blob: 2c502a727f7ef3b23f10ba5fa620d0e412ba42ae [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40#include <linux/kernel.h>
41#include <linux/module.h>
42#include <linux/pci.h>
43#include <linux/delay.h>
44#include <linux/semaphore.h>
45#include <linux/irqdomain.h>
46#include <asm/irqdomain.h>
47#include <asm/apic.h>
48#include <linux/irq.h>
49#include <linux/msi.h>
50#include <linux/hyperv.h>
51#include <linux/refcount.h>
52#include <asm/mshyperv.h>
53
54/*
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
57 */
58
59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62
63enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
66};
67
68#define CPU_AFFINITY_ALL -1ULL
69
70/*
71 * Supported protocol versions in the order of probing - highest go
72 * first.
73 */
74static enum pci_protocol_version_t pci_protocol_versions[] = {
75 PCI_PROTOCOL_VERSION_1_2,
76 PCI_PROTOCOL_VERSION_1_1,
77};
78
79/*
80 * Protocol version negotiated by hv_pci_protocol_negotiation().
81 */
82static enum pci_protocol_version_t pci_protocol_version;
83
84#define PCI_CONFIG_MMIO_LENGTH 0x2000
85#define CFG_PAGE_OFFSET 0x1000
86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87
88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
89
90#define STATUS_REVISION_MISMATCH 0xC0000059
91
92/* space for 32bit serial number as string */
93#define SLOT_NAME_SIZE 11
94
95/*
96 * Message Types
97 */
98
99enum pci_message_type {
100 /*
101 * Version 1.1
102 */
103 PCI_MESSAGE_BASE = 0x42490000,
104 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
105 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
106 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
107 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
108 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
109 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
110 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
111 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
112 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
113 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
114 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
115 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
116 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
117 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
118 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
119 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
120 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
121 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
122 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
123 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
124 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
125 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
126 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
127 PCI_MESSAGE_MAXIMUM
128};
129
130/*
131 * Structures defining the virtual PCI Express protocol.
132 */
133
134union pci_version {
135 struct {
136 u16 minor_version;
137 u16 major_version;
138 } parts;
139 u32 version;
140} __packed;
141
142/*
143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
144 * which is all this driver does. This representation is the one used in
145 * Windows, which is what is expected when sending this back and forth with
146 * the Hyper-V parent partition.
147 */
148union win_slot_encoding {
149 struct {
150 u32 dev:5;
151 u32 func:3;
152 u32 reserved:24;
153 } bits;
154 u32 slot;
155} __packed;
156
157/*
158 * Pretty much as defined in the PCI Specifications.
159 */
160struct pci_function_description {
161 u16 v_id; /* vendor ID */
162 u16 d_id; /* device ID */
163 u8 rev;
164 u8 prog_intf;
165 u8 subclass;
166 u8 base_class;
167 u32 subsystem_id;
168 union win_slot_encoding win_slot;
169 u32 ser; /* serial number */
170} __packed;
171
172/**
173 * struct hv_msi_desc
174 * @vector: IDT entry
175 * @delivery_mode: As defined in Intel's Programmer's
176 * Reference Manual, Volume 3, Chapter 8.
177 * @vector_count: Number of contiguous entries in the
178 * Interrupt Descriptor Table that are
179 * occupied by this Message-Signaled
180 * Interrupt. For "MSI", as first defined
181 * in PCI 2.2, this can be between 1 and
182 * 32. For "MSI-X," as first defined in PCI
183 * 3.0, this must be 1, as each MSI-X table
184 * entry would have its own descriptor.
185 * @reserved: Empty space
186 * @cpu_mask: All the target virtual processors.
187 */
188struct hv_msi_desc {
189 u8 vector;
190 u8 delivery_mode;
191 u16 vector_count;
192 u32 reserved;
193 u64 cpu_mask;
194} __packed;
195
196/**
197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
198 * @vector: IDT entry
199 * @delivery_mode: As defined in Intel's Programmer's
200 * Reference Manual, Volume 3, Chapter 8.
201 * @vector_count: Number of contiguous entries in the
202 * Interrupt Descriptor Table that are
203 * occupied by this Message-Signaled
204 * Interrupt. For "MSI", as first defined
205 * in PCI 2.2, this can be between 1 and
206 * 32. For "MSI-X," as first defined in PCI
207 * 3.0, this must be 1, as each MSI-X table
208 * entry would have its own descriptor.
209 * @processor_count: number of bits enabled in array.
210 * @processor_array: All the target virtual processors.
211 */
212struct hv_msi_desc2 {
213 u8 vector;
214 u8 delivery_mode;
215 u16 vector_count;
216 u16 processor_count;
217 u16 processor_array[32];
218} __packed;
219
220/**
221 * struct tran_int_desc
222 * @reserved: unused, padding
223 * @vector_count: same as in hv_msi_desc
224 * @data: This is the "data payload" value that is
225 * written by the device when it generates
226 * a message-signaled interrupt, either MSI
227 * or MSI-X.
228 * @address: This is the address to which the data
229 * payload is written on interrupt
230 * generation.
231 */
232struct tran_int_desc {
233 u16 reserved;
234 u16 vector_count;
235 u32 data;
236 u64 address;
237} __packed;
238
239/*
240 * A generic message format for virtual PCI.
241 * Specific message formats are defined later in the file.
242 */
243
244struct pci_message {
245 u32 type;
246} __packed;
247
248struct pci_child_message {
249 struct pci_message message_type;
250 union win_slot_encoding wslot;
251} __packed;
252
253struct pci_incoming_message {
254 struct vmpacket_descriptor hdr;
255 struct pci_message message_type;
256} __packed;
257
258struct pci_response {
259 struct vmpacket_descriptor hdr;
260 s32 status; /* negative values are failures */
261} __packed;
262
263struct pci_packet {
264 void (*completion_func)(void *context, struct pci_response *resp,
265 int resp_packet_size);
266 void *compl_ctxt;
267
268 struct pci_message message[0];
269};
270
271/*
272 * Specific message types supporting the PCI protocol.
273 */
274
275/*
276 * Version negotiation message. Sent from the guest to the host.
277 * The guest is free to try different versions until the host
278 * accepts the version.
279 *
280 * pci_version: The protocol version requested.
281 * is_last_attempt: If TRUE, this is the last version guest will request.
282 * reservedz: Reserved field, set to zero.
283 */
284
285struct pci_version_request {
286 struct pci_message message_type;
287 u32 protocol_version;
288} __packed;
289
290/*
291 * Bus D0 Entry. This is sent from the guest to the host when the virtual
292 * bus (PCI Express port) is ready for action.
293 */
294
295struct pci_bus_d0_entry {
296 struct pci_message message_type;
297 u32 reserved;
298 u64 mmio_base;
299} __packed;
300
301struct pci_bus_relations {
302 struct pci_incoming_message incoming;
303 u32 device_count;
304 struct pci_function_description func[0];
305} __packed;
306
307struct pci_q_res_req_response {
308 struct vmpacket_descriptor hdr;
309 s32 status; /* negative values are failures */
310 u32 probed_bar[6];
311} __packed;
312
313struct pci_set_power {
314 struct pci_message message_type;
315 union win_slot_encoding wslot;
316 u32 power_state; /* In Windows terms */
317 u32 reserved;
318} __packed;
319
320struct pci_set_power_response {
321 struct vmpacket_descriptor hdr;
322 s32 status; /* negative values are failures */
323 union win_slot_encoding wslot;
324 u32 resultant_state; /* In Windows terms */
325 u32 reserved;
326} __packed;
327
328struct pci_resources_assigned {
329 struct pci_message message_type;
330 union win_slot_encoding wslot;
331 u8 memory_range[0x14][6]; /* not used here */
332 u32 msi_descriptors;
333 u32 reserved[4];
334} __packed;
335
336struct pci_resources_assigned2 {
337 struct pci_message message_type;
338 union win_slot_encoding wslot;
339 u8 memory_range[0x14][6]; /* not used here */
340 u32 msi_descriptor_count;
341 u8 reserved[70];
342} __packed;
343
344struct pci_create_interrupt {
345 struct pci_message message_type;
346 union win_slot_encoding wslot;
347 struct hv_msi_desc int_desc;
348} __packed;
349
350struct pci_create_int_response {
351 struct pci_response response;
352 u32 reserved;
353 struct tran_int_desc int_desc;
354} __packed;
355
356struct pci_create_interrupt2 {
357 struct pci_message message_type;
358 union win_slot_encoding wslot;
359 struct hv_msi_desc2 int_desc;
360} __packed;
361
362struct pci_delete_interrupt {
363 struct pci_message message_type;
364 union win_slot_encoding wslot;
365 struct tran_int_desc int_desc;
366} __packed;
367
368/*
369 * Note: the VM must pass a valid block id, wslot and bytes_requested.
370 */
371struct pci_read_block {
372 struct pci_message message_type;
373 u32 block_id;
374 union win_slot_encoding wslot;
375 u32 bytes_requested;
376} __packed;
377
378struct pci_read_block_response {
379 struct vmpacket_descriptor hdr;
380 u32 status;
381 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
382} __packed;
383
384/*
385 * Note: the VM must pass a valid block id, wslot and byte_count.
386 */
387struct pci_write_block {
388 struct pci_message message_type;
389 u32 block_id;
390 union win_slot_encoding wslot;
391 u32 byte_count;
392 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
393} __packed;
394
395struct pci_dev_inval_block {
396 struct pci_incoming_message incoming;
397 union win_slot_encoding wslot;
398 u64 block_mask;
399} __packed;
400
401struct pci_dev_incoming {
402 struct pci_incoming_message incoming;
403 union win_slot_encoding wslot;
404} __packed;
405
406struct pci_eject_response {
407 struct pci_message message_type;
408 union win_slot_encoding wslot;
409 u32 status;
410} __packed;
411
412static int pci_ring_size = (4 * PAGE_SIZE);
413
414/*
415 * Definitions or interrupt steering hypercall.
416 */
417#define HV_PARTITION_ID_SELF ((u64)-1)
418#define HVCALL_RETARGET_INTERRUPT 0x7e
419
420struct hv_interrupt_entry {
421 u32 source; /* 1 for MSI(-X) */
422 u32 reserved1;
423 u32 address;
424 u32 data;
425};
426
427/*
428 * flags for hv_device_interrupt_target.flags
429 */
430#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
431#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
432
433struct hv_device_interrupt_target {
434 u32 vector;
435 u32 flags;
436 union {
437 u64 vp_mask;
438 struct hv_vpset vp_set;
439 };
440};
441
442struct retarget_msi_interrupt {
443 u64 partition_id; /* use "self" */
444 u64 device_id;
445 struct hv_interrupt_entry int_entry;
446 u64 reserved2;
447 struct hv_device_interrupt_target int_target;
448} __packed __aligned(8);
449
450/*
451 * Driver specific state.
452 */
453
454enum hv_pcibus_state {
455 hv_pcibus_init = 0,
456 hv_pcibus_probed,
457 hv_pcibus_installed,
458 hv_pcibus_removed,
459 hv_pcibus_maximum
460};
461
462struct hv_pcibus_device {
463 struct pci_sysdata sysdata;
464 enum hv_pcibus_state state;
465 refcount_t remove_lock;
466 struct hv_device *hdev;
467 resource_size_t low_mmio_space;
468 resource_size_t high_mmio_space;
469 struct resource *mem_config;
470 struct resource *low_mmio_res;
471 struct resource *high_mmio_res;
472 struct completion *survey_event;
473 struct completion remove_event;
474 struct pci_bus *pci_bus;
475 spinlock_t config_lock; /* Avoid two threads writing index page */
476 spinlock_t device_list_lock; /* Protect lists below */
477 void __iomem *cfg_addr;
478
479 struct list_head resources_for_children;
480
481 struct list_head children;
482 struct list_head dr_list;
483
484 struct msi_domain_info msi_info;
485 struct msi_controller msi_chip;
486 struct irq_domain *irq_domain;
487
488 spinlock_t retarget_msi_interrupt_lock;
489
490 struct workqueue_struct *wq;
491
492 /* hypercall arg, must not cross page boundary */
493 struct retarget_msi_interrupt retarget_msi_interrupt_params;
494
495 /*
496 * Don't put anything here: retarget_msi_interrupt_params must be last
497 */
498};
499
500/*
501 * Tracks "Device Relations" messages from the host, which must be both
502 * processed in order and deferred so that they don't run in the context
503 * of the incoming packet callback.
504 */
505struct hv_dr_work {
506 struct work_struct wrk;
507 struct hv_pcibus_device *bus;
508};
509
510struct hv_dr_state {
511 struct list_head list_entry;
512 u32 device_count;
513 struct pci_function_description func[0];
514};
515
516enum hv_pcichild_state {
517 hv_pcichild_init = 0,
518 hv_pcichild_requirements,
519 hv_pcichild_resourced,
520 hv_pcichild_ejecting,
521 hv_pcichild_maximum
522};
523
524struct hv_pci_dev {
525 /* List protected by pci_rescan_remove_lock */
526 struct list_head list_entry;
527 refcount_t refs;
528 enum hv_pcichild_state state;
529 struct pci_slot *pci_slot;
530 struct pci_function_description desc;
531 bool reported_missing;
532 struct hv_pcibus_device *hbus;
533 struct work_struct wrk;
534
535 void (*block_invalidate)(void *context, u64 block_mask);
536 void *invalidate_context;
537
538 /*
539 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
540 * read it back, for each of the BAR offsets within config space.
541 */
542 u32 probed_bar[6];
543};
544
545struct hv_pci_compl {
546 struct completion host_event;
547 s32 completion_status;
548};
549
550static void hv_pci_onchannelcallback(void *context);
551
552/**
553 * hv_pci_generic_compl() - Invoked for a completion packet
554 * @context: Set up by the sender of the packet.
555 * @resp: The response packet
556 * @resp_packet_size: Size in bytes of the packet
557 *
558 * This function is used to trigger an event and report status
559 * for any message for which the completion packet contains a
560 * status and nothing else.
561 */
562static void hv_pci_generic_compl(void *context, struct pci_response *resp,
563 int resp_packet_size)
564{
565 struct hv_pci_compl *comp_pkt = context;
566
567 if (resp_packet_size >= offsetofend(struct pci_response, status))
568 comp_pkt->completion_status = resp->status;
569 else
570 comp_pkt->completion_status = -1;
571
572 complete(&comp_pkt->host_event);
573}
574
575static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
576 u32 wslot);
577
578static void get_pcichild(struct hv_pci_dev *hpdev)
579{
580 refcount_inc(&hpdev->refs);
581}
582
583static void put_pcichild(struct hv_pci_dev *hpdev)
584{
585 if (refcount_dec_and_test(&hpdev->refs))
586 kfree(hpdev);
587}
588
589static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
590static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
591
592/*
593 * There is no good way to get notified from vmbus_onoffer_rescind(),
594 * so let's use polling here, since this is not a hot path.
595 */
596static int wait_for_response(struct hv_device *hdev,
597 struct completion *comp)
598{
599 while (true) {
600 if (hdev->channel->rescind) {
601 dev_warn_once(&hdev->device, "The device is gone.\n");
602 return -ENODEV;
603 }
604
605 if (wait_for_completion_timeout(comp, HZ / 10))
606 break;
607 }
608
609 return 0;
610}
611
612/**
613 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
614 * @devfn: The Linux representation of PCI slot
615 *
616 * Windows uses a slightly different representation of PCI slot.
617 *
618 * Return: The Windows representation
619 */
620static u32 devfn_to_wslot(int devfn)
621{
622 union win_slot_encoding wslot;
623
624 wslot.slot = 0;
625 wslot.bits.dev = PCI_SLOT(devfn);
626 wslot.bits.func = PCI_FUNC(devfn);
627
628 return wslot.slot;
629}
630
631/**
632 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
633 * @wslot: The Windows representation of PCI slot
634 *
635 * Windows uses a slightly different representation of PCI slot.
636 *
637 * Return: The Linux representation
638 */
639static int wslot_to_devfn(u32 wslot)
640{
641 union win_slot_encoding slot_no;
642
643 slot_no.slot = wslot;
644 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
645}
646
647/*
648 * PCI Configuration Space for these root PCI buses is implemented as a pair
649 * of pages in memory-mapped I/O space. Writing to the first page chooses
650 * the PCI function being written or read. Once the first page has been
651 * written to, the following page maps in the entire configuration space of
652 * the function.
653 */
654
655/**
656 * _hv_pcifront_read_config() - Internal PCI config read
657 * @hpdev: The PCI driver's representation of the device
658 * @where: Offset within config space
659 * @size: Size of the transfer
660 * @val: Pointer to the buffer receiving the data
661 */
662static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
663 int size, u32 *val)
664{
665 unsigned long flags;
666 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
667
668 /*
669 * If the attempt is to read the IDs or the ROM BAR, simulate that.
670 */
671 if (where + size <= PCI_COMMAND) {
672 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
673 } else if (where >= PCI_CLASS_REVISION && where + size <=
674 PCI_CACHE_LINE_SIZE) {
675 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
676 PCI_CLASS_REVISION, size);
677 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
678 PCI_ROM_ADDRESS) {
679 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
680 PCI_SUBSYSTEM_VENDOR_ID, size);
681 } else if (where >= PCI_ROM_ADDRESS && where + size <=
682 PCI_CAPABILITY_LIST) {
683 /* ROM BARs are unimplemented */
684 *val = 0;
685 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) ||
686 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) {
687 /*
688 * Interrupt Line and Interrupt PIN are hard-wired to zero
689 * because this front-end only supports message-signaled
690 * interrupts.
691 */
692 *val = 0;
693 } else if (where + size <= CFG_PAGE_SIZE) {
694 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
695 /* Choose the function to be read. (See comment above) */
696 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
697 /* Make sure the function was chosen before we start reading. */
698 mb();
699 /* Read from that function's config space. */
700 switch (size) {
701 case 1:
702 *val = readb(addr);
703 break;
704 case 2:
705 *val = readw(addr);
706 break;
707 default:
708 *val = readl(addr);
709 break;
710 }
711 /*
712 * Make sure the read was done before we release the spinlock
713 * allowing consecutive reads/writes.
714 */
715 mb();
716 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
717 } else {
718 dev_err(&hpdev->hbus->hdev->device,
719 "Attempt to read beyond a function's config space.\n");
720 }
721}
722
723static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
724{
725 u16 ret;
726 unsigned long flags;
727 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
728 PCI_VENDOR_ID;
729
730 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
731
732 /* Choose the function to be read. (See comment above) */
733 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
734 /* Make sure the function was chosen before we start reading. */
735 mb();
736 /* Read from that function's config space. */
737 ret = readw(addr);
738 /*
739 * mb() is not required here, because the spin_unlock_irqrestore()
740 * is a barrier.
741 */
742
743 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
744
745 return ret;
746}
747
748/**
749 * _hv_pcifront_write_config() - Internal PCI config write
750 * @hpdev: The PCI driver's representation of the device
751 * @where: Offset within config space
752 * @size: Size of the transfer
753 * @val: The data being transferred
754 */
755static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
756 int size, u32 val)
757{
758 unsigned long flags;
759 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
760
761 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
762 where + size <= PCI_CAPABILITY_LIST) {
763 /* SSIDs and ROM BARs are read-only */
764 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
765 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
766 /* Choose the function to be written. (See comment above) */
767 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
768 /* Make sure the function was chosen before we start writing. */
769 wmb();
770 /* Write to that function's config space. */
771 switch (size) {
772 case 1:
773 writeb(val, addr);
774 break;
775 case 2:
776 writew(val, addr);
777 break;
778 default:
779 writel(val, addr);
780 break;
781 }
782 /*
783 * Make sure the write was done before we release the spinlock
784 * allowing consecutive reads/writes.
785 */
786 mb();
787 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
788 } else {
789 dev_err(&hpdev->hbus->hdev->device,
790 "Attempt to write beyond a function's config space.\n");
791 }
792}
793
794/**
795 * hv_pcifront_read_config() - Read configuration space
796 * @bus: PCI Bus structure
797 * @devfn: Device/function
798 * @where: Offset from base
799 * @size: Byte/word/dword
800 * @val: Value to be read
801 *
802 * Return: PCIBIOS_SUCCESSFUL on success
803 * PCIBIOS_DEVICE_NOT_FOUND on failure
804 */
805static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
806 int where, int size, u32 *val)
807{
808 struct hv_pcibus_device *hbus =
809 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
810 struct hv_pci_dev *hpdev;
811
812 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
813 if (!hpdev)
814 return PCIBIOS_DEVICE_NOT_FOUND;
815
816 _hv_pcifront_read_config(hpdev, where, size, val);
817
818 put_pcichild(hpdev);
819 return PCIBIOS_SUCCESSFUL;
820}
821
822/**
823 * hv_pcifront_write_config() - Write configuration space
824 * @bus: PCI Bus structure
825 * @devfn: Device/function
826 * @where: Offset from base
827 * @size: Byte/word/dword
828 * @val: Value to be written to device
829 *
830 * Return: PCIBIOS_SUCCESSFUL on success
831 * PCIBIOS_DEVICE_NOT_FOUND on failure
832 */
833static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
834 int where, int size, u32 val)
835{
836 struct hv_pcibus_device *hbus =
837 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
838 struct hv_pci_dev *hpdev;
839
840 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
841 if (!hpdev)
842 return PCIBIOS_DEVICE_NOT_FOUND;
843
844 _hv_pcifront_write_config(hpdev, where, size, val);
845
846 put_pcichild(hpdev);
847 return PCIBIOS_SUCCESSFUL;
848}
849
850/* PCIe operations */
851static struct pci_ops hv_pcifront_ops = {
852 .read = hv_pcifront_read_config,
853 .write = hv_pcifront_write_config,
854};
855
856/*
857 * Paravirtual backchannel
858 *
859 * Hyper-V SR-IOV provides a backchannel mechanism in software for
860 * communication between a VF driver and a PF driver. These
861 * "configuration blocks" are similar in concept to PCI configuration space,
862 * but instead of doing reads and writes in 32-bit chunks through a very slow
863 * path, packets of up to 128 bytes can be sent or received asynchronously.
864 *
865 * Nearly every SR-IOV device contains just such a communications channel in
866 * hardware, so using this one in software is usually optional. Using the
867 * software channel, however, allows driver implementers to leverage software
868 * tools that fuzz the communications channel looking for vulnerabilities.
869 *
870 * The usage model for these packets puts the responsibility for reading or
871 * writing on the VF driver. The VF driver sends a read or a write packet,
872 * indicating which "block" is being referred to by number.
873 *
874 * If the PF driver wishes to initiate communication, it can "invalidate" one or
875 * more of the first 64 blocks. This invalidation is delivered via a callback
876 * supplied by the VF driver by this driver.
877 *
878 * No protocol is implied, except that supplied by the PF and VF drivers.
879 */
880
881struct hv_read_config_compl {
882 struct hv_pci_compl comp_pkt;
883 void *buf;
884 unsigned int len;
885 unsigned int bytes_returned;
886};
887
888/**
889 * hv_pci_read_config_compl() - Invoked when a response packet
890 * for a read config block operation arrives.
891 * @context: Identifies the read config operation
892 * @resp: The response packet itself
893 * @resp_packet_size: Size in bytes of the response packet
894 */
895static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
896 int resp_packet_size)
897{
898 struct hv_read_config_compl *comp = context;
899 struct pci_read_block_response *read_resp =
900 (struct pci_read_block_response *)resp;
901 unsigned int data_len, hdr_len;
902
903 hdr_len = offsetof(struct pci_read_block_response, bytes);
904 if (resp_packet_size < hdr_len) {
905 comp->comp_pkt.completion_status = -1;
906 goto out;
907 }
908
909 data_len = resp_packet_size - hdr_len;
910 if (data_len > 0 && read_resp->status == 0) {
911 comp->bytes_returned = min(comp->len, data_len);
912 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
913 } else {
914 comp->bytes_returned = 0;
915 }
916
917 comp->comp_pkt.completion_status = read_resp->status;
918out:
919 complete(&comp->comp_pkt.host_event);
920}
921
922/**
923 * hv_read_config_block() - Sends a read config block request to
924 * the back-end driver running in the Hyper-V parent partition.
925 * @pdev: The PCI driver's representation for this device.
926 * @buf: Buffer into which the config block will be copied.
927 * @len: Size in bytes of buf.
928 * @block_id: Identifies the config block which has been requested.
929 * @bytes_returned: Size which came back from the back-end driver.
930 *
931 * Return: 0 on success, -errno on failure
932 */
933int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
934 unsigned int block_id, unsigned int *bytes_returned)
935{
936 struct hv_pcibus_device *hbus =
937 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
938 sysdata);
939 struct {
940 struct pci_packet pkt;
941 char buf[sizeof(struct pci_read_block)];
942 } pkt;
943 struct hv_read_config_compl comp_pkt;
944 struct pci_read_block *read_blk;
945 int ret;
946
947 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
948 return -EINVAL;
949
950 init_completion(&comp_pkt.comp_pkt.host_event);
951 comp_pkt.buf = buf;
952 comp_pkt.len = len;
953
954 memset(&pkt, 0, sizeof(pkt));
955 pkt.pkt.completion_func = hv_pci_read_config_compl;
956 pkt.pkt.compl_ctxt = &comp_pkt;
957 read_blk = (struct pci_read_block *)&pkt.pkt.message;
958 read_blk->message_type.type = PCI_READ_BLOCK;
959 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
960 read_blk->block_id = block_id;
961 read_blk->bytes_requested = len;
962
963 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
964 sizeof(*read_blk), (unsigned long)&pkt.pkt,
965 VM_PKT_DATA_INBAND,
966 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
967 if (ret)
968 return ret;
969
970 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
971 if (ret)
972 return ret;
973
974 if (comp_pkt.comp_pkt.completion_status != 0 ||
975 comp_pkt.bytes_returned == 0) {
976 dev_err(&hbus->hdev->device,
977 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
978 comp_pkt.comp_pkt.completion_status,
979 comp_pkt.bytes_returned);
980 return -EIO;
981 }
982
983 *bytes_returned = comp_pkt.bytes_returned;
984 return 0;
985}
986
987/**
988 * hv_pci_write_config_compl() - Invoked when a response packet for a write
989 * config block operation arrives.
990 * @context: Identifies the write config operation
991 * @resp: The response packet itself
992 * @resp_packet_size: Size in bytes of the response packet
993 */
994static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
995 int resp_packet_size)
996{
997 struct hv_pci_compl *comp_pkt = context;
998
999 comp_pkt->completion_status = resp->status;
1000 complete(&comp_pkt->host_event);
1001}
1002
1003/**
1004 * hv_write_config_block() - Sends a write config block request to the
1005 * back-end driver running in the Hyper-V parent partition.
1006 * @pdev: The PCI driver's representation for this device.
1007 * @buf: Buffer from which the config block will be copied.
1008 * @len: Size in bytes of buf.
1009 * @block_id: Identifies the config block which is being written.
1010 *
1011 * Return: 0 on success, -errno on failure
1012 */
1013int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
1014 unsigned int block_id)
1015{
1016 struct hv_pcibus_device *hbus =
1017 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1018 sysdata);
1019 struct {
1020 struct pci_packet pkt;
1021 char buf[sizeof(struct pci_write_block)];
1022 u32 reserved;
1023 } pkt;
1024 struct hv_pci_compl comp_pkt;
1025 struct pci_write_block *write_blk;
1026 u32 pkt_size;
1027 int ret;
1028
1029 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1030 return -EINVAL;
1031
1032 init_completion(&comp_pkt.host_event);
1033
1034 memset(&pkt, 0, sizeof(pkt));
1035 pkt.pkt.completion_func = hv_pci_write_config_compl;
1036 pkt.pkt.compl_ctxt = &comp_pkt;
1037 write_blk = (struct pci_write_block *)&pkt.pkt.message;
1038 write_blk->message_type.type = PCI_WRITE_BLOCK;
1039 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1040 write_blk->block_id = block_id;
1041 write_blk->byte_count = len;
1042 memcpy(write_blk->bytes, buf, len);
1043 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1044 /*
1045 * This quirk is required on some hosts shipped around 2018, because
1046 * these hosts don't check the pkt_size correctly (new hosts have been
1047 * fixed since early 2019). The quirk is also safe on very old hosts
1048 * and new hosts, because, on them, what really matters is the length
1049 * specified in write_blk->byte_count.
1050 */
1051 pkt_size += sizeof(pkt.reserved);
1052
1053 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1054 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1055 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1056 if (ret)
1057 return ret;
1058
1059 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1060 if (ret)
1061 return ret;
1062
1063 if (comp_pkt.completion_status != 0) {
1064 dev_err(&hbus->hdev->device,
1065 "Write Config Block failed: 0x%x\n",
1066 comp_pkt.completion_status);
1067 return -EIO;
1068 }
1069
1070 return 0;
1071}
1072
1073/**
1074 * hv_register_block_invalidate() - Invoked when a config block invalidation
1075 * arrives from the back-end driver.
1076 * @pdev: The PCI driver's representation for this device.
1077 * @context: Identifies the device.
1078 * @block_invalidate: Identifies all of the blocks being invalidated.
1079 *
1080 * Return: 0 on success, -errno on failure
1081 */
1082int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1083 void (*block_invalidate)(void *context,
1084 u64 block_mask))
1085{
1086 struct hv_pcibus_device *hbus =
1087 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1088 sysdata);
1089 struct hv_pci_dev *hpdev;
1090
1091 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1092 if (!hpdev)
1093 return -ENODEV;
1094
1095 hpdev->block_invalidate = block_invalidate;
1096 hpdev->invalidate_context = context;
1097
1098 put_pcichild(hpdev);
1099 return 0;
1100
1101}
1102
1103/* Interrupt management hooks */
1104static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1105 struct tran_int_desc *int_desc)
1106{
1107 struct pci_delete_interrupt *int_pkt;
1108 struct {
1109 struct pci_packet pkt;
1110 u8 buffer[sizeof(struct pci_delete_interrupt)];
1111 } ctxt;
1112
1113 if (!int_desc->vector_count) {
1114 kfree(int_desc);
1115 return;
1116 }
1117 memset(&ctxt, 0, sizeof(ctxt));
1118 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1119 int_pkt->message_type.type =
1120 PCI_DELETE_INTERRUPT_MESSAGE;
1121 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1122 int_pkt->int_desc = *int_desc;
1123 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1124 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1125 kfree(int_desc);
1126}
1127
1128/**
1129 * hv_msi_free() - Free the MSI.
1130 * @domain: The interrupt domain pointer
1131 * @info: Extra MSI-related context
1132 * @irq: Identifies the IRQ.
1133 *
1134 * The Hyper-V parent partition and hypervisor are tracking the
1135 * messages that are in use, keeping the interrupt redirection
1136 * table up to date. This callback sends a message that frees
1137 * the IRT entry and related tracking nonsense.
1138 */
1139static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1140 unsigned int irq)
1141{
1142 struct hv_pcibus_device *hbus;
1143 struct hv_pci_dev *hpdev;
1144 struct pci_dev *pdev;
1145 struct tran_int_desc *int_desc;
1146 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1147 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1148
1149 pdev = msi_desc_to_pci_dev(msi);
1150 hbus = info->data;
1151 int_desc = irq_data_get_irq_chip_data(irq_data);
1152 if (!int_desc)
1153 return;
1154
1155 irq_data->chip_data = NULL;
1156 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1157 if (!hpdev) {
1158 kfree(int_desc);
1159 return;
1160 }
1161
1162 hv_int_desc_free(hpdev, int_desc);
1163 put_pcichild(hpdev);
1164}
1165
1166static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1167 bool force)
1168{
1169 struct irq_data *parent = data->parent_data;
1170
1171 return parent->chip->irq_set_affinity(parent, dest, force);
1172}
1173
1174static void hv_irq_mask(struct irq_data *data)
1175{
1176 pci_msi_mask_irq(data);
1177}
1178
1179static unsigned int hv_msi_get_int_vector(struct irq_data *data)
1180{
1181 struct irq_cfg *cfg = irqd_cfg(data);
1182
1183 return cfg->vector;
1184}
1185
1186static int hv_msi_prepare(struct irq_domain *domain, struct device *dev,
1187 int nvec, msi_alloc_info_t *info)
1188{
1189 int ret = pci_msi_prepare(domain, dev, nvec, info);
1190
1191 /*
1192 * By using the interrupt remapper in the hypervisor IOMMU, contiguous
1193 * CPU vectors is not needed for multi-MSI
1194 */
1195 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1196 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1197
1198 return ret;
1199}
1200
1201/**
1202 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1203 * affinity.
1204 * @data: Describes the IRQ
1205 *
1206 * Build new a destination for the MSI and make a hypercall to
1207 * update the Interrupt Redirection Table. "Device Logical ID"
1208 * is built out of this PCI bus's instance GUID and the function
1209 * number of the device.
1210 */
1211static void hv_irq_unmask(struct irq_data *data)
1212{
1213 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1214 struct irq_cfg *cfg = irqd_cfg(data);
1215 struct retarget_msi_interrupt *params;
1216 struct tran_int_desc *int_desc;
1217 struct hv_pcibus_device *hbus;
1218 struct cpumask *dest;
1219 cpumask_var_t tmp;
1220 struct pci_bus *pbus;
1221 struct pci_dev *pdev;
1222 unsigned long flags;
1223 u32 var_size = 0;
1224 int cpu, nr_bank;
1225 u64 res;
1226
1227 dest = irq_data_get_effective_affinity_mask(data);
1228 pdev = msi_desc_to_pci_dev(msi_desc);
1229 pbus = pdev->bus;
1230 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1231 int_desc = data->chip_data;
1232
1233 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1234
1235 params = &hbus->retarget_msi_interrupt_params;
1236 memset(params, 0, sizeof(*params));
1237 params->partition_id = HV_PARTITION_ID_SELF;
1238 params->int_entry.source = 1; /* MSI(-X) */
1239 params->int_entry.address = int_desc->address & 0xffffffff;
1240 params->int_entry.data = int_desc->data;
1241 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1242 (hbus->hdev->dev_instance.b[4] << 16) |
1243 (hbus->hdev->dev_instance.b[7] << 8) |
1244 (hbus->hdev->dev_instance.b[6] & 0xf8) |
1245 PCI_FUNC(pdev->devfn);
1246 params->int_target.vector = cfg->vector;
1247
1248 /*
1249 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1250 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1251 * spurious interrupt storm. Not doing so does not seem to have a
1252 * negative effect (yet?).
1253 */
1254
1255 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1256 /*
1257 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1258 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1259 * with >64 VP support.
1260 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1261 * is not sufficient for this hypercall.
1262 */
1263 params->int_target.flags |=
1264 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1265
1266 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1267 res = 1;
1268 goto exit_unlock;
1269 }
1270
1271 cpumask_and(tmp, dest, cpu_online_mask);
1272 nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1273 free_cpumask_var(tmp);
1274
1275 if (nr_bank <= 0) {
1276 res = 1;
1277 goto exit_unlock;
1278 }
1279
1280 /*
1281 * var-sized hypercall, var-size starts after vp_mask (thus
1282 * vp_set.format does not count, but vp_set.valid_bank_mask
1283 * does).
1284 */
1285 var_size = 1 + nr_bank;
1286 } else {
1287 for_each_cpu_and(cpu, dest, cpu_online_mask) {
1288 params->int_target.vp_mask |=
1289 (1ULL << hv_cpu_number_to_vp_number(cpu));
1290 }
1291 }
1292
1293 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1294 params, NULL);
1295
1296exit_unlock:
1297 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1298
1299 if (res) {
1300 dev_err(&hbus->hdev->device,
1301 "%s() failed: %#llx", __func__, res);
1302 return;
1303 }
1304
1305 pci_msi_unmask_irq(data);
1306}
1307
1308struct compose_comp_ctxt {
1309 struct hv_pci_compl comp_pkt;
1310 struct tran_int_desc int_desc;
1311};
1312
1313static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1314 int resp_packet_size)
1315{
1316 struct compose_comp_ctxt *comp_pkt = context;
1317 struct pci_create_int_response *int_resp =
1318 (struct pci_create_int_response *)resp;
1319
1320 comp_pkt->comp_pkt.completion_status = resp->status;
1321 comp_pkt->int_desc = int_resp->int_desc;
1322 complete(&comp_pkt->comp_pkt.host_event);
1323}
1324
1325static u32 hv_compose_msi_req_v1(
1326 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1327 u32 slot, u8 vector, u8 vector_count)
1328{
1329 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1330 int_pkt->wslot.slot = slot;
1331 int_pkt->int_desc.vector = vector;
1332 int_pkt->int_desc.vector_count = vector_count;
1333 int_pkt->int_desc.delivery_mode = dest_Fixed;
1334
1335 /*
1336 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1337 * hv_irq_unmask().
1338 */
1339 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1340
1341 return sizeof(*int_pkt);
1342}
1343
1344static u32 hv_compose_msi_req_v2(
1345 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1346 u32 slot, u8 vector, u8 vector_count)
1347{
1348 int cpu;
1349
1350 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1351 int_pkt->wslot.slot = slot;
1352 int_pkt->int_desc.vector = vector;
1353 int_pkt->int_desc.vector_count = vector_count;
1354 int_pkt->int_desc.delivery_mode = dest_Fixed;
1355
1356 /*
1357 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1358 * by subsequent retarget in hv_irq_unmask().
1359 */
1360 cpu = cpumask_first_and(affinity, cpu_online_mask);
1361 int_pkt->int_desc.processor_array[0] =
1362 hv_cpu_number_to_vp_number(cpu);
1363 int_pkt->int_desc.processor_count = 1;
1364
1365 return sizeof(*int_pkt);
1366}
1367
1368/**
1369 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1370 * @data: Everything about this MSI
1371 * @msg: Buffer that is filled in by this function
1372 *
1373 * This function unpacks the IRQ looking for target CPU set, IDT
1374 * vector and mode and sends a message to the parent partition
1375 * asking for a mapping for that tuple in this partition. The
1376 * response supplies a data value and address to which that data
1377 * should be written to trigger that interrupt.
1378 */
1379static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1380{
1381 struct hv_pcibus_device *hbus;
1382 struct hv_pci_dev *hpdev;
1383 struct pci_bus *pbus;
1384 struct pci_dev *pdev;
1385 struct cpumask *dest;
1386 unsigned long flags;
1387 struct compose_comp_ctxt comp;
1388 struct tran_int_desc *int_desc;
1389 struct msi_desc *msi_desc;
1390 u8 vector, vector_count;
1391 struct {
1392 struct pci_packet pci_pkt;
1393 union {
1394 struct pci_create_interrupt v1;
1395 struct pci_create_interrupt2 v2;
1396 } int_pkts;
1397 } __packed ctxt;
1398
1399 u32 size;
1400 int ret;
1401
1402 /* Reuse the previous allocation */
1403 if (data->chip_data) {
1404 int_desc = data->chip_data;
1405 msg->address_hi = int_desc->address >> 32;
1406 msg->address_lo = int_desc->address & 0xffffffff;
1407 msg->data = int_desc->data;
1408 return;
1409 }
1410
1411 msi_desc = irq_data_get_msi_desc(data);
1412 pdev = msi_desc_to_pci_dev(msi_desc);
1413 dest = irq_data_get_effective_affinity_mask(data);
1414 pbus = pdev->bus;
1415 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1416 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1417 if (!hpdev)
1418 goto return_null_message;
1419
1420 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1421 if (!int_desc)
1422 goto drop_reference;
1423
1424 if (!msi_desc->msi_attrib.is_msix && msi_desc->nvec_used > 1) {
1425 /*
1426 * If this is not the first MSI of Multi MSI, we already have
1427 * a mapping. Can exit early.
1428 */
1429 if (msi_desc->irq != data->irq) {
1430 data->chip_data = int_desc;
1431 int_desc->address = msi_desc->msg.address_lo |
1432 (u64)msi_desc->msg.address_hi << 32;
1433 int_desc->data = msi_desc->msg.data +
1434 (data->irq - msi_desc->irq);
1435 msg->address_hi = msi_desc->msg.address_hi;
1436 msg->address_lo = msi_desc->msg.address_lo;
1437 msg->data = int_desc->data;
1438 put_pcichild(hpdev);
1439 return;
1440 }
1441 /*
1442 * The vector we select here is a dummy value. The correct
1443 * value gets sent to the hypervisor in unmask(). This needs
1444 * to be aligned with the count, and also not zero. Multi-msi
1445 * is powers of 2 up to 32, so 32 will always work here.
1446 */
1447 vector = 32;
1448 vector_count = msi_desc->nvec_used;
1449 } else {
1450 vector = hv_msi_get_int_vector(data);
1451 vector_count = 1;
1452 }
1453
1454 memset(&ctxt, 0, sizeof(ctxt));
1455 init_completion(&comp.comp_pkt.host_event);
1456 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1457 ctxt.pci_pkt.compl_ctxt = &comp;
1458
1459 switch (pci_protocol_version) {
1460 case PCI_PROTOCOL_VERSION_1_1:
1461 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1462 dest,
1463 hpdev->desc.win_slot.slot,
1464 vector,
1465 vector_count);
1466 break;
1467
1468 case PCI_PROTOCOL_VERSION_1_2:
1469 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1470 dest,
1471 hpdev->desc.win_slot.slot,
1472 vector,
1473 vector_count);
1474 break;
1475
1476 default:
1477 /* As we only negotiate protocol versions known to this driver,
1478 * this path should never hit. However, this is it not a hot
1479 * path so we print a message to aid future updates.
1480 */
1481 dev_err(&hbus->hdev->device,
1482 "Unexpected vPCI protocol, update driver.");
1483 goto free_int_desc;
1484 }
1485
1486 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1487 size, (unsigned long)&ctxt.pci_pkt,
1488 VM_PKT_DATA_INBAND,
1489 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1490 if (ret) {
1491 dev_err(&hbus->hdev->device,
1492 "Sending request for interrupt failed: 0x%x",
1493 comp.comp_pkt.completion_status);
1494 goto free_int_desc;
1495 }
1496
1497 /*
1498 * Since this function is called with IRQ locks held, can't
1499 * do normal wait for completion; instead poll.
1500 */
1501 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1502 /* 0xFFFF means an invalid PCI VENDOR ID. */
1503 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1504 dev_err_once(&hbus->hdev->device,
1505 "the device has gone\n");
1506 goto free_int_desc;
1507 }
1508
1509 /*
1510 * When the higher level interrupt code calls us with
1511 * interrupt disabled, we must poll the channel by calling
1512 * the channel callback directly when channel->target_cpu is
1513 * the current CPU. When the higher level interrupt code
1514 * calls us with interrupt enabled, let's add the
1515 * local_irq_save()/restore() to avoid race:
1516 * hv_pci_onchannelcallback() can also run in tasklet.
1517 */
1518 local_irq_save(flags);
1519
1520 if (hbus->hdev->channel->target_cpu == smp_processor_id())
1521 hv_pci_onchannelcallback(hbus);
1522
1523 local_irq_restore(flags);
1524
1525 if (hpdev->state == hv_pcichild_ejecting) {
1526 dev_err_once(&hbus->hdev->device,
1527 "the device is being ejected\n");
1528 goto free_int_desc;
1529 }
1530
1531 udelay(100);
1532 }
1533
1534 if (comp.comp_pkt.completion_status < 0) {
1535 dev_err(&hbus->hdev->device,
1536 "Request for interrupt failed: 0x%x",
1537 comp.comp_pkt.completion_status);
1538 goto free_int_desc;
1539 }
1540
1541 /*
1542 * Record the assignment so that this can be unwound later. Using
1543 * irq_set_chip_data() here would be appropriate, but the lock it takes
1544 * is already held.
1545 */
1546 *int_desc = comp.int_desc;
1547 data->chip_data = int_desc;
1548
1549 /* Pass up the result. */
1550 msg->address_hi = comp.int_desc.address >> 32;
1551 msg->address_lo = comp.int_desc.address & 0xffffffff;
1552 msg->data = comp.int_desc.data;
1553
1554 put_pcichild(hpdev);
1555 return;
1556
1557free_int_desc:
1558 kfree(int_desc);
1559drop_reference:
1560 put_pcichild(hpdev);
1561return_null_message:
1562 msg->address_hi = 0;
1563 msg->address_lo = 0;
1564 msg->data = 0;
1565}
1566
1567/* HW Interrupt Chip Descriptor */
1568static struct irq_chip hv_msi_irq_chip = {
1569 .name = "Hyper-V PCIe MSI",
1570 .irq_compose_msi_msg = hv_compose_msi_msg,
1571 .irq_set_affinity = hv_set_affinity,
1572 .irq_ack = irq_chip_ack_parent,
1573 .irq_mask = hv_irq_mask,
1574 .irq_unmask = hv_irq_unmask,
1575};
1576
1577static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1578 msi_alloc_info_t *arg)
1579{
1580 return arg->msi_hwirq;
1581}
1582
1583static struct msi_domain_ops hv_msi_ops = {
1584 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1585 .msi_prepare = hv_msi_prepare,
1586 .set_desc = pci_msi_set_desc,
1587 .msi_free = hv_msi_free,
1588};
1589
1590/**
1591 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1592 * @hbus: The root PCI bus
1593 *
1594 * This function creates an IRQ domain which will be used for
1595 * interrupts from devices that have been passed through. These
1596 * devices only support MSI and MSI-X, not line-based interrupts
1597 * or simulations of line-based interrupts through PCIe's
1598 * fabric-layer messages. Because interrupts are remapped, we
1599 * can support multi-message MSI here.
1600 *
1601 * Return: '0' on success and error value on failure
1602 */
1603static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1604{
1605 hbus->msi_info.chip = &hv_msi_irq_chip;
1606 hbus->msi_info.ops = &hv_msi_ops;
1607 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1608 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1609 MSI_FLAG_PCI_MSIX);
1610 hbus->msi_info.handler = handle_edge_irq;
1611 hbus->msi_info.handler_name = "edge";
1612 hbus->msi_info.data = hbus;
1613 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1614 &hbus->msi_info,
1615 x86_vector_domain);
1616 if (!hbus->irq_domain) {
1617 dev_err(&hbus->hdev->device,
1618 "Failed to build an MSI IRQ domain\n");
1619 return -ENODEV;
1620 }
1621
1622 return 0;
1623}
1624
1625/**
1626 * get_bar_size() - Get the address space consumed by a BAR
1627 * @bar_val: Value that a BAR returned after -1 was written
1628 * to it.
1629 *
1630 * This function returns the size of the BAR, rounded up to 1
1631 * page. It has to be rounded up because the hypervisor's page
1632 * table entry that maps the BAR into the VM can't specify an
1633 * offset within a page. The invariant is that the hypervisor
1634 * must place any BARs of smaller than page length at the
1635 * beginning of a page.
1636 *
1637 * Return: Size in bytes of the consumed MMIO space.
1638 */
1639static u64 get_bar_size(u64 bar_val)
1640{
1641 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1642 PAGE_SIZE);
1643}
1644
1645/**
1646 * survey_child_resources() - Total all MMIO requirements
1647 * @hbus: Root PCI bus, as understood by this driver
1648 */
1649static void survey_child_resources(struct hv_pcibus_device *hbus)
1650{
1651 struct hv_pci_dev *hpdev;
1652 resource_size_t bar_size = 0;
1653 unsigned long flags;
1654 struct completion *event;
1655 u64 bar_val;
1656 int i;
1657
1658 /* If nobody is waiting on the answer, don't compute it. */
1659 event = xchg(&hbus->survey_event, NULL);
1660 if (!event)
1661 return;
1662
1663 /* If the answer has already been computed, go with it. */
1664 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1665 complete(event);
1666 return;
1667 }
1668
1669 spin_lock_irqsave(&hbus->device_list_lock, flags);
1670
1671 /*
1672 * Due to an interesting quirk of the PCI spec, all memory regions
1673 * for a child device are a power of 2 in size and aligned in memory,
1674 * so it's sufficient to just add them up without tracking alignment.
1675 */
1676 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1677 for (i = 0; i < 6; i++) {
1678 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1679 dev_err(&hbus->hdev->device,
1680 "There's an I/O BAR in this list!\n");
1681
1682 if (hpdev->probed_bar[i] != 0) {
1683 /*
1684 * A probed BAR has all the upper bits set that
1685 * can be changed.
1686 */
1687
1688 bar_val = hpdev->probed_bar[i];
1689 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1690 bar_val |=
1691 ((u64)hpdev->probed_bar[++i] << 32);
1692 else
1693 bar_val |= 0xffffffff00000000ULL;
1694
1695 bar_size = get_bar_size(bar_val);
1696
1697 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1698 hbus->high_mmio_space += bar_size;
1699 else
1700 hbus->low_mmio_space += bar_size;
1701 }
1702 }
1703 }
1704
1705 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1706 complete(event);
1707}
1708
1709/**
1710 * prepopulate_bars() - Fill in BARs with defaults
1711 * @hbus: Root PCI bus, as understood by this driver
1712 *
1713 * The core PCI driver code seems much, much happier if the BARs
1714 * for a device have values upon first scan. So fill them in.
1715 * The algorithm below works down from large sizes to small,
1716 * attempting to pack the assignments optimally. The assumption,
1717 * enforced in other parts of the code, is that the beginning of
1718 * the memory-mapped I/O space will be aligned on the largest
1719 * BAR size.
1720 */
1721static void prepopulate_bars(struct hv_pcibus_device *hbus)
1722{
1723 resource_size_t high_size = 0;
1724 resource_size_t low_size = 0;
1725 resource_size_t high_base = 0;
1726 resource_size_t low_base = 0;
1727 resource_size_t bar_size;
1728 struct hv_pci_dev *hpdev;
1729 unsigned long flags;
1730 u64 bar_val;
1731 u32 command;
1732 bool high;
1733 int i;
1734
1735 if (hbus->low_mmio_space) {
1736 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1737 low_base = hbus->low_mmio_res->start;
1738 }
1739
1740 if (hbus->high_mmio_space) {
1741 high_size = 1ULL <<
1742 (63 - __builtin_clzll(hbus->high_mmio_space));
1743 high_base = hbus->high_mmio_res->start;
1744 }
1745
1746 spin_lock_irqsave(&hbus->device_list_lock, flags);
1747
1748 /* Pick addresses for the BARs. */
1749 do {
1750 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1751 for (i = 0; i < 6; i++) {
1752 bar_val = hpdev->probed_bar[i];
1753 if (bar_val == 0)
1754 continue;
1755 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1756 if (high) {
1757 bar_val |=
1758 ((u64)hpdev->probed_bar[i + 1]
1759 << 32);
1760 } else {
1761 bar_val |= 0xffffffffULL << 32;
1762 }
1763 bar_size = get_bar_size(bar_val);
1764 if (high) {
1765 if (high_size != bar_size) {
1766 i++;
1767 continue;
1768 }
1769 _hv_pcifront_write_config(hpdev,
1770 PCI_BASE_ADDRESS_0 + (4 * i),
1771 4,
1772 (u32)(high_base & 0xffffff00));
1773 i++;
1774 _hv_pcifront_write_config(hpdev,
1775 PCI_BASE_ADDRESS_0 + (4 * i),
1776 4, (u32)(high_base >> 32));
1777 high_base += bar_size;
1778 } else {
1779 if (low_size != bar_size)
1780 continue;
1781 _hv_pcifront_write_config(hpdev,
1782 PCI_BASE_ADDRESS_0 + (4 * i),
1783 4,
1784 (u32)(low_base & 0xffffff00));
1785 low_base += bar_size;
1786 }
1787 }
1788 if (high_size <= 1 && low_size <= 1) {
1789 /* Set the memory enable bit. */
1790 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1791 &command);
1792 command |= PCI_COMMAND_MEMORY;
1793 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1794 command);
1795 break;
1796 }
1797 }
1798
1799 high_size >>= 1;
1800 low_size >>= 1;
1801 } while (high_size || low_size);
1802
1803 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1804}
1805
1806/*
1807 * Assign entries in sysfs pci slot directory.
1808 *
1809 * Note that this function does not need to lock the children list
1810 * because it is called from pci_devices_present_work which
1811 * is serialized with hv_eject_device_work because they are on the
1812 * same ordered workqueue. Therefore hbus->children list will not change
1813 * even when pci_create_slot sleeps.
1814 */
1815static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1816{
1817 struct hv_pci_dev *hpdev;
1818 char name[SLOT_NAME_SIZE];
1819 int slot_nr;
1820
1821 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1822 if (hpdev->pci_slot)
1823 continue;
1824
1825 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1826 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1827 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1828 name, NULL);
1829 if (IS_ERR(hpdev->pci_slot)) {
1830 pr_warn("pci_create slot %s failed\n", name);
1831 hpdev->pci_slot = NULL;
1832 }
1833 }
1834}
1835
1836/*
1837 * Remove entries in sysfs pci slot directory.
1838 */
1839static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1840{
1841 struct hv_pci_dev *hpdev;
1842
1843 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1844 if (!hpdev->pci_slot)
1845 continue;
1846 pci_destroy_slot(hpdev->pci_slot);
1847 hpdev->pci_slot = NULL;
1848 }
1849}
1850
1851/**
1852 * create_root_hv_pci_bus() - Expose a new root PCI bus
1853 * @hbus: Root PCI bus, as understood by this driver
1854 *
1855 * Return: 0 on success, -errno on failure
1856 */
1857static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1858{
1859 /* Register the device */
1860 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1861 0, /* bus number is always zero */
1862 &hv_pcifront_ops,
1863 &hbus->sysdata,
1864 &hbus->resources_for_children);
1865 if (!hbus->pci_bus)
1866 return -ENODEV;
1867
1868 hbus->pci_bus->msi = &hbus->msi_chip;
1869 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1870
1871 pci_lock_rescan_remove();
1872 pci_scan_child_bus(hbus->pci_bus);
1873 pci_bus_assign_resources(hbus->pci_bus);
1874 hv_pci_assign_slots(hbus);
1875 pci_bus_add_devices(hbus->pci_bus);
1876 pci_unlock_rescan_remove();
1877 hbus->state = hv_pcibus_installed;
1878 return 0;
1879}
1880
1881struct q_res_req_compl {
1882 struct completion host_event;
1883 struct hv_pci_dev *hpdev;
1884};
1885
1886/**
1887 * q_resource_requirements() - Query Resource Requirements
1888 * @context: The completion context.
1889 * @resp: The response that came from the host.
1890 * @resp_packet_size: The size in bytes of resp.
1891 *
1892 * This function is invoked on completion of a Query Resource
1893 * Requirements packet.
1894 */
1895static void q_resource_requirements(void *context, struct pci_response *resp,
1896 int resp_packet_size)
1897{
1898 struct q_res_req_compl *completion = context;
1899 struct pci_q_res_req_response *q_res_req =
1900 (struct pci_q_res_req_response *)resp;
1901 int i;
1902
1903 if (resp->status < 0) {
1904 dev_err(&completion->hpdev->hbus->hdev->device,
1905 "query resource requirements failed: %x\n",
1906 resp->status);
1907 } else {
1908 for (i = 0; i < 6; i++) {
1909 completion->hpdev->probed_bar[i] =
1910 q_res_req->probed_bar[i];
1911 }
1912 }
1913
1914 complete(&completion->host_event);
1915}
1916
1917/**
1918 * new_pcichild_device() - Create a new child device
1919 * @hbus: The internal struct tracking this root PCI bus.
1920 * @desc: The information supplied so far from the host
1921 * about the device.
1922 *
1923 * This function creates the tracking structure for a new child
1924 * device and kicks off the process of figuring out what it is.
1925 *
1926 * Return: Pointer to the new tracking struct
1927 */
1928static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1929 struct pci_function_description *desc)
1930{
1931 struct hv_pci_dev *hpdev;
1932 struct pci_child_message *res_req;
1933 struct q_res_req_compl comp_pkt;
1934 struct {
1935 struct pci_packet init_packet;
1936 u8 buffer[sizeof(struct pci_child_message)];
1937 } pkt;
1938 unsigned long flags;
1939 int ret;
1940
1941 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1942 if (!hpdev)
1943 return NULL;
1944
1945 hpdev->hbus = hbus;
1946
1947 memset(&pkt, 0, sizeof(pkt));
1948 init_completion(&comp_pkt.host_event);
1949 comp_pkt.hpdev = hpdev;
1950 pkt.init_packet.compl_ctxt = &comp_pkt;
1951 pkt.init_packet.completion_func = q_resource_requirements;
1952 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1953 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1954 res_req->wslot.slot = desc->win_slot.slot;
1955
1956 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1957 sizeof(struct pci_child_message),
1958 (unsigned long)&pkt.init_packet,
1959 VM_PKT_DATA_INBAND,
1960 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1961 if (ret)
1962 goto error;
1963
1964 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1965 goto error;
1966
1967 hpdev->desc = *desc;
1968 refcount_set(&hpdev->refs, 1);
1969 get_pcichild(hpdev);
1970 spin_lock_irqsave(&hbus->device_list_lock, flags);
1971
1972 list_add_tail(&hpdev->list_entry, &hbus->children);
1973 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1974 return hpdev;
1975
1976error:
1977 kfree(hpdev);
1978 return NULL;
1979}
1980
1981/**
1982 * get_pcichild_wslot() - Find device from slot
1983 * @hbus: Root PCI bus, as understood by this driver
1984 * @wslot: Location on the bus
1985 *
1986 * This function looks up a PCI device and returns the internal
1987 * representation of it. It acquires a reference on it, so that
1988 * the device won't be deleted while somebody is using it. The
1989 * caller is responsible for calling put_pcichild() to release
1990 * this reference.
1991 *
1992 * Return: Internal representation of a PCI device
1993 */
1994static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1995 u32 wslot)
1996{
1997 unsigned long flags;
1998 struct hv_pci_dev *iter, *hpdev = NULL;
1999
2000 spin_lock_irqsave(&hbus->device_list_lock, flags);
2001 list_for_each_entry(iter, &hbus->children, list_entry) {
2002 if (iter->desc.win_slot.slot == wslot) {
2003 hpdev = iter;
2004 get_pcichild(hpdev);
2005 break;
2006 }
2007 }
2008 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2009
2010 return hpdev;
2011}
2012
2013/**
2014 * pci_devices_present_work() - Handle new list of child devices
2015 * @work: Work struct embedded in struct hv_dr_work
2016 *
2017 * "Bus Relations" is the Windows term for "children of this
2018 * bus." The terminology is preserved here for people trying to
2019 * debug the interaction between Hyper-V and Linux. This
2020 * function is called when the parent partition reports a list
2021 * of functions that should be observed under this PCI Express
2022 * port (bus).
2023 *
2024 * This function updates the list, and must tolerate being
2025 * called multiple times with the same information. The typical
2026 * number of child devices is one, with very atypical cases
2027 * involving three or four, so the algorithms used here can be
2028 * simple and inefficient.
2029 *
2030 * It must also treat the omission of a previously observed device as
2031 * notification that the device no longer exists.
2032 *
2033 * Note that this function is serialized with hv_eject_device_work(),
2034 * because both are pushed to the ordered workqueue hbus->wq.
2035 */
2036static void pci_devices_present_work(struct work_struct *work)
2037{
2038 u32 child_no;
2039 bool found;
2040 struct pci_function_description *new_desc;
2041 struct hv_pci_dev *hpdev;
2042 struct hv_pcibus_device *hbus;
2043 struct list_head removed;
2044 struct hv_dr_work *dr_wrk;
2045 struct hv_dr_state *dr = NULL;
2046 unsigned long flags;
2047
2048 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2049 hbus = dr_wrk->bus;
2050 kfree(dr_wrk);
2051
2052 INIT_LIST_HEAD(&removed);
2053
2054 /* Pull this off the queue and process it if it was the last one. */
2055 spin_lock_irqsave(&hbus->device_list_lock, flags);
2056 while (!list_empty(&hbus->dr_list)) {
2057 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2058 list_entry);
2059 list_del(&dr->list_entry);
2060
2061 /* Throw this away if the list still has stuff in it. */
2062 if (!list_empty(&hbus->dr_list)) {
2063 kfree(dr);
2064 continue;
2065 }
2066 }
2067 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2068
2069 if (!dr) {
2070 put_hvpcibus(hbus);
2071 return;
2072 }
2073
2074 /* First, mark all existing children as reported missing. */
2075 spin_lock_irqsave(&hbus->device_list_lock, flags);
2076 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2077 hpdev->reported_missing = true;
2078 }
2079 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2080
2081 /* Next, add back any reported devices. */
2082 for (child_no = 0; child_no < dr->device_count; child_no++) {
2083 found = false;
2084 new_desc = &dr->func[child_no];
2085
2086 spin_lock_irqsave(&hbus->device_list_lock, flags);
2087 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2088 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2089 (hpdev->desc.v_id == new_desc->v_id) &&
2090 (hpdev->desc.d_id == new_desc->d_id) &&
2091 (hpdev->desc.ser == new_desc->ser)) {
2092 hpdev->reported_missing = false;
2093 found = true;
2094 }
2095 }
2096 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2097
2098 if (!found) {
2099 hpdev = new_pcichild_device(hbus, new_desc);
2100 if (!hpdev)
2101 dev_err(&hbus->hdev->device,
2102 "couldn't record a child device.\n");
2103 }
2104 }
2105
2106 /* Move missing children to a list on the stack. */
2107 spin_lock_irqsave(&hbus->device_list_lock, flags);
2108 do {
2109 found = false;
2110 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2111 if (hpdev->reported_missing) {
2112 found = true;
2113 put_pcichild(hpdev);
2114 list_move_tail(&hpdev->list_entry, &removed);
2115 break;
2116 }
2117 }
2118 } while (found);
2119 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2120
2121 /* Delete everything that should no longer exist. */
2122 while (!list_empty(&removed)) {
2123 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2124 list_entry);
2125 list_del(&hpdev->list_entry);
2126
2127 if (hpdev->pci_slot)
2128 pci_destroy_slot(hpdev->pci_slot);
2129
2130 put_pcichild(hpdev);
2131 }
2132
2133 switch (hbus->state) {
2134 case hv_pcibus_installed:
2135 /*
2136 * Tell the core to rescan bus
2137 * because there may have been changes.
2138 */
2139 pci_lock_rescan_remove();
2140 pci_scan_child_bus(hbus->pci_bus);
2141 hv_pci_assign_slots(hbus);
2142 pci_unlock_rescan_remove();
2143 break;
2144
2145 case hv_pcibus_init:
2146 case hv_pcibus_probed:
2147 survey_child_resources(hbus);
2148 break;
2149
2150 default:
2151 break;
2152 }
2153
2154 put_hvpcibus(hbus);
2155 kfree(dr);
2156}
2157
2158/**
2159 * hv_pci_devices_present() - Handles list of new children
2160 * @hbus: Root PCI bus, as understood by this driver
2161 * @relations: Packet from host listing children
2162 *
2163 * This function is invoked whenever a new list of devices for
2164 * this bus appears.
2165 */
2166static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2167 struct pci_bus_relations *relations)
2168{
2169 struct hv_dr_state *dr;
2170 struct hv_dr_work *dr_wrk;
2171 unsigned long flags;
2172 bool pending_dr;
2173
2174 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2175 if (!dr_wrk)
2176 return;
2177
2178 dr = kzalloc(offsetof(struct hv_dr_state, func) +
2179 (sizeof(struct pci_function_description) *
2180 (relations->device_count)), GFP_NOWAIT);
2181 if (!dr) {
2182 kfree(dr_wrk);
2183 return;
2184 }
2185
2186 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2187 dr_wrk->bus = hbus;
2188 dr->device_count = relations->device_count;
2189 if (dr->device_count != 0) {
2190 memcpy(dr->func, relations->func,
2191 sizeof(struct pci_function_description) *
2192 dr->device_count);
2193 }
2194
2195 spin_lock_irqsave(&hbus->device_list_lock, flags);
2196 /*
2197 * If pending_dr is true, we have already queued a work,
2198 * which will see the new dr. Otherwise, we need to
2199 * queue a new work.
2200 */
2201 pending_dr = !list_empty(&hbus->dr_list);
2202 list_add_tail(&dr->list_entry, &hbus->dr_list);
2203 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2204
2205 if (pending_dr) {
2206 kfree(dr_wrk);
2207 } else {
2208 get_hvpcibus(hbus);
2209 queue_work(hbus->wq, &dr_wrk->wrk);
2210 }
2211}
2212
2213/**
2214 * hv_eject_device_work() - Asynchronously handles ejection
2215 * @work: Work struct embedded in internal device struct
2216 *
2217 * This function handles ejecting a device. Windows will
2218 * attempt to gracefully eject a device, waiting 60 seconds to
2219 * hear back from the guest OS that this completed successfully.
2220 * If this timer expires, the device will be forcibly removed.
2221 */
2222static void hv_eject_device_work(struct work_struct *work)
2223{
2224 struct pci_eject_response *ejct_pkt;
2225 struct hv_pcibus_device *hbus;
2226 struct hv_pci_dev *hpdev;
2227 struct pci_dev *pdev;
2228 unsigned long flags;
2229 int wslot;
2230 struct {
2231 struct pci_packet pkt;
2232 u8 buffer[sizeof(struct pci_eject_response)];
2233 } ctxt;
2234
2235 hpdev = container_of(work, struct hv_pci_dev, wrk);
2236 hbus = hpdev->hbus;
2237
2238 WARN_ON(hpdev->state != hv_pcichild_ejecting);
2239
2240 /*
2241 * Ejection can come before or after the PCI bus has been set up, so
2242 * attempt to find it and tear down the bus state, if it exists. This
2243 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2244 * because hbus->pci_bus may not exist yet.
2245 */
2246 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2247 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2248 if (pdev) {
2249 pci_lock_rescan_remove();
2250 pci_stop_and_remove_bus_device(pdev);
2251 pci_dev_put(pdev);
2252 pci_unlock_rescan_remove();
2253 }
2254
2255 spin_lock_irqsave(&hbus->device_list_lock, flags);
2256 list_del(&hpdev->list_entry);
2257 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2258
2259 if (hpdev->pci_slot)
2260 pci_destroy_slot(hpdev->pci_slot);
2261
2262 memset(&ctxt, 0, sizeof(ctxt));
2263 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2264 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2265 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2266 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2267 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2268 VM_PKT_DATA_INBAND, 0);
2269
2270 /* For the get_pcichild() in hv_pci_eject_device() */
2271 put_pcichild(hpdev);
2272 /* For the two refs got in new_pcichild_device() */
2273 put_pcichild(hpdev);
2274 put_pcichild(hpdev);
2275 /* hpdev has been freed. Do not use it any more. */
2276
2277 put_hvpcibus(hbus);
2278}
2279
2280/**
2281 * hv_pci_eject_device() - Handles device ejection
2282 * @hpdev: Internal device tracking struct
2283 *
2284 * This function is invoked when an ejection packet arrives. It
2285 * just schedules work so that we don't re-enter the packet
2286 * delivery code handling the ejection.
2287 */
2288static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2289{
2290 hpdev->state = hv_pcichild_ejecting;
2291 get_pcichild(hpdev);
2292 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2293 get_hvpcibus(hpdev->hbus);
2294 queue_work(hpdev->hbus->wq, &hpdev->wrk);
2295}
2296
2297/**
2298 * hv_pci_onchannelcallback() - Handles incoming packets
2299 * @context: Internal bus tracking struct
2300 *
2301 * This function is invoked whenever the host sends a packet to
2302 * this channel (which is private to this root PCI bus).
2303 */
2304static void hv_pci_onchannelcallback(void *context)
2305{
2306 const int packet_size = 0x100;
2307 int ret;
2308 struct hv_pcibus_device *hbus = context;
2309 u32 bytes_recvd;
2310 u64 req_id;
2311 struct vmpacket_descriptor *desc;
2312 unsigned char *buffer;
2313 int bufferlen = packet_size;
2314 struct pci_packet *comp_packet;
2315 struct pci_response *response;
2316 struct pci_incoming_message *new_message;
2317 struct pci_bus_relations *bus_rel;
2318 struct pci_dev_inval_block *inval;
2319 struct pci_dev_incoming *dev_message;
2320 struct hv_pci_dev *hpdev;
2321
2322 buffer = kmalloc(bufferlen, GFP_ATOMIC);
2323 if (!buffer)
2324 return;
2325
2326 while (1) {
2327 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2328 bufferlen, &bytes_recvd, &req_id);
2329
2330 if (ret == -ENOBUFS) {
2331 kfree(buffer);
2332 /* Handle large packet */
2333 bufferlen = bytes_recvd;
2334 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2335 if (!buffer)
2336 return;
2337 continue;
2338 }
2339
2340 /* Zero length indicates there are no more packets. */
2341 if (ret || !bytes_recvd)
2342 break;
2343
2344 /*
2345 * All incoming packets must be at least as large as a
2346 * response.
2347 */
2348 if (bytes_recvd <= sizeof(struct pci_response))
2349 continue;
2350 desc = (struct vmpacket_descriptor *)buffer;
2351
2352 switch (desc->type) {
2353 case VM_PKT_COMP:
2354
2355 /*
2356 * The host is trusted, and thus it's safe to interpret
2357 * this transaction ID as a pointer.
2358 */
2359 comp_packet = (struct pci_packet *)req_id;
2360 response = (struct pci_response *)buffer;
2361 comp_packet->completion_func(comp_packet->compl_ctxt,
2362 response,
2363 bytes_recvd);
2364 break;
2365
2366 case VM_PKT_DATA_INBAND:
2367
2368 new_message = (struct pci_incoming_message *)buffer;
2369 switch (new_message->message_type.type) {
2370 case PCI_BUS_RELATIONS:
2371
2372 bus_rel = (struct pci_bus_relations *)buffer;
2373 if (bytes_recvd <
2374 offsetof(struct pci_bus_relations, func) +
2375 (sizeof(struct pci_function_description) *
2376 (bus_rel->device_count))) {
2377 dev_err(&hbus->hdev->device,
2378 "bus relations too small\n");
2379 break;
2380 }
2381
2382 hv_pci_devices_present(hbus, bus_rel);
2383 break;
2384
2385 case PCI_EJECT:
2386
2387 dev_message = (struct pci_dev_incoming *)buffer;
2388 hpdev = get_pcichild_wslot(hbus,
2389 dev_message->wslot.slot);
2390 if (hpdev) {
2391 hv_pci_eject_device(hpdev);
2392 put_pcichild(hpdev);
2393 }
2394 break;
2395
2396 case PCI_INVALIDATE_BLOCK:
2397
2398 inval = (struct pci_dev_inval_block *)buffer;
2399 hpdev = get_pcichild_wslot(hbus,
2400 inval->wslot.slot);
2401 if (hpdev) {
2402 if (hpdev->block_invalidate) {
2403 hpdev->block_invalidate(
2404 hpdev->invalidate_context,
2405 inval->block_mask);
2406 }
2407 put_pcichild(hpdev);
2408 }
2409 break;
2410
2411 default:
2412 dev_warn(&hbus->hdev->device,
2413 "Unimplemented protocol message %x\n",
2414 new_message->message_type.type);
2415 break;
2416 }
2417 break;
2418
2419 default:
2420 dev_err(&hbus->hdev->device,
2421 "unhandled packet type %d, tid %llx len %d\n",
2422 desc->type, req_id, bytes_recvd);
2423 break;
2424 }
2425 }
2426
2427 kfree(buffer);
2428}
2429
2430/**
2431 * hv_pci_protocol_negotiation() - Set up protocol
2432 * @hdev: VMBus's tracking struct for this root PCI bus
2433 *
2434 * This driver is intended to support running on Windows 10
2435 * (server) and later versions. It will not run on earlier
2436 * versions, as they assume that many of the operations which
2437 * Linux needs accomplished with a spinlock held were done via
2438 * asynchronous messaging via VMBus. Windows 10 increases the
2439 * surface area of PCI emulation so that these actions can take
2440 * place by suspending a virtual processor for their duration.
2441 *
2442 * This function negotiates the channel protocol version,
2443 * failing if the host doesn't support the necessary protocol
2444 * level.
2445 */
2446static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2447{
2448 struct pci_version_request *version_req;
2449 struct hv_pci_compl comp_pkt;
2450 struct pci_packet *pkt;
2451 int ret;
2452 int i;
2453
2454 /*
2455 * Initiate the handshake with the host and negotiate
2456 * a version that the host can support. We start with the
2457 * highest version number and go down if the host cannot
2458 * support it.
2459 */
2460 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2461 if (!pkt)
2462 return -ENOMEM;
2463
2464 init_completion(&comp_pkt.host_event);
2465 pkt->completion_func = hv_pci_generic_compl;
2466 pkt->compl_ctxt = &comp_pkt;
2467 version_req = (struct pci_version_request *)&pkt->message;
2468 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2469
2470 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2471 version_req->protocol_version = pci_protocol_versions[i];
2472 ret = vmbus_sendpacket(hdev->channel, version_req,
2473 sizeof(struct pci_version_request),
2474 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2475 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2476 if (!ret)
2477 ret = wait_for_response(hdev, &comp_pkt.host_event);
2478
2479 if (ret) {
2480 dev_err(&hdev->device,
2481 "PCI Pass-through VSP failed to request version: %d",
2482 ret);
2483 goto exit;
2484 }
2485
2486 if (comp_pkt.completion_status >= 0) {
2487 pci_protocol_version = pci_protocol_versions[i];
2488 dev_info(&hdev->device,
2489 "PCI VMBus probing: Using version %#x\n",
2490 pci_protocol_version);
2491 goto exit;
2492 }
2493
2494 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2495 dev_err(&hdev->device,
2496 "PCI Pass-through VSP failed version request: %#x",
2497 comp_pkt.completion_status);
2498 ret = -EPROTO;
2499 goto exit;
2500 }
2501
2502 reinit_completion(&comp_pkt.host_event);
2503 }
2504
2505 dev_err(&hdev->device,
2506 "PCI pass-through VSP failed to find supported version");
2507 ret = -EPROTO;
2508
2509exit:
2510 kfree(pkt);
2511 return ret;
2512}
2513
2514/**
2515 * hv_pci_free_bridge_windows() - Release memory regions for the
2516 * bus
2517 * @hbus: Root PCI bus, as understood by this driver
2518 */
2519static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2520{
2521 /*
2522 * Set the resources back to the way they looked when they
2523 * were allocated by setting IORESOURCE_BUSY again.
2524 */
2525
2526 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2527 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2528 vmbus_free_mmio(hbus->low_mmio_res->start,
2529 resource_size(hbus->low_mmio_res));
2530 }
2531
2532 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2533 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2534 vmbus_free_mmio(hbus->high_mmio_res->start,
2535 resource_size(hbus->high_mmio_res));
2536 }
2537}
2538
2539/**
2540 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2541 * for the bus
2542 * @hbus: Root PCI bus, as understood by this driver
2543 *
2544 * This function calls vmbus_allocate_mmio(), which is itself a
2545 * bit of a compromise. Ideally, we might change the pnp layer
2546 * in the kernel such that it comprehends either PCI devices
2547 * which are "grandchildren of ACPI," with some intermediate bus
2548 * node (in this case, VMBus) or change it such that it
2549 * understands VMBus. The pnp layer, however, has been declared
2550 * deprecated, and not subject to change.
2551 *
2552 * The workaround, implemented here, is to ask VMBus to allocate
2553 * MMIO space for this bus. VMBus itself knows which ranges are
2554 * appropriate by looking at its own ACPI objects. Then, after
2555 * these ranges are claimed, they're modified to look like they
2556 * would have looked if the ACPI and pnp code had allocated
2557 * bridge windows. These descriptors have to exist in this form
2558 * in order to satisfy the code which will get invoked when the
2559 * endpoint PCI function driver calls request_mem_region() or
2560 * request_mem_region_exclusive().
2561 *
2562 * Return: 0 on success, -errno on failure
2563 */
2564static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2565{
2566 resource_size_t align;
2567 int ret;
2568
2569 if (hbus->low_mmio_space) {
2570 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2571 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2572 (u64)(u32)0xffffffff,
2573 hbus->low_mmio_space,
2574 align, false);
2575 if (ret) {
2576 dev_err(&hbus->hdev->device,
2577 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2578 hbus->low_mmio_space);
2579 return ret;
2580 }
2581
2582 /* Modify this resource to become a bridge window. */
2583 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2584 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2585 pci_add_resource(&hbus->resources_for_children,
2586 hbus->low_mmio_res);
2587 }
2588
2589 if (hbus->high_mmio_space) {
2590 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2591 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2592 0x100000000, -1,
2593 hbus->high_mmio_space, align,
2594 false);
2595 if (ret) {
2596 dev_err(&hbus->hdev->device,
2597 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2598 hbus->high_mmio_space);
2599 goto release_low_mmio;
2600 }
2601
2602 /* Modify this resource to become a bridge window. */
2603 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2604 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2605 pci_add_resource(&hbus->resources_for_children,
2606 hbus->high_mmio_res);
2607 }
2608
2609 return 0;
2610
2611release_low_mmio:
2612 if (hbus->low_mmio_res) {
2613 vmbus_free_mmio(hbus->low_mmio_res->start,
2614 resource_size(hbus->low_mmio_res));
2615 }
2616
2617 return ret;
2618}
2619
2620/**
2621 * hv_allocate_config_window() - Find MMIO space for PCI Config
2622 * @hbus: Root PCI bus, as understood by this driver
2623 *
2624 * This function claims memory-mapped I/O space for accessing
2625 * configuration space for the functions on this bus.
2626 *
2627 * Return: 0 on success, -errno on failure
2628 */
2629static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2630{
2631 int ret;
2632
2633 /*
2634 * Set up a region of MMIO space to use for accessing configuration
2635 * space.
2636 */
2637 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2638 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2639 if (ret)
2640 return ret;
2641
2642 /*
2643 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2644 * resource claims (those which cannot be overlapped) and the ranges
2645 * which are valid for the children of this bus, which are intended
2646 * to be overlapped by those children. Set the flag on this claim
2647 * meaning that this region can't be overlapped.
2648 */
2649
2650 hbus->mem_config->flags |= IORESOURCE_BUSY;
2651
2652 return 0;
2653}
2654
2655static void hv_free_config_window(struct hv_pcibus_device *hbus)
2656{
2657 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2658}
2659
2660/**
2661 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2662 * @hdev: VMBus's tracking struct for this root PCI bus
2663 *
2664 * Return: 0 on success, -errno on failure
2665 */
2666static int hv_pci_enter_d0(struct hv_device *hdev)
2667{
2668 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2669 struct pci_bus_d0_entry *d0_entry;
2670 struct hv_pci_compl comp_pkt;
2671 struct pci_packet *pkt;
2672 int ret;
2673
2674 /*
2675 * Tell the host that the bus is ready to use, and moved into the
2676 * powered-on state. This includes telling the host which region
2677 * of memory-mapped I/O space has been chosen for configuration space
2678 * access.
2679 */
2680 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2681 if (!pkt)
2682 return -ENOMEM;
2683
2684 init_completion(&comp_pkt.host_event);
2685 pkt->completion_func = hv_pci_generic_compl;
2686 pkt->compl_ctxt = &comp_pkt;
2687 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2688 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2689 d0_entry->mmio_base = hbus->mem_config->start;
2690
2691 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2692 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2693 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2694 if (!ret)
2695 ret = wait_for_response(hdev, &comp_pkt.host_event);
2696
2697 if (ret)
2698 goto exit;
2699
2700 if (comp_pkt.completion_status < 0) {
2701 dev_err(&hdev->device,
2702 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2703 comp_pkt.completion_status);
2704 ret = -EPROTO;
2705 goto exit;
2706 }
2707
2708 ret = 0;
2709
2710exit:
2711 kfree(pkt);
2712 return ret;
2713}
2714
2715/**
2716 * hv_pci_query_relations() - Ask host to send list of child
2717 * devices
2718 * @hdev: VMBus's tracking struct for this root PCI bus
2719 *
2720 * Return: 0 on success, -errno on failure
2721 */
2722static int hv_pci_query_relations(struct hv_device *hdev)
2723{
2724 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2725 struct pci_message message;
2726 struct completion comp;
2727 int ret;
2728
2729 /* Ask the host to send along the list of child devices */
2730 init_completion(&comp);
2731 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2732 return -ENOTEMPTY;
2733
2734 memset(&message, 0, sizeof(message));
2735 message.type = PCI_QUERY_BUS_RELATIONS;
2736
2737 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2738 0, VM_PKT_DATA_INBAND, 0);
2739 if (!ret)
2740 ret = wait_for_response(hdev, &comp);
2741
2742 /*
2743 * In the case of fast device addition/removal, it's possible that
2744 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
2745 * already got a PCI_BUS_RELATIONS* message from the host and the
2746 * channel callback already scheduled a work to hbus->wq, which can be
2747 * running pci_devices_present_work() -> survey_child_resources() ->
2748 * complete(&hbus->survey_event), even after hv_pci_query_relations()
2749 * exits and the stack variable 'comp' is no longer valid; as a result,
2750 * a hang or a page fault may happen when the complete() calls
2751 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
2752 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
2753 * -ENODEV, there can't be any more work item scheduled to hbus->wq
2754 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
2755 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
2756 * channel->rescind = true.
2757 */
2758 flush_workqueue(hbus->wq);
2759
2760 return ret;
2761}
2762
2763/**
2764 * hv_send_resources_allocated() - Report local resource choices
2765 * @hdev: VMBus's tracking struct for this root PCI bus
2766 *
2767 * The host OS is expecting to be sent a request as a message
2768 * which contains all the resources that the device will use.
2769 * The response contains those same resources, "translated"
2770 * which is to say, the values which should be used by the
2771 * hardware, when it delivers an interrupt. (MMIO resources are
2772 * used in local terms.) This is nice for Windows, and lines up
2773 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2774 * is deeply expecting to scan an emulated PCI configuration
2775 * space. So this message is sent here only to drive the state
2776 * machine on the host forward.
2777 *
2778 * Return: 0 on success, -errno on failure
2779 */
2780static int hv_send_resources_allocated(struct hv_device *hdev)
2781{
2782 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2783 struct pci_resources_assigned *res_assigned;
2784 struct pci_resources_assigned2 *res_assigned2;
2785 struct hv_pci_compl comp_pkt;
2786 struct hv_pci_dev *hpdev;
2787 struct pci_packet *pkt;
2788 size_t size_res;
2789 u32 wslot;
2790 int ret;
2791
2792 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2793 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2794
2795 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2796 if (!pkt)
2797 return -ENOMEM;
2798
2799 ret = 0;
2800
2801 for (wslot = 0; wslot < 256; wslot++) {
2802 hpdev = get_pcichild_wslot(hbus, wslot);
2803 if (!hpdev)
2804 continue;
2805
2806 memset(pkt, 0, sizeof(*pkt) + size_res);
2807 init_completion(&comp_pkt.host_event);
2808 pkt->completion_func = hv_pci_generic_compl;
2809 pkt->compl_ctxt = &comp_pkt;
2810
2811 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2812 res_assigned =
2813 (struct pci_resources_assigned *)&pkt->message;
2814 res_assigned->message_type.type =
2815 PCI_RESOURCES_ASSIGNED;
2816 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2817 } else {
2818 res_assigned2 =
2819 (struct pci_resources_assigned2 *)&pkt->message;
2820 res_assigned2->message_type.type =
2821 PCI_RESOURCES_ASSIGNED2;
2822 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2823 }
2824 put_pcichild(hpdev);
2825
2826 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2827 size_res, (unsigned long)pkt,
2828 VM_PKT_DATA_INBAND,
2829 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2830 if (!ret)
2831 ret = wait_for_response(hdev, &comp_pkt.host_event);
2832 if (ret)
2833 break;
2834
2835 if (comp_pkt.completion_status < 0) {
2836 ret = -EPROTO;
2837 dev_err(&hdev->device,
2838 "resource allocated returned 0x%x",
2839 comp_pkt.completion_status);
2840 break;
2841 }
2842 }
2843
2844 kfree(pkt);
2845 return ret;
2846}
2847
2848/**
2849 * hv_send_resources_released() - Report local resources
2850 * released
2851 * @hdev: VMBus's tracking struct for this root PCI bus
2852 *
2853 * Return: 0 on success, -errno on failure
2854 */
2855static int hv_send_resources_released(struct hv_device *hdev)
2856{
2857 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2858 struct pci_child_message pkt;
2859 struct hv_pci_dev *hpdev;
2860 u32 wslot;
2861 int ret;
2862
2863 for (wslot = 0; wslot < 256; wslot++) {
2864 hpdev = get_pcichild_wslot(hbus, wslot);
2865 if (!hpdev)
2866 continue;
2867
2868 memset(&pkt, 0, sizeof(pkt));
2869 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2870 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2871
2872 put_pcichild(hpdev);
2873
2874 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2875 VM_PKT_DATA_INBAND, 0);
2876 if (ret)
2877 return ret;
2878 }
2879
2880 return 0;
2881}
2882
2883static void get_hvpcibus(struct hv_pcibus_device *hbus)
2884{
2885 refcount_inc(&hbus->remove_lock);
2886}
2887
2888static void put_hvpcibus(struct hv_pcibus_device *hbus)
2889{
2890 if (refcount_dec_and_test(&hbus->remove_lock))
2891 complete(&hbus->remove_event);
2892}
2893
2894#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2895static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2896
2897/*
2898 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2899 * as invalid for passthrough PCI devices of this driver.
2900 */
2901#define HVPCI_DOM_INVALID 0
2902
2903/**
2904 * hv_get_dom_num() - Get a valid PCI domain number
2905 * Check if the PCI domain number is in use, and return another number if
2906 * it is in use.
2907 *
2908 * @dom: Requested domain number
2909 *
2910 * return: domain number on success, HVPCI_DOM_INVALID on failure
2911 */
2912static u16 hv_get_dom_num(u16 dom)
2913{
2914 unsigned int i;
2915
2916 if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2917 return dom;
2918
2919 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2920 if (test_and_set_bit(i, hvpci_dom_map) == 0)
2921 return i;
2922 }
2923
2924 return HVPCI_DOM_INVALID;
2925}
2926
2927/**
2928 * hv_put_dom_num() - Mark the PCI domain number as free
2929 * @dom: Domain number to be freed
2930 */
2931static void hv_put_dom_num(u16 dom)
2932{
2933 clear_bit(dom, hvpci_dom_map);
2934}
2935
2936/**
2937 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2938 * @hdev: VMBus's tracking struct for this root PCI bus
2939 * @dev_id: Identifies the device itself
2940 *
2941 * Return: 0 on success, -errno on failure
2942 */
2943static int hv_pci_probe(struct hv_device *hdev,
2944 const struct hv_vmbus_device_id *dev_id)
2945{
2946 struct hv_pcibus_device *hbus;
2947 u16 dom_req, dom;
2948 char *name;
2949 int ret;
2950
2951 /*
2952 * hv_pcibus_device contains the hypercall arguments for retargeting in
2953 * hv_irq_unmask(). Those must not cross a page boundary.
2954 */
2955 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2956
2957 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2958 if (!hbus)
2959 return -ENOMEM;
2960 hbus->state = hv_pcibus_init;
2961
2962 /*
2963 * The PCI bus "domain" is what is called "segment" in ACPI and other
2964 * specs. Pull it from the instance ID, to get something usually
2965 * unique. In rare cases of collision, we will find out another number
2966 * not in use.
2967 *
2968 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
2969 * together with this guest driver can guarantee that (1) The only
2970 * domain used by Gen1 VMs for something that looks like a physical
2971 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
2972 * (2) There will be no overlap between domains (after fixing possible
2973 * collisions) in the same VM.
2974 */
2975 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
2976 dom = hv_get_dom_num(dom_req);
2977
2978 if (dom == HVPCI_DOM_INVALID) {
2979 dev_err(&hdev->device,
2980 "Unable to use dom# 0x%hx or other numbers", dom_req);
2981 ret = -EINVAL;
2982 goto free_bus;
2983 }
2984
2985 if (dom != dom_req)
2986 dev_info(&hdev->device,
2987 "PCI dom# 0x%hx has collision, using 0x%hx",
2988 dom_req, dom);
2989
2990 hbus->sysdata.domain = dom;
2991
2992 hbus->hdev = hdev;
2993 refcount_set(&hbus->remove_lock, 1);
2994 INIT_LIST_HEAD(&hbus->children);
2995 INIT_LIST_HEAD(&hbus->dr_list);
2996 INIT_LIST_HEAD(&hbus->resources_for_children);
2997 spin_lock_init(&hbus->config_lock);
2998 spin_lock_init(&hbus->device_list_lock);
2999 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3000 init_completion(&hbus->remove_event);
3001 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3002 hbus->sysdata.domain);
3003 if (!hbus->wq) {
3004 ret = -ENOMEM;
3005 goto free_dom;
3006 }
3007
3008 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3009 hv_pci_onchannelcallback, hbus);
3010 if (ret)
3011 goto destroy_wq;
3012
3013 hv_set_drvdata(hdev, hbus);
3014
3015 ret = hv_pci_protocol_negotiation(hdev);
3016 if (ret)
3017 goto close;
3018
3019 ret = hv_allocate_config_window(hbus);
3020 if (ret)
3021 goto close;
3022
3023 hbus->cfg_addr = ioremap(hbus->mem_config->start,
3024 PCI_CONFIG_MMIO_LENGTH);
3025 if (!hbus->cfg_addr) {
3026 dev_err(&hdev->device,
3027 "Unable to map a virtual address for config space\n");
3028 ret = -ENOMEM;
3029 goto free_config;
3030 }
3031
3032 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3033 if (!name) {
3034 ret = -ENOMEM;
3035 goto unmap;
3036 }
3037
3038 hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3039 kfree(name);
3040 if (!hbus->sysdata.fwnode) {
3041 ret = -ENOMEM;
3042 goto unmap;
3043 }
3044
3045 ret = hv_pcie_init_irq_domain(hbus);
3046 if (ret)
3047 goto free_fwnode;
3048
3049 ret = hv_pci_query_relations(hdev);
3050 if (ret)
3051 goto free_irq_domain;
3052
3053 ret = hv_pci_enter_d0(hdev);
3054 if (ret)
3055 goto free_irq_domain;
3056
3057 ret = hv_pci_allocate_bridge_windows(hbus);
3058 if (ret)
3059 goto free_irq_domain;
3060
3061 ret = hv_send_resources_allocated(hdev);
3062 if (ret)
3063 goto free_windows;
3064
3065 prepopulate_bars(hbus);
3066
3067 hbus->state = hv_pcibus_probed;
3068
3069 ret = create_root_hv_pci_bus(hbus);
3070 if (ret)
3071 goto free_windows;
3072
3073 return 0;
3074
3075free_windows:
3076 hv_pci_free_bridge_windows(hbus);
3077free_irq_domain:
3078 irq_domain_remove(hbus->irq_domain);
3079free_fwnode:
3080 irq_domain_free_fwnode(hbus->sysdata.fwnode);
3081unmap:
3082 iounmap(hbus->cfg_addr);
3083free_config:
3084 hv_free_config_window(hbus);
3085close:
3086 vmbus_close(hdev->channel);
3087destroy_wq:
3088 destroy_workqueue(hbus->wq);
3089free_dom:
3090 hv_put_dom_num(hbus->sysdata.domain);
3091free_bus:
3092 free_page((unsigned long)hbus);
3093 return ret;
3094}
3095
3096static void hv_pci_bus_exit(struct hv_device *hdev)
3097{
3098 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3099 struct {
3100 struct pci_packet teardown_packet;
3101 u8 buffer[sizeof(struct pci_message)];
3102 } pkt;
3103 struct pci_bus_relations relations;
3104 struct hv_pci_compl comp_pkt;
3105 int ret;
3106
3107 /*
3108 * After the host sends the RESCIND_CHANNEL message, it doesn't
3109 * access the per-channel ringbuffer any longer.
3110 */
3111 if (hdev->channel->rescind)
3112 return;
3113
3114 /* Delete any children which might still exist. */
3115 memset(&relations, 0, sizeof(relations));
3116 hv_pci_devices_present(hbus, &relations);
3117
3118 ret = hv_send_resources_released(hdev);
3119 if (ret)
3120 dev_err(&hdev->device,
3121 "Couldn't send resources released packet(s)\n");
3122
3123 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3124 init_completion(&comp_pkt.host_event);
3125 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3126 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3127 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3128
3129 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3130 sizeof(struct pci_message),
3131 (unsigned long)&pkt.teardown_packet,
3132 VM_PKT_DATA_INBAND,
3133 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3134 if (!ret)
3135 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
3136}
3137
3138/**
3139 * hv_pci_remove() - Remove routine for this VMBus channel
3140 * @hdev: VMBus's tracking struct for this root PCI bus
3141 *
3142 * Return: 0 on success, -errno on failure
3143 */
3144static int hv_pci_remove(struct hv_device *hdev)
3145{
3146 struct hv_pcibus_device *hbus;
3147
3148 hbus = hv_get_drvdata(hdev);
3149 if (hbus->state == hv_pcibus_installed) {
3150 /* Remove the bus from PCI's point of view. */
3151 pci_lock_rescan_remove();
3152 pci_stop_root_bus(hbus->pci_bus);
3153 hv_pci_remove_slots(hbus);
3154 pci_remove_root_bus(hbus->pci_bus);
3155 pci_unlock_rescan_remove();
3156 hbus->state = hv_pcibus_removed;
3157 }
3158
3159 hv_pci_bus_exit(hdev);
3160
3161 vmbus_close(hdev->channel);
3162
3163 iounmap(hbus->cfg_addr);
3164 hv_free_config_window(hbus);
3165 pci_free_resource_list(&hbus->resources_for_children);
3166 hv_pci_free_bridge_windows(hbus);
3167 irq_domain_remove(hbus->irq_domain);
3168 irq_domain_free_fwnode(hbus->sysdata.fwnode);
3169 put_hvpcibus(hbus);
3170 wait_for_completion(&hbus->remove_event);
3171 destroy_workqueue(hbus->wq);
3172
3173 hv_put_dom_num(hbus->sysdata.domain);
3174
3175 free_page((unsigned long)hbus);
3176 return 0;
3177}
3178
3179static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3180 /* PCI Pass-through Class ID */
3181 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3182 { HV_PCIE_GUID, },
3183 { },
3184};
3185
3186MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3187
3188static struct hv_driver hv_pci_drv = {
3189 .name = "hv_pci",
3190 .id_table = hv_pci_id_table,
3191 .probe = hv_pci_probe,
3192 .remove = hv_pci_remove,
3193};
3194
3195static void __exit exit_hv_pci_drv(void)
3196{
3197 vmbus_driver_unregister(&hv_pci_drv);
3198
3199 hvpci_block_ops.read_block = NULL;
3200 hvpci_block_ops.write_block = NULL;
3201 hvpci_block_ops.reg_blk_invalidate = NULL;
3202}
3203
3204static int __init init_hv_pci_drv(void)
3205{
3206 if (!hv_is_hyperv_initialized())
3207 return -ENODEV;
3208
3209 /* Set the invalid domain number's bit, so it will not be used */
3210 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3211
3212 /* Initialize PCI block r/w interface */
3213 hvpci_block_ops.read_block = hv_read_config_block;
3214 hvpci_block_ops.write_block = hv_write_config_block;
3215 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3216
3217 return vmbus_driver_register(&hv_pci_drv);
3218}
3219
3220module_init(init_hv_pci_drv);
3221module_exit(exit_hv_pci_drv);
3222
3223MODULE_DESCRIPTION("Hyper-V PCI");
3224MODULE_LICENSE("GPL v2");