b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> |
| 4 | Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> |
| 5 | <http://rt2x00.serialmonkey.com> |
| 6 | |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | Module: rt2x00lib |
| 11 | Abstract: rt2x00 generic device routines. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/log2.h> |
| 18 | #include <linux/of.h> |
| 19 | #include <linux/of_net.h> |
| 20 | |
| 21 | #include "rt2x00.h" |
| 22 | #include "rt2x00lib.h" |
| 23 | |
| 24 | /* |
| 25 | * Utility functions. |
| 26 | */ |
| 27 | u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, |
| 28 | struct ieee80211_vif *vif) |
| 29 | { |
| 30 | /* |
| 31 | * When in STA mode, bssidx is always 0 otherwise local_address[5] |
| 32 | * contains the bss number, see BSS_ID_MASK comments for details. |
| 33 | */ |
| 34 | if (rt2x00dev->intf_sta_count) |
| 35 | return 0; |
| 36 | return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); |
| 37 | } |
| 38 | EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); |
| 39 | |
| 40 | /* |
| 41 | * Radio control handlers. |
| 42 | */ |
| 43 | int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) |
| 44 | { |
| 45 | int status; |
| 46 | |
| 47 | /* |
| 48 | * Don't enable the radio twice. |
| 49 | * And check if the hardware button has been disabled. |
| 50 | */ |
| 51 | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 52 | return 0; |
| 53 | |
| 54 | /* |
| 55 | * Initialize all data queues. |
| 56 | */ |
| 57 | rt2x00queue_init_queues(rt2x00dev); |
| 58 | |
| 59 | /* |
| 60 | * Enable radio. |
| 61 | */ |
| 62 | status = |
| 63 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); |
| 64 | if (status) |
| 65 | return status; |
| 66 | |
| 67 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); |
| 68 | |
| 69 | rt2x00leds_led_radio(rt2x00dev, true); |
| 70 | rt2x00led_led_activity(rt2x00dev, true); |
| 71 | |
| 72 | set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); |
| 73 | |
| 74 | /* |
| 75 | * Enable queues. |
| 76 | */ |
| 77 | rt2x00queue_start_queues(rt2x00dev); |
| 78 | rt2x00link_start_tuner(rt2x00dev); |
| 79 | |
| 80 | /* |
| 81 | * Start watchdog monitoring. |
| 82 | */ |
| 83 | rt2x00link_start_watchdog(rt2x00dev); |
| 84 | |
| 85 | return 0; |
| 86 | } |
| 87 | |
| 88 | void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) |
| 89 | { |
| 90 | if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 91 | return; |
| 92 | |
| 93 | /* |
| 94 | * Stop watchdog monitoring. |
| 95 | */ |
| 96 | rt2x00link_stop_watchdog(rt2x00dev); |
| 97 | |
| 98 | /* |
| 99 | * Stop all queues |
| 100 | */ |
| 101 | rt2x00link_stop_tuner(rt2x00dev); |
| 102 | rt2x00queue_stop_queues(rt2x00dev); |
| 103 | rt2x00queue_flush_queues(rt2x00dev, true); |
| 104 | rt2x00queue_stop_queue(rt2x00dev->bcn); |
| 105 | |
| 106 | /* |
| 107 | * Disable radio. |
| 108 | */ |
| 109 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); |
| 110 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); |
| 111 | rt2x00led_led_activity(rt2x00dev, false); |
| 112 | rt2x00leds_led_radio(rt2x00dev, false); |
| 113 | } |
| 114 | |
| 115 | static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, |
| 116 | struct ieee80211_vif *vif) |
| 117 | { |
| 118 | struct rt2x00_dev *rt2x00dev = data; |
| 119 | struct rt2x00_intf *intf = vif_to_intf(vif); |
| 120 | |
| 121 | /* |
| 122 | * It is possible the radio was disabled while the work had been |
| 123 | * scheduled. If that happens we should return here immediately, |
| 124 | * note that in the spinlock protected area above the delayed_flags |
| 125 | * have been cleared correctly. |
| 126 | */ |
| 127 | if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 128 | return; |
| 129 | |
| 130 | if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { |
| 131 | mutex_lock(&intf->beacon_skb_mutex); |
| 132 | rt2x00queue_update_beacon(rt2x00dev, vif); |
| 133 | mutex_unlock(&intf->beacon_skb_mutex); |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | static void rt2x00lib_intf_scheduled(struct work_struct *work) |
| 138 | { |
| 139 | struct rt2x00_dev *rt2x00dev = |
| 140 | container_of(work, struct rt2x00_dev, intf_work); |
| 141 | |
| 142 | /* |
| 143 | * Iterate over each interface and perform the |
| 144 | * requested configurations. |
| 145 | */ |
| 146 | ieee80211_iterate_active_interfaces(rt2x00dev->hw, |
| 147 | IEEE80211_IFACE_ITER_RESUME_ALL, |
| 148 | rt2x00lib_intf_scheduled_iter, |
| 149 | rt2x00dev); |
| 150 | } |
| 151 | |
| 152 | static void rt2x00lib_autowakeup(struct work_struct *work) |
| 153 | { |
| 154 | struct rt2x00_dev *rt2x00dev = |
| 155 | container_of(work, struct rt2x00_dev, autowakeup_work.work); |
| 156 | |
| 157 | if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) |
| 158 | return; |
| 159 | |
| 160 | if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) |
| 161 | rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); |
| 162 | clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * Interrupt context handlers. |
| 167 | */ |
| 168 | static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, |
| 169 | struct ieee80211_vif *vif) |
| 170 | { |
| 171 | struct ieee80211_tx_control control = {}; |
| 172 | struct rt2x00_dev *rt2x00dev = data; |
| 173 | struct sk_buff *skb; |
| 174 | |
| 175 | /* |
| 176 | * Only AP mode interfaces do broad- and multicast buffering |
| 177 | */ |
| 178 | if (vif->type != NL80211_IFTYPE_AP) |
| 179 | return; |
| 180 | |
| 181 | /* |
| 182 | * Send out buffered broad- and multicast frames |
| 183 | */ |
| 184 | skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); |
| 185 | while (skb) { |
| 186 | rt2x00mac_tx(rt2x00dev->hw, &control, skb); |
| 187 | skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, |
| 192 | struct ieee80211_vif *vif) |
| 193 | { |
| 194 | struct rt2x00_dev *rt2x00dev = data; |
| 195 | |
| 196 | if (vif->type != NL80211_IFTYPE_AP && |
| 197 | vif->type != NL80211_IFTYPE_ADHOC && |
| 198 | vif->type != NL80211_IFTYPE_MESH_POINT && |
| 199 | vif->type != NL80211_IFTYPE_WDS) |
| 200 | return; |
| 201 | |
| 202 | /* |
| 203 | * Update the beacon without locking. This is safe on PCI devices |
| 204 | * as they only update the beacon periodically here. This should |
| 205 | * never be called for USB devices. |
| 206 | */ |
| 207 | WARN_ON(rt2x00_is_usb(rt2x00dev)); |
| 208 | rt2x00queue_update_beacon(rt2x00dev, vif); |
| 209 | } |
| 210 | |
| 211 | void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) |
| 212 | { |
| 213 | if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 214 | return; |
| 215 | |
| 216 | /* send buffered bc/mc frames out for every bssid */ |
| 217 | ieee80211_iterate_active_interfaces_atomic( |
| 218 | rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, |
| 219 | rt2x00lib_bc_buffer_iter, rt2x00dev); |
| 220 | /* |
| 221 | * Devices with pre tbtt interrupt don't need to update the beacon |
| 222 | * here as they will fetch the next beacon directly prior to |
| 223 | * transmission. |
| 224 | */ |
| 225 | if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) |
| 226 | return; |
| 227 | |
| 228 | /* fetch next beacon */ |
| 229 | ieee80211_iterate_active_interfaces_atomic( |
| 230 | rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, |
| 231 | rt2x00lib_beaconupdate_iter, rt2x00dev); |
| 232 | } |
| 233 | EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); |
| 234 | |
| 235 | void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) |
| 236 | { |
| 237 | if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 238 | return; |
| 239 | |
| 240 | /* fetch next beacon */ |
| 241 | ieee80211_iterate_active_interfaces_atomic( |
| 242 | rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, |
| 243 | rt2x00lib_beaconupdate_iter, rt2x00dev); |
| 244 | } |
| 245 | EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); |
| 246 | |
| 247 | void rt2x00lib_dmastart(struct queue_entry *entry) |
| 248 | { |
| 249 | set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); |
| 250 | rt2x00queue_index_inc(entry, Q_INDEX); |
| 251 | } |
| 252 | EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); |
| 253 | |
| 254 | void rt2x00lib_dmadone(struct queue_entry *entry) |
| 255 | { |
| 256 | set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); |
| 257 | clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); |
| 258 | rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); |
| 259 | } |
| 260 | EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); |
| 261 | |
| 262 | static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) |
| 263 | { |
| 264 | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| 265 | struct ieee80211_bar *bar = (void *) entry->skb->data; |
| 266 | struct rt2x00_bar_list_entry *bar_entry; |
| 267 | int ret; |
| 268 | |
| 269 | if (likely(!ieee80211_is_back_req(bar->frame_control))) |
| 270 | return 0; |
| 271 | |
| 272 | /* |
| 273 | * Unlike all other frames, the status report for BARs does |
| 274 | * not directly come from the hardware as it is incapable of |
| 275 | * matching a BA to a previously send BAR. The hardware will |
| 276 | * report all BARs as if they weren't acked at all. |
| 277 | * |
| 278 | * Instead the RX-path will scan for incoming BAs and set the |
| 279 | * block_acked flag if it sees one that was likely caused by |
| 280 | * a BAR from us. |
| 281 | * |
| 282 | * Remove remaining BARs here and return their status for |
| 283 | * TX done processing. |
| 284 | */ |
| 285 | ret = 0; |
| 286 | rcu_read_lock(); |
| 287 | list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { |
| 288 | if (bar_entry->entry != entry) |
| 289 | continue; |
| 290 | |
| 291 | spin_lock_bh(&rt2x00dev->bar_list_lock); |
| 292 | /* Return whether this BAR was blockacked or not */ |
| 293 | ret = bar_entry->block_acked; |
| 294 | /* Remove the BAR from our checklist */ |
| 295 | list_del_rcu(&bar_entry->list); |
| 296 | spin_unlock_bh(&rt2x00dev->bar_list_lock); |
| 297 | kfree_rcu(bar_entry, head); |
| 298 | |
| 299 | break; |
| 300 | } |
| 301 | rcu_read_unlock(); |
| 302 | |
| 303 | return ret; |
| 304 | } |
| 305 | |
| 306 | static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev, |
| 307 | struct ieee80211_tx_info *tx_info, |
| 308 | struct skb_frame_desc *skbdesc, |
| 309 | struct txdone_entry_desc *txdesc, |
| 310 | bool success) |
| 311 | { |
| 312 | u8 rate_idx, rate_flags, retry_rates; |
| 313 | int i; |
| 314 | |
| 315 | rate_idx = skbdesc->tx_rate_idx; |
| 316 | rate_flags = skbdesc->tx_rate_flags; |
| 317 | retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? |
| 318 | (txdesc->retry + 1) : 1; |
| 319 | |
| 320 | /* |
| 321 | * Initialize TX status |
| 322 | */ |
| 323 | memset(&tx_info->status, 0, sizeof(tx_info->status)); |
| 324 | tx_info->status.ack_signal = 0; |
| 325 | |
| 326 | /* |
| 327 | * Frame was send with retries, hardware tried |
| 328 | * different rates to send out the frame, at each |
| 329 | * retry it lowered the rate 1 step except when the |
| 330 | * lowest rate was used. |
| 331 | */ |
| 332 | for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { |
| 333 | tx_info->status.rates[i].idx = rate_idx - i; |
| 334 | tx_info->status.rates[i].flags = rate_flags; |
| 335 | |
| 336 | if (rate_idx - i == 0) { |
| 337 | /* |
| 338 | * The lowest rate (index 0) was used until the |
| 339 | * number of max retries was reached. |
| 340 | */ |
| 341 | tx_info->status.rates[i].count = retry_rates - i; |
| 342 | i++; |
| 343 | break; |
| 344 | } |
| 345 | tx_info->status.rates[i].count = 1; |
| 346 | } |
| 347 | if (i < (IEEE80211_TX_MAX_RATES - 1)) |
| 348 | tx_info->status.rates[i].idx = -1; /* terminate */ |
| 349 | |
| 350 | if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags)) |
| 351 | tx_info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| 352 | |
| 353 | if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { |
| 354 | if (success) |
| 355 | tx_info->flags |= IEEE80211_TX_STAT_ACK; |
| 356 | else |
| 357 | rt2x00dev->low_level_stats.dot11ACKFailureCount++; |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Every single frame has it's own tx status, hence report |
| 362 | * every frame as ampdu of size 1. |
| 363 | * |
| 364 | * TODO: if we can find out how many frames were aggregated |
| 365 | * by the hw we could provide the real ampdu_len to mac80211 |
| 366 | * which would allow the rc algorithm to better decide on |
| 367 | * which rates are suitable. |
| 368 | */ |
| 369 | if (test_bit(TXDONE_AMPDU, &txdesc->flags) || |
| 370 | tx_info->flags & IEEE80211_TX_CTL_AMPDU) { |
| 371 | tx_info->flags |= IEEE80211_TX_STAT_AMPDU | |
| 372 | IEEE80211_TX_CTL_AMPDU; |
| 373 | tx_info->status.ampdu_len = 1; |
| 374 | tx_info->status.ampdu_ack_len = success ? 1 : 0; |
| 375 | } |
| 376 | |
| 377 | if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { |
| 378 | if (success) |
| 379 | rt2x00dev->low_level_stats.dot11RTSSuccessCount++; |
| 380 | else |
| 381 | rt2x00dev->low_level_stats.dot11RTSFailureCount++; |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev, |
| 386 | struct queue_entry *entry) |
| 387 | { |
| 388 | /* |
| 389 | * Make this entry available for reuse. |
| 390 | */ |
| 391 | entry->skb = NULL; |
| 392 | entry->flags = 0; |
| 393 | |
| 394 | rt2x00dev->ops->lib->clear_entry(entry); |
| 395 | |
| 396 | rt2x00queue_index_inc(entry, Q_INDEX_DONE); |
| 397 | |
| 398 | /* |
| 399 | * If the data queue was below the threshold before the txdone |
| 400 | * handler we must make sure the packet queue in the mac80211 stack |
| 401 | * is reenabled when the txdone handler has finished. This has to be |
| 402 | * serialized with rt2x00mac_tx(), otherwise we can wake up queue |
| 403 | * before it was stopped. |
| 404 | */ |
| 405 | spin_lock_bh(&entry->queue->tx_lock); |
| 406 | if (!rt2x00queue_threshold(entry->queue)) |
| 407 | rt2x00queue_unpause_queue(entry->queue); |
| 408 | spin_unlock_bh(&entry->queue->tx_lock); |
| 409 | } |
| 410 | |
| 411 | void rt2x00lib_txdone_nomatch(struct queue_entry *entry, |
| 412 | struct txdone_entry_desc *txdesc) |
| 413 | { |
| 414 | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| 415 | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| 416 | struct ieee80211_tx_info txinfo = {}; |
| 417 | bool success; |
| 418 | |
| 419 | /* |
| 420 | * Unmap the skb. |
| 421 | */ |
| 422 | rt2x00queue_unmap_skb(entry); |
| 423 | |
| 424 | /* |
| 425 | * Signal that the TX descriptor is no longer in the skb. |
| 426 | */ |
| 427 | skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; |
| 428 | |
| 429 | /* |
| 430 | * Send frame to debugfs immediately, after this call is completed |
| 431 | * we are going to overwrite the skb->cb array. |
| 432 | */ |
| 433 | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); |
| 434 | |
| 435 | /* |
| 436 | * Determine if the frame has been successfully transmitted and |
| 437 | * remove BARs from our check list while checking for their |
| 438 | * TX status. |
| 439 | */ |
| 440 | success = |
| 441 | rt2x00lib_txdone_bar_status(entry) || |
| 442 | test_bit(TXDONE_SUCCESS, &txdesc->flags); |
| 443 | |
| 444 | if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) { |
| 445 | /* |
| 446 | * Update TX statistics. |
| 447 | */ |
| 448 | rt2x00dev->link.qual.tx_success += success; |
| 449 | rt2x00dev->link.qual.tx_failed += !success; |
| 450 | |
| 451 | rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc, |
| 452 | success); |
| 453 | ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo); |
| 454 | } |
| 455 | |
| 456 | dev_kfree_skb_any(entry->skb); |
| 457 | rt2x00lib_clear_entry(rt2x00dev, entry); |
| 458 | } |
| 459 | EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch); |
| 460 | |
| 461 | void rt2x00lib_txdone(struct queue_entry *entry, |
| 462 | struct txdone_entry_desc *txdesc) |
| 463 | { |
| 464 | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| 465 | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); |
| 466 | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| 467 | u8 skbdesc_flags = skbdesc->flags; |
| 468 | unsigned int header_length; |
| 469 | bool success; |
| 470 | |
| 471 | /* |
| 472 | * Unmap the skb. |
| 473 | */ |
| 474 | rt2x00queue_unmap_skb(entry); |
| 475 | |
| 476 | /* |
| 477 | * Remove the extra tx headroom from the skb. |
| 478 | */ |
| 479 | skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); |
| 480 | |
| 481 | /* |
| 482 | * Signal that the TX descriptor is no longer in the skb. |
| 483 | */ |
| 484 | skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; |
| 485 | |
| 486 | /* |
| 487 | * Determine the length of 802.11 header. |
| 488 | */ |
| 489 | header_length = ieee80211_get_hdrlen_from_skb(entry->skb); |
| 490 | |
| 491 | /* |
| 492 | * Remove L2 padding which was added during |
| 493 | */ |
| 494 | if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) |
| 495 | rt2x00queue_remove_l2pad(entry->skb, header_length); |
| 496 | |
| 497 | /* |
| 498 | * If the IV/EIV data was stripped from the frame before it was |
| 499 | * passed to the hardware, we should now reinsert it again because |
| 500 | * mac80211 will expect the same data to be present it the |
| 501 | * frame as it was passed to us. |
| 502 | */ |
| 503 | if (rt2x00_has_cap_hw_crypto(rt2x00dev)) |
| 504 | rt2x00crypto_tx_insert_iv(entry->skb, header_length); |
| 505 | |
| 506 | /* |
| 507 | * Send frame to debugfs immediately, after this call is completed |
| 508 | * we are going to overwrite the skb->cb array. |
| 509 | */ |
| 510 | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); |
| 511 | |
| 512 | /* |
| 513 | * Determine if the frame has been successfully transmitted and |
| 514 | * remove BARs from our check list while checking for their |
| 515 | * TX status. |
| 516 | */ |
| 517 | success = |
| 518 | rt2x00lib_txdone_bar_status(entry) || |
| 519 | test_bit(TXDONE_SUCCESS, &txdesc->flags) || |
| 520 | test_bit(TXDONE_UNKNOWN, &txdesc->flags); |
| 521 | |
| 522 | /* |
| 523 | * Update TX statistics. |
| 524 | */ |
| 525 | rt2x00dev->link.qual.tx_success += success; |
| 526 | rt2x00dev->link.qual.tx_failed += !success; |
| 527 | |
| 528 | rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success); |
| 529 | |
| 530 | /* |
| 531 | * Only send the status report to mac80211 when it's a frame |
| 532 | * that originated in mac80211. If this was a extra frame coming |
| 533 | * through a mac80211 library call (RTS/CTS) then we should not |
| 534 | * send the status report back. |
| 535 | */ |
| 536 | if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { |
| 537 | if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) |
| 538 | ieee80211_tx_status(rt2x00dev->hw, entry->skb); |
| 539 | else |
| 540 | ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); |
| 541 | } else { |
| 542 | dev_kfree_skb_any(entry->skb); |
| 543 | } |
| 544 | |
| 545 | rt2x00lib_clear_entry(rt2x00dev, entry); |
| 546 | } |
| 547 | EXPORT_SYMBOL_GPL(rt2x00lib_txdone); |
| 548 | |
| 549 | void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) |
| 550 | { |
| 551 | struct txdone_entry_desc txdesc; |
| 552 | |
| 553 | txdesc.flags = 0; |
| 554 | __set_bit(status, &txdesc.flags); |
| 555 | txdesc.retry = 0; |
| 556 | |
| 557 | rt2x00lib_txdone(entry, &txdesc); |
| 558 | } |
| 559 | EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); |
| 560 | |
| 561 | static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) |
| 562 | { |
| 563 | struct ieee80211_mgmt *mgmt = (void *)data; |
| 564 | u8 *pos, *end; |
| 565 | |
| 566 | pos = (u8 *)mgmt->u.beacon.variable; |
| 567 | end = data + len; |
| 568 | while (pos < end) { |
| 569 | if (pos + 2 + pos[1] > end) |
| 570 | return NULL; |
| 571 | |
| 572 | if (pos[0] == ie) |
| 573 | return pos; |
| 574 | |
| 575 | pos += 2 + pos[1]; |
| 576 | } |
| 577 | |
| 578 | return NULL; |
| 579 | } |
| 580 | |
| 581 | static void rt2x00lib_sleep(struct work_struct *work) |
| 582 | { |
| 583 | struct rt2x00_dev *rt2x00dev = |
| 584 | container_of(work, struct rt2x00_dev, sleep_work); |
| 585 | |
| 586 | if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) |
| 587 | return; |
| 588 | |
| 589 | /* |
| 590 | * Check again is powersaving is enabled, to prevent races from delayed |
| 591 | * work execution. |
| 592 | */ |
| 593 | if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) |
| 594 | rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, |
| 595 | IEEE80211_CONF_CHANGE_PS); |
| 596 | } |
| 597 | |
| 598 | static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, |
| 599 | struct sk_buff *skb, |
| 600 | struct rxdone_entry_desc *rxdesc) |
| 601 | { |
| 602 | struct rt2x00_bar_list_entry *entry; |
| 603 | struct ieee80211_bar *ba = (void *)skb->data; |
| 604 | |
| 605 | if (likely(!ieee80211_is_back(ba->frame_control))) |
| 606 | return; |
| 607 | |
| 608 | if (rxdesc->size < sizeof(*ba) + FCS_LEN) |
| 609 | return; |
| 610 | |
| 611 | rcu_read_lock(); |
| 612 | list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { |
| 613 | |
| 614 | if (ba->start_seq_num != entry->start_seq_num) |
| 615 | continue; |
| 616 | |
| 617 | #define TID_CHECK(a, b) ( \ |
| 618 | ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ |
| 619 | ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ |
| 620 | |
| 621 | if (!TID_CHECK(ba->control, entry->control)) |
| 622 | continue; |
| 623 | |
| 624 | #undef TID_CHECK |
| 625 | |
| 626 | if (!ether_addr_equal_64bits(ba->ra, entry->ta)) |
| 627 | continue; |
| 628 | |
| 629 | if (!ether_addr_equal_64bits(ba->ta, entry->ra)) |
| 630 | continue; |
| 631 | |
| 632 | /* Mark BAR since we received the according BA */ |
| 633 | spin_lock_bh(&rt2x00dev->bar_list_lock); |
| 634 | entry->block_acked = 1; |
| 635 | spin_unlock_bh(&rt2x00dev->bar_list_lock); |
| 636 | break; |
| 637 | } |
| 638 | rcu_read_unlock(); |
| 639 | |
| 640 | } |
| 641 | |
| 642 | static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, |
| 643 | struct sk_buff *skb, |
| 644 | struct rxdone_entry_desc *rxdesc) |
| 645 | { |
| 646 | struct ieee80211_hdr *hdr = (void *) skb->data; |
| 647 | struct ieee80211_tim_ie *tim_ie; |
| 648 | u8 *tim; |
| 649 | u8 tim_len; |
| 650 | bool cam; |
| 651 | |
| 652 | /* If this is not a beacon, or if mac80211 has no powersaving |
| 653 | * configured, or if the device is already in powersaving mode |
| 654 | * we can exit now. */ |
| 655 | if (likely(!ieee80211_is_beacon(hdr->frame_control) || |
| 656 | !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) |
| 657 | return; |
| 658 | |
| 659 | /* min. beacon length + FCS_LEN */ |
| 660 | if (skb->len <= 40 + FCS_LEN) |
| 661 | return; |
| 662 | |
| 663 | /* and only beacons from the associated BSSID, please */ |
| 664 | if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || |
| 665 | !rt2x00dev->aid) |
| 666 | return; |
| 667 | |
| 668 | rt2x00dev->last_beacon = jiffies; |
| 669 | |
| 670 | tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); |
| 671 | if (!tim) |
| 672 | return; |
| 673 | |
| 674 | if (tim[1] < sizeof(*tim_ie)) |
| 675 | return; |
| 676 | |
| 677 | tim_len = tim[1]; |
| 678 | tim_ie = (struct ieee80211_tim_ie *) &tim[2]; |
| 679 | |
| 680 | /* Check whenever the PHY can be turned off again. */ |
| 681 | |
| 682 | /* 1. What about buffered unicast traffic for our AID? */ |
| 683 | cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); |
| 684 | |
| 685 | /* 2. Maybe the AP wants to send multicast/broadcast data? */ |
| 686 | cam |= (tim_ie->bitmap_ctrl & 0x01); |
| 687 | |
| 688 | if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) |
| 689 | queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); |
| 690 | } |
| 691 | |
| 692 | static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, |
| 693 | struct rxdone_entry_desc *rxdesc) |
| 694 | { |
| 695 | struct ieee80211_supported_band *sband; |
| 696 | const struct rt2x00_rate *rate; |
| 697 | unsigned int i; |
| 698 | int signal = rxdesc->signal; |
| 699 | int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); |
| 700 | |
| 701 | switch (rxdesc->rate_mode) { |
| 702 | case RATE_MODE_CCK: |
| 703 | case RATE_MODE_OFDM: |
| 704 | /* |
| 705 | * For non-HT rates the MCS value needs to contain the |
| 706 | * actually used rate modulation (CCK or OFDM). |
| 707 | */ |
| 708 | if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) |
| 709 | signal = RATE_MCS(rxdesc->rate_mode, signal); |
| 710 | |
| 711 | sband = &rt2x00dev->bands[rt2x00dev->curr_band]; |
| 712 | for (i = 0; i < sband->n_bitrates; i++) { |
| 713 | rate = rt2x00_get_rate(sband->bitrates[i].hw_value); |
| 714 | if (((type == RXDONE_SIGNAL_PLCP) && |
| 715 | (rate->plcp == signal)) || |
| 716 | ((type == RXDONE_SIGNAL_BITRATE) && |
| 717 | (rate->bitrate == signal)) || |
| 718 | ((type == RXDONE_SIGNAL_MCS) && |
| 719 | (rate->mcs == signal))) { |
| 720 | return i; |
| 721 | } |
| 722 | } |
| 723 | break; |
| 724 | case RATE_MODE_HT_MIX: |
| 725 | case RATE_MODE_HT_GREENFIELD: |
| 726 | if (signal >= 0 && signal <= 76) |
| 727 | return signal; |
| 728 | break; |
| 729 | default: |
| 730 | break; |
| 731 | } |
| 732 | |
| 733 | rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", |
| 734 | rxdesc->rate_mode, signal, type); |
| 735 | return 0; |
| 736 | } |
| 737 | |
| 738 | void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) |
| 739 | { |
| 740 | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| 741 | struct rxdone_entry_desc rxdesc; |
| 742 | struct sk_buff *skb; |
| 743 | struct ieee80211_rx_status *rx_status; |
| 744 | unsigned int header_length; |
| 745 | int rate_idx; |
| 746 | |
| 747 | if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || |
| 748 | !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 749 | goto submit_entry; |
| 750 | |
| 751 | if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) |
| 752 | goto submit_entry; |
| 753 | |
| 754 | /* |
| 755 | * Allocate a new sk_buffer. If no new buffer available, drop the |
| 756 | * received frame and reuse the existing buffer. |
| 757 | */ |
| 758 | skb = rt2x00queue_alloc_rxskb(entry, gfp); |
| 759 | if (!skb) |
| 760 | goto submit_entry; |
| 761 | |
| 762 | /* |
| 763 | * Unmap the skb. |
| 764 | */ |
| 765 | rt2x00queue_unmap_skb(entry); |
| 766 | |
| 767 | /* |
| 768 | * Extract the RXD details. |
| 769 | */ |
| 770 | memset(&rxdesc, 0, sizeof(rxdesc)); |
| 771 | rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); |
| 772 | |
| 773 | /* |
| 774 | * Check for valid size in case we get corrupted descriptor from |
| 775 | * hardware. |
| 776 | */ |
| 777 | if (unlikely(rxdesc.size == 0 || |
| 778 | rxdesc.size > entry->queue->data_size)) { |
| 779 | rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", |
| 780 | rxdesc.size, entry->queue->data_size); |
| 781 | dev_kfree_skb(entry->skb); |
| 782 | goto renew_skb; |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * The data behind the ieee80211 header must be |
| 787 | * aligned on a 4 byte boundary. |
| 788 | */ |
| 789 | header_length = ieee80211_get_hdrlen_from_skb(entry->skb); |
| 790 | |
| 791 | /* |
| 792 | * Hardware might have stripped the IV/EIV/ICV data, |
| 793 | * in that case it is possible that the data was |
| 794 | * provided separately (through hardware descriptor) |
| 795 | * in which case we should reinsert the data into the frame. |
| 796 | */ |
| 797 | if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && |
| 798 | (rxdesc.flags & RX_FLAG_IV_STRIPPED)) |
| 799 | rt2x00crypto_rx_insert_iv(entry->skb, header_length, |
| 800 | &rxdesc); |
| 801 | else if (header_length && |
| 802 | (rxdesc.size > header_length) && |
| 803 | (rxdesc.dev_flags & RXDONE_L2PAD)) |
| 804 | rt2x00queue_remove_l2pad(entry->skb, header_length); |
| 805 | |
| 806 | /* Trim buffer to correct size */ |
| 807 | skb_trim(entry->skb, rxdesc.size); |
| 808 | |
| 809 | /* |
| 810 | * Translate the signal to the correct bitrate index. |
| 811 | */ |
| 812 | rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); |
| 813 | if (rxdesc.rate_mode == RATE_MODE_HT_MIX || |
| 814 | rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) |
| 815 | rxdesc.encoding = RX_ENC_HT; |
| 816 | |
| 817 | /* |
| 818 | * Check if this is a beacon, and more frames have been |
| 819 | * buffered while we were in powersaving mode. |
| 820 | */ |
| 821 | rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); |
| 822 | |
| 823 | /* |
| 824 | * Check for incoming BlockAcks to match to the BlockAckReqs |
| 825 | * we've send out. |
| 826 | */ |
| 827 | rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); |
| 828 | |
| 829 | /* |
| 830 | * Update extra components |
| 831 | */ |
| 832 | rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); |
| 833 | rt2x00debug_update_crypto(rt2x00dev, &rxdesc); |
| 834 | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry); |
| 835 | |
| 836 | /* |
| 837 | * Initialize RX status information, and send frame |
| 838 | * to mac80211. |
| 839 | */ |
| 840 | rx_status = IEEE80211_SKB_RXCB(entry->skb); |
| 841 | |
| 842 | /* Ensure that all fields of rx_status are initialized |
| 843 | * properly. The skb->cb array was used for driver |
| 844 | * specific informations, so rx_status might contain |
| 845 | * garbage. |
| 846 | */ |
| 847 | memset(rx_status, 0, sizeof(*rx_status)); |
| 848 | |
| 849 | rx_status->mactime = rxdesc.timestamp; |
| 850 | rx_status->band = rt2x00dev->curr_band; |
| 851 | rx_status->freq = rt2x00dev->curr_freq; |
| 852 | rx_status->rate_idx = rate_idx; |
| 853 | rx_status->signal = rxdesc.rssi; |
| 854 | rx_status->flag = rxdesc.flags; |
| 855 | rx_status->enc_flags = rxdesc.enc_flags; |
| 856 | rx_status->encoding = rxdesc.encoding; |
| 857 | rx_status->bw = rxdesc.bw; |
| 858 | rx_status->antenna = rt2x00dev->link.ant.active.rx; |
| 859 | |
| 860 | ieee80211_rx_ni(rt2x00dev->hw, entry->skb); |
| 861 | |
| 862 | renew_skb: |
| 863 | /* |
| 864 | * Replace the skb with the freshly allocated one. |
| 865 | */ |
| 866 | entry->skb = skb; |
| 867 | |
| 868 | submit_entry: |
| 869 | entry->flags = 0; |
| 870 | rt2x00queue_index_inc(entry, Q_INDEX_DONE); |
| 871 | if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && |
| 872 | test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| 873 | rt2x00dev->ops->lib->clear_entry(entry); |
| 874 | } |
| 875 | EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); |
| 876 | |
| 877 | /* |
| 878 | * Driver initialization handlers. |
| 879 | */ |
| 880 | const struct rt2x00_rate rt2x00_supported_rates[12] = { |
| 881 | { |
| 882 | .flags = DEV_RATE_CCK, |
| 883 | .bitrate = 10, |
| 884 | .ratemask = BIT(0), |
| 885 | .plcp = 0x00, |
| 886 | .mcs = RATE_MCS(RATE_MODE_CCK, 0), |
| 887 | }, |
| 888 | { |
| 889 | .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| 890 | .bitrate = 20, |
| 891 | .ratemask = BIT(1), |
| 892 | .plcp = 0x01, |
| 893 | .mcs = RATE_MCS(RATE_MODE_CCK, 1), |
| 894 | }, |
| 895 | { |
| 896 | .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| 897 | .bitrate = 55, |
| 898 | .ratemask = BIT(2), |
| 899 | .plcp = 0x02, |
| 900 | .mcs = RATE_MCS(RATE_MODE_CCK, 2), |
| 901 | }, |
| 902 | { |
| 903 | .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, |
| 904 | .bitrate = 110, |
| 905 | .ratemask = BIT(3), |
| 906 | .plcp = 0x03, |
| 907 | .mcs = RATE_MCS(RATE_MODE_CCK, 3), |
| 908 | }, |
| 909 | { |
| 910 | .flags = DEV_RATE_OFDM, |
| 911 | .bitrate = 60, |
| 912 | .ratemask = BIT(4), |
| 913 | .plcp = 0x0b, |
| 914 | .mcs = RATE_MCS(RATE_MODE_OFDM, 0), |
| 915 | }, |
| 916 | { |
| 917 | .flags = DEV_RATE_OFDM, |
| 918 | .bitrate = 90, |
| 919 | .ratemask = BIT(5), |
| 920 | .plcp = 0x0f, |
| 921 | .mcs = RATE_MCS(RATE_MODE_OFDM, 1), |
| 922 | }, |
| 923 | { |
| 924 | .flags = DEV_RATE_OFDM, |
| 925 | .bitrate = 120, |
| 926 | .ratemask = BIT(6), |
| 927 | .plcp = 0x0a, |
| 928 | .mcs = RATE_MCS(RATE_MODE_OFDM, 2), |
| 929 | }, |
| 930 | { |
| 931 | .flags = DEV_RATE_OFDM, |
| 932 | .bitrate = 180, |
| 933 | .ratemask = BIT(7), |
| 934 | .plcp = 0x0e, |
| 935 | .mcs = RATE_MCS(RATE_MODE_OFDM, 3), |
| 936 | }, |
| 937 | { |
| 938 | .flags = DEV_RATE_OFDM, |
| 939 | .bitrate = 240, |
| 940 | .ratemask = BIT(8), |
| 941 | .plcp = 0x09, |
| 942 | .mcs = RATE_MCS(RATE_MODE_OFDM, 4), |
| 943 | }, |
| 944 | { |
| 945 | .flags = DEV_RATE_OFDM, |
| 946 | .bitrate = 360, |
| 947 | .ratemask = BIT(9), |
| 948 | .plcp = 0x0d, |
| 949 | .mcs = RATE_MCS(RATE_MODE_OFDM, 5), |
| 950 | }, |
| 951 | { |
| 952 | .flags = DEV_RATE_OFDM, |
| 953 | .bitrate = 480, |
| 954 | .ratemask = BIT(10), |
| 955 | .plcp = 0x08, |
| 956 | .mcs = RATE_MCS(RATE_MODE_OFDM, 6), |
| 957 | }, |
| 958 | { |
| 959 | .flags = DEV_RATE_OFDM, |
| 960 | .bitrate = 540, |
| 961 | .ratemask = BIT(11), |
| 962 | .plcp = 0x0c, |
| 963 | .mcs = RATE_MCS(RATE_MODE_OFDM, 7), |
| 964 | }, |
| 965 | }; |
| 966 | |
| 967 | static void rt2x00lib_channel(struct ieee80211_channel *entry, |
| 968 | const int channel, const int tx_power, |
| 969 | const int value) |
| 970 | { |
| 971 | /* XXX: this assumption about the band is wrong for 802.11j */ |
| 972 | entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; |
| 973 | entry->center_freq = ieee80211_channel_to_frequency(channel, |
| 974 | entry->band); |
| 975 | entry->hw_value = value; |
| 976 | entry->max_power = tx_power; |
| 977 | entry->max_antenna_gain = 0xff; |
| 978 | } |
| 979 | |
| 980 | static void rt2x00lib_rate(struct ieee80211_rate *entry, |
| 981 | const u16 index, const struct rt2x00_rate *rate) |
| 982 | { |
| 983 | entry->flags = 0; |
| 984 | entry->bitrate = rate->bitrate; |
| 985 | entry->hw_value = index; |
| 986 | entry->hw_value_short = index; |
| 987 | |
| 988 | if (rate->flags & DEV_RATE_SHORT_PREAMBLE) |
| 989 | entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; |
| 990 | } |
| 991 | |
| 992 | void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr) |
| 993 | { |
| 994 | const char *mac_addr; |
| 995 | |
| 996 | mac_addr = of_get_mac_address(rt2x00dev->dev->of_node); |
| 997 | if (!IS_ERR(mac_addr)) |
| 998 | ether_addr_copy(eeprom_mac_addr, mac_addr); |
| 999 | |
| 1000 | if (!is_valid_ether_addr(eeprom_mac_addr)) { |
| 1001 | eth_random_addr(eeprom_mac_addr); |
| 1002 | rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr); |
| 1003 | } |
| 1004 | } |
| 1005 | EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address); |
| 1006 | |
| 1007 | static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, |
| 1008 | struct hw_mode_spec *spec) |
| 1009 | { |
| 1010 | struct ieee80211_hw *hw = rt2x00dev->hw; |
| 1011 | struct ieee80211_channel *channels; |
| 1012 | struct ieee80211_rate *rates; |
| 1013 | unsigned int num_rates; |
| 1014 | unsigned int i; |
| 1015 | |
| 1016 | num_rates = 0; |
| 1017 | if (spec->supported_rates & SUPPORT_RATE_CCK) |
| 1018 | num_rates += 4; |
| 1019 | if (spec->supported_rates & SUPPORT_RATE_OFDM) |
| 1020 | num_rates += 8; |
| 1021 | |
| 1022 | channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); |
| 1023 | if (!channels) |
| 1024 | return -ENOMEM; |
| 1025 | |
| 1026 | rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); |
| 1027 | if (!rates) |
| 1028 | goto exit_free_channels; |
| 1029 | |
| 1030 | /* |
| 1031 | * Initialize Rate list. |
| 1032 | */ |
| 1033 | for (i = 0; i < num_rates; i++) |
| 1034 | rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); |
| 1035 | |
| 1036 | /* |
| 1037 | * Initialize Channel list. |
| 1038 | */ |
| 1039 | for (i = 0; i < spec->num_channels; i++) { |
| 1040 | rt2x00lib_channel(&channels[i], |
| 1041 | spec->channels[i].channel, |
| 1042 | spec->channels_info[i].max_power, i); |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | * Intitialize 802.11b, 802.11g |
| 1047 | * Rates: CCK, OFDM. |
| 1048 | * Channels: 2.4 GHz |
| 1049 | */ |
| 1050 | if (spec->supported_bands & SUPPORT_BAND_2GHZ) { |
| 1051 | rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; |
| 1052 | rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; |
| 1053 | rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; |
| 1054 | rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; |
| 1055 | hw->wiphy->bands[NL80211_BAND_2GHZ] = |
| 1056 | &rt2x00dev->bands[NL80211_BAND_2GHZ]; |
| 1057 | memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, |
| 1058 | &spec->ht, sizeof(spec->ht)); |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * Intitialize 802.11a |
| 1063 | * Rates: OFDM. |
| 1064 | * Channels: OFDM, UNII, HiperLAN2. |
| 1065 | */ |
| 1066 | if (spec->supported_bands & SUPPORT_BAND_5GHZ) { |
| 1067 | rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = |
| 1068 | spec->num_channels - 14; |
| 1069 | rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = |
| 1070 | num_rates - 4; |
| 1071 | rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; |
| 1072 | rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; |
| 1073 | hw->wiphy->bands[NL80211_BAND_5GHZ] = |
| 1074 | &rt2x00dev->bands[NL80211_BAND_5GHZ]; |
| 1075 | memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, |
| 1076 | &spec->ht, sizeof(spec->ht)); |
| 1077 | } |
| 1078 | |
| 1079 | return 0; |
| 1080 | |
| 1081 | exit_free_channels: |
| 1082 | kfree(channels); |
| 1083 | rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); |
| 1084 | return -ENOMEM; |
| 1085 | } |
| 1086 | |
| 1087 | static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) |
| 1088 | { |
| 1089 | if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) |
| 1090 | ieee80211_unregister_hw(rt2x00dev->hw); |
| 1091 | |
| 1092 | if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { |
| 1093 | kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); |
| 1094 | kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); |
| 1095 | rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; |
| 1096 | rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; |
| 1097 | } |
| 1098 | |
| 1099 | kfree(rt2x00dev->spec.channels_info); |
| 1100 | } |
| 1101 | |
| 1102 | static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) |
| 1103 | { |
| 1104 | struct hw_mode_spec *spec = &rt2x00dev->spec; |
| 1105 | int status; |
| 1106 | |
| 1107 | if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) |
| 1108 | return 0; |
| 1109 | |
| 1110 | /* |
| 1111 | * Initialize HW modes. |
| 1112 | */ |
| 1113 | status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); |
| 1114 | if (status) |
| 1115 | return status; |
| 1116 | |
| 1117 | /* |
| 1118 | * Initialize HW fields. |
| 1119 | */ |
| 1120 | rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; |
| 1121 | |
| 1122 | /* |
| 1123 | * Initialize extra TX headroom required. |
| 1124 | */ |
| 1125 | rt2x00dev->hw->extra_tx_headroom = |
| 1126 | max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, |
| 1127 | rt2x00dev->extra_tx_headroom); |
| 1128 | |
| 1129 | /* |
| 1130 | * Take TX headroom required for alignment into account. |
| 1131 | */ |
| 1132 | if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) |
| 1133 | rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; |
| 1134 | else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) |
| 1135 | rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; |
| 1136 | |
| 1137 | /* |
| 1138 | * Tell mac80211 about the size of our private STA structure. |
| 1139 | */ |
| 1140 | rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); |
| 1141 | |
| 1142 | /* |
| 1143 | * Allocate tx status FIFO for driver use. |
| 1144 | */ |
| 1145 | if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { |
| 1146 | /* |
| 1147 | * Allocate the txstatus fifo. In the worst case the tx |
| 1148 | * status fifo has to hold the tx status of all entries |
| 1149 | * in all tx queues. Hence, calculate the kfifo size as |
| 1150 | * tx_queues * entry_num and round up to the nearest |
| 1151 | * power of 2. |
| 1152 | */ |
| 1153 | int kfifo_size = |
| 1154 | roundup_pow_of_two(rt2x00dev->ops->tx_queues * |
| 1155 | rt2x00dev->tx->limit * |
| 1156 | sizeof(u32)); |
| 1157 | |
| 1158 | status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, |
| 1159 | GFP_KERNEL); |
| 1160 | if (status) |
| 1161 | return status; |
| 1162 | } |
| 1163 | |
| 1164 | /* |
| 1165 | * Initialize tasklets if used by the driver. Tasklets are |
| 1166 | * disabled until the interrupts are turned on. The driver |
| 1167 | * has to handle that. |
| 1168 | */ |
| 1169 | #define RT2X00_TASKLET_INIT(taskletname) \ |
| 1170 | if (rt2x00dev->ops->lib->taskletname) { \ |
| 1171 | tasklet_init(&rt2x00dev->taskletname, \ |
| 1172 | rt2x00dev->ops->lib->taskletname, \ |
| 1173 | (unsigned long)rt2x00dev); \ |
| 1174 | } |
| 1175 | |
| 1176 | RT2X00_TASKLET_INIT(txstatus_tasklet); |
| 1177 | RT2X00_TASKLET_INIT(pretbtt_tasklet); |
| 1178 | RT2X00_TASKLET_INIT(tbtt_tasklet); |
| 1179 | RT2X00_TASKLET_INIT(rxdone_tasklet); |
| 1180 | RT2X00_TASKLET_INIT(autowake_tasklet); |
| 1181 | |
| 1182 | #undef RT2X00_TASKLET_INIT |
| 1183 | |
| 1184 | /* |
| 1185 | * Register HW. |
| 1186 | */ |
| 1187 | status = ieee80211_register_hw(rt2x00dev->hw); |
| 1188 | if (status) |
| 1189 | return status; |
| 1190 | |
| 1191 | set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); |
| 1192 | |
| 1193 | return 0; |
| 1194 | } |
| 1195 | |
| 1196 | /* |
| 1197 | * Initialization/uninitialization handlers. |
| 1198 | */ |
| 1199 | static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) |
| 1200 | { |
| 1201 | if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) |
| 1202 | return; |
| 1203 | |
| 1204 | /* |
| 1205 | * Stop rfkill polling. |
| 1206 | */ |
| 1207 | if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) |
| 1208 | rt2x00rfkill_unregister(rt2x00dev); |
| 1209 | |
| 1210 | /* |
| 1211 | * Allow the HW to uninitialize. |
| 1212 | */ |
| 1213 | rt2x00dev->ops->lib->uninitialize(rt2x00dev); |
| 1214 | |
| 1215 | /* |
| 1216 | * Free allocated queue entries. |
| 1217 | */ |
| 1218 | rt2x00queue_uninitialize(rt2x00dev); |
| 1219 | } |
| 1220 | |
| 1221 | static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) |
| 1222 | { |
| 1223 | int status; |
| 1224 | |
| 1225 | if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) |
| 1226 | return 0; |
| 1227 | |
| 1228 | /* |
| 1229 | * Allocate all queue entries. |
| 1230 | */ |
| 1231 | status = rt2x00queue_initialize(rt2x00dev); |
| 1232 | if (status) |
| 1233 | return status; |
| 1234 | |
| 1235 | /* |
| 1236 | * Initialize the device. |
| 1237 | */ |
| 1238 | status = rt2x00dev->ops->lib->initialize(rt2x00dev); |
| 1239 | if (status) { |
| 1240 | rt2x00queue_uninitialize(rt2x00dev); |
| 1241 | return status; |
| 1242 | } |
| 1243 | |
| 1244 | set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); |
| 1245 | |
| 1246 | /* |
| 1247 | * Start rfkill polling. |
| 1248 | */ |
| 1249 | if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) |
| 1250 | rt2x00rfkill_register(rt2x00dev); |
| 1251 | |
| 1252 | return 0; |
| 1253 | } |
| 1254 | |
| 1255 | int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) |
| 1256 | { |
| 1257 | int retval = 0; |
| 1258 | |
| 1259 | if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) { |
| 1260 | /* |
| 1261 | * This is special case for ieee80211_restart_hw(), otherwise |
| 1262 | * mac80211 never call start() two times in row without stop(); |
| 1263 | */ |
| 1264 | set_bit(DEVICE_STATE_RESET, &rt2x00dev->flags); |
| 1265 | rt2x00dev->ops->lib->pre_reset_hw(rt2x00dev); |
| 1266 | rt2x00lib_stop(rt2x00dev); |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | * If this is the first interface which is added, |
| 1271 | * we should load the firmware now. |
| 1272 | */ |
| 1273 | retval = rt2x00lib_load_firmware(rt2x00dev); |
| 1274 | if (retval) |
| 1275 | goto out; |
| 1276 | |
| 1277 | /* |
| 1278 | * Initialize the device. |
| 1279 | */ |
| 1280 | retval = rt2x00lib_initialize(rt2x00dev); |
| 1281 | if (retval) |
| 1282 | goto out; |
| 1283 | |
| 1284 | rt2x00dev->intf_ap_count = 0; |
| 1285 | rt2x00dev->intf_sta_count = 0; |
| 1286 | rt2x00dev->intf_associated = 0; |
| 1287 | rt2x00dev->intf_beaconing = 0; |
| 1288 | |
| 1289 | /* Enable the radio */ |
| 1290 | retval = rt2x00lib_enable_radio(rt2x00dev); |
| 1291 | if (retval) |
| 1292 | goto out; |
| 1293 | |
| 1294 | set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); |
| 1295 | |
| 1296 | out: |
| 1297 | clear_bit(DEVICE_STATE_RESET, &rt2x00dev->flags); |
| 1298 | return retval; |
| 1299 | } |
| 1300 | |
| 1301 | void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) |
| 1302 | { |
| 1303 | if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) |
| 1304 | return; |
| 1305 | |
| 1306 | /* |
| 1307 | * Perhaps we can add something smarter here, |
| 1308 | * but for now just disabling the radio should do. |
| 1309 | */ |
| 1310 | rt2x00lib_disable_radio(rt2x00dev); |
| 1311 | |
| 1312 | rt2x00dev->intf_ap_count = 0; |
| 1313 | rt2x00dev->intf_sta_count = 0; |
| 1314 | rt2x00dev->intf_associated = 0; |
| 1315 | rt2x00dev->intf_beaconing = 0; |
| 1316 | } |
| 1317 | |
| 1318 | static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) |
| 1319 | { |
| 1320 | struct ieee80211_iface_limit *if_limit; |
| 1321 | struct ieee80211_iface_combination *if_combination; |
| 1322 | |
| 1323 | if (rt2x00dev->ops->max_ap_intf < 2) |
| 1324 | return; |
| 1325 | |
| 1326 | /* |
| 1327 | * Build up AP interface limits structure. |
| 1328 | */ |
| 1329 | if_limit = &rt2x00dev->if_limits_ap; |
| 1330 | if_limit->max = rt2x00dev->ops->max_ap_intf; |
| 1331 | if_limit->types = BIT(NL80211_IFTYPE_AP); |
| 1332 | #ifdef CONFIG_MAC80211_MESH |
| 1333 | if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); |
| 1334 | #endif |
| 1335 | |
| 1336 | /* |
| 1337 | * Build up AP interface combinations structure. |
| 1338 | */ |
| 1339 | if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; |
| 1340 | if_combination->limits = if_limit; |
| 1341 | if_combination->n_limits = 1; |
| 1342 | if_combination->max_interfaces = if_limit->max; |
| 1343 | if_combination->num_different_channels = 1; |
| 1344 | |
| 1345 | /* |
| 1346 | * Finally, specify the possible combinations to mac80211. |
| 1347 | */ |
| 1348 | rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; |
| 1349 | rt2x00dev->hw->wiphy->n_iface_combinations = 1; |
| 1350 | } |
| 1351 | |
| 1352 | static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) |
| 1353 | { |
| 1354 | if (WARN_ON(!rt2x00dev->tx)) |
| 1355 | return 0; |
| 1356 | |
| 1357 | if (rt2x00_is_usb(rt2x00dev)) |
| 1358 | return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; |
| 1359 | |
| 1360 | return rt2x00dev->tx[0].winfo_size; |
| 1361 | } |
| 1362 | |
| 1363 | /* |
| 1364 | * driver allocation handlers. |
| 1365 | */ |
| 1366 | int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) |
| 1367 | { |
| 1368 | int retval = -ENOMEM; |
| 1369 | |
| 1370 | /* |
| 1371 | * Set possible interface combinations. |
| 1372 | */ |
| 1373 | rt2x00lib_set_if_combinations(rt2x00dev); |
| 1374 | |
| 1375 | /* |
| 1376 | * Allocate the driver data memory, if necessary. |
| 1377 | */ |
| 1378 | if (rt2x00dev->ops->drv_data_size > 0) { |
| 1379 | rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, |
| 1380 | GFP_KERNEL); |
| 1381 | if (!rt2x00dev->drv_data) { |
| 1382 | retval = -ENOMEM; |
| 1383 | goto exit; |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | spin_lock_init(&rt2x00dev->irqmask_lock); |
| 1388 | mutex_init(&rt2x00dev->csr_mutex); |
| 1389 | mutex_init(&rt2x00dev->conf_mutex); |
| 1390 | INIT_LIST_HEAD(&rt2x00dev->bar_list); |
| 1391 | spin_lock_init(&rt2x00dev->bar_list_lock); |
| 1392 | hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC, |
| 1393 | HRTIMER_MODE_REL); |
| 1394 | |
| 1395 | set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| 1396 | |
| 1397 | /* |
| 1398 | * Make room for rt2x00_intf inside the per-interface |
| 1399 | * structure ieee80211_vif. |
| 1400 | */ |
| 1401 | rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); |
| 1402 | |
| 1403 | /* |
| 1404 | * rt2x00 devices can only use the last n bits of the MAC address |
| 1405 | * for virtual interfaces. |
| 1406 | */ |
| 1407 | rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = |
| 1408 | (rt2x00dev->ops->max_ap_intf - 1); |
| 1409 | |
| 1410 | /* |
| 1411 | * Initialize work. |
| 1412 | */ |
| 1413 | rt2x00dev->workqueue = |
| 1414 | alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); |
| 1415 | if (!rt2x00dev->workqueue) { |
| 1416 | retval = -ENOMEM; |
| 1417 | goto exit; |
| 1418 | } |
| 1419 | |
| 1420 | INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); |
| 1421 | INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); |
| 1422 | INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); |
| 1423 | |
| 1424 | /* |
| 1425 | * Let the driver probe the device to detect the capabilities. |
| 1426 | */ |
| 1427 | retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); |
| 1428 | if (retval) { |
| 1429 | rt2x00_err(rt2x00dev, "Failed to allocate device\n"); |
| 1430 | goto exit; |
| 1431 | } |
| 1432 | |
| 1433 | /* |
| 1434 | * Allocate queue array. |
| 1435 | */ |
| 1436 | retval = rt2x00queue_allocate(rt2x00dev); |
| 1437 | if (retval) |
| 1438 | goto exit; |
| 1439 | |
| 1440 | /* Cache TX headroom value */ |
| 1441 | rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); |
| 1442 | |
| 1443 | /* |
| 1444 | * Determine which operating modes are supported, all modes |
| 1445 | * which require beaconing, depend on the availability of |
| 1446 | * beacon entries. |
| 1447 | */ |
| 1448 | rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); |
| 1449 | if (rt2x00dev->bcn->limit > 0) |
| 1450 | rt2x00dev->hw->wiphy->interface_modes |= |
| 1451 | BIT(NL80211_IFTYPE_ADHOC) | |
| 1452 | #ifdef CONFIG_MAC80211_MESH |
| 1453 | BIT(NL80211_IFTYPE_MESH_POINT) | |
| 1454 | #endif |
| 1455 | #ifdef CONFIG_WIRELESS_WDS |
| 1456 | BIT(NL80211_IFTYPE_WDS) | |
| 1457 | #endif |
| 1458 | BIT(NL80211_IFTYPE_AP); |
| 1459 | |
| 1460 | rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; |
| 1461 | |
| 1462 | wiphy_ext_feature_set(rt2x00dev->hw->wiphy, |
| 1463 | NL80211_EXT_FEATURE_CQM_RSSI_LIST); |
| 1464 | |
| 1465 | /* |
| 1466 | * Initialize ieee80211 structure. |
| 1467 | */ |
| 1468 | retval = rt2x00lib_probe_hw(rt2x00dev); |
| 1469 | if (retval) { |
| 1470 | rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); |
| 1471 | goto exit; |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | * Register extra components. |
| 1476 | */ |
| 1477 | rt2x00link_register(rt2x00dev); |
| 1478 | rt2x00leds_register(rt2x00dev); |
| 1479 | rt2x00debug_register(rt2x00dev); |
| 1480 | |
| 1481 | /* |
| 1482 | * Start rfkill polling. |
| 1483 | */ |
| 1484 | if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) |
| 1485 | rt2x00rfkill_register(rt2x00dev); |
| 1486 | |
| 1487 | return 0; |
| 1488 | |
| 1489 | exit: |
| 1490 | rt2x00lib_remove_dev(rt2x00dev); |
| 1491 | |
| 1492 | return retval; |
| 1493 | } |
| 1494 | EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); |
| 1495 | |
| 1496 | void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) |
| 1497 | { |
| 1498 | clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| 1499 | |
| 1500 | /* |
| 1501 | * Stop rfkill polling. |
| 1502 | */ |
| 1503 | if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) |
| 1504 | rt2x00rfkill_unregister(rt2x00dev); |
| 1505 | |
| 1506 | /* |
| 1507 | * Disable radio. |
| 1508 | */ |
| 1509 | rt2x00lib_disable_radio(rt2x00dev); |
| 1510 | |
| 1511 | /* |
| 1512 | * Stop all work. |
| 1513 | */ |
| 1514 | cancel_work_sync(&rt2x00dev->intf_work); |
| 1515 | cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); |
| 1516 | cancel_work_sync(&rt2x00dev->sleep_work); |
| 1517 | |
| 1518 | hrtimer_cancel(&rt2x00dev->txstatus_timer); |
| 1519 | |
| 1520 | /* |
| 1521 | * Kill the tx status tasklet. |
| 1522 | */ |
| 1523 | tasklet_kill(&rt2x00dev->txstatus_tasklet); |
| 1524 | tasklet_kill(&rt2x00dev->pretbtt_tasklet); |
| 1525 | tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| 1526 | tasklet_kill(&rt2x00dev->rxdone_tasklet); |
| 1527 | tasklet_kill(&rt2x00dev->autowake_tasklet); |
| 1528 | |
| 1529 | /* |
| 1530 | * Uninitialize device. |
| 1531 | */ |
| 1532 | rt2x00lib_uninitialize(rt2x00dev); |
| 1533 | |
| 1534 | if (rt2x00dev->workqueue) |
| 1535 | destroy_workqueue(rt2x00dev->workqueue); |
| 1536 | |
| 1537 | /* |
| 1538 | * Free the tx status fifo. |
| 1539 | */ |
| 1540 | kfifo_free(&rt2x00dev->txstatus_fifo); |
| 1541 | |
| 1542 | /* |
| 1543 | * Free extra components |
| 1544 | */ |
| 1545 | rt2x00debug_deregister(rt2x00dev); |
| 1546 | rt2x00leds_unregister(rt2x00dev); |
| 1547 | |
| 1548 | /* |
| 1549 | * Free ieee80211_hw memory. |
| 1550 | */ |
| 1551 | rt2x00lib_remove_hw(rt2x00dev); |
| 1552 | |
| 1553 | /* |
| 1554 | * Free firmware image. |
| 1555 | */ |
| 1556 | rt2x00lib_free_firmware(rt2x00dev); |
| 1557 | |
| 1558 | /* |
| 1559 | * Free queue structures. |
| 1560 | */ |
| 1561 | rt2x00queue_free(rt2x00dev); |
| 1562 | |
| 1563 | /* |
| 1564 | * Free the driver data. |
| 1565 | */ |
| 1566 | kfree(rt2x00dev->drv_data); |
| 1567 | } |
| 1568 | EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); |
| 1569 | |
| 1570 | /* |
| 1571 | * Device state handlers |
| 1572 | */ |
| 1573 | #ifdef CONFIG_PM |
| 1574 | int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) |
| 1575 | { |
| 1576 | rt2x00_dbg(rt2x00dev, "Going to sleep\n"); |
| 1577 | |
| 1578 | /* |
| 1579 | * Prevent mac80211 from accessing driver while suspended. |
| 1580 | */ |
| 1581 | if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) |
| 1582 | return 0; |
| 1583 | |
| 1584 | /* |
| 1585 | * Cleanup as much as possible. |
| 1586 | */ |
| 1587 | rt2x00lib_uninitialize(rt2x00dev); |
| 1588 | |
| 1589 | /* |
| 1590 | * Suspend/disable extra components. |
| 1591 | */ |
| 1592 | rt2x00leds_suspend(rt2x00dev); |
| 1593 | rt2x00debug_deregister(rt2x00dev); |
| 1594 | |
| 1595 | /* |
| 1596 | * Set device mode to sleep for power management, |
| 1597 | * on some hardware this call seems to consistently fail. |
| 1598 | * From the specifications it is hard to tell why it fails, |
| 1599 | * and if this is a "bad thing". |
| 1600 | * Overall it is safe to just ignore the failure and |
| 1601 | * continue suspending. The only downside is that the |
| 1602 | * device will not be in optimal power save mode, but with |
| 1603 | * the radio and the other components already disabled the |
| 1604 | * device is as good as disabled. |
| 1605 | */ |
| 1606 | if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) |
| 1607 | rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); |
| 1608 | |
| 1609 | return 0; |
| 1610 | } |
| 1611 | EXPORT_SYMBOL_GPL(rt2x00lib_suspend); |
| 1612 | |
| 1613 | int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) |
| 1614 | { |
| 1615 | rt2x00_dbg(rt2x00dev, "Waking up\n"); |
| 1616 | |
| 1617 | /* |
| 1618 | * Restore/enable extra components. |
| 1619 | */ |
| 1620 | rt2x00debug_register(rt2x00dev); |
| 1621 | rt2x00leds_resume(rt2x00dev); |
| 1622 | |
| 1623 | /* |
| 1624 | * We are ready again to receive requests from mac80211. |
| 1625 | */ |
| 1626 | set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); |
| 1627 | |
| 1628 | return 0; |
| 1629 | } |
| 1630 | EXPORT_SYMBOL_GPL(rt2x00lib_resume); |
| 1631 | #endif /* CONFIG_PM */ |
| 1632 | |
| 1633 | /* |
| 1634 | * rt2x00lib module information. |
| 1635 | */ |
| 1636 | MODULE_AUTHOR(DRV_PROJECT); |
| 1637 | MODULE_VERSION(DRV_VERSION); |
| 1638 | MODULE_DESCRIPTION("rt2x00 library"); |
| 1639 | MODULE_LICENSE("GPL"); |