b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> |
| 3 | * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> |
| 4 | * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> |
| 5 | * |
| 6 | * Permission to use, copy, modify, and distribute this software for any |
| 7 | * purpose with or without fee is hereby granted, provided that the above |
| 8 | * copyright notice and this permission notice appear in all copies. |
| 9 | * |
| 10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 17 | * |
| 18 | */ |
| 19 | |
| 20 | /*************************************\ |
| 21 | * EEPROM access functions and helpers * |
| 22 | \*************************************/ |
| 23 | |
| 24 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 25 | |
| 26 | #include <linux/slab.h> |
| 27 | |
| 28 | #include "ath5k.h" |
| 29 | #include "reg.h" |
| 30 | #include "debug.h" |
| 31 | |
| 32 | |
| 33 | /******************\ |
| 34 | * Helper functions * |
| 35 | \******************/ |
| 36 | |
| 37 | /* |
| 38 | * Translate binary channel representation in EEPROM to frequency |
| 39 | */ |
| 40 | static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin, |
| 41 | unsigned int mode) |
| 42 | { |
| 43 | u16 val; |
| 44 | |
| 45 | if (bin == AR5K_EEPROM_CHANNEL_DIS) |
| 46 | return bin; |
| 47 | |
| 48 | if (mode == AR5K_EEPROM_MODE_11A) { |
| 49 | if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) |
| 50 | val = (5 * bin) + 4800; |
| 51 | else |
| 52 | val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 : |
| 53 | (bin * 10) + 5100; |
| 54 | } else { |
| 55 | if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) |
| 56 | val = bin + 2300; |
| 57 | else |
| 58 | val = bin + 2400; |
| 59 | } |
| 60 | |
| 61 | return val; |
| 62 | } |
| 63 | |
| 64 | |
| 65 | /*********\ |
| 66 | * Parsers * |
| 67 | \*********/ |
| 68 | |
| 69 | /* |
| 70 | * Initialize eeprom & capabilities structs |
| 71 | */ |
| 72 | static int |
| 73 | ath5k_eeprom_init_header(struct ath5k_hw *ah) |
| 74 | { |
| 75 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 76 | u16 val; |
| 77 | u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX; |
| 78 | |
| 79 | /* |
| 80 | * Read values from EEPROM and store them in the capability structure |
| 81 | */ |
| 82 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic); |
| 83 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect); |
| 84 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain); |
| 85 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version); |
| 86 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header); |
| 87 | |
| 88 | /* Return if we have an old EEPROM */ |
| 89 | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0) |
| 90 | return 0; |
| 91 | |
| 92 | /* |
| 93 | * Validate the checksum of the EEPROM date. There are some |
| 94 | * devices with invalid EEPROMs. |
| 95 | */ |
| 96 | AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val); |
| 97 | if (val) { |
| 98 | eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) << |
| 99 | AR5K_EEPROM_SIZE_ENDLOC_SHIFT; |
| 100 | AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val); |
| 101 | eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE; |
| 102 | |
| 103 | /* |
| 104 | * Fail safe check to prevent stupid loops due |
| 105 | * to busted EEPROMs. XXX: This value is likely too |
| 106 | * big still, waiting on a better value. |
| 107 | */ |
| 108 | if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) { |
| 109 | ATH5K_ERR(ah, "Invalid max custom EEPROM size: " |
| 110 | "%d (0x%04x) max expected: %d (0x%04x)\n", |
| 111 | eep_max, eep_max, |
| 112 | 3 * AR5K_EEPROM_INFO_MAX, |
| 113 | 3 * AR5K_EEPROM_INFO_MAX); |
| 114 | return -EIO; |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | for (cksum = 0, offset = 0; offset < eep_max; offset++) { |
| 119 | AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val); |
| 120 | cksum ^= val; |
| 121 | } |
| 122 | if (cksum != AR5K_EEPROM_INFO_CKSUM) { |
| 123 | ATH5K_ERR(ah, "Invalid EEPROM " |
| 124 | "checksum: 0x%04x eep_max: 0x%04x (%s)\n", |
| 125 | cksum, eep_max, |
| 126 | eep_max == AR5K_EEPROM_INFO_MAX ? |
| 127 | "default size" : "custom size"); |
| 128 | return -EIO; |
| 129 | } |
| 130 | |
| 131 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version), |
| 132 | ee_ant_gain); |
| 133 | |
| 134 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { |
| 135 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0); |
| 136 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1); |
| 137 | |
| 138 | /* XXX: Don't know which versions include these two */ |
| 139 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2); |
| 140 | |
| 141 | if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) |
| 142 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3); |
| 143 | |
| 144 | if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) { |
| 145 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4); |
| 146 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5); |
| 147 | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) { |
| 152 | AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val); |
| 153 | ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7; |
| 154 | ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7; |
| 155 | |
| 156 | AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val); |
| 157 | ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7; |
| 158 | ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7; |
| 159 | } |
| 160 | |
| 161 | AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val); |
| 162 | |
| 163 | if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val) |
| 164 | ee->ee_is_hb63 = true; |
| 165 | else |
| 166 | ee->ee_is_hb63 = false; |
| 167 | |
| 168 | AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val); |
| 169 | ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL); |
| 170 | ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false; |
| 171 | |
| 172 | /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION |
| 173 | * and enable serdes programming if needed. |
| 174 | * |
| 175 | * XXX: Serdes values seem to be fixed so |
| 176 | * no need to read them here, we write them |
| 177 | * during ath5k_hw_init */ |
| 178 | AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val); |
| 179 | ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ? |
| 180 | true : false; |
| 181 | |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | |
| 186 | /* |
| 187 | * Read antenna infos from eeprom |
| 188 | */ |
| 189 | static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset, |
| 190 | unsigned int mode) |
| 191 | { |
| 192 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 193 | u32 o = *offset; |
| 194 | u16 val; |
| 195 | int i = 0; |
| 196 | |
| 197 | AR5K_EEPROM_READ(o++, val); |
| 198 | ee->ee_switch_settling[mode] = (val >> 8) & 0x7f; |
| 199 | ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f; |
| 200 | ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; |
| 201 | |
| 202 | AR5K_EEPROM_READ(o++, val); |
| 203 | ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf; |
| 204 | ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f; |
| 205 | ee->ee_ant_control[mode][i++] = val & 0x3f; |
| 206 | |
| 207 | AR5K_EEPROM_READ(o++, val); |
| 208 | ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f; |
| 209 | ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f; |
| 210 | ee->ee_ant_control[mode][i] = (val << 2) & 0x3f; |
| 211 | |
| 212 | AR5K_EEPROM_READ(o++, val); |
| 213 | ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3; |
| 214 | ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f; |
| 215 | ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f; |
| 216 | ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; |
| 217 | |
| 218 | AR5K_EEPROM_READ(o++, val); |
| 219 | ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf; |
| 220 | ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f; |
| 221 | ee->ee_ant_control[mode][i++] = val & 0x3f; |
| 222 | |
| 223 | /* Get antenna switch tables */ |
| 224 | ah->ah_ant_ctl[mode][AR5K_ANT_CTL] = |
| 225 | (ee->ee_ant_control[mode][0] << 4); |
| 226 | ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] = |
| 227 | ee->ee_ant_control[mode][1] | |
| 228 | (ee->ee_ant_control[mode][2] << 6) | |
| 229 | (ee->ee_ant_control[mode][3] << 12) | |
| 230 | (ee->ee_ant_control[mode][4] << 18) | |
| 231 | (ee->ee_ant_control[mode][5] << 24); |
| 232 | ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] = |
| 233 | ee->ee_ant_control[mode][6] | |
| 234 | (ee->ee_ant_control[mode][7] << 6) | |
| 235 | (ee->ee_ant_control[mode][8] << 12) | |
| 236 | (ee->ee_ant_control[mode][9] << 18) | |
| 237 | (ee->ee_ant_control[mode][10] << 24); |
| 238 | |
| 239 | /* return new offset */ |
| 240 | *offset = o; |
| 241 | |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Read supported modes and some mode-specific calibration data |
| 247 | * from eeprom |
| 248 | */ |
| 249 | static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, |
| 250 | unsigned int mode) |
| 251 | { |
| 252 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 253 | u32 o = *offset; |
| 254 | u16 val; |
| 255 | |
| 256 | ee->ee_n_piers[mode] = 0; |
| 257 | AR5K_EEPROM_READ(o++, val); |
| 258 | ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff); |
| 259 | switch (mode) { |
| 260 | case AR5K_EEPROM_MODE_11A: |
| 261 | ee->ee_ob[mode][3] = (val >> 5) & 0x7; |
| 262 | ee->ee_db[mode][3] = (val >> 2) & 0x7; |
| 263 | ee->ee_ob[mode][2] = (val << 1) & 0x7; |
| 264 | |
| 265 | AR5K_EEPROM_READ(o++, val); |
| 266 | ee->ee_ob[mode][2] |= (val >> 15) & 0x1; |
| 267 | ee->ee_db[mode][2] = (val >> 12) & 0x7; |
| 268 | ee->ee_ob[mode][1] = (val >> 9) & 0x7; |
| 269 | ee->ee_db[mode][1] = (val >> 6) & 0x7; |
| 270 | ee->ee_ob[mode][0] = (val >> 3) & 0x7; |
| 271 | ee->ee_db[mode][0] = val & 0x7; |
| 272 | break; |
| 273 | case AR5K_EEPROM_MODE_11G: |
| 274 | case AR5K_EEPROM_MODE_11B: |
| 275 | ee->ee_ob[mode][1] = (val >> 4) & 0x7; |
| 276 | ee->ee_db[mode][1] = val & 0x7; |
| 277 | break; |
| 278 | } |
| 279 | |
| 280 | AR5K_EEPROM_READ(o++, val); |
| 281 | ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff; |
| 282 | ee->ee_thr_62[mode] = val & 0xff; |
| 283 | |
| 284 | if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) |
| 285 | ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28; |
| 286 | |
| 287 | AR5K_EEPROM_READ(o++, val); |
| 288 | ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff; |
| 289 | ee->ee_tx_frm2xpa_enable[mode] = val & 0xff; |
| 290 | |
| 291 | AR5K_EEPROM_READ(o++, val); |
| 292 | ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff; |
| 293 | |
| 294 | if ((val & 0xff) & 0x80) |
| 295 | ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1); |
| 296 | else |
| 297 | ee->ee_noise_floor_thr[mode] = val & 0xff; |
| 298 | |
| 299 | if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) |
| 300 | ee->ee_noise_floor_thr[mode] = |
| 301 | mode == AR5K_EEPROM_MODE_11A ? -54 : -1; |
| 302 | |
| 303 | AR5K_EEPROM_READ(o++, val); |
| 304 | ee->ee_xlna_gain[mode] = (val >> 5) & 0xff; |
| 305 | ee->ee_x_gain[mode] = (val >> 1) & 0xf; |
| 306 | ee->ee_xpd[mode] = val & 0x1; |
| 307 | |
| 308 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 && |
| 309 | mode != AR5K_EEPROM_MODE_11B) |
| 310 | ee->ee_fixed_bias[mode] = (val >> 13) & 0x1; |
| 311 | |
| 312 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) { |
| 313 | AR5K_EEPROM_READ(o++, val); |
| 314 | ee->ee_false_detect[mode] = (val >> 6) & 0x7f; |
| 315 | |
| 316 | if (mode == AR5K_EEPROM_MODE_11A) |
| 317 | ee->ee_xr_power[mode] = val & 0x3f; |
| 318 | else { |
| 319 | /* b_DB_11[bg] and b_OB_11[bg] */ |
| 320 | ee->ee_ob[mode][0] = val & 0x7; |
| 321 | ee->ee_db[mode][0] = (val >> 3) & 0x7; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) { |
| 326 | ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN; |
| 327 | ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA; |
| 328 | } else { |
| 329 | ee->ee_i_gain[mode] = (val >> 13) & 0x7; |
| 330 | |
| 331 | AR5K_EEPROM_READ(o++, val); |
| 332 | ee->ee_i_gain[mode] |= (val << 3) & 0x38; |
| 333 | |
| 334 | if (mode == AR5K_EEPROM_MODE_11G) { |
| 335 | ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff; |
| 336 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6) |
| 337 | ee->ee_scaled_cck_delta = (val >> 11) & 0x1f; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 && |
| 342 | mode == AR5K_EEPROM_MODE_11A) { |
| 343 | ee->ee_i_cal[mode] = (val >> 8) & 0x3f; |
| 344 | ee->ee_q_cal[mode] = (val >> 3) & 0x1f; |
| 345 | } |
| 346 | |
| 347 | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0) |
| 348 | goto done; |
| 349 | |
| 350 | /* Note: >= v5 have bg freq piers on another location |
| 351 | * so these freq piers are ignored for >= v5 (should be 0xff |
| 352 | * anyway) */ |
| 353 | switch (mode) { |
| 354 | case AR5K_EEPROM_MODE_11A: |
| 355 | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1) |
| 356 | break; |
| 357 | |
| 358 | AR5K_EEPROM_READ(o++, val); |
| 359 | ee->ee_margin_tx_rx[mode] = val & 0x3f; |
| 360 | break; |
| 361 | case AR5K_EEPROM_MODE_11B: |
| 362 | AR5K_EEPROM_READ(o++, val); |
| 363 | |
| 364 | ee->ee_pwr_cal_b[0].freq = |
| 365 | ath5k_eeprom_bin2freq(ee, val & 0xff, mode); |
| 366 | if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS) |
| 367 | ee->ee_n_piers[mode]++; |
| 368 | |
| 369 | ee->ee_pwr_cal_b[1].freq = |
| 370 | ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); |
| 371 | if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS) |
| 372 | ee->ee_n_piers[mode]++; |
| 373 | |
| 374 | AR5K_EEPROM_READ(o++, val); |
| 375 | ee->ee_pwr_cal_b[2].freq = |
| 376 | ath5k_eeprom_bin2freq(ee, val & 0xff, mode); |
| 377 | if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS) |
| 378 | ee->ee_n_piers[mode]++; |
| 379 | |
| 380 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) |
| 381 | ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; |
| 382 | break; |
| 383 | case AR5K_EEPROM_MODE_11G: |
| 384 | AR5K_EEPROM_READ(o++, val); |
| 385 | |
| 386 | ee->ee_pwr_cal_g[0].freq = |
| 387 | ath5k_eeprom_bin2freq(ee, val & 0xff, mode); |
| 388 | if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS) |
| 389 | ee->ee_n_piers[mode]++; |
| 390 | |
| 391 | ee->ee_pwr_cal_g[1].freq = |
| 392 | ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); |
| 393 | if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS) |
| 394 | ee->ee_n_piers[mode]++; |
| 395 | |
| 396 | AR5K_EEPROM_READ(o++, val); |
| 397 | ee->ee_turbo_max_power[mode] = val & 0x7f; |
| 398 | ee->ee_xr_power[mode] = (val >> 7) & 0x3f; |
| 399 | |
| 400 | AR5K_EEPROM_READ(o++, val); |
| 401 | ee->ee_pwr_cal_g[2].freq = |
| 402 | ath5k_eeprom_bin2freq(ee, val & 0xff, mode); |
| 403 | if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS) |
| 404 | ee->ee_n_piers[mode]++; |
| 405 | |
| 406 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) |
| 407 | ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; |
| 408 | |
| 409 | AR5K_EEPROM_READ(o++, val); |
| 410 | ee->ee_i_cal[mode] = (val >> 5) & 0x3f; |
| 411 | ee->ee_q_cal[mode] = val & 0x1f; |
| 412 | |
| 413 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) { |
| 414 | AR5K_EEPROM_READ(o++, val); |
| 415 | ee->ee_cck_ofdm_gain_delta = val & 0xff; |
| 416 | } |
| 417 | break; |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * Read turbo mode information on newer EEPROM versions |
| 422 | */ |
| 423 | if (ee->ee_version < AR5K_EEPROM_VERSION_5_0) |
| 424 | goto done; |
| 425 | |
| 426 | switch (mode) { |
| 427 | case AR5K_EEPROM_MODE_11A: |
| 428 | ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f; |
| 429 | |
| 430 | ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7; |
| 431 | AR5K_EEPROM_READ(o++, val); |
| 432 | ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3; |
| 433 | ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f; |
| 434 | |
| 435 | ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f; |
| 436 | AR5K_EEPROM_READ(o++, val); |
| 437 | ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7; |
| 438 | ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff; |
| 439 | |
| 440 | if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2) |
| 441 | ee->ee_pd_gain_overlap = (val >> 9) & 0xf; |
| 442 | break; |
| 443 | case AR5K_EEPROM_MODE_11G: |
| 444 | ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f; |
| 445 | |
| 446 | ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7; |
| 447 | AR5K_EEPROM_READ(o++, val); |
| 448 | ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1; |
| 449 | ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f; |
| 450 | |
| 451 | ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f; |
| 452 | AR5K_EEPROM_READ(o++, val); |
| 453 | ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5; |
| 454 | ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff; |
| 455 | break; |
| 456 | } |
| 457 | |
| 458 | done: |
| 459 | /* return new offset */ |
| 460 | *offset = o; |
| 461 | |
| 462 | return 0; |
| 463 | } |
| 464 | |
| 465 | /* Read mode-specific data (except power calibration data) */ |
| 466 | static int |
| 467 | ath5k_eeprom_init_modes(struct ath5k_hw *ah) |
| 468 | { |
| 469 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 470 | u32 mode_offset[3]; |
| 471 | unsigned int mode; |
| 472 | u32 offset; |
| 473 | int ret; |
| 474 | |
| 475 | /* |
| 476 | * Get values for all modes |
| 477 | */ |
| 478 | mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version); |
| 479 | mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version); |
| 480 | mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version); |
| 481 | |
| 482 | ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] = |
| 483 | AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header); |
| 484 | |
| 485 | for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { |
| 486 | offset = mode_offset[mode]; |
| 487 | |
| 488 | ret = ath5k_eeprom_read_ants(ah, &offset, mode); |
| 489 | if (ret) |
| 490 | return ret; |
| 491 | |
| 492 | ret = ath5k_eeprom_read_modes(ah, &offset, mode); |
| 493 | if (ret) |
| 494 | return ret; |
| 495 | } |
| 496 | |
| 497 | /* override for older eeprom versions for better performance */ |
| 498 | if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) { |
| 499 | ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15; |
| 500 | ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28; |
| 501 | ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28; |
| 502 | } |
| 503 | |
| 504 | return 0; |
| 505 | } |
| 506 | |
| 507 | /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff |
| 508 | * frequency mask) */ |
| 509 | static inline int |
| 510 | ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max, |
| 511 | struct ath5k_chan_pcal_info *pc, unsigned int mode) |
| 512 | { |
| 513 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 514 | int o = *offset; |
| 515 | int i = 0; |
| 516 | u8 freq1, freq2; |
| 517 | u16 val; |
| 518 | |
| 519 | ee->ee_n_piers[mode] = 0; |
| 520 | while (i < max) { |
| 521 | AR5K_EEPROM_READ(o++, val); |
| 522 | |
| 523 | freq1 = val & 0xff; |
| 524 | if (!freq1) |
| 525 | break; |
| 526 | |
| 527 | pc[i++].freq = ath5k_eeprom_bin2freq(ee, |
| 528 | freq1, mode); |
| 529 | ee->ee_n_piers[mode]++; |
| 530 | |
| 531 | freq2 = (val >> 8) & 0xff; |
| 532 | if (!freq2 || i >= max) |
| 533 | break; |
| 534 | |
| 535 | pc[i++].freq = ath5k_eeprom_bin2freq(ee, |
| 536 | freq2, mode); |
| 537 | ee->ee_n_piers[mode]++; |
| 538 | } |
| 539 | |
| 540 | /* return new offset */ |
| 541 | *offset = o; |
| 542 | |
| 543 | return 0; |
| 544 | } |
| 545 | |
| 546 | /* Read frequency piers for 802.11a */ |
| 547 | static int |
| 548 | ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset) |
| 549 | { |
| 550 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 551 | struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a; |
| 552 | int i; |
| 553 | u16 val; |
| 554 | u8 mask; |
| 555 | |
| 556 | if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { |
| 557 | ath5k_eeprom_read_freq_list(ah, &offset, |
| 558 | AR5K_EEPROM_N_5GHZ_CHAN, pcal, |
| 559 | AR5K_EEPROM_MODE_11A); |
| 560 | } else { |
| 561 | mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version); |
| 562 | |
| 563 | AR5K_EEPROM_READ(offset++, val); |
| 564 | pcal[0].freq = (val >> 9) & mask; |
| 565 | pcal[1].freq = (val >> 2) & mask; |
| 566 | pcal[2].freq = (val << 5) & mask; |
| 567 | |
| 568 | AR5K_EEPROM_READ(offset++, val); |
| 569 | pcal[2].freq |= (val >> 11) & 0x1f; |
| 570 | pcal[3].freq = (val >> 4) & mask; |
| 571 | pcal[4].freq = (val << 3) & mask; |
| 572 | |
| 573 | AR5K_EEPROM_READ(offset++, val); |
| 574 | pcal[4].freq |= (val >> 13) & 0x7; |
| 575 | pcal[5].freq = (val >> 6) & mask; |
| 576 | pcal[6].freq = (val << 1) & mask; |
| 577 | |
| 578 | AR5K_EEPROM_READ(offset++, val); |
| 579 | pcal[6].freq |= (val >> 15) & 0x1; |
| 580 | pcal[7].freq = (val >> 8) & mask; |
| 581 | pcal[8].freq = (val >> 1) & mask; |
| 582 | pcal[9].freq = (val << 6) & mask; |
| 583 | |
| 584 | AR5K_EEPROM_READ(offset++, val); |
| 585 | pcal[9].freq |= (val >> 10) & 0x3f; |
| 586 | |
| 587 | /* Fixed number of piers */ |
| 588 | ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10; |
| 589 | |
| 590 | for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) { |
| 591 | pcal[i].freq = ath5k_eeprom_bin2freq(ee, |
| 592 | pcal[i].freq, AR5K_EEPROM_MODE_11A); |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | return 0; |
| 597 | } |
| 598 | |
| 599 | /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */ |
| 600 | static inline int |
| 601 | ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset) |
| 602 | { |
| 603 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 604 | struct ath5k_chan_pcal_info *pcal; |
| 605 | |
| 606 | switch (mode) { |
| 607 | case AR5K_EEPROM_MODE_11B: |
| 608 | pcal = ee->ee_pwr_cal_b; |
| 609 | break; |
| 610 | case AR5K_EEPROM_MODE_11G: |
| 611 | pcal = ee->ee_pwr_cal_g; |
| 612 | break; |
| 613 | default: |
| 614 | return -EINVAL; |
| 615 | } |
| 616 | |
| 617 | ath5k_eeprom_read_freq_list(ah, &offset, |
| 618 | AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal, |
| 619 | mode); |
| 620 | |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | |
| 625 | /* |
| 626 | * Read power calibration for RF5111 chips |
| 627 | * |
| 628 | * For RF5111 we have an XPD -eXternal Power Detector- curve |
| 629 | * for each calibrated channel. Each curve has 0,5dB Power steps |
| 630 | * on x axis and PCDAC steps (offsets) on y axis and looks like an |
| 631 | * exponential function. To recreate the curve we read 11 points |
| 632 | * here and interpolate later. |
| 633 | */ |
| 634 | |
| 635 | /* Used to match PCDAC steps with power values on RF5111 chips |
| 636 | * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC |
| 637 | * steps that match with the power values we read from eeprom. On |
| 638 | * older eeprom versions (< 3.2) these steps are equally spaced at |
| 639 | * 10% of the pcdac curve -until the curve reaches its maximum- |
| 640 | * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2) |
| 641 | * these 11 steps are spaced in a different way. This function returns |
| 642 | * the pcdac steps based on eeprom version and curve min/max so that we |
| 643 | * can have pcdac/pwr points. |
| 644 | */ |
| 645 | static inline void |
| 646 | ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp) |
| 647 | { |
| 648 | static const u16 intercepts3[] = { |
| 649 | 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 |
| 650 | }; |
| 651 | static const u16 intercepts3_2[] = { |
| 652 | 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 |
| 653 | }; |
| 654 | const u16 *ip; |
| 655 | int i; |
| 656 | |
| 657 | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2) |
| 658 | ip = intercepts3_2; |
| 659 | else |
| 660 | ip = intercepts3; |
| 661 | |
| 662 | for (i = 0; i < ARRAY_SIZE(intercepts3); i++) |
| 663 | vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100; |
| 664 | } |
| 665 | |
| 666 | static int |
| 667 | ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode) |
| 668 | { |
| 669 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 670 | struct ath5k_chan_pcal_info *chinfo; |
| 671 | u8 pier, pdg; |
| 672 | |
| 673 | switch (mode) { |
| 674 | case AR5K_EEPROM_MODE_11A: |
| 675 | if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| 676 | return 0; |
| 677 | chinfo = ee->ee_pwr_cal_a; |
| 678 | break; |
| 679 | case AR5K_EEPROM_MODE_11B: |
| 680 | if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) |
| 681 | return 0; |
| 682 | chinfo = ee->ee_pwr_cal_b; |
| 683 | break; |
| 684 | case AR5K_EEPROM_MODE_11G: |
| 685 | if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) |
| 686 | return 0; |
| 687 | chinfo = ee->ee_pwr_cal_g; |
| 688 | break; |
| 689 | default: |
| 690 | return -EINVAL; |
| 691 | } |
| 692 | |
| 693 | for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { |
| 694 | if (!chinfo[pier].pd_curves) |
| 695 | continue; |
| 696 | |
| 697 | for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) { |
| 698 | struct ath5k_pdgain_info *pd = |
| 699 | &chinfo[pier].pd_curves[pdg]; |
| 700 | |
| 701 | kfree(pd->pd_step); |
| 702 | kfree(pd->pd_pwr); |
| 703 | } |
| 704 | |
| 705 | kfree(chinfo[pier].pd_curves); |
| 706 | } |
| 707 | |
| 708 | return 0; |
| 709 | } |
| 710 | |
| 711 | /* Convert RF5111 specific data to generic raw data |
| 712 | * used by interpolation code */ |
| 713 | static int |
| 714 | ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode, |
| 715 | struct ath5k_chan_pcal_info *chinfo) |
| 716 | { |
| 717 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 718 | struct ath5k_chan_pcal_info_rf5111 *pcinfo; |
| 719 | struct ath5k_pdgain_info *pd; |
| 720 | u8 pier, point, idx; |
| 721 | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| 722 | |
| 723 | /* Fill raw data for each calibration pier */ |
| 724 | for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { |
| 725 | |
| 726 | pcinfo = &chinfo[pier].rf5111_info; |
| 727 | |
| 728 | /* Allocate pd_curves for this cal pier */ |
| 729 | chinfo[pier].pd_curves = |
| 730 | kcalloc(AR5K_EEPROM_N_PD_CURVES, |
| 731 | sizeof(struct ath5k_pdgain_info), |
| 732 | GFP_KERNEL); |
| 733 | |
| 734 | if (!chinfo[pier].pd_curves) |
| 735 | goto err_out; |
| 736 | |
| 737 | /* Only one curve for RF5111 |
| 738 | * find out which one and place |
| 739 | * in pd_curves. |
| 740 | * Note: ee_x_gain is reversed here */ |
| 741 | for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) { |
| 742 | |
| 743 | if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) { |
| 744 | pdgain_idx[0] = idx; |
| 745 | break; |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | if (idx == AR5K_EEPROM_N_PD_CURVES) |
| 750 | goto err_out; |
| 751 | |
| 752 | ee->ee_pd_gains[mode] = 1; |
| 753 | |
| 754 | pd = &chinfo[pier].pd_curves[idx]; |
| 755 | |
| 756 | pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111; |
| 757 | |
| 758 | /* Allocate pd points for this curve */ |
| 759 | pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, |
| 760 | sizeof(u8), GFP_KERNEL); |
| 761 | if (!pd->pd_step) |
| 762 | goto err_out; |
| 763 | |
| 764 | pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, |
| 765 | sizeof(s16), GFP_KERNEL); |
| 766 | if (!pd->pd_pwr) |
| 767 | goto err_out; |
| 768 | |
| 769 | /* Fill raw dataset |
| 770 | * (convert power to 0.25dB units |
| 771 | * for RF5112 compatibility) */ |
| 772 | for (point = 0; point < pd->pd_points; point++) { |
| 773 | |
| 774 | /* Absolute values */ |
| 775 | pd->pd_pwr[point] = 2 * pcinfo->pwr[point]; |
| 776 | |
| 777 | /* Already sorted */ |
| 778 | pd->pd_step[point] = pcinfo->pcdac[point]; |
| 779 | } |
| 780 | |
| 781 | /* Set min/max pwr */ |
| 782 | chinfo[pier].min_pwr = pd->pd_pwr[0]; |
| 783 | chinfo[pier].max_pwr = pd->pd_pwr[10]; |
| 784 | |
| 785 | } |
| 786 | |
| 787 | return 0; |
| 788 | |
| 789 | err_out: |
| 790 | ath5k_eeprom_free_pcal_info(ah, mode); |
| 791 | return -ENOMEM; |
| 792 | } |
| 793 | |
| 794 | /* Parse EEPROM data */ |
| 795 | static int |
| 796 | ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode) |
| 797 | { |
| 798 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 799 | struct ath5k_chan_pcal_info *pcal; |
| 800 | int offset, ret; |
| 801 | int i; |
| 802 | u16 val; |
| 803 | |
| 804 | offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| 805 | switch (mode) { |
| 806 | case AR5K_EEPROM_MODE_11A: |
| 807 | if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| 808 | return 0; |
| 809 | |
| 810 | ret = ath5k_eeprom_init_11a_pcal_freq(ah, |
| 811 | offset + AR5K_EEPROM_GROUP1_OFFSET); |
| 812 | if (ret < 0) |
| 813 | return ret; |
| 814 | |
| 815 | offset += AR5K_EEPROM_GROUP2_OFFSET; |
| 816 | pcal = ee->ee_pwr_cal_a; |
| 817 | break; |
| 818 | case AR5K_EEPROM_MODE_11B: |
| 819 | if (!AR5K_EEPROM_HDR_11B(ee->ee_header) && |
| 820 | !AR5K_EEPROM_HDR_11G(ee->ee_header)) |
| 821 | return 0; |
| 822 | |
| 823 | pcal = ee->ee_pwr_cal_b; |
| 824 | offset += AR5K_EEPROM_GROUP3_OFFSET; |
| 825 | |
| 826 | /* fixed piers */ |
| 827 | pcal[0].freq = 2412; |
| 828 | pcal[1].freq = 2447; |
| 829 | pcal[2].freq = 2484; |
| 830 | ee->ee_n_piers[mode] = 3; |
| 831 | break; |
| 832 | case AR5K_EEPROM_MODE_11G: |
| 833 | if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) |
| 834 | return 0; |
| 835 | |
| 836 | pcal = ee->ee_pwr_cal_g; |
| 837 | offset += AR5K_EEPROM_GROUP4_OFFSET; |
| 838 | |
| 839 | /* fixed piers */ |
| 840 | pcal[0].freq = 2312; |
| 841 | pcal[1].freq = 2412; |
| 842 | pcal[2].freq = 2484; |
| 843 | ee->ee_n_piers[mode] = 3; |
| 844 | break; |
| 845 | default: |
| 846 | return -EINVAL; |
| 847 | } |
| 848 | |
| 849 | for (i = 0; i < ee->ee_n_piers[mode]; i++) { |
| 850 | struct ath5k_chan_pcal_info_rf5111 *cdata = |
| 851 | &pcal[i].rf5111_info; |
| 852 | |
| 853 | AR5K_EEPROM_READ(offset++, val); |
| 854 | cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M); |
| 855 | cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M); |
| 856 | cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M); |
| 857 | |
| 858 | AR5K_EEPROM_READ(offset++, val); |
| 859 | cdata->pwr[0] |= ((val >> 14) & 0x3); |
| 860 | cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M); |
| 861 | cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M); |
| 862 | cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M); |
| 863 | |
| 864 | AR5K_EEPROM_READ(offset++, val); |
| 865 | cdata->pwr[3] |= ((val >> 12) & 0xf); |
| 866 | cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M); |
| 867 | cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M); |
| 868 | |
| 869 | AR5K_EEPROM_READ(offset++, val); |
| 870 | cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M); |
| 871 | cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M); |
| 872 | cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M); |
| 873 | |
| 874 | AR5K_EEPROM_READ(offset++, val); |
| 875 | cdata->pwr[8] |= ((val >> 14) & 0x3); |
| 876 | cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M); |
| 877 | cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M); |
| 878 | |
| 879 | ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min, |
| 880 | cdata->pcdac_max, cdata->pcdac); |
| 881 | } |
| 882 | |
| 883 | return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal); |
| 884 | } |
| 885 | |
| 886 | |
| 887 | /* |
| 888 | * Read power calibration for RF5112 chips |
| 889 | * |
| 890 | * For RF5112 we have 4 XPD -eXternal Power Detector- curves |
| 891 | * for each calibrated channel on 0, -6, -12 and -18dBm but we only |
| 892 | * use the higher (3) and the lower (0) curves. Each curve has 0.5dB |
| 893 | * power steps on x axis and PCDAC steps on y axis and looks like a |
| 894 | * linear function. To recreate the curve and pass the power values |
| 895 | * on hw, we read 4 points for xpd 0 (lower gain -> max power) |
| 896 | * and 3 points for xpd 3 (higher gain -> lower power) here and |
| 897 | * interpolate later. |
| 898 | * |
| 899 | * Note: Many vendors just use xpd 0 so xpd 3 is zeroed. |
| 900 | */ |
| 901 | |
| 902 | /* Convert RF5112 specific data to generic raw data |
| 903 | * used by interpolation code */ |
| 904 | static int |
| 905 | ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode, |
| 906 | struct ath5k_chan_pcal_info *chinfo) |
| 907 | { |
| 908 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 909 | struct ath5k_chan_pcal_info_rf5112 *pcinfo; |
| 910 | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| 911 | unsigned int pier, pdg, point; |
| 912 | |
| 913 | /* Fill raw data for each calibration pier */ |
| 914 | for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { |
| 915 | |
| 916 | pcinfo = &chinfo[pier].rf5112_info; |
| 917 | |
| 918 | /* Allocate pd_curves for this cal pier */ |
| 919 | chinfo[pier].pd_curves = |
| 920 | kcalloc(AR5K_EEPROM_N_PD_CURVES, |
| 921 | sizeof(struct ath5k_pdgain_info), |
| 922 | GFP_KERNEL); |
| 923 | |
| 924 | if (!chinfo[pier].pd_curves) |
| 925 | goto err_out; |
| 926 | |
| 927 | /* Fill pd_curves */ |
| 928 | for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { |
| 929 | |
| 930 | u8 idx = pdgain_idx[pdg]; |
| 931 | struct ath5k_pdgain_info *pd = |
| 932 | &chinfo[pier].pd_curves[idx]; |
| 933 | |
| 934 | /* Lowest gain curve (max power) */ |
| 935 | if (pdg == 0) { |
| 936 | /* One more point for better accuracy */ |
| 937 | pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS; |
| 938 | |
| 939 | /* Allocate pd points for this curve */ |
| 940 | pd->pd_step = kcalloc(pd->pd_points, |
| 941 | sizeof(u8), GFP_KERNEL); |
| 942 | |
| 943 | if (!pd->pd_step) |
| 944 | goto err_out; |
| 945 | |
| 946 | pd->pd_pwr = kcalloc(pd->pd_points, |
| 947 | sizeof(s16), GFP_KERNEL); |
| 948 | |
| 949 | if (!pd->pd_pwr) |
| 950 | goto err_out; |
| 951 | |
| 952 | /* Fill raw dataset |
| 953 | * (all power levels are in 0.25dB units) */ |
| 954 | pd->pd_step[0] = pcinfo->pcdac_x0[0]; |
| 955 | pd->pd_pwr[0] = pcinfo->pwr_x0[0]; |
| 956 | |
| 957 | for (point = 1; point < pd->pd_points; |
| 958 | point++) { |
| 959 | /* Absolute values */ |
| 960 | pd->pd_pwr[point] = |
| 961 | pcinfo->pwr_x0[point]; |
| 962 | |
| 963 | /* Deltas */ |
| 964 | pd->pd_step[point] = |
| 965 | pd->pd_step[point - 1] + |
| 966 | pcinfo->pcdac_x0[point]; |
| 967 | } |
| 968 | |
| 969 | /* Set min power for this frequency */ |
| 970 | chinfo[pier].min_pwr = pd->pd_pwr[0]; |
| 971 | |
| 972 | /* Highest gain curve (min power) */ |
| 973 | } else if (pdg == 1) { |
| 974 | |
| 975 | pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS; |
| 976 | |
| 977 | /* Allocate pd points for this curve */ |
| 978 | pd->pd_step = kcalloc(pd->pd_points, |
| 979 | sizeof(u8), GFP_KERNEL); |
| 980 | |
| 981 | if (!pd->pd_step) |
| 982 | goto err_out; |
| 983 | |
| 984 | pd->pd_pwr = kcalloc(pd->pd_points, |
| 985 | sizeof(s16), GFP_KERNEL); |
| 986 | |
| 987 | if (!pd->pd_pwr) |
| 988 | goto err_out; |
| 989 | |
| 990 | /* Fill raw dataset |
| 991 | * (all power levels are in 0.25dB units) */ |
| 992 | for (point = 0; point < pd->pd_points; |
| 993 | point++) { |
| 994 | /* Absolute values */ |
| 995 | pd->pd_pwr[point] = |
| 996 | pcinfo->pwr_x3[point]; |
| 997 | |
| 998 | /* Fixed points */ |
| 999 | pd->pd_step[point] = |
| 1000 | pcinfo->pcdac_x3[point]; |
| 1001 | } |
| 1002 | |
| 1003 | /* Since we have a higher gain curve |
| 1004 | * override min power */ |
| 1005 | chinfo[pier].min_pwr = pd->pd_pwr[0]; |
| 1006 | } |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | return 0; |
| 1011 | |
| 1012 | err_out: |
| 1013 | ath5k_eeprom_free_pcal_info(ah, mode); |
| 1014 | return -ENOMEM; |
| 1015 | } |
| 1016 | |
| 1017 | /* Parse EEPROM data */ |
| 1018 | static int |
| 1019 | ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) |
| 1020 | { |
| 1021 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 1022 | struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info; |
| 1023 | struct ath5k_chan_pcal_info *gen_chan_info; |
| 1024 | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| 1025 | u32 offset; |
| 1026 | u8 i, c; |
| 1027 | u16 val; |
| 1028 | u8 pd_gains = 0; |
| 1029 | |
| 1030 | /* Count how many curves we have and |
| 1031 | * identify them (which one of the 4 |
| 1032 | * available curves we have on each count). |
| 1033 | * Curves are stored from lower (x0) to |
| 1034 | * higher (x3) gain */ |
| 1035 | for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) { |
| 1036 | /* ee_x_gain[mode] is x gain mask */ |
| 1037 | if ((ee->ee_x_gain[mode] >> i) & 0x1) |
| 1038 | pdgain_idx[pd_gains++] = i; |
| 1039 | } |
| 1040 | ee->ee_pd_gains[mode] = pd_gains; |
| 1041 | |
| 1042 | if (pd_gains == 0 || pd_gains > 2) |
| 1043 | return -EINVAL; |
| 1044 | |
| 1045 | switch (mode) { |
| 1046 | case AR5K_EEPROM_MODE_11A: |
| 1047 | /* |
| 1048 | * Read 5GHz EEPROM channels |
| 1049 | */ |
| 1050 | offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| 1051 | ath5k_eeprom_init_11a_pcal_freq(ah, offset); |
| 1052 | |
| 1053 | offset += AR5K_EEPROM_GROUP2_OFFSET; |
| 1054 | gen_chan_info = ee->ee_pwr_cal_a; |
| 1055 | break; |
| 1056 | case AR5K_EEPROM_MODE_11B: |
| 1057 | offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| 1058 | if (AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| 1059 | offset += AR5K_EEPROM_GROUP3_OFFSET; |
| 1060 | |
| 1061 | /* NB: frequency piers parsed during mode init */ |
| 1062 | gen_chan_info = ee->ee_pwr_cal_b; |
| 1063 | break; |
| 1064 | case AR5K_EEPROM_MODE_11G: |
| 1065 | offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| 1066 | if (AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| 1067 | offset += AR5K_EEPROM_GROUP4_OFFSET; |
| 1068 | else if (AR5K_EEPROM_HDR_11B(ee->ee_header)) |
| 1069 | offset += AR5K_EEPROM_GROUP2_OFFSET; |
| 1070 | |
| 1071 | /* NB: frequency piers parsed during mode init */ |
| 1072 | gen_chan_info = ee->ee_pwr_cal_g; |
| 1073 | break; |
| 1074 | default: |
| 1075 | return -EINVAL; |
| 1076 | } |
| 1077 | |
| 1078 | for (i = 0; i < ee->ee_n_piers[mode]; i++) { |
| 1079 | chan_pcal_info = &gen_chan_info[i].rf5112_info; |
| 1080 | |
| 1081 | /* Power values in quarter dB |
| 1082 | * for the lower xpd gain curve |
| 1083 | * (0 dBm -> higher output power) */ |
| 1084 | for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) { |
| 1085 | AR5K_EEPROM_READ(offset++, val); |
| 1086 | chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff); |
| 1087 | chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff); |
| 1088 | } |
| 1089 | |
| 1090 | /* PCDAC steps |
| 1091 | * corresponding to the above power |
| 1092 | * measurements */ |
| 1093 | AR5K_EEPROM_READ(offset++, val); |
| 1094 | chan_pcal_info->pcdac_x0[1] = (val & 0x1f); |
| 1095 | chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f); |
| 1096 | chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f); |
| 1097 | |
| 1098 | /* Power values in quarter dB |
| 1099 | * for the higher xpd gain curve |
| 1100 | * (18 dBm -> lower output power) */ |
| 1101 | AR5K_EEPROM_READ(offset++, val); |
| 1102 | chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff); |
| 1103 | chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff); |
| 1104 | |
| 1105 | AR5K_EEPROM_READ(offset++, val); |
| 1106 | chan_pcal_info->pwr_x3[2] = (val & 0xff); |
| 1107 | |
| 1108 | /* PCDAC steps |
| 1109 | * corresponding to the above power |
| 1110 | * measurements (fixed) */ |
| 1111 | chan_pcal_info->pcdac_x3[0] = 20; |
| 1112 | chan_pcal_info->pcdac_x3[1] = 35; |
| 1113 | chan_pcal_info->pcdac_x3[2] = 63; |
| 1114 | |
| 1115 | if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) { |
| 1116 | chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f); |
| 1117 | |
| 1118 | /* Last xpd0 power level is also channel maximum */ |
| 1119 | gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3]; |
| 1120 | } else { |
| 1121 | chan_pcal_info->pcdac_x0[0] = 1; |
| 1122 | gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff); |
| 1123 | } |
| 1124 | |
| 1125 | } |
| 1126 | |
| 1127 | return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info); |
| 1128 | } |
| 1129 | |
| 1130 | |
| 1131 | /* |
| 1132 | * Read power calibration for RF2413 chips |
| 1133 | * |
| 1134 | * For RF2413 we have a Power to PDDAC table (Power Detector) |
| 1135 | * instead of a PCDAC and 4 pd gain curves for each calibrated channel. |
| 1136 | * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y |
| 1137 | * axis and looks like an exponential function like the RF5111 curve. |
| 1138 | * |
| 1139 | * To recreate the curves we read here the points and interpolate |
| 1140 | * later. Note that in most cases only 2 (higher and lower) curves are |
| 1141 | * used (like RF5112) but vendors have the opportunity to include all |
| 1142 | * 4 curves on eeprom. The final curve (higher power) has an extra |
| 1143 | * point for better accuracy like RF5112. |
| 1144 | */ |
| 1145 | |
| 1146 | /* For RF2413 power calibration data doesn't start on a fixed location and |
| 1147 | * if a mode is not supported, its section is missing -not zeroed-. |
| 1148 | * So we need to calculate the starting offset for each section by using |
| 1149 | * these two functions */ |
| 1150 | |
| 1151 | /* Return the size of each section based on the mode and the number of pd |
| 1152 | * gains available (maximum 4). */ |
| 1153 | static inline unsigned int |
| 1154 | ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode) |
| 1155 | { |
| 1156 | static const unsigned int pdgains_size[] = { 4, 6, 9, 12 }; |
| 1157 | unsigned int sz; |
| 1158 | |
| 1159 | sz = pdgains_size[ee->ee_pd_gains[mode] - 1]; |
| 1160 | sz *= ee->ee_n_piers[mode]; |
| 1161 | |
| 1162 | return sz; |
| 1163 | } |
| 1164 | |
| 1165 | /* Return the starting offset for a section based on the modes supported |
| 1166 | * and each section's size. */ |
| 1167 | static unsigned int |
| 1168 | ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode) |
| 1169 | { |
| 1170 | u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4); |
| 1171 | |
| 1172 | switch (mode) { |
| 1173 | case AR5K_EEPROM_MODE_11G: |
| 1174 | if (AR5K_EEPROM_HDR_11B(ee->ee_header)) |
| 1175 | offset += ath5k_pdgains_size_2413(ee, |
| 1176 | AR5K_EEPROM_MODE_11B) + |
| 1177 | AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; |
| 1178 | /* fall through */ |
| 1179 | case AR5K_EEPROM_MODE_11B: |
| 1180 | if (AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| 1181 | offset += ath5k_pdgains_size_2413(ee, |
| 1182 | AR5K_EEPROM_MODE_11A) + |
| 1183 | AR5K_EEPROM_N_5GHZ_CHAN / 2; |
| 1184 | /* fall through */ |
| 1185 | case AR5K_EEPROM_MODE_11A: |
| 1186 | break; |
| 1187 | default: |
| 1188 | break; |
| 1189 | } |
| 1190 | |
| 1191 | return offset; |
| 1192 | } |
| 1193 | |
| 1194 | /* Convert RF2413 specific data to generic raw data |
| 1195 | * used by interpolation code */ |
| 1196 | static int |
| 1197 | ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode, |
| 1198 | struct ath5k_chan_pcal_info *chinfo) |
| 1199 | { |
| 1200 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 1201 | struct ath5k_chan_pcal_info_rf2413 *pcinfo; |
| 1202 | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| 1203 | unsigned int pier, pdg, point; |
| 1204 | |
| 1205 | /* Fill raw data for each calibration pier */ |
| 1206 | for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { |
| 1207 | |
| 1208 | pcinfo = &chinfo[pier].rf2413_info; |
| 1209 | |
| 1210 | /* Allocate pd_curves for this cal pier */ |
| 1211 | chinfo[pier].pd_curves = |
| 1212 | kcalloc(AR5K_EEPROM_N_PD_CURVES, |
| 1213 | sizeof(struct ath5k_pdgain_info), |
| 1214 | GFP_KERNEL); |
| 1215 | |
| 1216 | if (!chinfo[pier].pd_curves) |
| 1217 | goto err_out; |
| 1218 | |
| 1219 | /* Fill pd_curves */ |
| 1220 | for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { |
| 1221 | |
| 1222 | u8 idx = pdgain_idx[pdg]; |
| 1223 | struct ath5k_pdgain_info *pd = |
| 1224 | &chinfo[pier].pd_curves[idx]; |
| 1225 | |
| 1226 | /* One more point for the highest power |
| 1227 | * curve (lowest gain) */ |
| 1228 | if (pdg == ee->ee_pd_gains[mode] - 1) |
| 1229 | pd->pd_points = AR5K_EEPROM_N_PD_POINTS; |
| 1230 | else |
| 1231 | pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1; |
| 1232 | |
| 1233 | /* Allocate pd points for this curve */ |
| 1234 | pd->pd_step = kcalloc(pd->pd_points, |
| 1235 | sizeof(u8), GFP_KERNEL); |
| 1236 | |
| 1237 | if (!pd->pd_step) |
| 1238 | goto err_out; |
| 1239 | |
| 1240 | pd->pd_pwr = kcalloc(pd->pd_points, |
| 1241 | sizeof(s16), GFP_KERNEL); |
| 1242 | |
| 1243 | if (!pd->pd_pwr) |
| 1244 | goto err_out; |
| 1245 | |
| 1246 | /* Fill raw dataset |
| 1247 | * convert all pwr levels to |
| 1248 | * quarter dB for RF5112 compatibility */ |
| 1249 | pd->pd_step[0] = pcinfo->pddac_i[pdg]; |
| 1250 | pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg]; |
| 1251 | |
| 1252 | for (point = 1; point < pd->pd_points; point++) { |
| 1253 | |
| 1254 | pd->pd_pwr[point] = pd->pd_pwr[point - 1] + |
| 1255 | 2 * pcinfo->pwr[pdg][point - 1]; |
| 1256 | |
| 1257 | pd->pd_step[point] = pd->pd_step[point - 1] + |
| 1258 | pcinfo->pddac[pdg][point - 1]; |
| 1259 | |
| 1260 | } |
| 1261 | |
| 1262 | /* Highest gain curve -> min power */ |
| 1263 | if (pdg == 0) |
| 1264 | chinfo[pier].min_pwr = pd->pd_pwr[0]; |
| 1265 | |
| 1266 | /* Lowest gain curve -> max power */ |
| 1267 | if (pdg == ee->ee_pd_gains[mode] - 1) |
| 1268 | chinfo[pier].max_pwr = |
| 1269 | pd->pd_pwr[pd->pd_points - 1]; |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | return 0; |
| 1274 | |
| 1275 | err_out: |
| 1276 | ath5k_eeprom_free_pcal_info(ah, mode); |
| 1277 | return -ENOMEM; |
| 1278 | } |
| 1279 | |
| 1280 | /* Parse EEPROM data */ |
| 1281 | static int |
| 1282 | ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) |
| 1283 | { |
| 1284 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 1285 | struct ath5k_chan_pcal_info_rf2413 *pcinfo; |
| 1286 | struct ath5k_chan_pcal_info *chinfo; |
| 1287 | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; |
| 1288 | u32 offset; |
| 1289 | int idx, i; |
| 1290 | u16 val; |
| 1291 | u8 pd_gains = 0; |
| 1292 | |
| 1293 | /* Count how many curves we have and |
| 1294 | * identify them (which one of the 4 |
| 1295 | * available curves we have on each count). |
| 1296 | * Curves are stored from higher to |
| 1297 | * lower gain so we go backwards */ |
| 1298 | for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) { |
| 1299 | /* ee_x_gain[mode] is x gain mask */ |
| 1300 | if ((ee->ee_x_gain[mode] >> idx) & 0x1) |
| 1301 | pdgain_idx[pd_gains++] = idx; |
| 1302 | |
| 1303 | } |
| 1304 | ee->ee_pd_gains[mode] = pd_gains; |
| 1305 | |
| 1306 | if (pd_gains == 0) |
| 1307 | return -EINVAL; |
| 1308 | |
| 1309 | offset = ath5k_cal_data_offset_2413(ee, mode); |
| 1310 | switch (mode) { |
| 1311 | case AR5K_EEPROM_MODE_11A: |
| 1312 | if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) |
| 1313 | return 0; |
| 1314 | |
| 1315 | ath5k_eeprom_init_11a_pcal_freq(ah, offset); |
| 1316 | offset += AR5K_EEPROM_N_5GHZ_CHAN / 2; |
| 1317 | chinfo = ee->ee_pwr_cal_a; |
| 1318 | break; |
| 1319 | case AR5K_EEPROM_MODE_11B: |
| 1320 | if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) |
| 1321 | return 0; |
| 1322 | |
| 1323 | ath5k_eeprom_init_11bg_2413(ah, mode, offset); |
| 1324 | offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; |
| 1325 | chinfo = ee->ee_pwr_cal_b; |
| 1326 | break; |
| 1327 | case AR5K_EEPROM_MODE_11G: |
| 1328 | if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) |
| 1329 | return 0; |
| 1330 | |
| 1331 | ath5k_eeprom_init_11bg_2413(ah, mode, offset); |
| 1332 | offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; |
| 1333 | chinfo = ee->ee_pwr_cal_g; |
| 1334 | break; |
| 1335 | default: |
| 1336 | return -EINVAL; |
| 1337 | } |
| 1338 | |
| 1339 | for (i = 0; i < ee->ee_n_piers[mode]; i++) { |
| 1340 | pcinfo = &chinfo[i].rf2413_info; |
| 1341 | |
| 1342 | /* |
| 1343 | * Read pwr_i, pddac_i and the first |
| 1344 | * 2 pd points (pwr, pddac) |
| 1345 | */ |
| 1346 | AR5K_EEPROM_READ(offset++, val); |
| 1347 | pcinfo->pwr_i[0] = val & 0x1f; |
| 1348 | pcinfo->pddac_i[0] = (val >> 5) & 0x7f; |
| 1349 | pcinfo->pwr[0][0] = (val >> 12) & 0xf; |
| 1350 | |
| 1351 | AR5K_EEPROM_READ(offset++, val); |
| 1352 | pcinfo->pddac[0][0] = val & 0x3f; |
| 1353 | pcinfo->pwr[0][1] = (val >> 6) & 0xf; |
| 1354 | pcinfo->pddac[0][1] = (val >> 10) & 0x3f; |
| 1355 | |
| 1356 | AR5K_EEPROM_READ(offset++, val); |
| 1357 | pcinfo->pwr[0][2] = val & 0xf; |
| 1358 | pcinfo->pddac[0][2] = (val >> 4) & 0x3f; |
| 1359 | |
| 1360 | pcinfo->pwr[0][3] = 0; |
| 1361 | pcinfo->pddac[0][3] = 0; |
| 1362 | |
| 1363 | if (pd_gains > 1) { |
| 1364 | /* |
| 1365 | * Pd gain 0 is not the last pd gain |
| 1366 | * so it only has 2 pd points. |
| 1367 | * Continue with pd gain 1. |
| 1368 | */ |
| 1369 | pcinfo->pwr_i[1] = (val >> 10) & 0x1f; |
| 1370 | |
| 1371 | pcinfo->pddac_i[1] = (val >> 15) & 0x1; |
| 1372 | AR5K_EEPROM_READ(offset++, val); |
| 1373 | pcinfo->pddac_i[1] |= (val & 0x3F) << 1; |
| 1374 | |
| 1375 | pcinfo->pwr[1][0] = (val >> 6) & 0xf; |
| 1376 | pcinfo->pddac[1][0] = (val >> 10) & 0x3f; |
| 1377 | |
| 1378 | AR5K_EEPROM_READ(offset++, val); |
| 1379 | pcinfo->pwr[1][1] = val & 0xf; |
| 1380 | pcinfo->pddac[1][1] = (val >> 4) & 0x3f; |
| 1381 | pcinfo->pwr[1][2] = (val >> 10) & 0xf; |
| 1382 | |
| 1383 | pcinfo->pddac[1][2] = (val >> 14) & 0x3; |
| 1384 | AR5K_EEPROM_READ(offset++, val); |
| 1385 | pcinfo->pddac[1][2] |= (val & 0xF) << 2; |
| 1386 | |
| 1387 | pcinfo->pwr[1][3] = 0; |
| 1388 | pcinfo->pddac[1][3] = 0; |
| 1389 | } else if (pd_gains == 1) { |
| 1390 | /* |
| 1391 | * Pd gain 0 is the last one so |
| 1392 | * read the extra point. |
| 1393 | */ |
| 1394 | pcinfo->pwr[0][3] = (val >> 10) & 0xf; |
| 1395 | |
| 1396 | pcinfo->pddac[0][3] = (val >> 14) & 0x3; |
| 1397 | AR5K_EEPROM_READ(offset++, val); |
| 1398 | pcinfo->pddac[0][3] |= (val & 0xF) << 2; |
| 1399 | } |
| 1400 | |
| 1401 | /* |
| 1402 | * Proceed with the other pd_gains |
| 1403 | * as above. |
| 1404 | */ |
| 1405 | if (pd_gains > 2) { |
| 1406 | pcinfo->pwr_i[2] = (val >> 4) & 0x1f; |
| 1407 | pcinfo->pddac_i[2] = (val >> 9) & 0x7f; |
| 1408 | |
| 1409 | AR5K_EEPROM_READ(offset++, val); |
| 1410 | pcinfo->pwr[2][0] = (val >> 0) & 0xf; |
| 1411 | pcinfo->pddac[2][0] = (val >> 4) & 0x3f; |
| 1412 | pcinfo->pwr[2][1] = (val >> 10) & 0xf; |
| 1413 | |
| 1414 | pcinfo->pddac[2][1] = (val >> 14) & 0x3; |
| 1415 | AR5K_EEPROM_READ(offset++, val); |
| 1416 | pcinfo->pddac[2][1] |= (val & 0xF) << 2; |
| 1417 | |
| 1418 | pcinfo->pwr[2][2] = (val >> 4) & 0xf; |
| 1419 | pcinfo->pddac[2][2] = (val >> 8) & 0x3f; |
| 1420 | |
| 1421 | pcinfo->pwr[2][3] = 0; |
| 1422 | pcinfo->pddac[2][3] = 0; |
| 1423 | } else if (pd_gains == 2) { |
| 1424 | pcinfo->pwr[1][3] = (val >> 4) & 0xf; |
| 1425 | pcinfo->pddac[1][3] = (val >> 8) & 0x3f; |
| 1426 | } |
| 1427 | |
| 1428 | if (pd_gains > 3) { |
| 1429 | pcinfo->pwr_i[3] = (val >> 14) & 0x3; |
| 1430 | AR5K_EEPROM_READ(offset++, val); |
| 1431 | pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2; |
| 1432 | |
| 1433 | pcinfo->pddac_i[3] = (val >> 3) & 0x7f; |
| 1434 | pcinfo->pwr[3][0] = (val >> 10) & 0xf; |
| 1435 | pcinfo->pddac[3][0] = (val >> 14) & 0x3; |
| 1436 | |
| 1437 | AR5K_EEPROM_READ(offset++, val); |
| 1438 | pcinfo->pddac[3][0] |= (val & 0xF) << 2; |
| 1439 | pcinfo->pwr[3][1] = (val >> 4) & 0xf; |
| 1440 | pcinfo->pddac[3][1] = (val >> 8) & 0x3f; |
| 1441 | |
| 1442 | pcinfo->pwr[3][2] = (val >> 14) & 0x3; |
| 1443 | AR5K_EEPROM_READ(offset++, val); |
| 1444 | pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2; |
| 1445 | |
| 1446 | pcinfo->pddac[3][2] = (val >> 2) & 0x3f; |
| 1447 | pcinfo->pwr[3][3] = (val >> 8) & 0xf; |
| 1448 | |
| 1449 | pcinfo->pddac[3][3] = (val >> 12) & 0xF; |
| 1450 | AR5K_EEPROM_READ(offset++, val); |
| 1451 | pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4; |
| 1452 | } else if (pd_gains == 3) { |
| 1453 | pcinfo->pwr[2][3] = (val >> 14) & 0x3; |
| 1454 | AR5K_EEPROM_READ(offset++, val); |
| 1455 | pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2; |
| 1456 | |
| 1457 | pcinfo->pddac[2][3] = (val >> 2) & 0x3f; |
| 1458 | } |
| 1459 | } |
| 1460 | |
| 1461 | return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo); |
| 1462 | } |
| 1463 | |
| 1464 | |
| 1465 | /* |
| 1466 | * Read per rate target power (this is the maximum tx power |
| 1467 | * supported by the card). This info is used when setting |
| 1468 | * tx power, no matter the channel. |
| 1469 | * |
| 1470 | * This also works for v5 EEPROMs. |
| 1471 | */ |
| 1472 | static int |
| 1473 | ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) |
| 1474 | { |
| 1475 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 1476 | struct ath5k_rate_pcal_info *rate_pcal_info; |
| 1477 | u8 *rate_target_pwr_num; |
| 1478 | u32 offset; |
| 1479 | u16 val; |
| 1480 | int i; |
| 1481 | |
| 1482 | offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1); |
| 1483 | rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode]; |
| 1484 | switch (mode) { |
| 1485 | case AR5K_EEPROM_MODE_11A: |
| 1486 | offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version); |
| 1487 | rate_pcal_info = ee->ee_rate_tpwr_a; |
| 1488 | ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN; |
| 1489 | break; |
| 1490 | case AR5K_EEPROM_MODE_11B: |
| 1491 | offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version); |
| 1492 | rate_pcal_info = ee->ee_rate_tpwr_b; |
| 1493 | ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */ |
| 1494 | break; |
| 1495 | case AR5K_EEPROM_MODE_11G: |
| 1496 | offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version); |
| 1497 | rate_pcal_info = ee->ee_rate_tpwr_g; |
| 1498 | ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN; |
| 1499 | break; |
| 1500 | default: |
| 1501 | return -EINVAL; |
| 1502 | } |
| 1503 | |
| 1504 | /* Different freq mask for older eeproms (<= v3.2) */ |
| 1505 | if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) { |
| 1506 | for (i = 0; i < (*rate_target_pwr_num); i++) { |
| 1507 | AR5K_EEPROM_READ(offset++, val); |
| 1508 | rate_pcal_info[i].freq = |
| 1509 | ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode); |
| 1510 | |
| 1511 | rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f); |
| 1512 | rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f; |
| 1513 | |
| 1514 | AR5K_EEPROM_READ(offset++, val); |
| 1515 | |
| 1516 | if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || |
| 1517 | val == 0) { |
| 1518 | (*rate_target_pwr_num) = i; |
| 1519 | break; |
| 1520 | } |
| 1521 | |
| 1522 | rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7); |
| 1523 | rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f); |
| 1524 | rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f); |
| 1525 | } |
| 1526 | } else { |
| 1527 | for (i = 0; i < (*rate_target_pwr_num); i++) { |
| 1528 | AR5K_EEPROM_READ(offset++, val); |
| 1529 | rate_pcal_info[i].freq = |
| 1530 | ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); |
| 1531 | |
| 1532 | rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f); |
| 1533 | rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f; |
| 1534 | |
| 1535 | AR5K_EEPROM_READ(offset++, val); |
| 1536 | |
| 1537 | if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || |
| 1538 | val == 0) { |
| 1539 | (*rate_target_pwr_num) = i; |
| 1540 | break; |
| 1541 | } |
| 1542 | |
| 1543 | rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf; |
| 1544 | rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f); |
| 1545 | rate_pcal_info[i].target_power_54 = (val & 0x3f); |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | return 0; |
| 1550 | } |
| 1551 | |
| 1552 | |
| 1553 | /* |
| 1554 | * Read per channel calibration info from EEPROM |
| 1555 | * |
| 1556 | * This info is used to calibrate the baseband power table. Imagine |
| 1557 | * that for each channel there is a power curve that's hw specific |
| 1558 | * (depends on amplifier etc) and we try to "correct" this curve using |
| 1559 | * offsets we pass on to phy chip (baseband -> before amplifier) so that |
| 1560 | * it can use accurate power values when setting tx power (takes amplifier's |
| 1561 | * performance on each channel into account). |
| 1562 | * |
| 1563 | * EEPROM provides us with the offsets for some pre-calibrated channels |
| 1564 | * and we have to interpolate to create the full table for these channels and |
| 1565 | * also the table for any channel. |
| 1566 | */ |
| 1567 | static int |
| 1568 | ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah) |
| 1569 | { |
| 1570 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 1571 | int (*read_pcal)(struct ath5k_hw *hw, int mode); |
| 1572 | int mode; |
| 1573 | int err; |
| 1574 | |
| 1575 | if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) && |
| 1576 | (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1)) |
| 1577 | read_pcal = ath5k_eeprom_read_pcal_info_5112; |
| 1578 | else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) && |
| 1579 | (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2)) |
| 1580 | read_pcal = ath5k_eeprom_read_pcal_info_2413; |
| 1581 | else |
| 1582 | read_pcal = ath5k_eeprom_read_pcal_info_5111; |
| 1583 | |
| 1584 | |
| 1585 | for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; |
| 1586 | mode++) { |
| 1587 | err = read_pcal(ah, mode); |
| 1588 | if (err) |
| 1589 | return err; |
| 1590 | |
| 1591 | err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode); |
| 1592 | if (err < 0) |
| 1593 | return err; |
| 1594 | } |
| 1595 | |
| 1596 | return 0; |
| 1597 | } |
| 1598 | |
| 1599 | /* Read conformance test limits used for regulatory control */ |
| 1600 | static int |
| 1601 | ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah) |
| 1602 | { |
| 1603 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 1604 | struct ath5k_edge_power *rep; |
| 1605 | unsigned int fmask, pmask; |
| 1606 | unsigned int ctl_mode; |
| 1607 | int i, j; |
| 1608 | u32 offset; |
| 1609 | u16 val; |
| 1610 | |
| 1611 | pmask = AR5K_EEPROM_POWER_M; |
| 1612 | fmask = AR5K_EEPROM_FREQ_M(ee->ee_version); |
| 1613 | offset = AR5K_EEPROM_CTL(ee->ee_version); |
| 1614 | ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version); |
| 1615 | for (i = 0; i < ee->ee_ctls; i += 2) { |
| 1616 | AR5K_EEPROM_READ(offset++, val); |
| 1617 | ee->ee_ctl[i] = (val >> 8) & 0xff; |
| 1618 | ee->ee_ctl[i + 1] = val & 0xff; |
| 1619 | } |
| 1620 | |
| 1621 | offset = AR5K_EEPROM_GROUP8_OFFSET; |
| 1622 | if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0) |
| 1623 | offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) - |
| 1624 | AR5K_EEPROM_GROUP5_OFFSET; |
| 1625 | else |
| 1626 | offset += AR5K_EEPROM_GROUPS_START(ee->ee_version); |
| 1627 | |
| 1628 | rep = ee->ee_ctl_pwr; |
| 1629 | for (i = 0; i < ee->ee_ctls; i++) { |
| 1630 | switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) { |
| 1631 | case AR5K_CTL_11A: |
| 1632 | case AR5K_CTL_TURBO: |
| 1633 | ctl_mode = AR5K_EEPROM_MODE_11A; |
| 1634 | break; |
| 1635 | default: |
| 1636 | ctl_mode = AR5K_EEPROM_MODE_11G; |
| 1637 | break; |
| 1638 | } |
| 1639 | if (ee->ee_ctl[i] == 0) { |
| 1640 | if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) |
| 1641 | offset += 8; |
| 1642 | else |
| 1643 | offset += 7; |
| 1644 | rep += AR5K_EEPROM_N_EDGES; |
| 1645 | continue; |
| 1646 | } |
| 1647 | if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { |
| 1648 | for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { |
| 1649 | AR5K_EEPROM_READ(offset++, val); |
| 1650 | rep[j].freq = (val >> 8) & fmask; |
| 1651 | rep[j + 1].freq = val & fmask; |
| 1652 | } |
| 1653 | for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { |
| 1654 | AR5K_EEPROM_READ(offset++, val); |
| 1655 | rep[j].edge = (val >> 8) & pmask; |
| 1656 | rep[j].flag = (val >> 14) & 1; |
| 1657 | rep[j + 1].edge = val & pmask; |
| 1658 | rep[j + 1].flag = (val >> 6) & 1; |
| 1659 | } |
| 1660 | } else { |
| 1661 | AR5K_EEPROM_READ(offset++, val); |
| 1662 | rep[0].freq = (val >> 9) & fmask; |
| 1663 | rep[1].freq = (val >> 2) & fmask; |
| 1664 | rep[2].freq = (val << 5) & fmask; |
| 1665 | |
| 1666 | AR5K_EEPROM_READ(offset++, val); |
| 1667 | rep[2].freq |= (val >> 11) & 0x1f; |
| 1668 | rep[3].freq = (val >> 4) & fmask; |
| 1669 | rep[4].freq = (val << 3) & fmask; |
| 1670 | |
| 1671 | AR5K_EEPROM_READ(offset++, val); |
| 1672 | rep[4].freq |= (val >> 13) & 0x7; |
| 1673 | rep[5].freq = (val >> 6) & fmask; |
| 1674 | rep[6].freq = (val << 1) & fmask; |
| 1675 | |
| 1676 | AR5K_EEPROM_READ(offset++, val); |
| 1677 | rep[6].freq |= (val >> 15) & 0x1; |
| 1678 | rep[7].freq = (val >> 8) & fmask; |
| 1679 | |
| 1680 | rep[0].edge = (val >> 2) & pmask; |
| 1681 | rep[1].edge = (val << 4) & pmask; |
| 1682 | |
| 1683 | AR5K_EEPROM_READ(offset++, val); |
| 1684 | rep[1].edge |= (val >> 12) & 0xf; |
| 1685 | rep[2].edge = (val >> 6) & pmask; |
| 1686 | rep[3].edge = val & pmask; |
| 1687 | |
| 1688 | AR5K_EEPROM_READ(offset++, val); |
| 1689 | rep[4].edge = (val >> 10) & pmask; |
| 1690 | rep[5].edge = (val >> 4) & pmask; |
| 1691 | rep[6].edge = (val << 2) & pmask; |
| 1692 | |
| 1693 | AR5K_EEPROM_READ(offset++, val); |
| 1694 | rep[6].edge |= (val >> 14) & 0x3; |
| 1695 | rep[7].edge = (val >> 8) & pmask; |
| 1696 | } |
| 1697 | for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) { |
| 1698 | rep[j].freq = ath5k_eeprom_bin2freq(ee, |
| 1699 | rep[j].freq, ctl_mode); |
| 1700 | } |
| 1701 | rep += AR5K_EEPROM_N_EDGES; |
| 1702 | } |
| 1703 | |
| 1704 | return 0; |
| 1705 | } |
| 1706 | |
| 1707 | static int |
| 1708 | ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah) |
| 1709 | { |
| 1710 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
| 1711 | u32 offset; |
| 1712 | u16 val; |
| 1713 | int ret = 0, i; |
| 1714 | |
| 1715 | offset = AR5K_EEPROM_CTL(ee->ee_version) + |
| 1716 | AR5K_EEPROM_N_CTLS(ee->ee_version); |
| 1717 | |
| 1718 | if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) { |
| 1719 | /* No spur info for 5GHz */ |
| 1720 | ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR; |
| 1721 | /* 2 channels for 2GHz (2464/2420) */ |
| 1722 | ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1; |
| 1723 | ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2; |
| 1724 | ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR; |
| 1725 | } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) { |
| 1726 | for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { |
| 1727 | AR5K_EEPROM_READ(offset, val); |
| 1728 | ee->ee_spur_chans[i][0] = val; |
| 1729 | AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS, |
| 1730 | val); |
| 1731 | ee->ee_spur_chans[i][1] = val; |
| 1732 | offset++; |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | return ret; |
| 1737 | } |
| 1738 | |
| 1739 | |
| 1740 | /***********************\ |
| 1741 | * Init/Detach functions * |
| 1742 | \***********************/ |
| 1743 | |
| 1744 | /* |
| 1745 | * Initialize eeprom data structure |
| 1746 | */ |
| 1747 | int |
| 1748 | ath5k_eeprom_init(struct ath5k_hw *ah) |
| 1749 | { |
| 1750 | int err; |
| 1751 | |
| 1752 | err = ath5k_eeprom_init_header(ah); |
| 1753 | if (err < 0) |
| 1754 | return err; |
| 1755 | |
| 1756 | err = ath5k_eeprom_init_modes(ah); |
| 1757 | if (err < 0) |
| 1758 | return err; |
| 1759 | |
| 1760 | err = ath5k_eeprom_read_pcal_info(ah); |
| 1761 | if (err < 0) |
| 1762 | return err; |
| 1763 | |
| 1764 | err = ath5k_eeprom_read_ctl_info(ah); |
| 1765 | if (err < 0) |
| 1766 | return err; |
| 1767 | |
| 1768 | err = ath5k_eeprom_read_spur_chans(ah); |
| 1769 | if (err < 0) |
| 1770 | return err; |
| 1771 | |
| 1772 | return 0; |
| 1773 | } |
| 1774 | |
| 1775 | void |
| 1776 | ath5k_eeprom_detach(struct ath5k_hw *ah) |
| 1777 | { |
| 1778 | u8 mode; |
| 1779 | |
| 1780 | for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) |
| 1781 | ath5k_eeprom_free_pcal_info(ah, mode); |
| 1782 | } |
| 1783 | |
| 1784 | int |
| 1785 | ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah, |
| 1786 | struct ieee80211_channel *channel) |
| 1787 | { |
| 1788 | switch (channel->hw_value) { |
| 1789 | case AR5K_MODE_11A: |
| 1790 | return AR5K_EEPROM_MODE_11A; |
| 1791 | case AR5K_MODE_11G: |
| 1792 | return AR5K_EEPROM_MODE_11G; |
| 1793 | case AR5K_MODE_11B: |
| 1794 | return AR5K_EEPROM_MODE_11B; |
| 1795 | default: |
| 1796 | ATH5K_WARN(ah, "channel is not A/B/G!"); |
| 1797 | return AR5K_EEPROM_MODE_11A; |
| 1798 | } |
| 1799 | } |