blob: 11df63d21490070b92320ff408934838944d2d6c [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/aer.h>
8#include <linux/async.h>
9#include <linux/blkdev.h>
10#include <linux/blk-mq.h>
11#include <linux/blk-mq-pci.h>
12#include <linux/dmi.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <linux/once.h>
20#include <linux/pci.h>
21#include <linux/suspend.h>
22#include <linux/t10-pi.h>
23#include <linux/types.h>
24#include <linux/io-64-nonatomic-lo-hi.h>
25#include <linux/sed-opal.h>
26#include <linux/pci-p2pdma.h>
27
28#include "trace.h"
29#include "nvme.h"
30
31#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
32#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
33
34#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36/*
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
39 */
40#define NVME_MAX_KB_SZ 4096
41#define NVME_MAX_SEGS 127
42
43static int use_threaded_interrupts;
44module_param(use_threaded_interrupts, int, 0);
45
46static bool use_cmb_sqes = true;
47module_param(use_cmb_sqes, bool, 0444);
48MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50static unsigned int max_host_mem_size_mb = 128;
51module_param(max_host_mem_size_mb, uint, 0444);
52MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55static unsigned int sgl_threshold = SZ_32K;
56module_param(sgl_threshold, uint, 0644);
57MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
60
61static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
64 .get = param_get_int,
65};
66
67static int io_queue_depth = 1024;
68module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71static unsigned int write_queues;
72module_param(write_queues, uint, 0644);
73MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
76
77static unsigned int poll_queues;
78module_param(poll_queues, uint, 0644);
79MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81struct nvme_dev;
82struct nvme_queue;
83
84static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87/*
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
89 */
90struct nvme_dev {
91 struct nvme_queue *queues;
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
94 u32 __iomem *dbs;
95 struct device *dev;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
98 unsigned online_queues;
99 unsigned max_qid;
100 unsigned io_queues[HCTX_MAX_TYPES];
101 unsigned int num_vecs;
102 int q_depth;
103 int io_sqes;
104 u32 db_stride;
105 void __iomem *bar;
106 unsigned long bar_mapped_size;
107 struct work_struct remove_work;
108 struct mutex shutdown_lock;
109 bool subsystem;
110 u64 cmb_size;
111 bool cmb_use_sqes;
112 u32 cmbsz;
113 u32 cmbloc;
114 struct nvme_ctrl ctrl;
115 u32 last_ps;
116
117 mempool_t *iod_mempool;
118
119 /* shadow doorbell buffer support: */
120 __le32 *dbbuf_dbs;
121 dma_addr_t dbbuf_dbs_dma_addr;
122 __le32 *dbbuf_eis;
123 dma_addr_t dbbuf_eis_dma_addr;
124
125 /* host memory buffer support: */
126 u64 host_mem_size;
127 u32 nr_host_mem_descs;
128 u32 host_mem_descs_size;
129 dma_addr_t host_mem_descs_dma;
130 struct nvme_host_mem_buf_desc *host_mem_descs;
131 void **host_mem_desc_bufs;
132 unsigned int nr_allocated_queues;
133 unsigned int nr_write_queues;
134 unsigned int nr_poll_queues;
135};
136
137static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
138{
139 int n = 0, ret;
140
141 ret = kstrtoint(val, 10, &n);
142 if (ret != 0 || n < 2)
143 return -EINVAL;
144
145 return param_set_int(val, kp);
146}
147
148static inline unsigned int sq_idx(unsigned int qid, u32 stride)
149{
150 return qid * 2 * stride;
151}
152
153static inline unsigned int cq_idx(unsigned int qid, u32 stride)
154{
155 return (qid * 2 + 1) * stride;
156}
157
158static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
159{
160 return container_of(ctrl, struct nvme_dev, ctrl);
161}
162
163/*
164 * An NVM Express queue. Each device has at least two (one for admin
165 * commands and one for I/O commands).
166 */
167struct nvme_queue {
168 struct nvme_dev *dev;
169 spinlock_t sq_lock;
170 void *sq_cmds;
171 /* only used for poll queues: */
172 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
173 volatile struct nvme_completion *cqes;
174 dma_addr_t sq_dma_addr;
175 dma_addr_t cq_dma_addr;
176 u32 __iomem *q_db;
177 u16 q_depth;
178 u16 cq_vector;
179 u16 sq_tail;
180 u16 last_sq_tail;
181 u16 cq_head;
182 u16 last_cq_head;
183 u16 qid;
184 u8 cq_phase;
185 u8 sqes;
186 unsigned long flags;
187#define NVMEQ_ENABLED 0
188#define NVMEQ_SQ_CMB 1
189#define NVMEQ_DELETE_ERROR 2
190#define NVMEQ_POLLED 3
191 __le32 *dbbuf_sq_db;
192 __le32 *dbbuf_cq_db;
193 __le32 *dbbuf_sq_ei;
194 __le32 *dbbuf_cq_ei;
195 struct completion delete_done;
196};
197
198/*
199 * The nvme_iod describes the data in an I/O.
200 *
201 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
202 * to the actual struct scatterlist.
203 */
204struct nvme_iod {
205 struct nvme_request req;
206 struct nvme_queue *nvmeq;
207 bool use_sgl;
208 int aborted;
209 int npages; /* In the PRP list. 0 means small pool in use */
210 int nents; /* Used in scatterlist */
211 dma_addr_t first_dma;
212 unsigned int dma_len; /* length of single DMA segment mapping */
213 dma_addr_t meta_dma;
214 struct scatterlist *sg;
215};
216
217static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
218{
219 return dev->nr_allocated_queues * 8 * dev->db_stride;
220}
221
222static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
223{
224 unsigned int mem_size = nvme_dbbuf_size(dev);
225
226 if (dev->dbbuf_dbs)
227 return 0;
228
229 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
230 &dev->dbbuf_dbs_dma_addr,
231 GFP_KERNEL);
232 if (!dev->dbbuf_dbs)
233 return -ENOMEM;
234 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
235 &dev->dbbuf_eis_dma_addr,
236 GFP_KERNEL);
237 if (!dev->dbbuf_eis) {
238 dma_free_coherent(dev->dev, mem_size,
239 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
240 dev->dbbuf_dbs = NULL;
241 return -ENOMEM;
242 }
243
244 return 0;
245}
246
247static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
248{
249 unsigned int mem_size = nvme_dbbuf_size(dev);
250
251 if (dev->dbbuf_dbs) {
252 dma_free_coherent(dev->dev, mem_size,
253 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
254 dev->dbbuf_dbs = NULL;
255 }
256 if (dev->dbbuf_eis) {
257 dma_free_coherent(dev->dev, mem_size,
258 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
259 dev->dbbuf_eis = NULL;
260 }
261}
262
263static void nvme_dbbuf_init(struct nvme_dev *dev,
264 struct nvme_queue *nvmeq, int qid)
265{
266 if (!dev->dbbuf_dbs || !qid)
267 return;
268
269 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
270 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
271 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
272 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
273}
274
275static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
276{
277 if (!nvmeq->qid)
278 return;
279
280 nvmeq->dbbuf_sq_db = NULL;
281 nvmeq->dbbuf_cq_db = NULL;
282 nvmeq->dbbuf_sq_ei = NULL;
283 nvmeq->dbbuf_cq_ei = NULL;
284}
285
286static void nvme_dbbuf_set(struct nvme_dev *dev)
287{
288 struct nvme_command c;
289 unsigned int i;
290
291 if (!dev->dbbuf_dbs)
292 return;
293
294 memset(&c, 0, sizeof(c));
295 c.dbbuf.opcode = nvme_admin_dbbuf;
296 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
297 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
298
299 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
300 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
301 /* Free memory and continue on */
302 nvme_dbbuf_dma_free(dev);
303
304 for (i = 1; i <= dev->online_queues; i++)
305 nvme_dbbuf_free(&dev->queues[i]);
306 }
307}
308
309static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
310{
311 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
312}
313
314/* Update dbbuf and return true if an MMIO is required */
315static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
316 volatile __le32 *dbbuf_ei)
317{
318 if (dbbuf_db) {
319 u16 old_value, event_idx;
320
321 /*
322 * Ensure that the queue is written before updating
323 * the doorbell in memory
324 */
325 wmb();
326
327 old_value = le32_to_cpu(*dbbuf_db);
328 *dbbuf_db = cpu_to_le32(value);
329
330 /*
331 * Ensure that the doorbell is updated before reading the event
332 * index from memory. The controller needs to provide similar
333 * ordering to ensure the envent index is updated before reading
334 * the doorbell.
335 */
336 mb();
337
338 event_idx = le32_to_cpu(*dbbuf_ei);
339 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
340 return false;
341 }
342
343 return true;
344}
345
346/*
347 * Will slightly overestimate the number of pages needed. This is OK
348 * as it only leads to a small amount of wasted memory for the lifetime of
349 * the I/O.
350 */
351static int nvme_npages(unsigned size, struct nvme_dev *dev)
352{
353 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
354 dev->ctrl.page_size);
355 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
356}
357
358/*
359 * Calculates the number of pages needed for the SGL segments. For example a 4k
360 * page can accommodate 256 SGL descriptors.
361 */
362static int nvme_pci_npages_sgl(unsigned int num_seg)
363{
364 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
365}
366
367static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
368 unsigned int size, unsigned int nseg, bool use_sgl)
369{
370 size_t alloc_size;
371
372 if (use_sgl)
373 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
374 else
375 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
376
377 return alloc_size + sizeof(struct scatterlist) * nseg;
378}
379
380static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
381 unsigned int hctx_idx)
382{
383 struct nvme_dev *dev = data;
384 struct nvme_queue *nvmeq = &dev->queues[0];
385
386 WARN_ON(hctx_idx != 0);
387 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
388
389 hctx->driver_data = nvmeq;
390 return 0;
391}
392
393static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
394 unsigned int hctx_idx)
395{
396 struct nvme_dev *dev = data;
397 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
398
399 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
400 hctx->driver_data = nvmeq;
401 return 0;
402}
403
404static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
405 unsigned int hctx_idx, unsigned int numa_node)
406{
407 struct nvme_dev *dev = set->driver_data;
408 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
409 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
410 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
411
412 BUG_ON(!nvmeq);
413 iod->nvmeq = nvmeq;
414
415 nvme_req(req)->ctrl = &dev->ctrl;
416 return 0;
417}
418
419static int queue_irq_offset(struct nvme_dev *dev)
420{
421 /* if we have more than 1 vec, admin queue offsets us by 1 */
422 if (dev->num_vecs > 1)
423 return 1;
424
425 return 0;
426}
427
428static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
429{
430 struct nvme_dev *dev = set->driver_data;
431 int i, qoff, offset;
432
433 offset = queue_irq_offset(dev);
434 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
435 struct blk_mq_queue_map *map = &set->map[i];
436
437 map->nr_queues = dev->io_queues[i];
438 if (!map->nr_queues) {
439 BUG_ON(i == HCTX_TYPE_DEFAULT);
440 continue;
441 }
442
443 /*
444 * The poll queue(s) doesn't have an IRQ (and hence IRQ
445 * affinity), so use the regular blk-mq cpu mapping
446 */
447 map->queue_offset = qoff;
448 if (i != HCTX_TYPE_POLL && offset)
449 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
450 else
451 blk_mq_map_queues(map);
452 qoff += map->nr_queues;
453 offset += map->nr_queues;
454 }
455
456 return 0;
457}
458
459/*
460 * Write sq tail if we are asked to, or if the next command would wrap.
461 */
462static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
463{
464 if (!write_sq) {
465 u16 next_tail = nvmeq->sq_tail + 1;
466
467 if (next_tail == nvmeq->q_depth)
468 next_tail = 0;
469 if (next_tail != nvmeq->last_sq_tail)
470 return;
471 }
472
473 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
474 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
475 writel(nvmeq->sq_tail, nvmeq->q_db);
476 nvmeq->last_sq_tail = nvmeq->sq_tail;
477}
478
479/**
480 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
481 * @nvmeq: The queue to use
482 * @cmd: The command to send
483 * @write_sq: whether to write to the SQ doorbell
484 */
485static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
486 bool write_sq)
487{
488 spin_lock(&nvmeq->sq_lock);
489 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
490 cmd, sizeof(*cmd));
491 if (++nvmeq->sq_tail == nvmeq->q_depth)
492 nvmeq->sq_tail = 0;
493 nvme_write_sq_db(nvmeq, write_sq);
494 spin_unlock(&nvmeq->sq_lock);
495}
496
497static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498{
499 struct nvme_queue *nvmeq = hctx->driver_data;
500
501 spin_lock(&nvmeq->sq_lock);
502 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 nvme_write_sq_db(nvmeq, true);
504 spin_unlock(&nvmeq->sq_lock);
505}
506
507static void **nvme_pci_iod_list(struct request *req)
508{
509 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
510 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
511}
512
513static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
514{
515 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
516 int nseg = blk_rq_nr_phys_segments(req);
517 unsigned int avg_seg_size;
518
519 if (nseg == 0)
520 return false;
521
522 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
523
524 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
525 return false;
526 if (!iod->nvmeq->qid)
527 return false;
528 if (!sgl_threshold || avg_seg_size < sgl_threshold)
529 return false;
530 return true;
531}
532
533static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
534{
535 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
536 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
537 dma_addr_t dma_addr = iod->first_dma;
538 int i;
539
540 for (i = 0; i < iod->npages; i++) {
541 __le64 *prp_list = nvme_pci_iod_list(req)[i];
542 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
543
544 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
545 dma_addr = next_dma_addr;
546 }
547
548}
549
550static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
551{
552 const int last_sg = SGES_PER_PAGE - 1;
553 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
554 dma_addr_t dma_addr = iod->first_dma;
555 int i;
556
557 for (i = 0; i < iod->npages; i++) {
558 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
559 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
560
561 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
562 dma_addr = next_dma_addr;
563 }
564
565}
566
567static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
568{
569 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
570
571 if (is_pci_p2pdma_page(sg_page(iod->sg)))
572 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
573 rq_dma_dir(req));
574 else
575 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
576}
577
578static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
579{
580 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
581
582 if (iod->dma_len) {
583 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
584 rq_dma_dir(req));
585 return;
586 }
587
588 WARN_ON_ONCE(!iod->nents);
589
590 nvme_unmap_sg(dev, req);
591 if (iod->npages == 0)
592 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
593 iod->first_dma);
594 else if (iod->use_sgl)
595 nvme_free_sgls(dev, req);
596 else
597 nvme_free_prps(dev, req);
598 mempool_free(iod->sg, dev->iod_mempool);
599}
600
601static void nvme_print_sgl(struct scatterlist *sgl, int nents)
602{
603 int i;
604 struct scatterlist *sg;
605
606 for_each_sg(sgl, sg, nents, i) {
607 dma_addr_t phys = sg_phys(sg);
608 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
609 "dma_address:%pad dma_length:%d\n",
610 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
611 sg_dma_len(sg));
612 }
613}
614
615static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
616 struct request *req, struct nvme_rw_command *cmnd)
617{
618 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619 struct dma_pool *pool;
620 int length = blk_rq_payload_bytes(req);
621 struct scatterlist *sg = iod->sg;
622 int dma_len = sg_dma_len(sg);
623 u64 dma_addr = sg_dma_address(sg);
624 u32 page_size = dev->ctrl.page_size;
625 int offset = dma_addr & (page_size - 1);
626 __le64 *prp_list;
627 void **list = nvme_pci_iod_list(req);
628 dma_addr_t prp_dma;
629 int nprps, i;
630
631 length -= (page_size - offset);
632 if (length <= 0) {
633 iod->first_dma = 0;
634 goto done;
635 }
636
637 dma_len -= (page_size - offset);
638 if (dma_len) {
639 dma_addr += (page_size - offset);
640 } else {
641 sg = sg_next(sg);
642 dma_addr = sg_dma_address(sg);
643 dma_len = sg_dma_len(sg);
644 }
645
646 if (length <= page_size) {
647 iod->first_dma = dma_addr;
648 goto done;
649 }
650
651 nprps = DIV_ROUND_UP(length, page_size);
652 if (nprps <= (256 / 8)) {
653 pool = dev->prp_small_pool;
654 iod->npages = 0;
655 } else {
656 pool = dev->prp_page_pool;
657 iod->npages = 1;
658 }
659
660 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
661 if (!prp_list) {
662 iod->first_dma = dma_addr;
663 iod->npages = -1;
664 return BLK_STS_RESOURCE;
665 }
666 list[0] = prp_list;
667 iod->first_dma = prp_dma;
668 i = 0;
669 for (;;) {
670 if (i == page_size >> 3) {
671 __le64 *old_prp_list = prp_list;
672 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
673 if (!prp_list)
674 goto free_prps;
675 list[iod->npages++] = prp_list;
676 prp_list[0] = old_prp_list[i - 1];
677 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
678 i = 1;
679 }
680 prp_list[i++] = cpu_to_le64(dma_addr);
681 dma_len -= page_size;
682 dma_addr += page_size;
683 length -= page_size;
684 if (length <= 0)
685 break;
686 if (dma_len > 0)
687 continue;
688 if (unlikely(dma_len < 0))
689 goto bad_sgl;
690 sg = sg_next(sg);
691 dma_addr = sg_dma_address(sg);
692 dma_len = sg_dma_len(sg);
693 }
694done:
695 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
696 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
697 return BLK_STS_OK;
698free_prps:
699 nvme_free_prps(dev, req);
700 return BLK_STS_RESOURCE;
701bad_sgl:
702 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
703 "Invalid SGL for payload:%d nents:%d\n",
704 blk_rq_payload_bytes(req), iod->nents);
705 return BLK_STS_IOERR;
706}
707
708static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
709 struct scatterlist *sg)
710{
711 sge->addr = cpu_to_le64(sg_dma_address(sg));
712 sge->length = cpu_to_le32(sg_dma_len(sg));
713 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
714}
715
716static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
717 dma_addr_t dma_addr, int entries)
718{
719 sge->addr = cpu_to_le64(dma_addr);
720 if (entries < SGES_PER_PAGE) {
721 sge->length = cpu_to_le32(entries * sizeof(*sge));
722 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
723 } else {
724 sge->length = cpu_to_le32(PAGE_SIZE);
725 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
726 }
727}
728
729static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
730 struct request *req, struct nvme_rw_command *cmd, int entries)
731{
732 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
733 struct dma_pool *pool;
734 struct nvme_sgl_desc *sg_list;
735 struct scatterlist *sg = iod->sg;
736 dma_addr_t sgl_dma;
737 int i = 0;
738
739 /* setting the transfer type as SGL */
740 cmd->flags = NVME_CMD_SGL_METABUF;
741
742 if (entries == 1) {
743 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
744 return BLK_STS_OK;
745 }
746
747 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
748 pool = dev->prp_small_pool;
749 iod->npages = 0;
750 } else {
751 pool = dev->prp_page_pool;
752 iod->npages = 1;
753 }
754
755 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
756 if (!sg_list) {
757 iod->npages = -1;
758 return BLK_STS_RESOURCE;
759 }
760
761 nvme_pci_iod_list(req)[0] = sg_list;
762 iod->first_dma = sgl_dma;
763
764 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
765
766 do {
767 if (i == SGES_PER_PAGE) {
768 struct nvme_sgl_desc *old_sg_desc = sg_list;
769 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
770
771 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
772 if (!sg_list)
773 goto free_sgls;
774
775 i = 0;
776 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
777 sg_list[i++] = *link;
778 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
779 }
780
781 nvme_pci_sgl_set_data(&sg_list[i++], sg);
782 sg = sg_next(sg);
783 } while (--entries > 0);
784
785 return BLK_STS_OK;
786free_sgls:
787 nvme_free_sgls(dev, req);
788 return BLK_STS_RESOURCE;
789}
790
791static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
792 struct request *req, struct nvme_rw_command *cmnd,
793 struct bio_vec *bv)
794{
795 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
796 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
797 unsigned int first_prp_len = dev->ctrl.page_size - offset;
798
799 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
800 if (dma_mapping_error(dev->dev, iod->first_dma))
801 return BLK_STS_RESOURCE;
802 iod->dma_len = bv->bv_len;
803
804 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
805 if (bv->bv_len > first_prp_len)
806 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
807 return 0;
808}
809
810static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
811 struct request *req, struct nvme_rw_command *cmnd,
812 struct bio_vec *bv)
813{
814 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
815
816 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
817 if (dma_mapping_error(dev->dev, iod->first_dma))
818 return BLK_STS_RESOURCE;
819 iod->dma_len = bv->bv_len;
820
821 cmnd->flags = NVME_CMD_SGL_METABUF;
822 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
823 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
824 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
825 return 0;
826}
827
828static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
829 struct nvme_command *cmnd)
830{
831 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
832 blk_status_t ret = BLK_STS_RESOURCE;
833 int nr_mapped;
834
835 if (blk_rq_nr_phys_segments(req) == 1) {
836 struct bio_vec bv = req_bvec(req);
837
838 if (!is_pci_p2pdma_page(bv.bv_page)) {
839 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
840 return nvme_setup_prp_simple(dev, req,
841 &cmnd->rw, &bv);
842
843 if (iod->nvmeq->qid && sgl_threshold &&
844 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
845 return nvme_setup_sgl_simple(dev, req,
846 &cmnd->rw, &bv);
847 }
848 }
849
850 iod->dma_len = 0;
851 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
852 if (!iod->sg)
853 return BLK_STS_RESOURCE;
854 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
855 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
856 if (!iod->nents)
857 goto out_free_sg;
858
859 if (is_pci_p2pdma_page(sg_page(iod->sg)))
860 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
861 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
862 else
863 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
864 rq_dma_dir(req), DMA_ATTR_NO_WARN);
865 if (!nr_mapped)
866 goto out_free_sg;
867
868 iod->use_sgl = nvme_pci_use_sgls(dev, req);
869 if (iod->use_sgl)
870 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
871 else
872 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
873 if (ret != BLK_STS_OK)
874 goto out_unmap_sg;
875 return BLK_STS_OK;
876
877out_unmap_sg:
878 nvme_unmap_sg(dev, req);
879out_free_sg:
880 mempool_free(iod->sg, dev->iod_mempool);
881 return ret;
882}
883
884static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
885 struct nvme_command *cmnd)
886{
887 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
888
889 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
890 rq_dma_dir(req), 0);
891 if (dma_mapping_error(dev->dev, iod->meta_dma))
892 return BLK_STS_IOERR;
893 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
894 return 0;
895}
896
897/*
898 * NOTE: ns is NULL when called on the admin queue.
899 */
900static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
901 const struct blk_mq_queue_data *bd)
902{
903 struct nvme_ns *ns = hctx->queue->queuedata;
904 struct nvme_queue *nvmeq = hctx->driver_data;
905 struct nvme_dev *dev = nvmeq->dev;
906 struct request *req = bd->rq;
907 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
908 struct nvme_command cmnd;
909 blk_status_t ret;
910
911 iod->aborted = 0;
912 iod->npages = -1;
913 iod->nents = 0;
914
915 /*
916 * We should not need to do this, but we're still using this to
917 * ensure we can drain requests on a dying queue.
918 */
919 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
920 return BLK_STS_IOERR;
921
922 ret = nvme_setup_cmd(ns, req, &cmnd);
923 if (ret)
924 return ret;
925
926 if (blk_rq_nr_phys_segments(req)) {
927 ret = nvme_map_data(dev, req, &cmnd);
928 if (ret)
929 goto out_free_cmd;
930 }
931
932 if (blk_integrity_rq(req)) {
933 ret = nvme_map_metadata(dev, req, &cmnd);
934 if (ret)
935 goto out_unmap_data;
936 }
937
938 blk_mq_start_request(req);
939 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
940 return BLK_STS_OK;
941out_unmap_data:
942 if (blk_rq_nr_phys_segments(req))
943 nvme_unmap_data(dev, req);
944out_free_cmd:
945 nvme_cleanup_cmd(req);
946 return ret;
947}
948
949static void nvme_pci_complete_rq(struct request *req)
950{
951 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
952 struct nvme_dev *dev = iod->nvmeq->dev;
953
954 nvme_cleanup_cmd(req);
955 if (blk_integrity_rq(req))
956 dma_unmap_page(dev->dev, iod->meta_dma,
957 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
958 if (blk_rq_nr_phys_segments(req))
959 nvme_unmap_data(dev, req);
960 nvme_complete_rq(req);
961}
962
963/* We read the CQE phase first to check if the rest of the entry is valid */
964static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
965{
966 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
967 nvmeq->cq_phase;
968}
969
970static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
971{
972 u16 head = nvmeq->cq_head;
973
974 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
975 nvmeq->dbbuf_cq_ei))
976 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
977}
978
979static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
980{
981 if (!nvmeq->qid)
982 return nvmeq->dev->admin_tagset.tags[0];
983 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
984}
985
986static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
987{
988 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
989 struct request *req;
990
991 /*
992 * AEN requests are special as they don't time out and can
993 * survive any kind of queue freeze and often don't respond to
994 * aborts. We don't even bother to allocate a struct request
995 * for them but rather special case them here.
996 */
997 if (unlikely(nvmeq->qid == 0 &&
998 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
999 nvme_complete_async_event(&nvmeq->dev->ctrl,
1000 cqe->status, &cqe->result);
1001 return;
1002 }
1003
1004 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
1005 if (unlikely(!req)) {
1006 dev_warn(nvmeq->dev->ctrl.device,
1007 "invalid id %d completed on queue %d\n",
1008 cqe->command_id, le16_to_cpu(cqe->sq_id));
1009 return;
1010 }
1011
1012 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1013 nvme_end_request(req, cqe->status, cqe->result);
1014}
1015
1016static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1017{
1018 while (start != end) {
1019 nvme_handle_cqe(nvmeq, start);
1020 if (++start == nvmeq->q_depth)
1021 start = 0;
1022 }
1023}
1024
1025static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1026{
1027 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1028 nvmeq->cq_head = 0;
1029 nvmeq->cq_phase = !nvmeq->cq_phase;
1030 } else {
1031 nvmeq->cq_head++;
1032 }
1033}
1034
1035static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1036 u16 *end, unsigned int tag)
1037{
1038 int found = 0;
1039
1040 *start = nvmeq->cq_head;
1041 while (nvme_cqe_pending(nvmeq)) {
1042 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1043 found++;
1044 nvme_update_cq_head(nvmeq);
1045 }
1046 *end = nvmeq->cq_head;
1047
1048 if (*start != *end)
1049 nvme_ring_cq_doorbell(nvmeq);
1050 return found;
1051}
1052
1053static irqreturn_t nvme_irq(int irq, void *data)
1054{
1055 struct nvme_queue *nvmeq = data;
1056 irqreturn_t ret = IRQ_NONE;
1057 u16 start, end;
1058
1059 /*
1060 * The rmb/wmb pair ensures we see all updates from a previous run of
1061 * the irq handler, even if that was on another CPU.
1062 */
1063 rmb();
1064 if (nvmeq->cq_head != nvmeq->last_cq_head)
1065 ret = IRQ_HANDLED;
1066 nvme_process_cq(nvmeq, &start, &end, -1);
1067 nvmeq->last_cq_head = nvmeq->cq_head;
1068 wmb();
1069
1070 if (start != end) {
1071 nvme_complete_cqes(nvmeq, start, end);
1072 return IRQ_HANDLED;
1073 }
1074
1075 return ret;
1076}
1077
1078static irqreturn_t nvme_irq_check(int irq, void *data)
1079{
1080 struct nvme_queue *nvmeq = data;
1081 if (nvme_cqe_pending(nvmeq))
1082 return IRQ_WAKE_THREAD;
1083 return IRQ_NONE;
1084}
1085
1086/*
1087 * Poll for completions any queue, including those not dedicated to polling.
1088 * Can be called from any context.
1089 */
1090static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1091{
1092 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1093 u16 start, end;
1094 int found;
1095
1096 /*
1097 * For a poll queue we need to protect against the polling thread
1098 * using the CQ lock. For normal interrupt driven threads we have
1099 * to disable the interrupt to avoid racing with it.
1100 */
1101 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1102 spin_lock(&nvmeq->cq_poll_lock);
1103 found = nvme_process_cq(nvmeq, &start, &end, tag);
1104 spin_unlock(&nvmeq->cq_poll_lock);
1105 } else {
1106 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1107 found = nvme_process_cq(nvmeq, &start, &end, tag);
1108 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1109 }
1110
1111 nvme_complete_cqes(nvmeq, start, end);
1112 return found;
1113}
1114
1115static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1116{
1117 struct nvme_queue *nvmeq = hctx->driver_data;
1118 u16 start, end;
1119 bool found;
1120
1121 if (!nvme_cqe_pending(nvmeq))
1122 return 0;
1123
1124 spin_lock(&nvmeq->cq_poll_lock);
1125 found = nvme_process_cq(nvmeq, &start, &end, -1);
1126 nvme_complete_cqes(nvmeq, start, end);
1127 spin_unlock(&nvmeq->cq_poll_lock);
1128
1129 return found;
1130}
1131
1132static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1133{
1134 struct nvme_dev *dev = to_nvme_dev(ctrl);
1135 struct nvme_queue *nvmeq = &dev->queues[0];
1136 struct nvme_command c;
1137
1138 memset(&c, 0, sizeof(c));
1139 c.common.opcode = nvme_admin_async_event;
1140 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1141 nvme_submit_cmd(nvmeq, &c, true);
1142}
1143
1144static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1145{
1146 struct nvme_command c;
1147
1148 memset(&c, 0, sizeof(c));
1149 c.delete_queue.opcode = opcode;
1150 c.delete_queue.qid = cpu_to_le16(id);
1151
1152 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1153}
1154
1155static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1156 struct nvme_queue *nvmeq, s16 vector)
1157{
1158 struct nvme_command c;
1159 int flags = NVME_QUEUE_PHYS_CONTIG;
1160
1161 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1162 flags |= NVME_CQ_IRQ_ENABLED;
1163
1164 /*
1165 * Note: we (ab)use the fact that the prp fields survive if no data
1166 * is attached to the request.
1167 */
1168 memset(&c, 0, sizeof(c));
1169 c.create_cq.opcode = nvme_admin_create_cq;
1170 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1171 c.create_cq.cqid = cpu_to_le16(qid);
1172 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1173 c.create_cq.cq_flags = cpu_to_le16(flags);
1174 c.create_cq.irq_vector = cpu_to_le16(vector);
1175
1176 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1177}
1178
1179static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1180 struct nvme_queue *nvmeq)
1181{
1182 struct nvme_ctrl *ctrl = &dev->ctrl;
1183 struct nvme_command c;
1184 int flags = NVME_QUEUE_PHYS_CONTIG;
1185
1186 /*
1187 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1188 * set. Since URGENT priority is zeroes, it makes all queues
1189 * URGENT.
1190 */
1191 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1192 flags |= NVME_SQ_PRIO_MEDIUM;
1193
1194 /*
1195 * Note: we (ab)use the fact that the prp fields survive if no data
1196 * is attached to the request.
1197 */
1198 memset(&c, 0, sizeof(c));
1199 c.create_sq.opcode = nvme_admin_create_sq;
1200 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1201 c.create_sq.sqid = cpu_to_le16(qid);
1202 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1203 c.create_sq.sq_flags = cpu_to_le16(flags);
1204 c.create_sq.cqid = cpu_to_le16(qid);
1205
1206 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1207}
1208
1209static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1210{
1211 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1212}
1213
1214static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1215{
1216 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1217}
1218
1219static void abort_endio(struct request *req, blk_status_t error)
1220{
1221 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1222 struct nvme_queue *nvmeq = iod->nvmeq;
1223
1224 dev_warn(nvmeq->dev->ctrl.device,
1225 "Abort status: 0x%x", nvme_req(req)->status);
1226 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1227 blk_mq_free_request(req);
1228}
1229
1230static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1231{
1232
1233 /* If true, indicates loss of adapter communication, possibly by a
1234 * NVMe Subsystem reset.
1235 */
1236 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1237
1238 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1239 switch (dev->ctrl.state) {
1240 case NVME_CTRL_RESETTING:
1241 case NVME_CTRL_CONNECTING:
1242 return false;
1243 default:
1244 break;
1245 }
1246
1247 /* We shouldn't reset unless the controller is on fatal error state
1248 * _or_ if we lost the communication with it.
1249 */
1250 if (!(csts & NVME_CSTS_CFS) && !nssro)
1251 return false;
1252
1253 return true;
1254}
1255
1256static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1257{
1258 /* Read a config register to help see what died. */
1259 u16 pci_status;
1260 int result;
1261
1262 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1263 &pci_status);
1264 if (result == PCIBIOS_SUCCESSFUL)
1265 dev_warn(dev->ctrl.device,
1266 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1267 csts, pci_status);
1268 else
1269 dev_warn(dev->ctrl.device,
1270 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1271 csts, result);
1272}
1273
1274static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1275{
1276 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1277 struct nvme_queue *nvmeq = iod->nvmeq;
1278 struct nvme_dev *dev = nvmeq->dev;
1279 struct request *abort_req;
1280 struct nvme_command cmd;
1281 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1282
1283 /* If PCI error recovery process is happening, we cannot reset or
1284 * the recovery mechanism will surely fail.
1285 */
1286 mb();
1287 if (pci_channel_offline(to_pci_dev(dev->dev)))
1288 return BLK_EH_RESET_TIMER;
1289
1290 /*
1291 * Reset immediately if the controller is failed
1292 */
1293 if (nvme_should_reset(dev, csts)) {
1294 nvme_warn_reset(dev, csts);
1295 nvme_dev_disable(dev, false);
1296 nvme_reset_ctrl(&dev->ctrl);
1297 return BLK_EH_DONE;
1298 }
1299
1300 /*
1301 * Did we miss an interrupt?
1302 */
1303 if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1304 dev_warn(dev->ctrl.device,
1305 "I/O %d QID %d timeout, completion polled\n",
1306 req->tag, nvmeq->qid);
1307 return BLK_EH_DONE;
1308 }
1309
1310 /*
1311 * Shutdown immediately if controller times out while starting. The
1312 * reset work will see the pci device disabled when it gets the forced
1313 * cancellation error. All outstanding requests are completed on
1314 * shutdown, so we return BLK_EH_DONE.
1315 */
1316 switch (dev->ctrl.state) {
1317 case NVME_CTRL_CONNECTING:
1318 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1319 /* fall through */
1320 case NVME_CTRL_DELETING:
1321 dev_warn_ratelimited(dev->ctrl.device,
1322 "I/O %d QID %d timeout, disable controller\n",
1323 req->tag, nvmeq->qid);
1324 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1325 nvme_dev_disable(dev, true);
1326 return BLK_EH_DONE;
1327 case NVME_CTRL_RESETTING:
1328 return BLK_EH_RESET_TIMER;
1329 default:
1330 break;
1331 }
1332
1333 /*
1334 * Shutdown the controller immediately and schedule a reset if the
1335 * command was already aborted once before and still hasn't been
1336 * returned to the driver, or if this is the admin queue.
1337 */
1338 if (!nvmeq->qid || iod->aborted) {
1339 dev_warn(dev->ctrl.device,
1340 "I/O %d QID %d timeout, reset controller\n",
1341 req->tag, nvmeq->qid);
1342 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1343 nvme_dev_disable(dev, false);
1344 nvme_reset_ctrl(&dev->ctrl);
1345
1346 return BLK_EH_DONE;
1347 }
1348
1349 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1350 atomic_inc(&dev->ctrl.abort_limit);
1351 return BLK_EH_RESET_TIMER;
1352 }
1353 iod->aborted = 1;
1354
1355 memset(&cmd, 0, sizeof(cmd));
1356 cmd.abort.opcode = nvme_admin_abort_cmd;
1357 cmd.abort.cid = req->tag;
1358 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1359
1360 dev_warn(nvmeq->dev->ctrl.device,
1361 "I/O %d QID %d timeout, aborting\n",
1362 req->tag, nvmeq->qid);
1363
1364 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1365 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1366 if (IS_ERR(abort_req)) {
1367 atomic_inc(&dev->ctrl.abort_limit);
1368 return BLK_EH_RESET_TIMER;
1369 }
1370
1371 abort_req->timeout = ADMIN_TIMEOUT;
1372 abort_req->end_io_data = NULL;
1373 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1374
1375 /*
1376 * The aborted req will be completed on receiving the abort req.
1377 * We enable the timer again. If hit twice, it'll cause a device reset,
1378 * as the device then is in a faulty state.
1379 */
1380 return BLK_EH_RESET_TIMER;
1381}
1382
1383static void nvme_free_queue(struct nvme_queue *nvmeq)
1384{
1385 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1386 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1387 if (!nvmeq->sq_cmds)
1388 return;
1389
1390 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1391 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1392 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1393 } else {
1394 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1395 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1396 }
1397}
1398
1399static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1400{
1401 int i;
1402
1403 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1404 dev->ctrl.queue_count--;
1405 nvme_free_queue(&dev->queues[i]);
1406 }
1407}
1408
1409/**
1410 * nvme_suspend_queue - put queue into suspended state
1411 * @nvmeq: queue to suspend
1412 */
1413static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1414{
1415 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1416 return 1;
1417
1418 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1419 mb();
1420
1421 nvmeq->dev->online_queues--;
1422 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1423 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1424 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1425 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1426 return 0;
1427}
1428
1429static void nvme_suspend_io_queues(struct nvme_dev *dev)
1430{
1431 int i;
1432
1433 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1434 nvme_suspend_queue(&dev->queues[i]);
1435}
1436
1437static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1438{
1439 struct nvme_queue *nvmeq = &dev->queues[0];
1440
1441 if (shutdown)
1442 nvme_shutdown_ctrl(&dev->ctrl);
1443 else
1444 nvme_disable_ctrl(&dev->ctrl);
1445
1446 nvme_poll_irqdisable(nvmeq, -1);
1447}
1448
1449/*
1450 * Called only on a device that has been disabled and after all other threads
1451 * that can check this device's completion queues have synced. This is the
1452 * last chance for the driver to see a natural completion before
1453 * nvme_cancel_request() terminates all incomplete requests.
1454 */
1455static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1456{
1457 u16 start, end;
1458 int i;
1459
1460 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1461 nvme_process_cq(&dev->queues[i], &start, &end, -1);
1462 nvme_complete_cqes(&dev->queues[i], start, end);
1463 }
1464}
1465
1466static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1467 int entry_size)
1468{
1469 int q_depth = dev->q_depth;
1470 unsigned q_size_aligned = roundup(q_depth * entry_size,
1471 dev->ctrl.page_size);
1472
1473 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1474 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1475 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1476 q_depth = div_u64(mem_per_q, entry_size);
1477
1478 /*
1479 * Ensure the reduced q_depth is above some threshold where it
1480 * would be better to map queues in system memory with the
1481 * original depth
1482 */
1483 if (q_depth < 64)
1484 return -ENOMEM;
1485 }
1486
1487 return q_depth;
1488}
1489
1490static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1491 int qid)
1492{
1493 struct pci_dev *pdev = to_pci_dev(dev->dev);
1494
1495 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1496 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1497 if (nvmeq->sq_cmds) {
1498 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1499 nvmeq->sq_cmds);
1500 if (nvmeq->sq_dma_addr) {
1501 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1502 return 0;
1503 }
1504
1505 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1506 }
1507 }
1508
1509 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1510 &nvmeq->sq_dma_addr, GFP_KERNEL);
1511 if (!nvmeq->sq_cmds)
1512 return -ENOMEM;
1513 return 0;
1514}
1515
1516static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1517{
1518 struct nvme_queue *nvmeq = &dev->queues[qid];
1519
1520 if (dev->ctrl.queue_count > qid)
1521 return 0;
1522
1523 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1524 nvmeq->q_depth = depth;
1525 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1526 &nvmeq->cq_dma_addr, GFP_KERNEL);
1527 if (!nvmeq->cqes)
1528 goto free_nvmeq;
1529
1530 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1531 goto free_cqdma;
1532
1533 nvmeq->dev = dev;
1534 spin_lock_init(&nvmeq->sq_lock);
1535 spin_lock_init(&nvmeq->cq_poll_lock);
1536 nvmeq->cq_head = 0;
1537 nvmeq->cq_phase = 1;
1538 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1539 nvmeq->qid = qid;
1540 dev->ctrl.queue_count++;
1541
1542 return 0;
1543
1544 free_cqdma:
1545 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1546 nvmeq->cq_dma_addr);
1547 free_nvmeq:
1548 return -ENOMEM;
1549}
1550
1551static int queue_request_irq(struct nvme_queue *nvmeq)
1552{
1553 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1554 int nr = nvmeq->dev->ctrl.instance;
1555
1556 if (use_threaded_interrupts) {
1557 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1558 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1559 } else {
1560 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1561 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1562 }
1563}
1564
1565static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1566{
1567 struct nvme_dev *dev = nvmeq->dev;
1568
1569 nvmeq->sq_tail = 0;
1570 nvmeq->last_sq_tail = 0;
1571 nvmeq->cq_head = 0;
1572 nvmeq->cq_phase = 1;
1573 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1574 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1575 nvme_dbbuf_init(dev, nvmeq, qid);
1576 dev->online_queues++;
1577 wmb(); /* ensure the first interrupt sees the initialization */
1578}
1579
1580static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1581{
1582 struct nvme_dev *dev = nvmeq->dev;
1583 int result;
1584 u16 vector = 0;
1585
1586 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1587
1588 /*
1589 * A queue's vector matches the queue identifier unless the controller
1590 * has only one vector available.
1591 */
1592 if (!polled)
1593 vector = dev->num_vecs == 1 ? 0 : qid;
1594 else
1595 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1596
1597 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1598 if (result)
1599 return result;
1600
1601 result = adapter_alloc_sq(dev, qid, nvmeq);
1602 if (result < 0)
1603 return result;
1604 else if (result)
1605 goto release_cq;
1606
1607 nvmeq->cq_vector = vector;
1608 nvme_init_queue(nvmeq, qid);
1609
1610 if (!polled) {
1611 result = queue_request_irq(nvmeq);
1612 if (result < 0)
1613 goto release_sq;
1614 }
1615
1616 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1617 return result;
1618
1619release_sq:
1620 dev->online_queues--;
1621 adapter_delete_sq(dev, qid);
1622release_cq:
1623 adapter_delete_cq(dev, qid);
1624 return result;
1625}
1626
1627static const struct blk_mq_ops nvme_mq_admin_ops = {
1628 .queue_rq = nvme_queue_rq,
1629 .complete = nvme_pci_complete_rq,
1630 .init_hctx = nvme_admin_init_hctx,
1631 .init_request = nvme_init_request,
1632 .timeout = nvme_timeout,
1633};
1634
1635static const struct blk_mq_ops nvme_mq_ops = {
1636 .queue_rq = nvme_queue_rq,
1637 .complete = nvme_pci_complete_rq,
1638 .commit_rqs = nvme_commit_rqs,
1639 .init_hctx = nvme_init_hctx,
1640 .init_request = nvme_init_request,
1641 .map_queues = nvme_pci_map_queues,
1642 .timeout = nvme_timeout,
1643 .poll = nvme_poll,
1644};
1645
1646static void nvme_dev_remove_admin(struct nvme_dev *dev)
1647{
1648 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1649 /*
1650 * If the controller was reset during removal, it's possible
1651 * user requests may be waiting on a stopped queue. Start the
1652 * queue to flush these to completion.
1653 */
1654 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1655 blk_cleanup_queue(dev->ctrl.admin_q);
1656 blk_mq_free_tag_set(&dev->admin_tagset);
1657 }
1658}
1659
1660static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1661{
1662 if (!dev->ctrl.admin_q) {
1663 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1664 dev->admin_tagset.nr_hw_queues = 1;
1665
1666 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1667 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1668 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1669 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1670 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1671 dev->admin_tagset.driver_data = dev;
1672
1673 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1674 return -ENOMEM;
1675 dev->ctrl.admin_tagset = &dev->admin_tagset;
1676
1677 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1678 if (IS_ERR(dev->ctrl.admin_q)) {
1679 blk_mq_free_tag_set(&dev->admin_tagset);
1680 dev->ctrl.admin_q = NULL;
1681 return -ENOMEM;
1682 }
1683 if (!blk_get_queue(dev->ctrl.admin_q)) {
1684 nvme_dev_remove_admin(dev);
1685 dev->ctrl.admin_q = NULL;
1686 return -ENODEV;
1687 }
1688 } else
1689 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1690
1691 return 0;
1692}
1693
1694static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1695{
1696 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1697}
1698
1699static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1700{
1701 struct pci_dev *pdev = to_pci_dev(dev->dev);
1702
1703 if (size <= dev->bar_mapped_size)
1704 return 0;
1705 if (size > pci_resource_len(pdev, 0))
1706 return -ENOMEM;
1707 if (dev->bar)
1708 iounmap(dev->bar);
1709 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1710 if (!dev->bar) {
1711 dev->bar_mapped_size = 0;
1712 return -ENOMEM;
1713 }
1714 dev->bar_mapped_size = size;
1715 dev->dbs = dev->bar + NVME_REG_DBS;
1716
1717 return 0;
1718}
1719
1720static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1721{
1722 int result;
1723 u32 aqa;
1724 struct nvme_queue *nvmeq;
1725
1726 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1727 if (result < 0)
1728 return result;
1729
1730 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1731 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1732
1733 if (dev->subsystem &&
1734 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1735 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1736
1737 result = nvme_disable_ctrl(&dev->ctrl);
1738 if (result < 0)
1739 return result;
1740
1741 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1742 if (result)
1743 return result;
1744
1745 nvmeq = &dev->queues[0];
1746 aqa = nvmeq->q_depth - 1;
1747 aqa |= aqa << 16;
1748
1749 writel(aqa, dev->bar + NVME_REG_AQA);
1750 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1751 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1752
1753 result = nvme_enable_ctrl(&dev->ctrl);
1754 if (result)
1755 return result;
1756
1757 nvmeq->cq_vector = 0;
1758 nvme_init_queue(nvmeq, 0);
1759 result = queue_request_irq(nvmeq);
1760 if (result) {
1761 dev->online_queues--;
1762 return result;
1763 }
1764
1765 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1766 return result;
1767}
1768
1769static int nvme_create_io_queues(struct nvme_dev *dev)
1770{
1771 unsigned i, max, rw_queues;
1772 int ret = 0;
1773
1774 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1775 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1776 ret = -ENOMEM;
1777 break;
1778 }
1779 }
1780
1781 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1782 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1783 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1784 dev->io_queues[HCTX_TYPE_READ];
1785 } else {
1786 rw_queues = max;
1787 }
1788
1789 for (i = dev->online_queues; i <= max; i++) {
1790 bool polled = i > rw_queues;
1791
1792 ret = nvme_create_queue(&dev->queues[i], i, polled);
1793 if (ret)
1794 break;
1795 }
1796
1797 /*
1798 * Ignore failing Create SQ/CQ commands, we can continue with less
1799 * than the desired amount of queues, and even a controller without
1800 * I/O queues can still be used to issue admin commands. This might
1801 * be useful to upgrade a buggy firmware for example.
1802 */
1803 return ret >= 0 ? 0 : ret;
1804}
1805
1806static ssize_t nvme_cmb_show(struct device *dev,
1807 struct device_attribute *attr,
1808 char *buf)
1809{
1810 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1811
1812 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1813 ndev->cmbloc, ndev->cmbsz);
1814}
1815static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1816
1817static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1818{
1819 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1820
1821 return 1ULL << (12 + 4 * szu);
1822}
1823
1824static u32 nvme_cmb_size(struct nvme_dev *dev)
1825{
1826 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1827}
1828
1829static void nvme_map_cmb(struct nvme_dev *dev)
1830{
1831 u64 size, offset;
1832 resource_size_t bar_size;
1833 struct pci_dev *pdev = to_pci_dev(dev->dev);
1834 int bar;
1835
1836 if (dev->cmb_size)
1837 return;
1838
1839 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1840 if (!dev->cmbsz)
1841 return;
1842 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1843
1844 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1845 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1846 bar = NVME_CMB_BIR(dev->cmbloc);
1847 bar_size = pci_resource_len(pdev, bar);
1848
1849 if (offset > bar_size)
1850 return;
1851
1852 /*
1853 * Controllers may support a CMB size larger than their BAR,
1854 * for example, due to being behind a bridge. Reduce the CMB to
1855 * the reported size of the BAR
1856 */
1857 if (size > bar_size - offset)
1858 size = bar_size - offset;
1859
1860 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1861 dev_warn(dev->ctrl.device,
1862 "failed to register the CMB\n");
1863 return;
1864 }
1865
1866 dev->cmb_size = size;
1867 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1868
1869 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1870 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1871 pci_p2pmem_publish(pdev, true);
1872
1873 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1874 &dev_attr_cmb.attr, NULL))
1875 dev_warn(dev->ctrl.device,
1876 "failed to add sysfs attribute for CMB\n");
1877}
1878
1879static inline void nvme_release_cmb(struct nvme_dev *dev)
1880{
1881 if (dev->cmb_size) {
1882 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1883 &dev_attr_cmb.attr, NULL);
1884 dev->cmb_size = 0;
1885 }
1886}
1887
1888static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1889{
1890 u64 dma_addr = dev->host_mem_descs_dma;
1891 struct nvme_command c;
1892 int ret;
1893
1894 memset(&c, 0, sizeof(c));
1895 c.features.opcode = nvme_admin_set_features;
1896 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1897 c.features.dword11 = cpu_to_le32(bits);
1898 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1899 ilog2(dev->ctrl.page_size));
1900 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1901 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1902 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1903
1904 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1905 if (ret) {
1906 dev_warn(dev->ctrl.device,
1907 "failed to set host mem (err %d, flags %#x).\n",
1908 ret, bits);
1909 }
1910 return ret;
1911}
1912
1913static void nvme_free_host_mem(struct nvme_dev *dev)
1914{
1915 int i;
1916
1917 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1918 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1919 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1920
1921 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1922 le64_to_cpu(desc->addr),
1923 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1924 }
1925
1926 kfree(dev->host_mem_desc_bufs);
1927 dev->host_mem_desc_bufs = NULL;
1928 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1929 dev->host_mem_descs, dev->host_mem_descs_dma);
1930 dev->host_mem_descs = NULL;
1931 dev->host_mem_descs_size = 0;
1932 dev->nr_host_mem_descs = 0;
1933}
1934
1935static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1936 u32 chunk_size)
1937{
1938 struct nvme_host_mem_buf_desc *descs;
1939 u32 max_entries, len, descs_size;
1940 dma_addr_t descs_dma;
1941 int i = 0;
1942 void **bufs;
1943 u64 size, tmp;
1944
1945 tmp = (preferred + chunk_size - 1);
1946 do_div(tmp, chunk_size);
1947 max_entries = tmp;
1948
1949 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1950 max_entries = dev->ctrl.hmmaxd;
1951
1952 descs_size = max_entries * sizeof(*descs);
1953 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1954 GFP_KERNEL);
1955 if (!descs)
1956 goto out;
1957
1958 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1959 if (!bufs)
1960 goto out_free_descs;
1961
1962 for (size = 0; size < preferred && i < max_entries; size += len) {
1963 dma_addr_t dma_addr;
1964
1965 len = min_t(u64, chunk_size, preferred - size);
1966 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1967 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1968 if (!bufs[i])
1969 break;
1970
1971 descs[i].addr = cpu_to_le64(dma_addr);
1972 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1973 i++;
1974 }
1975
1976 if (!size)
1977 goto out_free_bufs;
1978
1979 dev->nr_host_mem_descs = i;
1980 dev->host_mem_size = size;
1981 dev->host_mem_descs = descs;
1982 dev->host_mem_descs_dma = descs_dma;
1983 dev->host_mem_descs_size = descs_size;
1984 dev->host_mem_desc_bufs = bufs;
1985 return 0;
1986
1987out_free_bufs:
1988 while (--i >= 0) {
1989 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1990
1991 dma_free_attrs(dev->dev, size, bufs[i],
1992 le64_to_cpu(descs[i].addr),
1993 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1994 }
1995
1996 kfree(bufs);
1997out_free_descs:
1998 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
1999out:
2000 dev->host_mem_descs = NULL;
2001 return -ENOMEM;
2002}
2003
2004static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2005{
2006 u32 chunk_size;
2007
2008 /* start big and work our way down */
2009 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2010 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2011 chunk_size /= 2) {
2012 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2013 if (!min || dev->host_mem_size >= min)
2014 return 0;
2015 nvme_free_host_mem(dev);
2016 }
2017 }
2018
2019 return -ENOMEM;
2020}
2021
2022static int nvme_setup_host_mem(struct nvme_dev *dev)
2023{
2024 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2025 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2026 u64 min = (u64)dev->ctrl.hmmin * 4096;
2027 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2028 int ret;
2029
2030 preferred = min(preferred, max);
2031 if (min > max) {
2032 dev_warn(dev->ctrl.device,
2033 "min host memory (%lld MiB) above limit (%d MiB).\n",
2034 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2035 nvme_free_host_mem(dev);
2036 return 0;
2037 }
2038
2039 /*
2040 * If we already have a buffer allocated check if we can reuse it.
2041 */
2042 if (dev->host_mem_descs) {
2043 if (dev->host_mem_size >= min)
2044 enable_bits |= NVME_HOST_MEM_RETURN;
2045 else
2046 nvme_free_host_mem(dev);
2047 }
2048
2049 if (!dev->host_mem_descs) {
2050 if (nvme_alloc_host_mem(dev, min, preferred)) {
2051 dev_warn(dev->ctrl.device,
2052 "failed to allocate host memory buffer.\n");
2053 return 0; /* controller must work without HMB */
2054 }
2055
2056 dev_info(dev->ctrl.device,
2057 "allocated %lld MiB host memory buffer.\n",
2058 dev->host_mem_size >> ilog2(SZ_1M));
2059 }
2060
2061 ret = nvme_set_host_mem(dev, enable_bits);
2062 if (ret)
2063 nvme_free_host_mem(dev);
2064 return ret;
2065}
2066
2067/*
2068 * nirqs is the number of interrupts available for write and read
2069 * queues. The core already reserved an interrupt for the admin queue.
2070 */
2071static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2072{
2073 struct nvme_dev *dev = affd->priv;
2074 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2075
2076 /*
2077 * If there is no interupt available for queues, ensure that
2078 * the default queue is set to 1. The affinity set size is
2079 * also set to one, but the irq core ignores it for this case.
2080 *
2081 * If only one interrupt is available or 'write_queue' == 0, combine
2082 * write and read queues.
2083 *
2084 * If 'write_queues' > 0, ensure it leaves room for at least one read
2085 * queue.
2086 */
2087 if (!nrirqs) {
2088 nrirqs = 1;
2089 nr_read_queues = 0;
2090 } else if (nrirqs == 1 || !nr_write_queues) {
2091 nr_read_queues = 0;
2092 } else if (nr_write_queues >= nrirqs) {
2093 nr_read_queues = 1;
2094 } else {
2095 nr_read_queues = nrirqs - nr_write_queues;
2096 }
2097
2098 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2099 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2100 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2101 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2102 affd->nr_sets = nr_read_queues ? 2 : 1;
2103}
2104
2105static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2106{
2107 struct pci_dev *pdev = to_pci_dev(dev->dev);
2108 struct irq_affinity affd = {
2109 .pre_vectors = 1,
2110 .calc_sets = nvme_calc_irq_sets,
2111 .priv = dev,
2112 };
2113 unsigned int irq_queues, this_p_queues;
2114
2115 /*
2116 * Poll queues don't need interrupts, but we need at least one IO
2117 * queue left over for non-polled IO.
2118 */
2119 this_p_queues = dev->nr_poll_queues;
2120 if (this_p_queues >= nr_io_queues) {
2121 this_p_queues = nr_io_queues - 1;
2122 irq_queues = 1;
2123 } else {
2124 irq_queues = nr_io_queues - this_p_queues + 1;
2125 }
2126 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2127
2128 /* Initialize for the single interrupt case */
2129 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2130 dev->io_queues[HCTX_TYPE_READ] = 0;
2131
2132 /*
2133 * Some Apple controllers require all queues to use the
2134 * first vector.
2135 */
2136 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2137 irq_queues = 1;
2138
2139 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2140 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2141}
2142
2143static void nvme_disable_io_queues(struct nvme_dev *dev)
2144{
2145 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2146 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2147}
2148
2149static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2150{
2151 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2152}
2153
2154static int nvme_setup_io_queues(struct nvme_dev *dev)
2155{
2156 struct nvme_queue *adminq = &dev->queues[0];
2157 struct pci_dev *pdev = to_pci_dev(dev->dev);
2158 unsigned int nr_io_queues;
2159 unsigned long size;
2160 int result;
2161
2162 /*
2163 * Sample the module parameters once at reset time so that we have
2164 * stable values to work with.
2165 */
2166 dev->nr_write_queues = write_queues;
2167 dev->nr_poll_queues = poll_queues;
2168
2169 /*
2170 * If tags are shared with admin queue (Apple bug), then
2171 * make sure we only use one IO queue.
2172 */
2173 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2174 nr_io_queues = 1;
2175 else
2176 nr_io_queues = min(nvme_max_io_queues(dev),
2177 dev->nr_allocated_queues - 1);
2178
2179 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2180 if (result < 0)
2181 return result;
2182
2183 if (nr_io_queues == 0)
2184 return 0;
2185
2186 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2187
2188 if (dev->cmb_use_sqes) {
2189 result = nvme_cmb_qdepth(dev, nr_io_queues,
2190 sizeof(struct nvme_command));
2191 if (result > 0)
2192 dev->q_depth = result;
2193 else
2194 dev->cmb_use_sqes = false;
2195 }
2196
2197 do {
2198 size = db_bar_size(dev, nr_io_queues);
2199 result = nvme_remap_bar(dev, size);
2200 if (!result)
2201 break;
2202 if (!--nr_io_queues)
2203 return -ENOMEM;
2204 } while (1);
2205 adminq->q_db = dev->dbs;
2206
2207 retry:
2208 /* Deregister the admin queue's interrupt */
2209 pci_free_irq(pdev, 0, adminq);
2210
2211 /*
2212 * If we enable msix early due to not intx, disable it again before
2213 * setting up the full range we need.
2214 */
2215 pci_free_irq_vectors(pdev);
2216
2217 result = nvme_setup_irqs(dev, nr_io_queues);
2218 if (result <= 0)
2219 return -EIO;
2220
2221 dev->num_vecs = result;
2222 result = max(result - 1, 1);
2223 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2224
2225 /*
2226 * Should investigate if there's a performance win from allocating
2227 * more queues than interrupt vectors; it might allow the submission
2228 * path to scale better, even if the receive path is limited by the
2229 * number of interrupts.
2230 */
2231 result = queue_request_irq(adminq);
2232 if (result)
2233 return result;
2234 set_bit(NVMEQ_ENABLED, &adminq->flags);
2235
2236 result = nvme_create_io_queues(dev);
2237 if (result || dev->online_queues < 2)
2238 return result;
2239
2240 if (dev->online_queues - 1 < dev->max_qid) {
2241 nr_io_queues = dev->online_queues - 1;
2242 nvme_disable_io_queues(dev);
2243 nvme_suspend_io_queues(dev);
2244 goto retry;
2245 }
2246 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2247 dev->io_queues[HCTX_TYPE_DEFAULT],
2248 dev->io_queues[HCTX_TYPE_READ],
2249 dev->io_queues[HCTX_TYPE_POLL]);
2250 return 0;
2251}
2252
2253static void nvme_del_queue_end(struct request *req, blk_status_t error)
2254{
2255 struct nvme_queue *nvmeq = req->end_io_data;
2256
2257 blk_mq_free_request(req);
2258 complete(&nvmeq->delete_done);
2259}
2260
2261static void nvme_del_cq_end(struct request *req, blk_status_t error)
2262{
2263 struct nvme_queue *nvmeq = req->end_io_data;
2264
2265 if (error)
2266 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2267
2268 nvme_del_queue_end(req, error);
2269}
2270
2271static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2272{
2273 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2274 struct request *req;
2275 struct nvme_command cmd;
2276
2277 memset(&cmd, 0, sizeof(cmd));
2278 cmd.delete_queue.opcode = opcode;
2279 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2280
2281 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2282 if (IS_ERR(req))
2283 return PTR_ERR(req);
2284
2285 req->timeout = ADMIN_TIMEOUT;
2286 req->end_io_data = nvmeq;
2287
2288 init_completion(&nvmeq->delete_done);
2289 blk_execute_rq_nowait(q, NULL, req, false,
2290 opcode == nvme_admin_delete_cq ?
2291 nvme_del_cq_end : nvme_del_queue_end);
2292 return 0;
2293}
2294
2295static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2296{
2297 int nr_queues = dev->online_queues - 1, sent = 0;
2298 unsigned long timeout;
2299
2300 retry:
2301 timeout = ADMIN_TIMEOUT;
2302 while (nr_queues > 0) {
2303 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2304 break;
2305 nr_queues--;
2306 sent++;
2307 }
2308 while (sent) {
2309 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2310
2311 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2312 timeout);
2313 if (timeout == 0)
2314 return false;
2315
2316 sent--;
2317 if (nr_queues)
2318 goto retry;
2319 }
2320 return true;
2321}
2322
2323static void nvme_dev_add(struct nvme_dev *dev)
2324{
2325 int ret;
2326
2327 if (!dev->ctrl.tagset) {
2328 dev->tagset.ops = &nvme_mq_ops;
2329 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2330 dev->tagset.nr_maps = 2; /* default + read */
2331 if (dev->io_queues[HCTX_TYPE_POLL])
2332 dev->tagset.nr_maps++;
2333 dev->tagset.timeout = NVME_IO_TIMEOUT;
2334 dev->tagset.numa_node = dev_to_node(dev->dev);
2335 dev->tagset.queue_depth =
2336 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2337 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2338 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2339 dev->tagset.driver_data = dev;
2340
2341 /*
2342 * Some Apple controllers requires tags to be unique
2343 * across admin and IO queue, so reserve the first 32
2344 * tags of the IO queue.
2345 */
2346 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2347 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2348
2349 ret = blk_mq_alloc_tag_set(&dev->tagset);
2350 if (ret) {
2351 dev_warn(dev->ctrl.device,
2352 "IO queues tagset allocation failed %d\n", ret);
2353 return;
2354 }
2355 dev->ctrl.tagset = &dev->tagset;
2356 } else {
2357 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2358
2359 /* Free previously allocated queues that are no longer usable */
2360 nvme_free_queues(dev, dev->online_queues);
2361 }
2362
2363 nvme_dbbuf_set(dev);
2364}
2365
2366static int nvme_pci_enable(struct nvme_dev *dev)
2367{
2368 int result = -ENOMEM;
2369 struct pci_dev *pdev = to_pci_dev(dev->dev);
2370
2371 if (pci_enable_device_mem(pdev))
2372 return result;
2373
2374 pci_set_master(pdev);
2375
2376 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2377 goto disable;
2378
2379 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2380 result = -ENODEV;
2381 goto disable;
2382 }
2383
2384 /*
2385 * Some devices and/or platforms don't advertise or work with INTx
2386 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2387 * adjust this later.
2388 */
2389 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2390 if (result < 0)
2391 return result;
2392
2393 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2394
2395 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2396 io_queue_depth);
2397 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2398 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2399 dev->dbs = dev->bar + 4096;
2400
2401 /*
2402 * Some Apple controllers require a non-standard SQE size.
2403 * Interestingly they also seem to ignore the CC:IOSQES register
2404 * so we don't bother updating it here.
2405 */
2406 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2407 dev->io_sqes = 7;
2408 else
2409 dev->io_sqes = NVME_NVM_IOSQES;
2410
2411 /*
2412 * Temporary fix for the Apple controller found in the MacBook8,1 and
2413 * some MacBook7,1 to avoid controller resets and data loss.
2414 */
2415 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2416 dev->q_depth = 2;
2417 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2418 "set queue depth=%u to work around controller resets\n",
2419 dev->q_depth);
2420 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2421 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2422 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2423 dev->q_depth = 64;
2424 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2425 "set queue depth=%u\n", dev->q_depth);
2426 }
2427
2428 /*
2429 * Controllers with the shared tags quirk need the IO queue to be
2430 * big enough so that we get 32 tags for the admin queue
2431 */
2432 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2433 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2434 dev->q_depth = NVME_AQ_DEPTH + 2;
2435 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2436 dev->q_depth);
2437 }
2438
2439
2440 nvme_map_cmb(dev);
2441
2442 pci_enable_pcie_error_reporting(pdev);
2443 pci_save_state(pdev);
2444 return 0;
2445
2446 disable:
2447 pci_disable_device(pdev);
2448 return result;
2449}
2450
2451static void nvme_dev_unmap(struct nvme_dev *dev)
2452{
2453 if (dev->bar)
2454 iounmap(dev->bar);
2455 pci_release_mem_regions(to_pci_dev(dev->dev));
2456}
2457
2458static void nvme_pci_disable(struct nvme_dev *dev)
2459{
2460 struct pci_dev *pdev = to_pci_dev(dev->dev);
2461
2462 pci_free_irq_vectors(pdev);
2463
2464 if (pci_is_enabled(pdev)) {
2465 pci_disable_pcie_error_reporting(pdev);
2466 pci_disable_device(pdev);
2467 }
2468}
2469
2470static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2471{
2472 bool dead = true, freeze = false;
2473 struct pci_dev *pdev = to_pci_dev(dev->dev);
2474
2475 mutex_lock(&dev->shutdown_lock);
2476 if (pci_is_enabled(pdev)) {
2477 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2478
2479 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2480 dev->ctrl.state == NVME_CTRL_RESETTING) {
2481 freeze = true;
2482 nvme_start_freeze(&dev->ctrl);
2483 }
2484 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2485 pdev->error_state != pci_channel_io_normal);
2486 }
2487
2488 /*
2489 * Give the controller a chance to complete all entered requests if
2490 * doing a safe shutdown.
2491 */
2492 if (!dead && shutdown && freeze)
2493 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2494
2495 nvme_stop_queues(&dev->ctrl);
2496
2497 if (!dead && dev->ctrl.queue_count > 0) {
2498 nvme_disable_io_queues(dev);
2499 nvme_disable_admin_queue(dev, shutdown);
2500 }
2501 nvme_suspend_io_queues(dev);
2502 nvme_suspend_queue(&dev->queues[0]);
2503 nvme_pci_disable(dev);
2504 nvme_reap_pending_cqes(dev);
2505
2506 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2507 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2508 blk_mq_tagset_wait_completed_request(&dev->tagset);
2509 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2510
2511 /*
2512 * The driver will not be starting up queues again if shutting down so
2513 * must flush all entered requests to their failed completion to avoid
2514 * deadlocking blk-mq hot-cpu notifier.
2515 */
2516 if (shutdown) {
2517 nvme_start_queues(&dev->ctrl);
2518 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2519 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2520 }
2521 mutex_unlock(&dev->shutdown_lock);
2522}
2523
2524static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2525{
2526 if (!nvme_wait_reset(&dev->ctrl))
2527 return -EBUSY;
2528 nvme_dev_disable(dev, shutdown);
2529 return 0;
2530}
2531
2532static int nvme_setup_prp_pools(struct nvme_dev *dev)
2533{
2534 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2535 PAGE_SIZE, PAGE_SIZE, 0);
2536 if (!dev->prp_page_pool)
2537 return -ENOMEM;
2538
2539 /* Optimisation for I/Os between 4k and 128k */
2540 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2541 256, 256, 0);
2542 if (!dev->prp_small_pool) {
2543 dma_pool_destroy(dev->prp_page_pool);
2544 return -ENOMEM;
2545 }
2546 return 0;
2547}
2548
2549static void nvme_release_prp_pools(struct nvme_dev *dev)
2550{
2551 dma_pool_destroy(dev->prp_page_pool);
2552 dma_pool_destroy(dev->prp_small_pool);
2553}
2554
2555static void nvme_free_tagset(struct nvme_dev *dev)
2556{
2557 if (dev->tagset.tags)
2558 blk_mq_free_tag_set(&dev->tagset);
2559 dev->ctrl.tagset = NULL;
2560}
2561
2562static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2563{
2564 struct nvme_dev *dev = to_nvme_dev(ctrl);
2565
2566 nvme_dbbuf_dma_free(dev);
2567 put_device(dev->dev);
2568 nvme_free_tagset(dev);
2569 if (dev->ctrl.admin_q)
2570 blk_put_queue(dev->ctrl.admin_q);
2571 kfree(dev->queues);
2572 free_opal_dev(dev->ctrl.opal_dev);
2573 mempool_destroy(dev->iod_mempool);
2574 kfree(dev);
2575}
2576
2577static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2578{
2579 /*
2580 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2581 * may be holding this pci_dev's device lock.
2582 */
2583 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2584 nvme_get_ctrl(&dev->ctrl);
2585 nvme_dev_disable(dev, false);
2586 nvme_kill_queues(&dev->ctrl);
2587 if (!queue_work(nvme_wq, &dev->remove_work))
2588 nvme_put_ctrl(&dev->ctrl);
2589}
2590
2591static void nvme_reset_work(struct work_struct *work)
2592{
2593 struct nvme_dev *dev =
2594 container_of(work, struct nvme_dev, ctrl.reset_work);
2595 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2596 int result;
2597
2598 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2599 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2600 dev->ctrl.state);
2601 result = -ENODEV;
2602 goto out;
2603 }
2604
2605 /*
2606 * If we're called to reset a live controller first shut it down before
2607 * moving on.
2608 */
2609 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2610 nvme_dev_disable(dev, false);
2611 nvme_sync_queues(&dev->ctrl);
2612
2613 mutex_lock(&dev->shutdown_lock);
2614 result = nvme_pci_enable(dev);
2615 if (result)
2616 goto out_unlock;
2617
2618 result = nvme_pci_configure_admin_queue(dev);
2619 if (result)
2620 goto out_unlock;
2621
2622 result = nvme_alloc_admin_tags(dev);
2623 if (result)
2624 goto out_unlock;
2625
2626 /*
2627 * Limit the max command size to prevent iod->sg allocations going
2628 * over a single page.
2629 */
2630 dev->ctrl.max_hw_sectors = min_t(u32,
2631 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2632 dev->ctrl.max_segments = NVME_MAX_SEGS;
2633
2634 /*
2635 * Don't limit the IOMMU merged segment size.
2636 */
2637 dma_set_max_seg_size(dev->dev, 0xffffffff);
2638
2639 mutex_unlock(&dev->shutdown_lock);
2640
2641 /*
2642 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2643 * initializing procedure here.
2644 */
2645 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2646 dev_warn(dev->ctrl.device,
2647 "failed to mark controller CONNECTING\n");
2648 result = -EBUSY;
2649 goto out;
2650 }
2651
2652 result = nvme_init_identify(&dev->ctrl);
2653 if (result)
2654 goto out;
2655
2656 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2657 if (!dev->ctrl.opal_dev)
2658 dev->ctrl.opal_dev =
2659 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2660 else if (was_suspend)
2661 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2662 } else {
2663 free_opal_dev(dev->ctrl.opal_dev);
2664 dev->ctrl.opal_dev = NULL;
2665 }
2666
2667 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2668 result = nvme_dbbuf_dma_alloc(dev);
2669 if (result)
2670 dev_warn(dev->dev,
2671 "unable to allocate dma for dbbuf\n");
2672 }
2673
2674 if (dev->ctrl.hmpre) {
2675 result = nvme_setup_host_mem(dev);
2676 if (result < 0)
2677 goto out;
2678 }
2679
2680 result = nvme_setup_io_queues(dev);
2681 if (result)
2682 goto out;
2683
2684 /*
2685 * Keep the controller around but remove all namespaces if we don't have
2686 * any working I/O queue.
2687 */
2688 if (dev->online_queues < 2) {
2689 dev_warn(dev->ctrl.device, "IO queues not created\n");
2690 nvme_kill_queues(&dev->ctrl);
2691 nvme_remove_namespaces(&dev->ctrl);
2692 nvme_free_tagset(dev);
2693 } else {
2694 nvme_start_queues(&dev->ctrl);
2695 nvme_wait_freeze(&dev->ctrl);
2696 nvme_dev_add(dev);
2697 nvme_unfreeze(&dev->ctrl);
2698 }
2699
2700 /*
2701 * If only admin queue live, keep it to do further investigation or
2702 * recovery.
2703 */
2704 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2705 dev_warn(dev->ctrl.device,
2706 "failed to mark controller live state\n");
2707 result = -ENODEV;
2708 goto out;
2709 }
2710
2711 nvme_start_ctrl(&dev->ctrl);
2712 return;
2713
2714 out_unlock:
2715 mutex_unlock(&dev->shutdown_lock);
2716 out:
2717 if (result)
2718 dev_warn(dev->ctrl.device,
2719 "Removing after probe failure status: %d\n", result);
2720 nvme_remove_dead_ctrl(dev);
2721}
2722
2723static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2724{
2725 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2726 struct pci_dev *pdev = to_pci_dev(dev->dev);
2727
2728 if (pci_get_drvdata(pdev))
2729 device_release_driver(&pdev->dev);
2730 nvme_put_ctrl(&dev->ctrl);
2731}
2732
2733static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2734{
2735 *val = readl(to_nvme_dev(ctrl)->bar + off);
2736 return 0;
2737}
2738
2739static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2740{
2741 writel(val, to_nvme_dev(ctrl)->bar + off);
2742 return 0;
2743}
2744
2745static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2746{
2747 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2748 return 0;
2749}
2750
2751static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2752{
2753 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2754
2755 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2756}
2757
2758static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2759 .name = "pcie",
2760 .module = THIS_MODULE,
2761 .flags = NVME_F_METADATA_SUPPORTED |
2762 NVME_F_PCI_P2PDMA,
2763 .reg_read32 = nvme_pci_reg_read32,
2764 .reg_write32 = nvme_pci_reg_write32,
2765 .reg_read64 = nvme_pci_reg_read64,
2766 .free_ctrl = nvme_pci_free_ctrl,
2767 .submit_async_event = nvme_pci_submit_async_event,
2768 .get_address = nvme_pci_get_address,
2769};
2770
2771static int nvme_dev_map(struct nvme_dev *dev)
2772{
2773 struct pci_dev *pdev = to_pci_dev(dev->dev);
2774
2775 if (pci_request_mem_regions(pdev, "nvme"))
2776 return -ENODEV;
2777
2778 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2779 goto release;
2780
2781 return 0;
2782 release:
2783 pci_release_mem_regions(pdev);
2784 return -ENODEV;
2785}
2786
2787static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2788{
2789 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2790 /*
2791 * Several Samsung devices seem to drop off the PCIe bus
2792 * randomly when APST is on and uses the deepest sleep state.
2793 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2794 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2795 * 950 PRO 256GB", but it seems to be restricted to two Dell
2796 * laptops.
2797 */
2798 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2799 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2800 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2801 return NVME_QUIRK_NO_DEEPEST_PS;
2802 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2803 /*
2804 * Samsung SSD 960 EVO drops off the PCIe bus after system
2805 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2806 * within few minutes after bootup on a Coffee Lake board -
2807 * ASUS PRIME Z370-A
2808 */
2809 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2810 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2811 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2812 return NVME_QUIRK_NO_APST;
2813 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2814 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2815 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2816 /*
2817 * Forcing to use host managed nvme power settings for
2818 * lowest idle power with quick resume latency on
2819 * Samsung and Toshiba SSDs based on suspend behavior
2820 * on Coffee Lake board for LENOVO C640
2821 */
2822 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2823 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2824 return NVME_QUIRK_SIMPLE_SUSPEND;
2825 }
2826
2827 /*
2828 * NVMe SSD drops off the PCIe bus after system idle
2829 * for 10 hours on a Lenovo N60z board.
2830 */
2831 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
2832 return NVME_QUIRK_NO_APST;
2833
2834 return 0;
2835}
2836
2837static void nvme_async_probe(void *data, async_cookie_t cookie)
2838{
2839 struct nvme_dev *dev = data;
2840
2841 flush_work(&dev->ctrl.reset_work);
2842 flush_work(&dev->ctrl.scan_work);
2843 nvme_put_ctrl(&dev->ctrl);
2844}
2845
2846static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2847{
2848 int node, result = -ENOMEM;
2849 struct nvme_dev *dev;
2850 unsigned long quirks = id->driver_data;
2851 size_t alloc_size;
2852
2853 node = dev_to_node(&pdev->dev);
2854
2855 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2856 if (!dev)
2857 return -ENOMEM;
2858
2859 dev->nr_write_queues = write_queues;
2860 dev->nr_poll_queues = poll_queues;
2861 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2862 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2863 sizeof(struct nvme_queue), GFP_KERNEL, node);
2864 if (!dev->queues)
2865 goto free;
2866
2867 dev->dev = get_device(&pdev->dev);
2868 pci_set_drvdata(pdev, dev);
2869
2870 result = nvme_dev_map(dev);
2871 if (result)
2872 goto put_pci;
2873
2874 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2875 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2876 mutex_init(&dev->shutdown_lock);
2877
2878 result = nvme_setup_prp_pools(dev);
2879 if (result)
2880 goto unmap;
2881
2882 quirks |= check_vendor_combination_bug(pdev);
2883
2884 /*
2885 * Double check that our mempool alloc size will cover the biggest
2886 * command we support.
2887 */
2888 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2889 NVME_MAX_SEGS, true);
2890 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2891
2892 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2893 mempool_kfree,
2894 (void *) alloc_size,
2895 GFP_KERNEL, node);
2896 if (!dev->iod_mempool) {
2897 result = -ENOMEM;
2898 goto release_pools;
2899 }
2900
2901 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2902 quirks);
2903 if (result)
2904 goto release_mempool;
2905
2906 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2907
2908 nvme_reset_ctrl(&dev->ctrl);
2909 async_schedule(nvme_async_probe, dev);
2910
2911 return 0;
2912
2913 release_mempool:
2914 mempool_destroy(dev->iod_mempool);
2915 release_pools:
2916 nvme_release_prp_pools(dev);
2917 unmap:
2918 nvme_dev_unmap(dev);
2919 put_pci:
2920 put_device(dev->dev);
2921 free:
2922 kfree(dev->queues);
2923 kfree(dev);
2924 return result;
2925}
2926
2927static void nvme_reset_prepare(struct pci_dev *pdev)
2928{
2929 struct nvme_dev *dev = pci_get_drvdata(pdev);
2930
2931 /*
2932 * We don't need to check the return value from waiting for the reset
2933 * state as pci_dev device lock is held, making it impossible to race
2934 * with ->remove().
2935 */
2936 nvme_disable_prepare_reset(dev, false);
2937 nvme_sync_queues(&dev->ctrl);
2938}
2939
2940static void nvme_reset_done(struct pci_dev *pdev)
2941{
2942 struct nvme_dev *dev = pci_get_drvdata(pdev);
2943
2944 if (!nvme_try_sched_reset(&dev->ctrl))
2945 flush_work(&dev->ctrl.reset_work);
2946}
2947
2948static void nvme_shutdown(struct pci_dev *pdev)
2949{
2950 struct nvme_dev *dev = pci_get_drvdata(pdev);
2951 nvme_disable_prepare_reset(dev, true);
2952}
2953
2954/*
2955 * The driver's remove may be called on a device in a partially initialized
2956 * state. This function must not have any dependencies on the device state in
2957 * order to proceed.
2958 */
2959static void nvme_remove(struct pci_dev *pdev)
2960{
2961 struct nvme_dev *dev = pci_get_drvdata(pdev);
2962
2963 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2964 pci_set_drvdata(pdev, NULL);
2965
2966 if (!pci_device_is_present(pdev)) {
2967 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2968 nvme_dev_disable(dev, true);
2969 }
2970
2971 flush_work(&dev->ctrl.reset_work);
2972 nvme_stop_ctrl(&dev->ctrl);
2973 nvme_remove_namespaces(&dev->ctrl);
2974 nvme_dev_disable(dev, true);
2975 nvme_release_cmb(dev);
2976 nvme_free_host_mem(dev);
2977 nvme_dev_remove_admin(dev);
2978 nvme_free_queues(dev, 0);
2979 nvme_uninit_ctrl(&dev->ctrl);
2980 nvme_release_prp_pools(dev);
2981 nvme_dev_unmap(dev);
2982 nvme_put_ctrl(&dev->ctrl);
2983}
2984
2985#ifdef CONFIG_PM_SLEEP
2986static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2987{
2988 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2989}
2990
2991static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2992{
2993 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2994}
2995
2996static int nvme_resume(struct device *dev)
2997{
2998 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2999 struct nvme_ctrl *ctrl = &ndev->ctrl;
3000
3001 if (ndev->last_ps == U32_MAX ||
3002 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3003 return nvme_try_sched_reset(&ndev->ctrl);
3004 return 0;
3005}
3006
3007static int nvme_suspend(struct device *dev)
3008{
3009 struct pci_dev *pdev = to_pci_dev(dev);
3010 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3011 struct nvme_ctrl *ctrl = &ndev->ctrl;
3012 int ret = -EBUSY;
3013
3014 ndev->last_ps = U32_MAX;
3015
3016 /*
3017 * The platform does not remove power for a kernel managed suspend so
3018 * use host managed nvme power settings for lowest idle power if
3019 * possible. This should have quicker resume latency than a full device
3020 * shutdown. But if the firmware is involved after the suspend or the
3021 * device does not support any non-default power states, shut down the
3022 * device fully.
3023 *
3024 * If ASPM is not enabled for the device, shut down the device and allow
3025 * the PCI bus layer to put it into D3 in order to take the PCIe link
3026 * down, so as to allow the platform to achieve its minimum low-power
3027 * state (which may not be possible if the link is up).
3028 *
3029 * If a host memory buffer is enabled, shut down the device as the NVMe
3030 * specification allows the device to access the host memory buffer in
3031 * host DRAM from all power states, but hosts will fail access to DRAM
3032 * during S3.
3033 */
3034 if (pm_suspend_via_firmware() || !ctrl->npss ||
3035 !pcie_aspm_enabled(pdev) ||
3036 ndev->nr_host_mem_descs ||
3037 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3038 return nvme_disable_prepare_reset(ndev, true);
3039
3040 nvme_start_freeze(ctrl);
3041 nvme_wait_freeze(ctrl);
3042 nvme_sync_queues(ctrl);
3043
3044 if (ctrl->state != NVME_CTRL_LIVE)
3045 goto unfreeze;
3046
3047 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3048 if (ret < 0)
3049 goto unfreeze;
3050
3051 /*
3052 * A saved state prevents pci pm from generically controlling the
3053 * device's power. If we're using protocol specific settings, we don't
3054 * want pci interfering.
3055 */
3056 pci_save_state(pdev);
3057
3058 ret = nvme_set_power_state(ctrl, ctrl->npss);
3059 if (ret < 0)
3060 goto unfreeze;
3061
3062 if (ret) {
3063 /* discard the saved state */
3064 pci_load_saved_state(pdev, NULL);
3065
3066 /*
3067 * Clearing npss forces a controller reset on resume. The
3068 * correct value will be resdicovered then.
3069 */
3070 ret = nvme_disable_prepare_reset(ndev, true);
3071 ctrl->npss = 0;
3072 }
3073unfreeze:
3074 nvme_unfreeze(ctrl);
3075 return ret;
3076}
3077
3078static int nvme_simple_suspend(struct device *dev)
3079{
3080 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3081 return nvme_disable_prepare_reset(ndev, true);
3082}
3083
3084static int nvme_simple_resume(struct device *dev)
3085{
3086 struct pci_dev *pdev = to_pci_dev(dev);
3087 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3088
3089 return nvme_try_sched_reset(&ndev->ctrl);
3090}
3091
3092static const struct dev_pm_ops nvme_dev_pm_ops = {
3093 .suspend = nvme_suspend,
3094 .resume = nvme_resume,
3095 .freeze = nvme_simple_suspend,
3096 .thaw = nvme_simple_resume,
3097 .poweroff = nvme_simple_suspend,
3098 .restore = nvme_simple_resume,
3099};
3100#endif /* CONFIG_PM_SLEEP */
3101
3102static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3103 pci_channel_state_t state)
3104{
3105 struct nvme_dev *dev = pci_get_drvdata(pdev);
3106
3107 /*
3108 * A frozen channel requires a reset. When detected, this method will
3109 * shutdown the controller to quiesce. The controller will be restarted
3110 * after the slot reset through driver's slot_reset callback.
3111 */
3112 switch (state) {
3113 case pci_channel_io_normal:
3114 return PCI_ERS_RESULT_CAN_RECOVER;
3115 case pci_channel_io_frozen:
3116 dev_warn(dev->ctrl.device,
3117 "frozen state error detected, reset controller\n");
3118 nvme_dev_disable(dev, false);
3119 return PCI_ERS_RESULT_NEED_RESET;
3120 case pci_channel_io_perm_failure:
3121 dev_warn(dev->ctrl.device,
3122 "failure state error detected, request disconnect\n");
3123 return PCI_ERS_RESULT_DISCONNECT;
3124 }
3125 return PCI_ERS_RESULT_NEED_RESET;
3126}
3127
3128static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3129{
3130 struct nvme_dev *dev = pci_get_drvdata(pdev);
3131
3132 dev_info(dev->ctrl.device, "restart after slot reset\n");
3133 pci_restore_state(pdev);
3134 nvme_reset_ctrl(&dev->ctrl);
3135 return PCI_ERS_RESULT_RECOVERED;
3136}
3137
3138static void nvme_error_resume(struct pci_dev *pdev)
3139{
3140 struct nvme_dev *dev = pci_get_drvdata(pdev);
3141
3142 flush_work(&dev->ctrl.reset_work);
3143}
3144
3145static const struct pci_error_handlers nvme_err_handler = {
3146 .error_detected = nvme_error_detected,
3147 .slot_reset = nvme_slot_reset,
3148 .resume = nvme_error_resume,
3149 .reset_prepare = nvme_reset_prepare,
3150 .reset_done = nvme_reset_done,
3151};
3152
3153static const struct pci_device_id nvme_id_table[] = {
3154 { PCI_VDEVICE(INTEL, 0x0953),
3155 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3156 NVME_QUIRK_DEALLOCATE_ZEROES, },
3157 { PCI_VDEVICE(INTEL, 0x0a53),
3158 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3159 NVME_QUIRK_DEALLOCATE_ZEROES, },
3160 { PCI_VDEVICE(INTEL, 0x0a54),
3161 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3162 NVME_QUIRK_DEALLOCATE_ZEROES, },
3163 { PCI_VDEVICE(INTEL, 0x0a55),
3164 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3165 NVME_QUIRK_DEALLOCATE_ZEROES, },
3166 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3167 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3168 NVME_QUIRK_MEDIUM_PRIO_SQ |
3169 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3170 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3171 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3172 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3173 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3174 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3175 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3176 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3177 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3178 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3179 NVME_QUIRK_NO_NS_DESC_LIST, },
3180 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3181 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3182 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3183 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3184 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3185 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3186 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3187 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3188 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3189 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3190 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3191 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3192 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3193 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3194 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3195 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3196 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3197 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3198 .driver_data = NVME_QUIRK_LIGHTNVM, },
3199 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3200 .driver_data = NVME_QUIRK_LIGHTNVM, },
3201 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3202 .driver_data = NVME_QUIRK_LIGHTNVM, },
3203 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3204 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3205 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3206 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3207 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3208 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3209 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3210 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3211 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3212 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3213 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3214 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3215 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3216 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3217 NVME_QUIRK_128_BYTES_SQES |
3218 NVME_QUIRK_SHARED_TAGS },
3219
3220 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3221 { 0, }
3222};
3223MODULE_DEVICE_TABLE(pci, nvme_id_table);
3224
3225static struct pci_driver nvme_driver = {
3226 .name = "nvme",
3227 .id_table = nvme_id_table,
3228 .probe = nvme_probe,
3229 .remove = nvme_remove,
3230 .shutdown = nvme_shutdown,
3231#ifdef CONFIG_PM_SLEEP
3232 .driver = {
3233 .pm = &nvme_dev_pm_ops,
3234 },
3235#endif
3236 .sriov_configure = pci_sriov_configure_simple,
3237 .err_handler = &nvme_err_handler,
3238};
3239
3240static int __init nvme_init(void)
3241{
3242 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3243 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3244 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3245 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3246 return pci_register_driver(&nvme_driver);
3247}
3248
3249static void __exit nvme_exit(void)
3250{
3251 pci_unregister_driver(&nvme_driver);
3252 flush_workqueue(nvme_wq);
3253}
3254
3255MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3256MODULE_LICENSE("GPL");
3257MODULE_VERSION("1.0");
3258module_init(nvme_init);
3259module_exit(nvme_exit);