blob: 6de507d88f5f65f3924a9ebcb5012ac1593bac1d [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <rdma/mr_pool.h>
11#include <linux/err.h>
12#include <linux/string.h>
13#include <linux/atomic.h>
14#include <linux/blk-mq.h>
15#include <linux/blk-mq-rdma.h>
16#include <linux/types.h>
17#include <linux/list.h>
18#include <linux/mutex.h>
19#include <linux/scatterlist.h>
20#include <linux/nvme.h>
21#include <asm/unaligned.h>
22
23#include <rdma/ib_verbs.h>
24#include <rdma/rdma_cm.h>
25#include <linux/nvme-rdma.h>
26
27#include "nvme.h"
28#include "fabrics.h"
29
30
31#define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
32
33#define NVME_RDMA_MAX_SEGMENTS 256
34
35#define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37struct nvme_rdma_device {
38 struct ib_device *dev;
39 struct ib_pd *pd;
40 struct kref ref;
41 struct list_head entry;
42 unsigned int num_inline_segments;
43};
44
45struct nvme_rdma_qe {
46 struct ib_cqe cqe;
47 void *data;
48 u64 dma;
49};
50
51struct nvme_rdma_queue;
52struct nvme_rdma_request {
53 struct nvme_request req;
54 struct ib_mr *mr;
55 struct nvme_rdma_qe sqe;
56 union nvme_result result;
57 __le16 status;
58 refcount_t ref;
59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60 u32 num_sge;
61 int nents;
62 struct ib_reg_wr reg_wr;
63 struct ib_cqe reg_cqe;
64 struct nvme_rdma_queue *queue;
65 struct sg_table sg_table;
66 struct scatterlist first_sgl[];
67};
68
69enum nvme_rdma_queue_flags {
70 NVME_RDMA_Q_ALLOCATED = 0,
71 NVME_RDMA_Q_LIVE = 1,
72 NVME_RDMA_Q_TR_READY = 2,
73};
74
75struct nvme_rdma_queue {
76 struct nvme_rdma_qe *rsp_ring;
77 int queue_size;
78 size_t cmnd_capsule_len;
79 struct nvme_rdma_ctrl *ctrl;
80 struct nvme_rdma_device *device;
81 struct ib_cq *ib_cq;
82 struct ib_qp *qp;
83
84 unsigned long flags;
85 struct rdma_cm_id *cm_id;
86 int cm_error;
87 struct completion cm_done;
88};
89
90struct nvme_rdma_ctrl {
91 /* read only in the hot path */
92 struct nvme_rdma_queue *queues;
93
94 /* other member variables */
95 struct blk_mq_tag_set tag_set;
96 struct work_struct err_work;
97
98 struct nvme_rdma_qe async_event_sqe;
99
100 struct delayed_work reconnect_work;
101
102 struct list_head list;
103
104 struct blk_mq_tag_set admin_tag_set;
105 struct nvme_rdma_device *device;
106
107 u32 max_fr_pages;
108
109 struct sockaddr_storage addr;
110 struct sockaddr_storage src_addr;
111
112 struct nvme_ctrl ctrl;
113 bool use_inline_data;
114 u32 io_queues[HCTX_MAX_TYPES];
115};
116
117static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118{
119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120}
121
122static LIST_HEAD(device_list);
123static DEFINE_MUTEX(device_list_mutex);
124
125static LIST_HEAD(nvme_rdma_ctrl_list);
126static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127
128/*
129 * Disabling this option makes small I/O goes faster, but is fundamentally
130 * unsafe. With it turned off we will have to register a global rkey that
131 * allows read and write access to all physical memory.
132 */
133static bool register_always = true;
134module_param(register_always, bool, 0444);
135MODULE_PARM_DESC(register_always,
136 "Use memory registration even for contiguous memory regions");
137
138static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 struct rdma_cm_event *event);
140static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141
142static const struct blk_mq_ops nvme_rdma_mq_ops;
143static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144
145/* XXX: really should move to a generic header sooner or later.. */
146static inline void put_unaligned_le24(u32 val, u8 *p)
147{
148 *p++ = val;
149 *p++ = val >> 8;
150 *p++ = val >> 16;
151}
152
153static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154{
155 return queue - queue->ctrl->queues;
156}
157
158static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159{
160 return nvme_rdma_queue_idx(queue) >
161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162 queue->ctrl->io_queues[HCTX_TYPE_READ];
163}
164
165static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166{
167 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168}
169
170static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 size_t capsule_size, enum dma_data_direction dir)
172{
173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 kfree(qe->data);
175}
176
177static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 size_t capsule_size, enum dma_data_direction dir)
179{
180 qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 if (!qe->data)
182 return -ENOMEM;
183
184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 kfree(qe->data);
187 qe->data = NULL;
188 return -ENOMEM;
189 }
190
191 return 0;
192}
193
194static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 size_t capsule_size, enum dma_data_direction dir)
197{
198 int i;
199
200 for (i = 0; i < ib_queue_size; i++)
201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 kfree(ring);
203}
204
205static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 size_t ib_queue_size, size_t capsule_size,
207 enum dma_data_direction dir)
208{
209 struct nvme_rdma_qe *ring;
210 int i;
211
212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 if (!ring)
214 return NULL;
215
216 /*
217 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
218 * lifetime. It's safe, since any chage in the underlying RDMA device
219 * will issue error recovery and queue re-creation.
220 */
221 for (i = 0; i < ib_queue_size; i++) {
222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223 goto out_free_ring;
224 }
225
226 return ring;
227
228out_free_ring:
229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230 return NULL;
231}
232
233static void nvme_rdma_qp_event(struct ib_event *event, void *context)
234{
235 pr_debug("QP event %s (%d)\n",
236 ib_event_msg(event->event), event->event);
237
238}
239
240static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
241{
242 int ret;
243
244 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
245 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
246 if (ret < 0)
247 return ret;
248 if (ret == 0)
249 return -ETIMEDOUT;
250 WARN_ON_ONCE(queue->cm_error > 0);
251 return queue->cm_error;
252}
253
254static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
255{
256 struct nvme_rdma_device *dev = queue->device;
257 struct ib_qp_init_attr init_attr;
258 int ret;
259
260 memset(&init_attr, 0, sizeof(init_attr));
261 init_attr.event_handler = nvme_rdma_qp_event;
262 /* +1 for drain */
263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264 /* +1 for drain */
265 init_attr.cap.max_recv_wr = queue->queue_size + 1;
266 init_attr.cap.max_recv_sge = 1;
267 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269 init_attr.qp_type = IB_QPT_RC;
270 init_attr.send_cq = queue->ib_cq;
271 init_attr.recv_cq = queue->ib_cq;
272
273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
274
275 queue->qp = queue->cm_id->qp;
276 return ret;
277}
278
279static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
280 struct request *rq, unsigned int hctx_idx)
281{
282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283
284 kfree(req->sqe.data);
285}
286
287static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 struct request *rq, unsigned int hctx_idx,
289 unsigned int numa_node)
290{
291 struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295
296 nvme_req(rq)->ctrl = &ctrl->ctrl;
297 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
298 if (!req->sqe.data)
299 return -ENOMEM;
300
301 req->queue = queue;
302
303 return 0;
304}
305
306static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
307 unsigned int hctx_idx)
308{
309 struct nvme_rdma_ctrl *ctrl = data;
310 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
311
312 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
313
314 hctx->driver_data = queue;
315 return 0;
316}
317
318static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319 unsigned int hctx_idx)
320{
321 struct nvme_rdma_ctrl *ctrl = data;
322 struct nvme_rdma_queue *queue = &ctrl->queues[0];
323
324 BUG_ON(hctx_idx != 0);
325
326 hctx->driver_data = queue;
327 return 0;
328}
329
330static void nvme_rdma_free_dev(struct kref *ref)
331{
332 struct nvme_rdma_device *ndev =
333 container_of(ref, struct nvme_rdma_device, ref);
334
335 mutex_lock(&device_list_mutex);
336 list_del(&ndev->entry);
337 mutex_unlock(&device_list_mutex);
338
339 ib_dealloc_pd(ndev->pd);
340 kfree(ndev);
341}
342
343static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
344{
345 kref_put(&dev->ref, nvme_rdma_free_dev);
346}
347
348static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
349{
350 return kref_get_unless_zero(&dev->ref);
351}
352
353static struct nvme_rdma_device *
354nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
355{
356 struct nvme_rdma_device *ndev;
357
358 mutex_lock(&device_list_mutex);
359 list_for_each_entry(ndev, &device_list, entry) {
360 if (ndev->dev->node_guid == cm_id->device->node_guid &&
361 nvme_rdma_dev_get(ndev))
362 goto out_unlock;
363 }
364
365 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
366 if (!ndev)
367 goto out_err;
368
369 ndev->dev = cm_id->device;
370 kref_init(&ndev->ref);
371
372 ndev->pd = ib_alloc_pd(ndev->dev,
373 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
374 if (IS_ERR(ndev->pd))
375 goto out_free_dev;
376
377 if (!(ndev->dev->attrs.device_cap_flags &
378 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
379 dev_err(&ndev->dev->dev,
380 "Memory registrations not supported.\n");
381 goto out_free_pd;
382 }
383
384 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
385 ndev->dev->attrs.max_send_sge - 1);
386 list_add(&ndev->entry, &device_list);
387out_unlock:
388 mutex_unlock(&device_list_mutex);
389 return ndev;
390
391out_free_pd:
392 ib_dealloc_pd(ndev->pd);
393out_free_dev:
394 kfree(ndev);
395out_err:
396 mutex_unlock(&device_list_mutex);
397 return NULL;
398}
399
400static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
401{
402 struct nvme_rdma_device *dev;
403 struct ib_device *ibdev;
404
405 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
406 return;
407
408 dev = queue->device;
409 ibdev = dev->dev;
410
411 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
412
413 /*
414 * The cm_id object might have been destroyed during RDMA connection
415 * establishment error flow to avoid getting other cma events, thus
416 * the destruction of the QP shouldn't use rdma_cm API.
417 */
418 ib_destroy_qp(queue->qp);
419 ib_free_cq(queue->ib_cq);
420
421 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
422 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
423
424 nvme_rdma_dev_put(dev);
425}
426
427static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
428{
429 return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
430 ibdev->attrs.max_fast_reg_page_list_len - 1);
431}
432
433static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
434{
435 struct ib_device *ibdev;
436 const int send_wr_factor = 3; /* MR, SEND, INV */
437 const int cq_factor = send_wr_factor + 1; /* + RECV */
438 int comp_vector, idx = nvme_rdma_queue_idx(queue);
439 enum ib_poll_context poll_ctx;
440 int ret, pages_per_mr;
441
442 queue->device = nvme_rdma_find_get_device(queue->cm_id);
443 if (!queue->device) {
444 dev_err(queue->cm_id->device->dev.parent,
445 "no client data found!\n");
446 return -ECONNREFUSED;
447 }
448 ibdev = queue->device->dev;
449
450 /*
451 * Spread I/O queues completion vectors according their queue index.
452 * Admin queues can always go on completion vector 0.
453 */
454 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
455
456 /* Polling queues need direct cq polling context */
457 if (nvme_rdma_poll_queue(queue))
458 poll_ctx = IB_POLL_DIRECT;
459 else
460 poll_ctx = IB_POLL_SOFTIRQ;
461
462 /* +1 for ib_stop_cq */
463 queue->ib_cq = ib_alloc_cq(ibdev, queue,
464 cq_factor * queue->queue_size + 1,
465 comp_vector, poll_ctx);
466 if (IS_ERR(queue->ib_cq)) {
467 ret = PTR_ERR(queue->ib_cq);
468 goto out_put_dev;
469 }
470
471 ret = nvme_rdma_create_qp(queue, send_wr_factor);
472 if (ret)
473 goto out_destroy_ib_cq;
474
475 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
476 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
477 if (!queue->rsp_ring) {
478 ret = -ENOMEM;
479 goto out_destroy_qp;
480 }
481
482 /*
483 * Currently we don't use SG_GAPS MR's so if the first entry is
484 * misaligned we'll end up using two entries for a single data page,
485 * so one additional entry is required.
486 */
487 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1;
488 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
489 queue->queue_size,
490 IB_MR_TYPE_MEM_REG,
491 pages_per_mr, 0);
492 if (ret) {
493 dev_err(queue->ctrl->ctrl.device,
494 "failed to initialize MR pool sized %d for QID %d\n",
495 queue->queue_size, idx);
496 goto out_destroy_ring;
497 }
498
499 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
500
501 return 0;
502
503out_destroy_ring:
504 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
505 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
506out_destroy_qp:
507 rdma_destroy_qp(queue->cm_id);
508out_destroy_ib_cq:
509 ib_free_cq(queue->ib_cq);
510out_put_dev:
511 nvme_rdma_dev_put(queue->device);
512 return ret;
513}
514
515static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
516 int idx, size_t queue_size)
517{
518 struct nvme_rdma_queue *queue;
519 struct sockaddr *src_addr = NULL;
520 int ret;
521
522 queue = &ctrl->queues[idx];
523 queue->ctrl = ctrl;
524 init_completion(&queue->cm_done);
525
526 if (idx > 0)
527 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
528 else
529 queue->cmnd_capsule_len = sizeof(struct nvme_command);
530
531 queue->queue_size = queue_size;
532
533 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
534 RDMA_PS_TCP, IB_QPT_RC);
535 if (IS_ERR(queue->cm_id)) {
536 dev_info(ctrl->ctrl.device,
537 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
538 return PTR_ERR(queue->cm_id);
539 }
540
541 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
542 src_addr = (struct sockaddr *)&ctrl->src_addr;
543
544 queue->cm_error = -ETIMEDOUT;
545 ret = rdma_resolve_addr(queue->cm_id, src_addr,
546 (struct sockaddr *)&ctrl->addr,
547 NVME_RDMA_CONNECT_TIMEOUT_MS);
548 if (ret) {
549 dev_info(ctrl->ctrl.device,
550 "rdma_resolve_addr failed (%d).\n", ret);
551 goto out_destroy_cm_id;
552 }
553
554 ret = nvme_rdma_wait_for_cm(queue);
555 if (ret) {
556 dev_info(ctrl->ctrl.device,
557 "rdma connection establishment failed (%d)\n", ret);
558 goto out_destroy_cm_id;
559 }
560
561 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
562
563 return 0;
564
565out_destroy_cm_id:
566 rdma_destroy_id(queue->cm_id);
567 nvme_rdma_destroy_queue_ib(queue);
568 return ret;
569}
570
571static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
572{
573 rdma_disconnect(queue->cm_id);
574 ib_drain_qp(queue->qp);
575}
576
577static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
578{
579 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
580 return;
581 __nvme_rdma_stop_queue(queue);
582}
583
584static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
585{
586 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
587 return;
588
589 nvme_rdma_destroy_queue_ib(queue);
590 rdma_destroy_id(queue->cm_id);
591}
592
593static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
594{
595 int i;
596
597 for (i = 1; i < ctrl->ctrl.queue_count; i++)
598 nvme_rdma_free_queue(&ctrl->queues[i]);
599}
600
601static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
602{
603 int i;
604
605 for (i = 1; i < ctrl->ctrl.queue_count; i++)
606 nvme_rdma_stop_queue(&ctrl->queues[i]);
607}
608
609static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
610{
611 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
612 bool poll = nvme_rdma_poll_queue(queue);
613 int ret;
614
615 if (idx)
616 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
617 else
618 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
619
620 if (!ret) {
621 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
622 } else {
623 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
624 __nvme_rdma_stop_queue(queue);
625 dev_info(ctrl->ctrl.device,
626 "failed to connect queue: %d ret=%d\n", idx, ret);
627 }
628 return ret;
629}
630
631static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
632{
633 int i, ret = 0;
634
635 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
636 ret = nvme_rdma_start_queue(ctrl, i);
637 if (ret)
638 goto out_stop_queues;
639 }
640
641 return 0;
642
643out_stop_queues:
644 for (i--; i >= 1; i--)
645 nvme_rdma_stop_queue(&ctrl->queues[i]);
646 return ret;
647}
648
649static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
650{
651 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
652 struct ib_device *ibdev = ctrl->device->dev;
653 unsigned int nr_io_queues, nr_default_queues;
654 unsigned int nr_read_queues, nr_poll_queues;
655 int i, ret;
656
657 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
658 min(opts->nr_io_queues, num_online_cpus()));
659 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
660 min(opts->nr_write_queues, num_online_cpus()));
661 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
662 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
663
664 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
665 if (ret)
666 return ret;
667
668 if (nr_io_queues == 0) {
669 dev_err(ctrl->ctrl.device,
670 "unable to set any I/O queues\n");
671 return -ENOMEM;
672 }
673
674 ctrl->ctrl.queue_count = nr_io_queues + 1;
675 dev_info(ctrl->ctrl.device,
676 "creating %d I/O queues.\n", nr_io_queues);
677
678 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
679 /*
680 * separate read/write queues
681 * hand out dedicated default queues only after we have
682 * sufficient read queues.
683 */
684 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
685 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
686 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
687 min(nr_default_queues, nr_io_queues);
688 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
689 } else {
690 /*
691 * shared read/write queues
692 * either no write queues were requested, or we don't have
693 * sufficient queue count to have dedicated default queues.
694 */
695 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
696 min(nr_read_queues, nr_io_queues);
697 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
698 }
699
700 if (opts->nr_poll_queues && nr_io_queues) {
701 /* map dedicated poll queues only if we have queues left */
702 ctrl->io_queues[HCTX_TYPE_POLL] =
703 min(nr_poll_queues, nr_io_queues);
704 }
705
706 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
707 ret = nvme_rdma_alloc_queue(ctrl, i,
708 ctrl->ctrl.sqsize + 1);
709 if (ret)
710 goto out_free_queues;
711 }
712
713 return 0;
714
715out_free_queues:
716 for (i--; i >= 1; i--)
717 nvme_rdma_free_queue(&ctrl->queues[i]);
718
719 return ret;
720}
721
722static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
723 bool admin)
724{
725 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
726 struct blk_mq_tag_set *set;
727 int ret;
728
729 if (admin) {
730 set = &ctrl->admin_tag_set;
731 memset(set, 0, sizeof(*set));
732 set->ops = &nvme_rdma_admin_mq_ops;
733 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
734 set->reserved_tags = 2; /* connect + keep-alive */
735 set->numa_node = nctrl->numa_node;
736 set->cmd_size = sizeof(struct nvme_rdma_request) +
737 SG_CHUNK_SIZE * sizeof(struct scatterlist);
738 set->driver_data = ctrl;
739 set->nr_hw_queues = 1;
740 set->timeout = ADMIN_TIMEOUT;
741 set->flags = BLK_MQ_F_NO_SCHED;
742 } else {
743 set = &ctrl->tag_set;
744 memset(set, 0, sizeof(*set));
745 set->ops = &nvme_rdma_mq_ops;
746 set->queue_depth = nctrl->sqsize + 1;
747 set->reserved_tags = 1; /* fabric connect */
748 set->numa_node = nctrl->numa_node;
749 set->flags = BLK_MQ_F_SHOULD_MERGE;
750 set->cmd_size = sizeof(struct nvme_rdma_request) +
751 SG_CHUNK_SIZE * sizeof(struct scatterlist);
752 set->driver_data = ctrl;
753 set->nr_hw_queues = nctrl->queue_count - 1;
754 set->timeout = NVME_IO_TIMEOUT;
755 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
756 }
757
758 ret = blk_mq_alloc_tag_set(set);
759 if (ret)
760 return ERR_PTR(ret);
761
762 return set;
763}
764
765static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
766 bool remove)
767{
768 if (remove) {
769 blk_cleanup_queue(ctrl->ctrl.admin_q);
770 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
771 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
772 }
773 if (ctrl->async_event_sqe.data) {
774 cancel_work_sync(&ctrl->ctrl.async_event_work);
775 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
776 sizeof(struct nvme_command), DMA_TO_DEVICE);
777 ctrl->async_event_sqe.data = NULL;
778 }
779 nvme_rdma_free_queue(&ctrl->queues[0]);
780}
781
782static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
783 bool new)
784{
785 int error;
786
787 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
788 if (error)
789 return error;
790
791 ctrl->device = ctrl->queues[0].device;
792 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
793
794 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
795
796 /*
797 * Bind the async event SQE DMA mapping to the admin queue lifetime.
798 * It's safe, since any chage in the underlying RDMA device will issue
799 * error recovery and queue re-creation.
800 */
801 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
802 sizeof(struct nvme_command), DMA_TO_DEVICE);
803 if (error)
804 goto out_free_queue;
805
806 if (new) {
807 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
808 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
809 error = PTR_ERR(ctrl->ctrl.admin_tagset);
810 goto out_free_async_qe;
811 }
812
813 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
814 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
815 error = PTR_ERR(ctrl->ctrl.fabrics_q);
816 goto out_free_tagset;
817 }
818
819 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
820 if (IS_ERR(ctrl->ctrl.admin_q)) {
821 error = PTR_ERR(ctrl->ctrl.admin_q);
822 goto out_cleanup_fabrics_q;
823 }
824 }
825
826 error = nvme_rdma_start_queue(ctrl, 0);
827 if (error)
828 goto out_cleanup_queue;
829
830 error = nvme_enable_ctrl(&ctrl->ctrl);
831 if (error)
832 goto out_stop_queue;
833
834 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
835 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
836
837 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
838
839 error = nvme_init_identify(&ctrl->ctrl);
840 if (error)
841 goto out_quiesce_queue;
842
843 return 0;
844
845out_quiesce_queue:
846 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
847 blk_sync_queue(ctrl->ctrl.admin_q);
848out_stop_queue:
849 nvme_rdma_stop_queue(&ctrl->queues[0]);
850 nvme_cancel_admin_tagset(&ctrl->ctrl);
851out_cleanup_queue:
852 if (new)
853 blk_cleanup_queue(ctrl->ctrl.admin_q);
854out_cleanup_fabrics_q:
855 if (new)
856 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
857out_free_tagset:
858 if (new)
859 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
860out_free_async_qe:
861 if (ctrl->async_event_sqe.data) {
862 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
863 sizeof(struct nvme_command), DMA_TO_DEVICE);
864 ctrl->async_event_sqe.data = NULL;
865 }
866out_free_queue:
867 nvme_rdma_free_queue(&ctrl->queues[0]);
868 return error;
869}
870
871static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
872 bool remove)
873{
874 if (remove) {
875 blk_cleanup_queue(ctrl->ctrl.connect_q);
876 blk_mq_free_tag_set(ctrl->ctrl.tagset);
877 }
878 nvme_rdma_free_io_queues(ctrl);
879}
880
881static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
882{
883 int ret;
884
885 ret = nvme_rdma_alloc_io_queues(ctrl);
886 if (ret)
887 return ret;
888
889 if (new) {
890 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
891 if (IS_ERR(ctrl->ctrl.tagset)) {
892 ret = PTR_ERR(ctrl->ctrl.tagset);
893 goto out_free_io_queues;
894 }
895
896 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
897 if (IS_ERR(ctrl->ctrl.connect_q)) {
898 ret = PTR_ERR(ctrl->ctrl.connect_q);
899 goto out_free_tag_set;
900 }
901 }
902
903 ret = nvme_rdma_start_io_queues(ctrl);
904 if (ret)
905 goto out_cleanup_connect_q;
906
907 if (!new) {
908 nvme_start_freeze(&ctrl->ctrl);
909 nvme_start_queues(&ctrl->ctrl);
910 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
911 /*
912 * If we timed out waiting for freeze we are likely to
913 * be stuck. Fail the controller initialization just
914 * to be safe.
915 */
916 ret = -ENODEV;
917 nvme_unfreeze(&ctrl->ctrl);
918 goto out_wait_freeze_timed_out;
919 }
920 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
921 ctrl->ctrl.queue_count - 1);
922 nvme_unfreeze(&ctrl->ctrl);
923 }
924
925 return 0;
926
927out_wait_freeze_timed_out:
928 nvme_stop_queues(&ctrl->ctrl);
929 nvme_sync_io_queues(&ctrl->ctrl);
930 nvme_rdma_stop_io_queues(ctrl);
931out_cleanup_connect_q:
932 nvme_cancel_tagset(&ctrl->ctrl);
933 if (new)
934 blk_cleanup_queue(ctrl->ctrl.connect_q);
935out_free_tag_set:
936 if (new)
937 blk_mq_free_tag_set(ctrl->ctrl.tagset);
938out_free_io_queues:
939 nvme_rdma_free_io_queues(ctrl);
940 return ret;
941}
942
943static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
944 bool remove)
945{
946 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
947 blk_sync_queue(ctrl->ctrl.admin_q);
948 nvme_rdma_stop_queue(&ctrl->queues[0]);
949 if (ctrl->ctrl.admin_tagset) {
950 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
951 nvme_cancel_request, &ctrl->ctrl);
952 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
953 }
954 if (remove)
955 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
956 nvme_rdma_destroy_admin_queue(ctrl, remove);
957}
958
959static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
960 bool remove)
961{
962 if (ctrl->ctrl.queue_count > 1) {
963 nvme_stop_queues(&ctrl->ctrl);
964 nvme_sync_io_queues(&ctrl->ctrl);
965 nvme_rdma_stop_io_queues(ctrl);
966 if (ctrl->ctrl.tagset) {
967 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
968 nvme_cancel_request, &ctrl->ctrl);
969 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
970 }
971 if (remove)
972 nvme_start_queues(&ctrl->ctrl);
973 nvme_rdma_destroy_io_queues(ctrl, remove);
974 }
975}
976
977static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
978{
979 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
980
981 cancel_work_sync(&ctrl->err_work);
982 cancel_delayed_work_sync(&ctrl->reconnect_work);
983}
984
985static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
986{
987 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
988
989 if (list_empty(&ctrl->list))
990 goto free_ctrl;
991
992 mutex_lock(&nvme_rdma_ctrl_mutex);
993 list_del(&ctrl->list);
994 mutex_unlock(&nvme_rdma_ctrl_mutex);
995
996 nvmf_free_options(nctrl->opts);
997free_ctrl:
998 kfree(ctrl->queues);
999 kfree(ctrl);
1000}
1001
1002static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1003{
1004 /* If we are resetting/deleting then do nothing */
1005 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1006 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1007 ctrl->ctrl.state == NVME_CTRL_LIVE);
1008 return;
1009 }
1010
1011 if (nvmf_should_reconnect(&ctrl->ctrl)) {
1012 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1013 ctrl->ctrl.opts->reconnect_delay);
1014 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1015 ctrl->ctrl.opts->reconnect_delay * HZ);
1016 } else {
1017 nvme_delete_ctrl(&ctrl->ctrl);
1018 }
1019}
1020
1021static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1022{
1023 int ret = -EINVAL;
1024 bool changed;
1025
1026 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1027 if (ret)
1028 return ret;
1029
1030 if (ctrl->ctrl.icdoff) {
1031 ret = -EOPNOTSUPP;
1032 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1033 goto destroy_admin;
1034 }
1035
1036 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1037 ret = -EOPNOTSUPP;
1038 dev_err(ctrl->ctrl.device,
1039 "Mandatory keyed sgls are not supported!\n");
1040 goto destroy_admin;
1041 }
1042
1043 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1044 dev_warn(ctrl->ctrl.device,
1045 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1046 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1047 }
1048
1049 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1050 dev_warn(ctrl->ctrl.device,
1051 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1052 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1053 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1054 }
1055
1056 if (ctrl->ctrl.sgls & (1 << 20))
1057 ctrl->use_inline_data = true;
1058
1059 if (ctrl->ctrl.queue_count > 1) {
1060 ret = nvme_rdma_configure_io_queues(ctrl, new);
1061 if (ret)
1062 goto destroy_admin;
1063 }
1064
1065 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1066 if (!changed) {
1067 /* state change failure is ok if we're in DELETING state */
1068 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1069 ret = -EINVAL;
1070 goto destroy_io;
1071 }
1072
1073 nvme_start_ctrl(&ctrl->ctrl);
1074 return 0;
1075
1076destroy_io:
1077 if (ctrl->ctrl.queue_count > 1) {
1078 nvme_stop_queues(&ctrl->ctrl);
1079 nvme_sync_io_queues(&ctrl->ctrl);
1080 nvme_rdma_stop_io_queues(ctrl);
1081 nvme_cancel_tagset(&ctrl->ctrl);
1082 nvme_rdma_destroy_io_queues(ctrl, new);
1083 }
1084destroy_admin:
1085 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1086 blk_sync_queue(ctrl->ctrl.admin_q);
1087 nvme_rdma_stop_queue(&ctrl->queues[0]);
1088 nvme_cancel_admin_tagset(&ctrl->ctrl);
1089 nvme_rdma_destroy_admin_queue(ctrl, new);
1090 return ret;
1091}
1092
1093static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1094{
1095 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1096 struct nvme_rdma_ctrl, reconnect_work);
1097
1098 ++ctrl->ctrl.nr_reconnects;
1099
1100 if (nvme_rdma_setup_ctrl(ctrl, false))
1101 goto requeue;
1102
1103 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1104 ctrl->ctrl.nr_reconnects);
1105
1106 ctrl->ctrl.nr_reconnects = 0;
1107
1108 return;
1109
1110requeue:
1111 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1112 ctrl->ctrl.nr_reconnects);
1113 nvme_rdma_reconnect_or_remove(ctrl);
1114}
1115
1116static void nvme_rdma_error_recovery_work(struct work_struct *work)
1117{
1118 struct nvme_rdma_ctrl *ctrl = container_of(work,
1119 struct nvme_rdma_ctrl, err_work);
1120
1121 nvme_stop_keep_alive(&ctrl->ctrl);
1122 flush_work(&ctrl->ctrl.async_event_work);
1123 nvme_rdma_teardown_io_queues(ctrl, false);
1124 nvme_start_queues(&ctrl->ctrl);
1125 nvme_rdma_teardown_admin_queue(ctrl, false);
1126 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1127
1128 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1129 /* state change failure is ok if we're in DELETING state */
1130 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1131 return;
1132 }
1133
1134 nvme_rdma_reconnect_or_remove(ctrl);
1135}
1136
1137static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1138{
1139 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1140 return;
1141
1142 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1143 queue_work(nvme_reset_wq, &ctrl->err_work);
1144}
1145
1146static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1147 const char *op)
1148{
1149 struct nvme_rdma_queue *queue = cq->cq_context;
1150 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1151
1152 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1153 dev_info(ctrl->ctrl.device,
1154 "%s for CQE 0x%p failed with status %s (%d)\n",
1155 op, wc->wr_cqe,
1156 ib_wc_status_msg(wc->status), wc->status);
1157 nvme_rdma_error_recovery(ctrl);
1158}
1159
1160static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1161{
1162 if (unlikely(wc->status != IB_WC_SUCCESS))
1163 nvme_rdma_wr_error(cq, wc, "MEMREG");
1164}
1165
1166static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1167{
1168 struct nvme_rdma_request *req =
1169 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1170 struct request *rq = blk_mq_rq_from_pdu(req);
1171
1172 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1173 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1174 return;
1175 }
1176
1177 if (refcount_dec_and_test(&req->ref))
1178 nvme_end_request(rq, req->status, req->result);
1179
1180}
1181
1182static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1183 struct nvme_rdma_request *req)
1184{
1185 struct ib_send_wr wr = {
1186 .opcode = IB_WR_LOCAL_INV,
1187 .next = NULL,
1188 .num_sge = 0,
1189 .send_flags = IB_SEND_SIGNALED,
1190 .ex.invalidate_rkey = req->mr->rkey,
1191 };
1192
1193 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1194 wr.wr_cqe = &req->reg_cqe;
1195
1196 return ib_post_send(queue->qp, &wr, NULL);
1197}
1198
1199static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1200 struct request *rq)
1201{
1202 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1203 struct nvme_rdma_device *dev = queue->device;
1204 struct ib_device *ibdev = dev->dev;
1205
1206 if (!blk_rq_nr_phys_segments(rq))
1207 return;
1208
1209 if (req->mr) {
1210 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1211 req->mr = NULL;
1212 }
1213
1214 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1215
1216 nvme_cleanup_cmd(rq);
1217 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1218}
1219
1220static int nvme_rdma_set_sg_null(struct nvme_command *c)
1221{
1222 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1223
1224 sg->addr = 0;
1225 put_unaligned_le24(0, sg->length);
1226 put_unaligned_le32(0, sg->key);
1227 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1228 return 0;
1229}
1230
1231static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1232 struct nvme_rdma_request *req, struct nvme_command *c,
1233 int count)
1234{
1235 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1236 struct scatterlist *sgl = req->sg_table.sgl;
1237 struct ib_sge *sge = &req->sge[1];
1238 u32 len = 0;
1239 int i;
1240
1241 for (i = 0; i < count; i++, sgl++, sge++) {
1242 sge->addr = sg_dma_address(sgl);
1243 sge->length = sg_dma_len(sgl);
1244 sge->lkey = queue->device->pd->local_dma_lkey;
1245 len += sge->length;
1246 }
1247
1248 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1249 sg->length = cpu_to_le32(len);
1250 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1251
1252 req->num_sge += count;
1253 return 0;
1254}
1255
1256static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1257 struct nvme_rdma_request *req, struct nvme_command *c)
1258{
1259 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1260
1261 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1262 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1263 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1264 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1265 return 0;
1266}
1267
1268static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1269 struct nvme_rdma_request *req, struct nvme_command *c,
1270 int count)
1271{
1272 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1273 int nr;
1274
1275 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1276 if (WARN_ON_ONCE(!req->mr))
1277 return -EAGAIN;
1278
1279 /*
1280 * Align the MR to a 4K page size to match the ctrl page size and
1281 * the block virtual boundary.
1282 */
1283 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1284 if (unlikely(nr < count)) {
1285 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1286 req->mr = NULL;
1287 if (nr < 0)
1288 return nr;
1289 return -EINVAL;
1290 }
1291
1292 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1293
1294 req->reg_cqe.done = nvme_rdma_memreg_done;
1295 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1296 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1297 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1298 req->reg_wr.wr.num_sge = 0;
1299 req->reg_wr.mr = req->mr;
1300 req->reg_wr.key = req->mr->rkey;
1301 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1302 IB_ACCESS_REMOTE_READ |
1303 IB_ACCESS_REMOTE_WRITE;
1304
1305 sg->addr = cpu_to_le64(req->mr->iova);
1306 put_unaligned_le24(req->mr->length, sg->length);
1307 put_unaligned_le32(req->mr->rkey, sg->key);
1308 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1309 NVME_SGL_FMT_INVALIDATE;
1310
1311 return 0;
1312}
1313
1314static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1315 struct request *rq, struct nvme_command *c)
1316{
1317 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1318 struct nvme_rdma_device *dev = queue->device;
1319 struct ib_device *ibdev = dev->dev;
1320 int count, ret;
1321
1322 req->num_sge = 1;
1323 refcount_set(&req->ref, 2); /* send and recv completions */
1324
1325 c->common.flags |= NVME_CMD_SGL_METABUF;
1326
1327 if (!blk_rq_nr_phys_segments(rq))
1328 return nvme_rdma_set_sg_null(c);
1329
1330 req->sg_table.sgl = req->first_sgl;
1331 ret = sg_alloc_table_chained(&req->sg_table,
1332 blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1333 SG_CHUNK_SIZE);
1334 if (ret)
1335 return -ENOMEM;
1336
1337 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1338
1339 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1340 rq_dma_dir(rq));
1341 if (unlikely(count <= 0)) {
1342 ret = -EIO;
1343 goto out_free_table;
1344 }
1345
1346 if (count <= dev->num_inline_segments) {
1347 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1348 queue->ctrl->use_inline_data &&
1349 blk_rq_payload_bytes(rq) <=
1350 nvme_rdma_inline_data_size(queue)) {
1351 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1352 goto out;
1353 }
1354
1355 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1356 ret = nvme_rdma_map_sg_single(queue, req, c);
1357 goto out;
1358 }
1359 }
1360
1361 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1362out:
1363 if (unlikely(ret))
1364 goto out_unmap_sg;
1365
1366 return 0;
1367
1368out_unmap_sg:
1369 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1370out_free_table:
1371 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1372 return ret;
1373}
1374
1375static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1376{
1377 struct nvme_rdma_qe *qe =
1378 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1379 struct nvme_rdma_request *req =
1380 container_of(qe, struct nvme_rdma_request, sqe);
1381 struct request *rq = blk_mq_rq_from_pdu(req);
1382
1383 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1384 nvme_rdma_wr_error(cq, wc, "SEND");
1385 return;
1386 }
1387
1388 if (refcount_dec_and_test(&req->ref))
1389 nvme_end_request(rq, req->status, req->result);
1390}
1391
1392static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1393 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1394 struct ib_send_wr *first)
1395{
1396 struct ib_send_wr wr;
1397 int ret;
1398
1399 sge->addr = qe->dma;
1400 sge->length = sizeof(struct nvme_command),
1401 sge->lkey = queue->device->pd->local_dma_lkey;
1402
1403 wr.next = NULL;
1404 wr.wr_cqe = &qe->cqe;
1405 wr.sg_list = sge;
1406 wr.num_sge = num_sge;
1407 wr.opcode = IB_WR_SEND;
1408 wr.send_flags = IB_SEND_SIGNALED;
1409
1410 if (first)
1411 first->next = &wr;
1412 else
1413 first = &wr;
1414
1415 ret = ib_post_send(queue->qp, first, NULL);
1416 if (unlikely(ret)) {
1417 dev_err(queue->ctrl->ctrl.device,
1418 "%s failed with error code %d\n", __func__, ret);
1419 }
1420 return ret;
1421}
1422
1423static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1424 struct nvme_rdma_qe *qe)
1425{
1426 struct ib_recv_wr wr;
1427 struct ib_sge list;
1428 int ret;
1429
1430 list.addr = qe->dma;
1431 list.length = sizeof(struct nvme_completion);
1432 list.lkey = queue->device->pd->local_dma_lkey;
1433
1434 qe->cqe.done = nvme_rdma_recv_done;
1435
1436 wr.next = NULL;
1437 wr.wr_cqe = &qe->cqe;
1438 wr.sg_list = &list;
1439 wr.num_sge = 1;
1440
1441 ret = ib_post_recv(queue->qp, &wr, NULL);
1442 if (unlikely(ret)) {
1443 dev_err(queue->ctrl->ctrl.device,
1444 "%s failed with error code %d\n", __func__, ret);
1445 }
1446 return ret;
1447}
1448
1449static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1450{
1451 u32 queue_idx = nvme_rdma_queue_idx(queue);
1452
1453 if (queue_idx == 0)
1454 return queue->ctrl->admin_tag_set.tags[queue_idx];
1455 return queue->ctrl->tag_set.tags[queue_idx - 1];
1456}
1457
1458static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1459{
1460 if (unlikely(wc->status != IB_WC_SUCCESS))
1461 nvme_rdma_wr_error(cq, wc, "ASYNC");
1462}
1463
1464static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1465{
1466 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1467 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1468 struct ib_device *dev = queue->device->dev;
1469 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1470 struct nvme_command *cmd = sqe->data;
1471 struct ib_sge sge;
1472 int ret;
1473
1474 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1475
1476 memset(cmd, 0, sizeof(*cmd));
1477 cmd->common.opcode = nvme_admin_async_event;
1478 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1479 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1480 nvme_rdma_set_sg_null(cmd);
1481
1482 sqe->cqe.done = nvme_rdma_async_done;
1483
1484 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1485 DMA_TO_DEVICE);
1486
1487 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1488 WARN_ON_ONCE(ret);
1489}
1490
1491static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1492 struct nvme_completion *cqe, struct ib_wc *wc)
1493{
1494 struct request *rq;
1495 struct nvme_rdma_request *req;
1496
1497 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1498 if (!rq) {
1499 dev_err(queue->ctrl->ctrl.device,
1500 "tag 0x%x on QP %#x not found\n",
1501 cqe->command_id, queue->qp->qp_num);
1502 nvme_rdma_error_recovery(queue->ctrl);
1503 return;
1504 }
1505 req = blk_mq_rq_to_pdu(rq);
1506
1507 req->status = cqe->status;
1508 req->result = cqe->result;
1509
1510 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1511 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1512 dev_err(queue->ctrl->ctrl.device,
1513 "Bogus remote invalidation for rkey %#x\n",
1514 req->mr->rkey);
1515 nvme_rdma_error_recovery(queue->ctrl);
1516 }
1517 } else if (req->mr) {
1518 int ret;
1519
1520 ret = nvme_rdma_inv_rkey(queue, req);
1521 if (unlikely(ret < 0)) {
1522 dev_err(queue->ctrl->ctrl.device,
1523 "Queueing INV WR for rkey %#x failed (%d)\n",
1524 req->mr->rkey, ret);
1525 nvme_rdma_error_recovery(queue->ctrl);
1526 }
1527 /* the local invalidation completion will end the request */
1528 return;
1529 }
1530
1531 if (refcount_dec_and_test(&req->ref))
1532 nvme_end_request(rq, req->status, req->result);
1533}
1534
1535static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1536{
1537 struct nvme_rdma_qe *qe =
1538 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1539 struct nvme_rdma_queue *queue = cq->cq_context;
1540 struct ib_device *ibdev = queue->device->dev;
1541 struct nvme_completion *cqe = qe->data;
1542 const size_t len = sizeof(struct nvme_completion);
1543
1544 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1545 nvme_rdma_wr_error(cq, wc, "RECV");
1546 return;
1547 }
1548
1549 /* sanity checking for received data length */
1550 if (unlikely(wc->byte_len < len)) {
1551 dev_err(queue->ctrl->ctrl.device,
1552 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1553 nvme_rdma_error_recovery(queue->ctrl);
1554 return;
1555 }
1556
1557 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1558 /*
1559 * AEN requests are special as they don't time out and can
1560 * survive any kind of queue freeze and often don't respond to
1561 * aborts. We don't even bother to allocate a struct request
1562 * for them but rather special case them here.
1563 */
1564 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1565 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1566 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1567 &cqe->result);
1568 else
1569 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1570 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1571
1572 nvme_rdma_post_recv(queue, qe);
1573}
1574
1575static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1576{
1577 int ret, i;
1578
1579 for (i = 0; i < queue->queue_size; i++) {
1580 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1581 if (ret)
1582 goto out_destroy_queue_ib;
1583 }
1584
1585 return 0;
1586
1587out_destroy_queue_ib:
1588 nvme_rdma_destroy_queue_ib(queue);
1589 return ret;
1590}
1591
1592static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1593 struct rdma_cm_event *ev)
1594{
1595 struct rdma_cm_id *cm_id = queue->cm_id;
1596 int status = ev->status;
1597 const char *rej_msg;
1598 const struct nvme_rdma_cm_rej *rej_data;
1599 u8 rej_data_len;
1600
1601 rej_msg = rdma_reject_msg(cm_id, status);
1602 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1603
1604 if (rej_data && rej_data_len >= sizeof(u16)) {
1605 u16 sts = le16_to_cpu(rej_data->sts);
1606
1607 dev_err(queue->ctrl->ctrl.device,
1608 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1609 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1610 } else {
1611 dev_err(queue->ctrl->ctrl.device,
1612 "Connect rejected: status %d (%s).\n", status, rej_msg);
1613 }
1614
1615 return -ECONNRESET;
1616}
1617
1618static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1619{
1620 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1621 int ret;
1622
1623 ret = nvme_rdma_create_queue_ib(queue);
1624 if (ret)
1625 return ret;
1626
1627 if (ctrl->opts->tos >= 0)
1628 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1629 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1630 if (ret) {
1631 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1632 queue->cm_error);
1633 goto out_destroy_queue;
1634 }
1635
1636 return 0;
1637
1638out_destroy_queue:
1639 nvme_rdma_destroy_queue_ib(queue);
1640 return ret;
1641}
1642
1643static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1644{
1645 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1646 struct rdma_conn_param param = { };
1647 struct nvme_rdma_cm_req priv = { };
1648 int ret;
1649
1650 param.qp_num = queue->qp->qp_num;
1651 param.flow_control = 1;
1652
1653 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1654 /* maximum retry count */
1655 param.retry_count = 7;
1656 param.rnr_retry_count = 7;
1657 param.private_data = &priv;
1658 param.private_data_len = sizeof(priv);
1659
1660 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1661 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1662 /*
1663 * set the admin queue depth to the minimum size
1664 * specified by the Fabrics standard.
1665 */
1666 if (priv.qid == 0) {
1667 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1668 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1669 } else {
1670 /*
1671 * current interpretation of the fabrics spec
1672 * is at minimum you make hrqsize sqsize+1, or a
1673 * 1's based representation of sqsize.
1674 */
1675 priv.hrqsize = cpu_to_le16(queue->queue_size);
1676 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1677 }
1678
1679 ret = rdma_connect(queue->cm_id, &param);
1680 if (ret) {
1681 dev_err(ctrl->ctrl.device,
1682 "rdma_connect failed (%d).\n", ret);
1683 goto out_destroy_queue_ib;
1684 }
1685
1686 return 0;
1687
1688out_destroy_queue_ib:
1689 nvme_rdma_destroy_queue_ib(queue);
1690 return ret;
1691}
1692
1693static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1694 struct rdma_cm_event *ev)
1695{
1696 struct nvme_rdma_queue *queue = cm_id->context;
1697 int cm_error = 0;
1698
1699 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1700 rdma_event_msg(ev->event), ev->event,
1701 ev->status, cm_id);
1702
1703 switch (ev->event) {
1704 case RDMA_CM_EVENT_ADDR_RESOLVED:
1705 cm_error = nvme_rdma_addr_resolved(queue);
1706 break;
1707 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1708 cm_error = nvme_rdma_route_resolved(queue);
1709 break;
1710 case RDMA_CM_EVENT_ESTABLISHED:
1711 queue->cm_error = nvme_rdma_conn_established(queue);
1712 /* complete cm_done regardless of success/failure */
1713 complete(&queue->cm_done);
1714 return 0;
1715 case RDMA_CM_EVENT_REJECTED:
1716 cm_error = nvme_rdma_conn_rejected(queue, ev);
1717 break;
1718 case RDMA_CM_EVENT_ROUTE_ERROR:
1719 case RDMA_CM_EVENT_CONNECT_ERROR:
1720 case RDMA_CM_EVENT_UNREACHABLE:
1721 nvme_rdma_destroy_queue_ib(queue);
1722 /* fall through */
1723 case RDMA_CM_EVENT_ADDR_ERROR:
1724 dev_dbg(queue->ctrl->ctrl.device,
1725 "CM error event %d\n", ev->event);
1726 cm_error = -ECONNRESET;
1727 break;
1728 case RDMA_CM_EVENT_DISCONNECTED:
1729 case RDMA_CM_EVENT_ADDR_CHANGE:
1730 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1731 dev_dbg(queue->ctrl->ctrl.device,
1732 "disconnect received - connection closed\n");
1733 nvme_rdma_error_recovery(queue->ctrl);
1734 break;
1735 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1736 /* device removal is handled via the ib_client API */
1737 break;
1738 default:
1739 dev_err(queue->ctrl->ctrl.device,
1740 "Unexpected RDMA CM event (%d)\n", ev->event);
1741 nvme_rdma_error_recovery(queue->ctrl);
1742 break;
1743 }
1744
1745 if (cm_error) {
1746 queue->cm_error = cm_error;
1747 complete(&queue->cm_done);
1748 }
1749
1750 return 0;
1751}
1752
1753static void nvme_rdma_complete_timed_out(struct request *rq)
1754{
1755 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1756 struct nvme_rdma_queue *queue = req->queue;
1757
1758 nvme_rdma_stop_queue(queue);
1759 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
1760 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1761 blk_mq_complete_request(rq);
1762 }
1763}
1764
1765static enum blk_eh_timer_return
1766nvme_rdma_timeout(struct request *rq, bool reserved)
1767{
1768 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1769 struct nvme_rdma_queue *queue = req->queue;
1770 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1771
1772 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1773 rq->tag, nvme_rdma_queue_idx(queue));
1774
1775 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1776 /*
1777 * If we are resetting, connecting or deleting we should
1778 * complete immediately because we may block controller
1779 * teardown or setup sequence
1780 * - ctrl disable/shutdown fabrics requests
1781 * - connect requests
1782 * - initialization admin requests
1783 * - I/O requests that entered after unquiescing and
1784 * the controller stopped responding
1785 *
1786 * All other requests should be cancelled by the error
1787 * recovery work, so it's fine that we fail it here.
1788 */
1789 nvme_rdma_complete_timed_out(rq);
1790 return BLK_EH_DONE;
1791 }
1792
1793 /*
1794 * LIVE state should trigger the normal error recovery which will
1795 * handle completing this request.
1796 */
1797 nvme_rdma_error_recovery(ctrl);
1798 return BLK_EH_RESET_TIMER;
1799}
1800
1801static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1802 const struct blk_mq_queue_data *bd)
1803{
1804 struct nvme_ns *ns = hctx->queue->queuedata;
1805 struct nvme_rdma_queue *queue = hctx->driver_data;
1806 struct request *rq = bd->rq;
1807 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1808 struct nvme_rdma_qe *sqe = &req->sqe;
1809 struct nvme_command *c = sqe->data;
1810 struct ib_device *dev;
1811 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1812 blk_status_t ret;
1813 int err;
1814
1815 WARN_ON_ONCE(rq->tag < 0);
1816
1817 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1818 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1819
1820 dev = queue->device->dev;
1821
1822 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1823 sizeof(struct nvme_command),
1824 DMA_TO_DEVICE);
1825 err = ib_dma_mapping_error(dev, req->sqe.dma);
1826 if (unlikely(err))
1827 return BLK_STS_RESOURCE;
1828
1829 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1830 sizeof(struct nvme_command), DMA_TO_DEVICE);
1831
1832 ret = nvme_setup_cmd(ns, rq, c);
1833 if (ret)
1834 goto unmap_qe;
1835
1836 blk_mq_start_request(rq);
1837
1838 err = nvme_rdma_map_data(queue, rq, c);
1839 if (unlikely(err < 0)) {
1840 dev_err(queue->ctrl->ctrl.device,
1841 "Failed to map data (%d)\n", err);
1842 nvme_cleanup_cmd(rq);
1843 goto err;
1844 }
1845
1846 sqe->cqe.done = nvme_rdma_send_done;
1847
1848 ib_dma_sync_single_for_device(dev, sqe->dma,
1849 sizeof(struct nvme_command), DMA_TO_DEVICE);
1850
1851 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1852 req->mr ? &req->reg_wr.wr : NULL);
1853 if (unlikely(err)) {
1854 nvme_rdma_unmap_data(queue, rq);
1855 goto err;
1856 }
1857
1858 return BLK_STS_OK;
1859
1860err:
1861 if (err == -ENOMEM || err == -EAGAIN)
1862 ret = BLK_STS_RESOURCE;
1863 else
1864 ret = BLK_STS_IOERR;
1865unmap_qe:
1866 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1867 DMA_TO_DEVICE);
1868 return ret;
1869}
1870
1871static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1872{
1873 struct nvme_rdma_queue *queue = hctx->driver_data;
1874
1875 return ib_process_cq_direct(queue->ib_cq, -1);
1876}
1877
1878static void nvme_rdma_complete_rq(struct request *rq)
1879{
1880 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1881 struct nvme_rdma_queue *queue = req->queue;
1882 struct ib_device *ibdev = queue->device->dev;
1883
1884 nvme_rdma_unmap_data(queue, rq);
1885 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1886 DMA_TO_DEVICE);
1887 nvme_complete_rq(rq);
1888}
1889
1890static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1891{
1892 struct nvme_rdma_ctrl *ctrl = set->driver_data;
1893 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1894
1895 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1896 /* separate read/write queues */
1897 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1898 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1899 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1900 set->map[HCTX_TYPE_READ].nr_queues =
1901 ctrl->io_queues[HCTX_TYPE_READ];
1902 set->map[HCTX_TYPE_READ].queue_offset =
1903 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1904 } else {
1905 /* shared read/write queues */
1906 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1907 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1908 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1909 set->map[HCTX_TYPE_READ].nr_queues =
1910 ctrl->io_queues[HCTX_TYPE_DEFAULT];
1911 set->map[HCTX_TYPE_READ].queue_offset = 0;
1912 }
1913 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1914 ctrl->device->dev, 0);
1915 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1916 ctrl->device->dev, 0);
1917
1918 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1919 /* map dedicated poll queues only if we have queues left */
1920 set->map[HCTX_TYPE_POLL].nr_queues =
1921 ctrl->io_queues[HCTX_TYPE_POLL];
1922 set->map[HCTX_TYPE_POLL].queue_offset =
1923 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1924 ctrl->io_queues[HCTX_TYPE_READ];
1925 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1926 }
1927
1928 dev_info(ctrl->ctrl.device,
1929 "mapped %d/%d/%d default/read/poll queues.\n",
1930 ctrl->io_queues[HCTX_TYPE_DEFAULT],
1931 ctrl->io_queues[HCTX_TYPE_READ],
1932 ctrl->io_queues[HCTX_TYPE_POLL]);
1933
1934 return 0;
1935}
1936
1937static const struct blk_mq_ops nvme_rdma_mq_ops = {
1938 .queue_rq = nvme_rdma_queue_rq,
1939 .complete = nvme_rdma_complete_rq,
1940 .init_request = nvme_rdma_init_request,
1941 .exit_request = nvme_rdma_exit_request,
1942 .init_hctx = nvme_rdma_init_hctx,
1943 .timeout = nvme_rdma_timeout,
1944 .map_queues = nvme_rdma_map_queues,
1945 .poll = nvme_rdma_poll,
1946};
1947
1948static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1949 .queue_rq = nvme_rdma_queue_rq,
1950 .complete = nvme_rdma_complete_rq,
1951 .init_request = nvme_rdma_init_request,
1952 .exit_request = nvme_rdma_exit_request,
1953 .init_hctx = nvme_rdma_init_admin_hctx,
1954 .timeout = nvme_rdma_timeout,
1955};
1956
1957static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1958{
1959 nvme_rdma_teardown_io_queues(ctrl, shutdown);
1960 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1961 if (shutdown)
1962 nvme_shutdown_ctrl(&ctrl->ctrl);
1963 else
1964 nvme_disable_ctrl(&ctrl->ctrl);
1965 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1966}
1967
1968static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1969{
1970 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1971}
1972
1973static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1974{
1975 struct nvme_rdma_ctrl *ctrl =
1976 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1977
1978 nvme_stop_ctrl(&ctrl->ctrl);
1979 nvme_rdma_shutdown_ctrl(ctrl, false);
1980
1981 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1982 /* state change failure should never happen */
1983 WARN_ON_ONCE(1);
1984 return;
1985 }
1986
1987 if (nvme_rdma_setup_ctrl(ctrl, false))
1988 goto out_fail;
1989
1990 return;
1991
1992out_fail:
1993 ++ctrl->ctrl.nr_reconnects;
1994 nvme_rdma_reconnect_or_remove(ctrl);
1995}
1996
1997static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1998 .name = "rdma",
1999 .module = THIS_MODULE,
2000 .flags = NVME_F_FABRICS,
2001 .reg_read32 = nvmf_reg_read32,
2002 .reg_read64 = nvmf_reg_read64,
2003 .reg_write32 = nvmf_reg_write32,
2004 .free_ctrl = nvme_rdma_free_ctrl,
2005 .submit_async_event = nvme_rdma_submit_async_event,
2006 .delete_ctrl = nvme_rdma_delete_ctrl,
2007 .get_address = nvmf_get_address,
2008 .stop_ctrl = nvme_rdma_stop_ctrl,
2009};
2010
2011/*
2012 * Fails a connection request if it matches an existing controller
2013 * (association) with the same tuple:
2014 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2015 *
2016 * if local address is not specified in the request, it will match an
2017 * existing controller with all the other parameters the same and no
2018 * local port address specified as well.
2019 *
2020 * The ports don't need to be compared as they are intrinsically
2021 * already matched by the port pointers supplied.
2022 */
2023static bool
2024nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2025{
2026 struct nvme_rdma_ctrl *ctrl;
2027 bool found = false;
2028
2029 mutex_lock(&nvme_rdma_ctrl_mutex);
2030 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2031 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2032 if (found)
2033 break;
2034 }
2035 mutex_unlock(&nvme_rdma_ctrl_mutex);
2036
2037 return found;
2038}
2039
2040static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2041 struct nvmf_ctrl_options *opts)
2042{
2043 struct nvme_rdma_ctrl *ctrl;
2044 int ret;
2045 bool changed;
2046
2047 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2048 if (!ctrl)
2049 return ERR_PTR(-ENOMEM);
2050 ctrl->ctrl.opts = opts;
2051 INIT_LIST_HEAD(&ctrl->list);
2052
2053 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2054 opts->trsvcid =
2055 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2056 if (!opts->trsvcid) {
2057 ret = -ENOMEM;
2058 goto out_free_ctrl;
2059 }
2060 opts->mask |= NVMF_OPT_TRSVCID;
2061 }
2062
2063 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2064 opts->traddr, opts->trsvcid, &ctrl->addr);
2065 if (ret) {
2066 pr_err("malformed address passed: %s:%s\n",
2067 opts->traddr, opts->trsvcid);
2068 goto out_free_ctrl;
2069 }
2070
2071 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2072 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2073 opts->host_traddr, NULL, &ctrl->src_addr);
2074 if (ret) {
2075 pr_err("malformed src address passed: %s\n",
2076 opts->host_traddr);
2077 goto out_free_ctrl;
2078 }
2079 }
2080
2081 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2082 ret = -EALREADY;
2083 goto out_free_ctrl;
2084 }
2085
2086 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2087 nvme_rdma_reconnect_ctrl_work);
2088 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2089 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2090
2091 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2092 opts->nr_poll_queues + 1;
2093 ctrl->ctrl.sqsize = opts->queue_size - 1;
2094 ctrl->ctrl.kato = opts->kato;
2095
2096 ret = -ENOMEM;
2097 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2098 GFP_KERNEL);
2099 if (!ctrl->queues)
2100 goto out_free_ctrl;
2101
2102 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2103 0 /* no quirks, we're perfect! */);
2104 if (ret)
2105 goto out_kfree_queues;
2106
2107 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2108 WARN_ON_ONCE(!changed);
2109
2110 ret = nvme_rdma_setup_ctrl(ctrl, true);
2111 if (ret)
2112 goto out_uninit_ctrl;
2113
2114 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2115 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2116
2117 mutex_lock(&nvme_rdma_ctrl_mutex);
2118 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2119 mutex_unlock(&nvme_rdma_ctrl_mutex);
2120
2121 return &ctrl->ctrl;
2122
2123out_uninit_ctrl:
2124 nvme_uninit_ctrl(&ctrl->ctrl);
2125 nvme_put_ctrl(&ctrl->ctrl);
2126 nvme_put_ctrl(&ctrl->ctrl);
2127 if (ret > 0)
2128 ret = -EIO;
2129 return ERR_PTR(ret);
2130out_kfree_queues:
2131 kfree(ctrl->queues);
2132out_free_ctrl:
2133 kfree(ctrl);
2134 return ERR_PTR(ret);
2135}
2136
2137static struct nvmf_transport_ops nvme_rdma_transport = {
2138 .name = "rdma",
2139 .module = THIS_MODULE,
2140 .required_opts = NVMF_OPT_TRADDR,
2141 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2142 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2143 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2144 NVMF_OPT_TOS,
2145 .create_ctrl = nvme_rdma_create_ctrl,
2146};
2147
2148static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2149{
2150 struct nvme_rdma_ctrl *ctrl;
2151 struct nvme_rdma_device *ndev;
2152 bool found = false;
2153
2154 mutex_lock(&device_list_mutex);
2155 list_for_each_entry(ndev, &device_list, entry) {
2156 if (ndev->dev == ib_device) {
2157 found = true;
2158 break;
2159 }
2160 }
2161 mutex_unlock(&device_list_mutex);
2162
2163 if (!found)
2164 return;
2165
2166 /* Delete all controllers using this device */
2167 mutex_lock(&nvme_rdma_ctrl_mutex);
2168 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2169 if (ctrl->device->dev != ib_device)
2170 continue;
2171 nvme_delete_ctrl(&ctrl->ctrl);
2172 }
2173 mutex_unlock(&nvme_rdma_ctrl_mutex);
2174
2175 flush_workqueue(nvme_delete_wq);
2176}
2177
2178static struct ib_client nvme_rdma_ib_client = {
2179 .name = "nvme_rdma",
2180 .remove = nvme_rdma_remove_one
2181};
2182
2183static int __init nvme_rdma_init_module(void)
2184{
2185 int ret;
2186
2187 ret = ib_register_client(&nvme_rdma_ib_client);
2188 if (ret)
2189 return ret;
2190
2191 ret = nvmf_register_transport(&nvme_rdma_transport);
2192 if (ret)
2193 goto err_unreg_client;
2194
2195 return 0;
2196
2197err_unreg_client:
2198 ib_unregister_client(&nvme_rdma_ib_client);
2199 return ret;
2200}
2201
2202static void __exit nvme_rdma_cleanup_module(void)
2203{
2204 struct nvme_rdma_ctrl *ctrl;
2205
2206 nvmf_unregister_transport(&nvme_rdma_transport);
2207 ib_unregister_client(&nvme_rdma_ib_client);
2208
2209 mutex_lock(&nvme_rdma_ctrl_mutex);
2210 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2211 nvme_delete_ctrl(&ctrl->ctrl);
2212 mutex_unlock(&nvme_rdma_ctrl_mutex);
2213 flush_workqueue(nvme_delete_wq);
2214}
2215
2216module_init(nvme_rdma_init_module);
2217module_exit(nvme_rdma_cleanup_module);
2218
2219MODULE_LICENSE("GPL v2");