOs for I2C operation */
2953 ath10k_pci_write32(ar,
2954 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2955 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2956 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2957 GPIO_PIN0_CONFIG) |
2958 SM(1, GPIO_PIN0_PAD_PULL));
2959
2960 ath10k_pci_write32(ar,
2961 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2962 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2963 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2964 SM(1, GPIO_PIN0_PAD_PULL));
2965
2966 ath10k_pci_write32(ar,
2967 GPIO_BASE_ADDRESS +
2968 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2969 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2970
2971 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2972 ath10k_pci_write32(ar,
2973 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2974 SM(1, SI_CONFIG_ERR_INT) |
2975 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2976 SM(1, SI_CONFIG_I2C) |
2977 SM(1, SI_CONFIG_POS_SAMPLE) |
2978 SM(1, SI_CONFIG_INACTIVE_DATA) |
2979 SM(1, SI_CONFIG_INACTIVE_CLK) |
2980 SM(8, SI_CONFIG_DIVIDER));
2981}
2982
2983static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2984{
2985 u32 reg;
2986 int wait_limit;
2987
2988 /* set device select byte and for the read operation */
2989 reg = QCA9887_EEPROM_SELECT_READ |
2990 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2991 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2992 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2993
2994 /* write transmit data, transfer length, and START bit */
2995 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2996 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2997 SM(4, SI_CS_TX_CNT));
2998
2999 /* wait max 1 sec */
3000 wait_limit = 100000;
3001
3002 /* wait for SI_CS_DONE_INT */
3003 do {
3004 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3005 if (MS(reg, SI_CS_DONE_INT))
3006 break;
3007
3008 wait_limit--;
3009 udelay(10);
3010 } while (wait_limit > 0);
3011
3012 if (!MS(reg, SI_CS_DONE_INT)) {
3013 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3014 addr);
3015 return -ETIMEDOUT;
3016 }
3017
3018 /* clear SI_CS_DONE_INT */
3019 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3020
3021 if (MS(reg, SI_CS_DONE_ERR)) {
3022 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3023 return -EIO;
3024 }
3025
3026 /* extract receive data */
3027 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3028 *out = reg;
3029
3030 return 0;
3031}
3032
3033static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3034 size_t *data_len)
3035{
3036 u8 *caldata = NULL;
3037 size_t calsize, i;
3038 int ret;
3039
3040 if (!QCA_REV_9887(ar))
3041 return -EOPNOTSUPP;
3042
3043 calsize = ar->hw_params.cal_data_len;
3044 caldata = kmalloc(calsize, GFP_KERNEL);
3045 if (!caldata)
3046 return -ENOMEM;
3047
3048 ath10k_pci_enable_eeprom(ar);
3049
3050 for (i = 0; i < calsize; i++) {
3051 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3052 if (ret)
3053 goto err_free;
3054 }
3055
3056 if (!ath10k_pci_validate_cal(caldata, calsize))
3057 goto err_free;
3058
3059 *data = caldata;
3060 *data_len = calsize;
3061
3062 return 0;
3063
3064err_free:
3065 kfree(caldata);
3066
3067 return -EINVAL;
3068}
3069
3070static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3071 .tx_sg = ath10k_pci_hif_tx_sg,
3072 .diag_read = ath10k_pci_hif_diag_read,
3073 .diag_write = ath10k_pci_diag_write_mem,
3074 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
3075 .start = ath10k_pci_hif_start,
3076 .stop = ath10k_pci_hif_stop,
3077 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
3078 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
3079 .send_complete_check = ath10k_pci_hif_send_complete_check,
3080 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
3081 .power_up = ath10k_pci_hif_power_up,
3082 .power_down = ath10k_pci_hif_power_down,
3083 .read32 = ath10k_pci_read32,
3084 .write32 = ath10k_pci_write32,
3085 .suspend = ath10k_pci_hif_suspend,
3086 .resume = ath10k_pci_hif_resume,
3087 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
3088};
3089
3090/*
3091 * Top-level interrupt handler for all PCI interrupts from a Target.
3092 * When a block of MSI interrupts is allocated, this top-level handler
3093 * is not used; instead, we directly call the correct sub-handler.
3094 */
3095static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3096{
3097 struct ath10k *ar = arg;
3098 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3099 int ret;
3100
3101 if (ath10k_pci_has_device_gone(ar))
3102 return IRQ_NONE;
3103
3104 ret = ath10k_pci_force_wake(ar);
3105 if (ret) {
3106 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3107 return IRQ_NONE;
3108 }
3109
3110 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3111 !ath10k_pci_irq_pending(ar))
3112 return IRQ_NONE;
3113
3114 ath10k_pci_disable_and_clear_legacy_irq(ar);
3115 ath10k_pci_irq_msi_fw_mask(ar);
3116 napi_schedule(&ar->napi);
3117
3118 return IRQ_HANDLED;
3119}
3120
3121static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3122{
3123 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3124 int done = 0;
3125
3126 if (ath10k_pci_has_fw_crashed(ar)) {
3127 ath10k_pci_fw_crashed_clear(ar);
3128 ath10k_pci_fw_crashed_dump(ar);
3129 napi_complete(ctx);
3130 return done;
3131 }
3132
3133 ath10k_ce_per_engine_service_any(ar);
3134
3135 done = ath10k_htt_txrx_compl_task(ar, budget);
3136
3137 if (done < budget) {
3138 napi_complete_done(ctx, done);
3139 /* In case of MSI, it is possible that interrupts are received
3140 * while NAPI poll is inprogress. So pending interrupts that are
3141 * received after processing all copy engine pipes by NAPI poll
3142 * will not be handled again. This is causing failure to
3143 * complete boot sequence in x86 platform. So before enabling
3144 * interrupts safer to check for pending interrupts for
3145 * immediate servicing.
3146 */
3147 if (ath10k_ce_interrupt_summary(ar)) {
3148 napi_reschedule(ctx);
3149 goto out;
3150 }
3151 ath10k_pci_enable_legacy_irq(ar);
3152 ath10k_pci_irq_msi_fw_unmask(ar);
3153 }
3154
3155out:
3156 return done;
3157}
3158
3159static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3160{
3161 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3162 int ret;
3163
3164 ret = request_irq(ar_pci->pdev->irq,
3165 ath10k_pci_interrupt_handler,
3166 IRQF_SHARED, "ath10k_pci", ar);
3167 if (ret) {
3168 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3169 ar_pci->pdev->irq, ret);
3170 return ret;
3171 }
3172
3173 return 0;
3174}
3175
3176static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3177{
3178 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3179 int ret;
3180
3181 ret = request_irq(ar_pci->pdev->irq,
3182 ath10k_pci_interrupt_handler,
3183 IRQF_SHARED, "ath10k_pci", ar);
3184 if (ret) {
3185 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3186 ar_pci->pdev->irq, ret);
3187 return ret;
3188 }
3189
3190 return 0;
3191}
3192
3193static int ath10k_pci_request_irq(struct ath10k *ar)
3194{
3195 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3196
3197 switch (ar_pci->oper_irq_mode) {
3198 case ATH10K_PCI_IRQ_LEGACY:
3199 return ath10k_pci_request_irq_legacy(ar);
3200 case ATH10K_PCI_IRQ_MSI:
3201 return ath10k_pci_request_irq_msi(ar);
3202 default:
3203 return -EINVAL;
3204 }
3205}
3206
3207static void ath10k_pci_free_irq(struct ath10k *ar)
3208{
3209 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3210
3211 free_irq(ar_pci->pdev->irq, ar);
3212}
3213
3214void ath10k_pci_init_napi(struct ath10k *ar)
3215{
3216 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3217 ATH10K_NAPI_BUDGET);
3218}
3219
3220static int ath10k_pci_init_irq(struct ath10k *ar)
3221{
3222 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3223 int ret;
3224
3225 ath10k_pci_init_napi(ar);
3226
3227 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3228 ath10k_info(ar, "limiting irq mode to: %d\n",
3229 ath10k_pci_irq_mode);
3230
3231 /* Try MSI */
3232 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3233 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3234 ret = pci_enable_msi(ar_pci->pdev);
3235 if (ret == 0)
3236 return 0;
3237
3238 /* fall-through */
3239 }
3240
3241 /* Try legacy irq
3242 *
3243 * A potential race occurs here: The CORE_BASE write
3244 * depends on target correctly decoding AXI address but
3245 * host won't know when target writes BAR to CORE_CTRL.
3246 * This write might get lost if target has NOT written BAR.
3247 * For now, fix the race by repeating the write in below
3248 * synchronization checking.
3249 */
3250 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3251
3252 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3253 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3254
3255 return 0;
3256}
3257
3258static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3259{
3260 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3261 0);
3262}
3263
3264static int ath10k_pci_deinit_irq(struct ath10k *ar)
3265{
3266 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3267
3268 switch (ar_pci->oper_irq_mode) {
3269 case ATH10K_PCI_IRQ_LEGACY:
3270 ath10k_pci_deinit_irq_legacy(ar);
3271 break;
3272 default:
3273 pci_disable_msi(ar_pci->pdev);
3274 break;
3275 }
3276
3277 return 0;
3278}
3279
3280int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3281{
3282 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3283 unsigned long timeout;
3284 u32 val;
3285
3286 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3287
3288 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3289
3290 do {
3291 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3292
3293 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3294 val);
3295
3296 /* target should never return this */
3297 if (val == 0xffffffff)
3298 continue;
3299
3300 /* the device has crashed so don't bother trying anymore */
3301 if (val & FW_IND_EVENT_PENDING)
3302 break;
3303
3304 if (val & FW_IND_INITIALIZED)
3305 break;
3306
3307 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3308 /* Fix potential race by repeating CORE_BASE writes */
3309 ath10k_pci_enable_legacy_irq(ar);
3310
3311 mdelay(10);
3312 } while (time_before(jiffies, timeout));
3313
3314 ath10k_pci_disable_and_clear_legacy_irq(ar);
3315 ath10k_pci_irq_msi_fw_mask(ar);
3316
3317 if (val == 0xffffffff) {
3318 ath10k_err(ar, "failed to read device register, device is gone\n");
3319 return -EIO;
3320 }
3321
3322 if (val & FW_IND_EVENT_PENDING) {
3323 ath10k_warn(ar, "device has crashed during init\n");
3324 return -ECOMM;
3325 }
3326
3327 if (!(val & FW_IND_INITIALIZED)) {
3328 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3329 val);
3330 return -ETIMEDOUT;
3331 }
3332
3333 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3334 return 0;
3335}
3336
3337static int ath10k_pci_cold_reset(struct ath10k *ar)
3338{
3339 u32 val;
3340
3341 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3342
3343 spin_lock_bh(&ar->data_lock);
3344
3345 ar->stats.fw_cold_reset_counter++;
3346
3347 spin_unlock_bh(&ar->data_lock);
3348
3349 /* Put Target, including PCIe, into RESET. */
3350 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3351 val |= 1;
3352 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3353
3354 /* After writing into SOC_GLOBAL_RESET to put device into
3355 * reset and pulling out of reset pcie may not be stable
3356 * for any immediate pcie register access and cause bus error,
3357 * add delay before any pcie access request to fix this issue.
3358 */
3359 msleep(20);
3360
3361 /* Pull Target, including PCIe, out of RESET. */
3362 val &= ~1;
3363 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3364
3365 msleep(20);
3366
3367 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3368
3369 return 0;
3370}
3371
3372static int ath10k_pci_claim(struct ath10k *ar)
3373{
3374 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3375 struct pci_dev *pdev = ar_pci->pdev;
3376 int ret;
3377
3378 pci_set_drvdata(pdev, ar);
3379
3380 ret = pci_enable_device(pdev);
3381 if (ret) {
3382 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3383 return ret;
3384 }
3385
3386 ret = pci_request_region(pdev, BAR_NUM, "ath");
3387 if (ret) {
3388 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3389 ret);
3390 goto err_device;
3391 }
3392
3393 /* Target expects 32 bit DMA. Enforce it. */
3394 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3395 if (ret) {
3396 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3397 goto err_region;
3398 }
3399
3400 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3401 if (ret) {
3402 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3403 ret);
3404 goto err_region;
3405 }
3406
3407 pci_set_master(pdev);
3408
3409 /* Arrange for access to Target SoC registers. */
3410 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3411 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3412 if (!ar_pci->mem) {
3413 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3414 ret = -EIO;
3415 goto err_master;
3416 }
3417
3418 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3419 return 0;
3420
3421err_master:
3422 pci_clear_master(pdev);
3423
3424err_region:
3425 pci_release_region(pdev, BAR_NUM);
3426
3427err_device:
3428 pci_disable_device(pdev);
3429
3430 return ret;
3431}
3432
3433static void ath10k_pci_release(struct ath10k *ar)
3434{
3435 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3436 struct pci_dev *pdev = ar_pci->pdev;
3437
3438 pci_iounmap(pdev, ar_pci->mem);
3439 pci_release_region(pdev, BAR_NUM);
3440 pci_clear_master(pdev);
3441 pci_disable_device(pdev);
3442}
3443
3444static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3445{
3446 const struct ath10k_pci_supp_chip *supp_chip;
3447 int i;
3448 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3449
3450 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3451 supp_chip = &ath10k_pci_supp_chips[i];
3452
3453 if (supp_chip->dev_id == dev_id &&
3454 supp_chip->rev_id == rev_id)
3455 return true;
3456 }
3457
3458 return false;
3459}
3460
3461int ath10k_pci_setup_resource(struct ath10k *ar)
3462{
3463 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3464 struct ath10k_ce *ce = ath10k_ce_priv(ar);
3465 int ret;
3466
3467 spin_lock_init(&ce->ce_lock);
3468 spin_lock_init(&ar_pci->ps_lock);
3469 mutex_init(&ar_pci->ce_diag_mutex);
3470
3471 INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3472
3473 timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3474
3475 if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3476 ath10k_pci_override_ce_config(ar);
3477
3478 ret = ath10k_pci_alloc_pipes(ar);
3479 if (ret) {
3480 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3481 ret);
3482 return ret;
3483 }
3484
3485 return 0;
3486}
3487
3488void ath10k_pci_release_resource(struct ath10k *ar)
3489{
3490 ath10k_pci_rx_retry_sync(ar);
3491 netif_napi_del(&ar->napi);
3492 ath10k_pci_ce_deinit(ar);
3493 ath10k_pci_free_pipes(ar);
3494}
3495
3496static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3497 .read32 = ath10k_bus_pci_read32,
3498 .write32 = ath10k_bus_pci_write32,
3499 .get_num_banks = ath10k_pci_get_num_banks,
3500};
3501
3502static int ath10k_pci_probe(struct pci_dev *pdev,
3503 const struct pci_device_id *pci_dev)
3504{
3505 int ret = 0;
3506 struct ath10k *ar;
3507 struct ath10k_pci *ar_pci;
3508 enum ath10k_hw_rev hw_rev;
3509 struct ath10k_bus_params bus_params = {};
3510 bool pci_ps, is_qca988x = false;
3511 int (*pci_soft_reset)(struct ath10k *ar);
3512 int (*pci_hard_reset)(struct ath10k *ar);
3513 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3514
3515 switch (pci_dev->device) {
3516 case QCA988X_2_0_DEVICE_ID_UBNT:
3517 case QCA988X_2_0_DEVICE_ID:
3518 hw_rev = ATH10K_HW_QCA988X;
3519 pci_ps = false;
3520 is_qca988x = true;
3521 pci_soft_reset = ath10k_pci_warm_reset;
3522 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3523 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3524 break;
3525 case QCA9887_1_0_DEVICE_ID:
3526 hw_rev = ATH10K_HW_QCA9887;
3527 pci_ps = false;
3528 pci_soft_reset = ath10k_pci_warm_reset;
3529 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3530 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3531 break;
3532 case QCA6164_2_1_DEVICE_ID:
3533 case QCA6174_2_1_DEVICE_ID:
3534 hw_rev = ATH10K_HW_QCA6174;
3535 pci_ps = true;
3536 pci_soft_reset = ath10k_pci_warm_reset;
3537 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3538 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3539 break;
3540 case QCA99X0_2_0_DEVICE_ID:
3541 hw_rev = ATH10K_HW_QCA99X0;
3542 pci_ps = false;
3543 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3544 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3545 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3546 break;
3547 case QCA9984_1_0_DEVICE_ID:
3548 hw_rev = ATH10K_HW_QCA9984;
3549 pci_ps = false;
3550 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3551 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3552 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3553 break;
3554 case QCA9888_2_0_DEVICE_ID:
3555 hw_rev = ATH10K_HW_QCA9888;
3556 pci_ps = false;
3557 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3558 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3559 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3560 break;
3561 case QCA9377_1_0_DEVICE_ID:
3562 hw_rev = ATH10K_HW_QCA9377;
3563 pci_ps = true;
3564 pci_soft_reset = ath10k_pci_warm_reset;
3565 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3566 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3567 break;
3568 default:
3569 WARN_ON(1);
3570 return -ENOTSUPP;
3571 }
3572
3573 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3574 hw_rev, &ath10k_pci_hif_ops);
3575 if (!ar) {
3576 dev_err(&pdev->dev, "failed to allocate core\n");
3577 return -ENOMEM;
3578 }
3579
3580 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3581 pdev->vendor, pdev->device,
3582 pdev->subsystem_vendor, pdev->subsystem_device);
3583
3584 ar_pci = ath10k_pci_priv(ar);
3585 ar_pci->pdev = pdev;
3586 ar_pci->dev = &pdev->dev;
3587 ar_pci->ar = ar;
3588 ar->dev_id = pci_dev->device;
3589 ar_pci->pci_ps = pci_ps;
3590 ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3591 ar_pci->pci_soft_reset = pci_soft_reset;
3592 ar_pci->pci_hard_reset = pci_hard_reset;
3593 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3594 ar->ce_priv = &ar_pci->ce;
3595
3596 ar->id.vendor = pdev->vendor;
3597 ar->id.device = pdev->device;
3598 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3599 ar->id.subsystem_device = pdev->subsystem_device;
3600
3601 timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3602
3603 ret = ath10k_pci_setup_resource(ar);
3604 if (ret) {
3605 ath10k_err(ar, "failed to setup resource: %d\n", ret);
3606 goto err_core_destroy;
3607 }
3608
3609 ret = ath10k_pci_claim(ar);
3610 if (ret) {
3611 ath10k_err(ar, "failed to claim device: %d\n", ret);
3612 goto err_free_pipes;
3613 }
3614
3615 ret = ath10k_pci_force_wake(ar);
3616 if (ret) {
3617 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3618 goto err_sleep;
3619 }
3620
3621 ath10k_pci_ce_deinit(ar);
3622 ath10k_pci_irq_disable(ar);
3623
3624 ret = ath10k_pci_init_irq(ar);
3625 if (ret) {
3626 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3627 goto err_sleep;
3628 }
3629
3630 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3631 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3632 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3633
3634 ret = ath10k_pci_request_irq(ar);
3635 if (ret) {
3636 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3637 goto err_deinit_irq;
3638 }
3639
3640 bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3641 bus_params.link_can_suspend = true;
3642 /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3643 * fall off the bus during chip_reset. These chips have the same pci
3644 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3645 */
3646 if (is_qca988x) {
3647 bus_params.chip_id =
3648 ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3649 if (bus_params.chip_id != 0xffffffff) {
3650 if (!ath10k_pci_chip_is_supported(pdev->device,
3651 bus_params.chip_id)) {
3652 ret = -ENODEV;
3653 goto err_unsupported;
3654 }
3655 }
3656 }
3657
3658 ret = ath10k_pci_chip_reset(ar);
3659 if (ret) {
3660 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3661 goto err_free_irq;
3662 }
3663
3664 bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3665 if (bus_params.chip_id == 0xffffffff) {
3666 ret = -ENODEV;
3667 goto err_unsupported;
3668 }
3669
3670 if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3671 ret = -ENODEV;
3672 goto err_unsupported;
3673 }
3674
3675 ret = ath10k_core_register(ar, &bus_params);
3676 if (ret) {
3677 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3678 goto err_free_irq;
3679 }
3680
3681 return 0;
3682
3683err_unsupported:
3684 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3685 pdev->device, bus_params.chip_id);
3686
3687err_free_irq:
3688 ath10k_pci_free_irq(ar);
3689 ath10k_pci_rx_retry_sync(ar);
3690
3691err_deinit_irq:
3692 ath10k_pci_deinit_irq(ar);
3693
3694err_sleep:
3695 ath10k_pci_sleep_sync(ar);
3696 ath10k_pci_release(ar);
3697
3698err_free_pipes:
3699 ath10k_pci_free_pipes(ar);
3700
3701err_core_destroy:
3702 ath10k_core_destroy(ar);
3703
3704 return ret;
3705}
3706
3707static void ath10k_pci_remove(struct pci_dev *pdev)
3708{
3709 struct ath10k *ar = pci_get_drvdata(pdev);
3710 struct ath10k_pci *ar_pci;
3711
3712 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3713
3714 if (!ar)
3715 return;
3716
3717 ar_pci = ath10k_pci_priv(ar);
3718
3719 if (!ar_pci)
3720 return;
3721
3722 ath10k_core_unregister(ar);
3723 ath10k_pci_free_irq(ar);
3724 ath10k_pci_deinit_irq(ar);
3725 ath10k_pci_release_resource(ar);
3726 ath10k_pci_sleep_sync(ar);
3727 ath10k_pci_release(ar);
3728 ath10k_core_destroy(ar);
3729}
3730
3731MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3732
3733static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3734{
3735 struct ath10k *ar = dev_get_drvdata(dev);
3736 int ret;
3737
3738 ret = ath10k_pci_suspend(ar);
3739 if (ret)
3740 ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3741
3742 return ret;
3743}
3744
3745static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3746{
3747 struct ath10k *ar = dev_get_drvdata(dev);
3748 int ret;
3749
3750 ret = ath10k_pci_resume(ar);
3751 if (ret)
3752 ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3753
3754 return ret;
3755}
3756
3757static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3758 ath10k_pci_pm_suspend,
3759 ath10k_pci_pm_resume);
3760
3761static struct pci_driver ath10k_pci_driver = {
3762 .name = "ath10k_pci",
3763 .id_table = ath10k_pci_id_table,
3764 .probe = ath10k_pci_probe,
3765 .remove = ath10k_pci_remove,
3766#ifdef CONFIG_PM
3767 .driver.pm = &ath10k_pci_pm_ops,
3768#endif
3769};
3770
3771static int __init ath10k_pci_init(void)
3772{
3773 int ret1, ret2;
3774
3775 ret1 = pci_register_driver(&ath10k_pci_driver);
3776 if (ret1)
3777 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3778 ret1);
3779
3780 ret2 = ath10k_ahb_init();
3781 if (ret2)
3782 printk(KERN_ERR "ahb init failed: %d\n", ret2);
3783
3784 if (ret1 && ret2)
3785 return ret1;
3786
3787 /* registered to at least one bus */
3788 return 0;
3789}
3790module_init(ath10k_pci_init);
3791
3792static void __exit ath10k_pci_exit(void)
3793{
3794 pci_unregister_driver(&ath10k_pci_driver);
3795 ath10k_ahb_exit();
3796}
3797
3798module_exit(ath10k_pci_exit);
3799
3800MODULE_AUTHOR("Qualcomm Atheros");
3801MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3802MODULE_LICENSE("Dual BSD/GPL");
3803
3804/* QCA988x 2.0 firmware files */
3805MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3806MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3807MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3808MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3809MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3810MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3811
3812/* QCA9887 1.0 firmware files */
3813MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3814MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3815MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3816
3817/* QCA6174 2.1 firmware files */
3818MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3819MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3820MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3821MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3822
3823/* QCA6174 3.1 firmware files */
3824MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3825MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3826MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3827MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3828MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3829
3830/* QCA9377 1.0 firmware files */
3831MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3832MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3833MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);