blob: e8a96ad417187f599a2e3f4312fbff22276ca00a [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Message Signaled Interrupt (MSI)
4 *
5 * Copyright (C) 2003-2004 Intel
6 * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
7 * Copyright (C) 2016 Christoph Hellwig.
8 */
9
10#include <linux/err.h>
11#include <linux/mm.h>
12#include <linux/irq.h>
13#include <linux/interrupt.h>
14#include <linux/export.h>
15#include <linux/ioport.h>
16#include <linux/pci.h>
17#include <linux/proc_fs.h>
18#include <linux/msi.h>
19#include <linux/smp.h>
20#include <linux/errno.h>
21#include <linux/io.h>
22#include <linux/acpi_iort.h>
23#include <linux/slab.h>
24#include <linux/irqdomain.h>
25#include <linux/of_irq.h>
26
27#include "pci.h"
28
29static int pci_msi_enable = 1;
30int pci_msi_ignore_mask;
31
32#define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
33
34#ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
35static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
36{
37 struct irq_domain *domain;
38
39 domain = dev_get_msi_domain(&dev->dev);
40 if (domain && irq_domain_is_hierarchy(domain))
41 return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
42
43 return arch_setup_msi_irqs(dev, nvec, type);
44}
45
46static void pci_msi_teardown_msi_irqs(struct pci_dev *dev)
47{
48 struct irq_domain *domain;
49
50 domain = dev_get_msi_domain(&dev->dev);
51 if (domain && irq_domain_is_hierarchy(domain))
52 msi_domain_free_irqs(domain, &dev->dev);
53 else
54 arch_teardown_msi_irqs(dev);
55}
56#else
57#define pci_msi_setup_msi_irqs arch_setup_msi_irqs
58#define pci_msi_teardown_msi_irqs arch_teardown_msi_irqs
59#endif
60
61/* Arch hooks */
62
63int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
64{
65 struct msi_controller *chip = dev->bus->msi;
66 int err;
67
68 if (!chip || !chip->setup_irq)
69 return -EINVAL;
70
71 err = chip->setup_irq(chip, dev, desc);
72 if (err < 0)
73 return err;
74
75 irq_set_chip_data(desc->irq, chip);
76
77 return 0;
78}
79
80void __weak arch_teardown_msi_irq(unsigned int irq)
81{
82 struct msi_controller *chip = irq_get_chip_data(irq);
83
84 if (!chip || !chip->teardown_irq)
85 return;
86
87 chip->teardown_irq(chip, irq);
88}
89
90int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
91{
92 struct msi_controller *chip = dev->bus->msi;
93 struct msi_desc *entry;
94 int ret;
95
96 if (chip && chip->setup_irqs)
97 return chip->setup_irqs(chip, dev, nvec, type);
98 /*
99 * If an architecture wants to support multiple MSI, it needs to
100 * override arch_setup_msi_irqs()
101 */
102 if (type == PCI_CAP_ID_MSI && nvec > 1)
103 return 1;
104
105 for_each_pci_msi_entry(entry, dev) {
106 ret = arch_setup_msi_irq(dev, entry);
107 if (ret < 0)
108 return ret;
109 if (ret > 0)
110 return -ENOSPC;
111 }
112
113 return 0;
114}
115
116/*
117 * We have a default implementation available as a separate non-weak
118 * function, as it is used by the Xen x86 PCI code
119 */
120void default_teardown_msi_irqs(struct pci_dev *dev)
121{
122 int i;
123 struct msi_desc *entry;
124
125 for_each_pci_msi_entry(entry, dev)
126 if (entry->irq)
127 for (i = 0; i < entry->nvec_used; i++)
128 arch_teardown_msi_irq(entry->irq + i);
129}
130
131void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
132{
133 return default_teardown_msi_irqs(dev);
134}
135
136static void default_restore_msi_irq(struct pci_dev *dev, int irq)
137{
138 struct msi_desc *entry;
139
140 entry = NULL;
141 if (dev->msix_enabled) {
142 for_each_pci_msi_entry(entry, dev) {
143 if (irq == entry->irq)
144 break;
145 }
146 } else if (dev->msi_enabled) {
147 entry = irq_get_msi_desc(irq);
148 }
149
150 if (entry)
151 __pci_write_msi_msg(entry, &entry->msg);
152}
153
154void __weak arch_restore_msi_irqs(struct pci_dev *dev)
155{
156 return default_restore_msi_irqs(dev);
157}
158
159static inline __attribute_const__ u32 msi_mask(unsigned x)
160{
161 /* Don't shift by >= width of type */
162 if (x >= 5)
163 return 0xffffffff;
164 return (1 << (1 << x)) - 1;
165}
166
167/*
168 * PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
169 * mask all MSI interrupts by clearing the MSI enable bit does not work
170 * reliably as devices without an INTx disable bit will then generate a
171 * level IRQ which will never be cleared.
172 */
173u32 __pci_msi_desc_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
174{
175 u32 mask_bits = desc->masked;
176
177 if (pci_msi_ignore_mask || !desc->msi_attrib.maskbit)
178 return 0;
179
180 mask_bits &= ~mask;
181 mask_bits |= flag;
182 pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos,
183 mask_bits);
184
185 return mask_bits;
186}
187
188static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
189{
190 desc->masked = __pci_msi_desc_mask_irq(desc, mask, flag);
191}
192
193static void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
194{
195 if (desc->msi_attrib.is_virtual)
196 return NULL;
197
198 return desc->mask_base +
199 desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
200}
201
202/*
203 * This internal function does not flush PCI writes to the device.
204 * All users must ensure that they read from the device before either
205 * assuming that the device state is up to date, or returning out of this
206 * file. This saves a few milliseconds when initialising devices with lots
207 * of MSI-X interrupts.
208 */
209u32 __pci_msix_desc_mask_irq(struct msi_desc *desc, u32 flag)
210{
211 u32 mask_bits = desc->masked;
212 void __iomem *desc_addr;
213
214 if (pci_msi_ignore_mask)
215 return 0;
216
217 desc_addr = pci_msix_desc_addr(desc);
218 if (!desc_addr)
219 return 0;
220
221 mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
222 if (flag & PCI_MSIX_ENTRY_CTRL_MASKBIT)
223 mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
224
225 writel(mask_bits, desc_addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
226
227 return mask_bits;
228}
229
230static void msix_mask_irq(struct msi_desc *desc, u32 flag)
231{
232 desc->masked = __pci_msix_desc_mask_irq(desc, flag);
233}
234
235static void msi_set_mask_bit(struct irq_data *data, u32 flag)
236{
237 struct msi_desc *desc;
238 unsigned offset;
239 if (data) {
240 desc = irq_data_get_msi_desc(data);
241 if (desc) {
242 if (desc->msi_attrib.is_msix) {
243 msix_mask_irq(desc, flag);
244 readl(desc->mask_base); /* Flush write to device */
245 } else {
246 offset = data->irq - desc->irq;
247 msi_mask_irq(desc, 1 << offset, flag << offset);
248 }
249 }
250 }
251}
252
253/**
254 * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts
255 * @data: pointer to irqdata associated to that interrupt
256 */
257void pci_msi_mask_irq(struct irq_data *data)
258{
259 msi_set_mask_bit(data, 1);
260}
261EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
262
263/**
264 * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts
265 * @data: pointer to irqdata associated to that interrupt
266 */
267void pci_msi_unmask_irq(struct irq_data *data)
268{
269 msi_set_mask_bit(data, 0);
270}
271EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
272
273void default_restore_msi_irqs(struct pci_dev *dev)
274{
275 struct msi_desc *entry;
276
277 for_each_pci_msi_entry(entry, dev)
278 default_restore_msi_irq(dev, entry->irq);
279}
280
281void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
282{
283 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
284
285 BUG_ON(dev->current_state != PCI_D0);
286
287 if (entry->msi_attrib.is_msix) {
288 void __iomem *base = pci_msix_desc_addr(entry);
289
290 if (!base) {
291 WARN_ON(1);
292 return;
293 }
294
295 msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
296 msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
297 msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
298 } else {
299 int pos = dev->msi_cap;
300 u16 data;
301
302 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
303 &msg->address_lo);
304 if (entry->msi_attrib.is_64) {
305 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
306 &msg->address_hi);
307 pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
308 } else {
309 msg->address_hi = 0;
310 pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
311 }
312 msg->data = data;
313 }
314}
315
316void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
317{
318 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
319
320 if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) {
321 /* Don't touch the hardware now */
322 } else if (entry->msi_attrib.is_msix) {
323 void __iomem *base = pci_msix_desc_addr(entry);
324 bool unmasked = !(entry->masked & PCI_MSIX_ENTRY_CTRL_MASKBIT);
325
326 if (!base)
327 goto skip;
328
329 /*
330 * The specification mandates that the entry is masked
331 * when the message is modified:
332 *
333 * "If software changes the Address or Data value of an
334 * entry while the entry is unmasked, the result is
335 * undefined."
336 */
337 if (unmasked)
338 __pci_msix_desc_mask_irq(entry, PCI_MSIX_ENTRY_CTRL_MASKBIT);
339
340 writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
341 writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
342 writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
343
344 if (unmasked)
345 __pci_msix_desc_mask_irq(entry, 0);
346
347 /* Ensure that the writes are visible in the device */
348 readl(base + PCI_MSIX_ENTRY_DATA);
349 } else {
350 int pos = dev->msi_cap;
351 u16 msgctl;
352
353 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
354 msgctl &= ~PCI_MSI_FLAGS_QSIZE;
355 msgctl |= entry->msi_attrib.multiple << 4;
356 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
357
358 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
359 msg->address_lo);
360 if (entry->msi_attrib.is_64) {
361 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
362 msg->address_hi);
363 pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
364 msg->data);
365 } else {
366 pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
367 msg->data);
368 }
369 /* Ensure that the writes are visible in the device */
370 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
371 }
372
373skip:
374 entry->msg = *msg;
375
376 if (entry->write_msi_msg)
377 entry->write_msi_msg(entry, entry->write_msi_msg_data);
378
379}
380
381void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
382{
383 struct msi_desc *entry = irq_get_msi_desc(irq);
384
385 __pci_write_msi_msg(entry, msg);
386}
387EXPORT_SYMBOL_GPL(pci_write_msi_msg);
388
389static void free_msi_irqs(struct pci_dev *dev)
390{
391 struct list_head *msi_list = dev_to_msi_list(&dev->dev);
392 struct msi_desc *entry, *tmp;
393 struct attribute **msi_attrs;
394 struct device_attribute *dev_attr;
395 int i, count = 0;
396
397 for_each_pci_msi_entry(entry, dev)
398 if (entry->irq)
399 for (i = 0; i < entry->nvec_used; i++)
400 BUG_ON(irq_has_action(entry->irq + i));
401
402 if (dev->msi_irq_groups) {
403 sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups);
404 msi_attrs = dev->msi_irq_groups[0]->attrs;
405 while (msi_attrs[count]) {
406 dev_attr = container_of(msi_attrs[count],
407 struct device_attribute, attr);
408 kfree(dev_attr->attr.name);
409 kfree(dev_attr);
410 ++count;
411 }
412 kfree(msi_attrs);
413 kfree(dev->msi_irq_groups[0]);
414 kfree(dev->msi_irq_groups);
415 dev->msi_irq_groups = NULL;
416 }
417
418 pci_msi_teardown_msi_irqs(dev);
419
420 list_for_each_entry_safe(entry, tmp, msi_list, list) {
421 if (entry->msi_attrib.is_msix) {
422 if (list_is_last(&entry->list, msi_list))
423 iounmap(entry->mask_base);
424 }
425
426 list_del(&entry->list);
427 free_msi_entry(entry);
428 }
429}
430
431static void pci_intx_for_msi(struct pci_dev *dev, int enable)
432{
433 if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
434 pci_intx(dev, enable);
435}
436
437static void __pci_restore_msi_state(struct pci_dev *dev)
438{
439 u16 control;
440 struct msi_desc *entry;
441
442 if (!dev->msi_enabled)
443 return;
444
445 entry = irq_get_msi_desc(dev->irq);
446
447 pci_intx_for_msi(dev, 0);
448 pci_msi_set_enable(dev, 0);
449 arch_restore_msi_irqs(dev);
450
451 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
452 msi_mask_irq(entry, msi_mask(entry->msi_attrib.multi_cap),
453 entry->masked);
454 control &= ~PCI_MSI_FLAGS_QSIZE;
455 control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
456 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
457}
458
459static void __pci_restore_msix_state(struct pci_dev *dev)
460{
461 struct msi_desc *entry;
462
463 if (!dev->msix_enabled)
464 return;
465 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
466
467 /* route the table */
468 pci_intx_for_msi(dev, 0);
469 pci_msix_clear_and_set_ctrl(dev, 0,
470 PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
471
472 arch_restore_msi_irqs(dev);
473 for_each_pci_msi_entry(entry, dev)
474 msix_mask_irq(entry, entry->masked);
475
476 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
477}
478
479void pci_restore_msi_state(struct pci_dev *dev)
480{
481 __pci_restore_msi_state(dev);
482 __pci_restore_msix_state(dev);
483}
484EXPORT_SYMBOL_GPL(pci_restore_msi_state);
485
486static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
487 char *buf)
488{
489 struct msi_desc *entry;
490 unsigned long irq;
491 int retval;
492
493 retval = kstrtoul(attr->attr.name, 10, &irq);
494 if (retval)
495 return retval;
496
497 entry = irq_get_msi_desc(irq);
498 if (entry)
499 return sprintf(buf, "%s\n",
500 entry->msi_attrib.is_msix ? "msix" : "msi");
501
502 return -ENODEV;
503}
504
505static int populate_msi_sysfs(struct pci_dev *pdev)
506{
507 struct attribute **msi_attrs;
508 struct attribute *msi_attr;
509 struct device_attribute *msi_dev_attr;
510 struct attribute_group *msi_irq_group;
511 const struct attribute_group **msi_irq_groups;
512 struct msi_desc *entry;
513 int ret = -ENOMEM;
514 int num_msi = 0;
515 int count = 0;
516 int i;
517
518 /* Determine how many msi entries we have */
519 for_each_pci_msi_entry(entry, pdev)
520 num_msi += entry->nvec_used;
521 if (!num_msi)
522 return 0;
523
524 /* Dynamically create the MSI attributes for the PCI device */
525 msi_attrs = kcalloc(num_msi + 1, sizeof(void *), GFP_KERNEL);
526 if (!msi_attrs)
527 return -ENOMEM;
528 for_each_pci_msi_entry(entry, pdev) {
529 for (i = 0; i < entry->nvec_used; i++) {
530 msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
531 if (!msi_dev_attr)
532 goto error_attrs;
533 msi_attrs[count] = &msi_dev_attr->attr;
534
535 sysfs_attr_init(&msi_dev_attr->attr);
536 msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d",
537 entry->irq + i);
538 if (!msi_dev_attr->attr.name)
539 goto error_attrs;
540 msi_dev_attr->attr.mode = S_IRUGO;
541 msi_dev_attr->show = msi_mode_show;
542 ++count;
543 }
544 }
545
546 msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
547 if (!msi_irq_group)
548 goto error_attrs;
549 msi_irq_group->name = "msi_irqs";
550 msi_irq_group->attrs = msi_attrs;
551
552 msi_irq_groups = kcalloc(2, sizeof(void *), GFP_KERNEL);
553 if (!msi_irq_groups)
554 goto error_irq_group;
555 msi_irq_groups[0] = msi_irq_group;
556
557 ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups);
558 if (ret)
559 goto error_irq_groups;
560 pdev->msi_irq_groups = msi_irq_groups;
561
562 return 0;
563
564error_irq_groups:
565 kfree(msi_irq_groups);
566error_irq_group:
567 kfree(msi_irq_group);
568error_attrs:
569 count = 0;
570 msi_attr = msi_attrs[count];
571 while (msi_attr) {
572 msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
573 kfree(msi_attr->name);
574 kfree(msi_dev_attr);
575 ++count;
576 msi_attr = msi_attrs[count];
577 }
578 kfree(msi_attrs);
579 return ret;
580}
581
582static struct msi_desc *
583msi_setup_entry(struct pci_dev *dev, int nvec, struct irq_affinity *affd)
584{
585 struct irq_affinity_desc *masks = NULL;
586 struct msi_desc *entry;
587 u16 control;
588
589 if (affd)
590 masks = irq_create_affinity_masks(nvec, affd);
591
592 /* MSI Entry Initialization */
593 entry = alloc_msi_entry(&dev->dev, nvec, masks);
594 if (!entry)
595 goto out;
596
597 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
598 /* Lies, damned lies, and MSIs */
599 if (dev->dev_flags & PCI_DEV_FLAGS_HAS_MSI_MASKING)
600 control |= PCI_MSI_FLAGS_MASKBIT;
601
602 entry->msi_attrib.is_msix = 0;
603 entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
604 entry->msi_attrib.is_virtual = 0;
605 entry->msi_attrib.entry_nr = 0;
606 entry->msi_attrib.maskbit = !!(control & PCI_MSI_FLAGS_MASKBIT);
607 entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
608 entry->msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1;
609 entry->msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec));
610
611 if (control & PCI_MSI_FLAGS_64BIT)
612 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
613 else
614 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
615
616 /* Save the initial mask status */
617 if (entry->msi_attrib.maskbit)
618 pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
619
620out:
621 kfree(masks);
622 return entry;
623}
624
625static int msi_verify_entries(struct pci_dev *dev)
626{
627 struct msi_desc *entry;
628
629 for_each_pci_msi_entry(entry, dev) {
630 if (!dev->no_64bit_msi || !entry->msg.address_hi)
631 continue;
632 pci_err(dev, "Device has broken 64-bit MSI but arch"
633 " tried to assign one above 4G\n");
634 return -EIO;
635 }
636 return 0;
637}
638
639/**
640 * msi_capability_init - configure device's MSI capability structure
641 * @dev: pointer to the pci_dev data structure of MSI device function
642 * @nvec: number of interrupts to allocate
643 * @affd: description of automatic IRQ affinity assignments (may be %NULL)
644 *
645 * Setup the MSI capability structure of the device with the requested
646 * number of interrupts. A return value of zero indicates the successful
647 * setup of an entry with the new MSI IRQ. A negative return value indicates
648 * an error, and a positive return value indicates the number of interrupts
649 * which could have been allocated.
650 */
651static int msi_capability_init(struct pci_dev *dev, int nvec,
652 struct irq_affinity *affd)
653{
654 struct msi_desc *entry;
655 int ret;
656 unsigned mask;
657
658 pci_msi_set_enable(dev, 0); /* Disable MSI during set up */
659
660 entry = msi_setup_entry(dev, nvec, affd);
661 if (!entry)
662 return -ENOMEM;
663
664 /* All MSIs are unmasked by default; mask them all */
665 mask = msi_mask(entry->msi_attrib.multi_cap);
666 msi_mask_irq(entry, mask, mask);
667
668 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
669
670 /* Configure MSI capability structure */
671 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
672 if (ret) {
673 msi_mask_irq(entry, mask, 0);
674 free_msi_irqs(dev);
675 return ret;
676 }
677
678 ret = msi_verify_entries(dev);
679 if (ret) {
680 msi_mask_irq(entry, mask, 0);
681 free_msi_irqs(dev);
682 return ret;
683 }
684
685 ret = populate_msi_sysfs(dev);
686 if (ret) {
687 msi_mask_irq(entry, mask, 0);
688 free_msi_irqs(dev);
689 return ret;
690 }
691
692 /* Set MSI enabled bits */
693 pci_intx_for_msi(dev, 0);
694 pci_msi_set_enable(dev, 1);
695 dev->msi_enabled = 1;
696
697 pcibios_free_irq(dev);
698 dev->irq = entry->irq;
699 return 0;
700}
701
702static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries)
703{
704 resource_size_t phys_addr;
705 u32 table_offset;
706 unsigned long flags;
707 u8 bir;
708
709 pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
710 &table_offset);
711 bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
712 flags = pci_resource_flags(dev, bir);
713 if (!flags || (flags & IORESOURCE_UNSET))
714 return NULL;
715
716 table_offset &= PCI_MSIX_TABLE_OFFSET;
717 phys_addr = pci_resource_start(dev, bir) + table_offset;
718
719 return ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
720}
721
722static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
723 struct msix_entry *entries, int nvec,
724 struct irq_affinity *affd)
725{
726 struct irq_affinity_desc *curmsk, *masks = NULL;
727 struct msi_desc *entry;
728 void __iomem *addr;
729 int ret, i;
730 int vec_count = pci_msix_vec_count(dev);
731
732 if (affd)
733 masks = irq_create_affinity_masks(nvec, affd);
734
735 for (i = 0, curmsk = masks; i < nvec; i++) {
736 entry = alloc_msi_entry(&dev->dev, 1, curmsk);
737 if (!entry) {
738 if (!i)
739 iounmap(base);
740 else
741 free_msi_irqs(dev);
742 /* No enough memory. Don't try again */
743 ret = -ENOMEM;
744 goto out;
745 }
746
747 entry->msi_attrib.is_msix = 1;
748 entry->msi_attrib.is_64 = 1;
749
750 if (entries)
751 entry->msi_attrib.entry_nr = entries[i].entry;
752 else
753 entry->msi_attrib.entry_nr = i;
754
755 entry->msi_attrib.is_virtual =
756 entry->msi_attrib.entry_nr >= vec_count;
757
758 entry->msi_attrib.default_irq = dev->irq;
759 entry->mask_base = base;
760
761 addr = pci_msix_desc_addr(entry);
762 if (addr)
763 entry->masked = readl(addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
764
765 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
766 if (masks)
767 curmsk++;
768 }
769 ret = 0;
770out:
771 kfree(masks);
772 return ret;
773}
774
775static void msix_update_entries(struct pci_dev *dev, struct msix_entry *entries)
776{
777 struct msi_desc *entry;
778
779 for_each_pci_msi_entry(entry, dev) {
780 if (entries) {
781 entries->vector = entry->irq;
782 entries++;
783 }
784 }
785}
786
787static void msix_mask_all(void __iomem *base, int tsize)
788{
789 u32 ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT;
790 int i;
791
792 if (pci_msi_ignore_mask)
793 return;
794
795 for (i = 0; i < tsize; i++, base += PCI_MSIX_ENTRY_SIZE)
796 writel(ctrl, base + PCI_MSIX_ENTRY_VECTOR_CTRL);
797}
798
799/**
800 * msix_capability_init - configure device's MSI-X capability
801 * @dev: pointer to the pci_dev data structure of MSI-X device function
802 * @entries: pointer to an array of struct msix_entry entries
803 * @nvec: number of @entries
804 * @affd: Optional pointer to enable automatic affinity assignment
805 *
806 * Setup the MSI-X capability structure of device function with a
807 * single MSI-X IRQ. A return of zero indicates the successful setup of
808 * requested MSI-X entries with allocated IRQs or non-zero for otherwise.
809 **/
810static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
811 int nvec, struct irq_affinity *affd)
812{
813 void __iomem *base;
814 int ret, tsize;
815 u16 control;
816
817 /*
818 * Some devices require MSI-X to be enabled before the MSI-X
819 * registers can be accessed. Mask all the vectors to prevent
820 * interrupts coming in before they're fully set up.
821 */
822 pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL |
823 PCI_MSIX_FLAGS_ENABLE);
824
825 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
826 /* Request & Map MSI-X table region */
827 tsize = msix_table_size(control);
828 base = msix_map_region(dev, tsize);
829 if (!base) {
830 ret = -ENOMEM;
831 goto out_disable;
832 }
833
834 ret = msix_setup_entries(dev, base, entries, nvec, affd);
835 if (ret)
836 goto out_disable;
837
838 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
839 if (ret)
840 goto out_avail;
841
842 /* Check if all MSI entries honor device restrictions */
843 ret = msi_verify_entries(dev);
844 if (ret)
845 goto out_free;
846
847 msix_update_entries(dev, entries);
848
849 ret = populate_msi_sysfs(dev);
850 if (ret)
851 goto out_free;
852
853 /* Set MSI-X enabled bits and unmask the function */
854 pci_intx_for_msi(dev, 0);
855 dev->msix_enabled = 1;
856
857 /*
858 * Ensure that all table entries are masked to prevent
859 * stale entries from firing in a crash kernel.
860 *
861 * Done late to deal with a broken Marvell NVME device
862 * which takes the MSI-X mask bits into account even
863 * when MSI-X is disabled, which prevents MSI delivery.
864 */
865 msix_mask_all(base, tsize);
866 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
867
868 pcibios_free_irq(dev);
869 return 0;
870
871out_avail:
872 if (ret < 0) {
873 /*
874 * If we had some success, report the number of IRQs
875 * we succeeded in setting up.
876 */
877 struct msi_desc *entry;
878 int avail = 0;
879
880 for_each_pci_msi_entry(entry, dev) {
881 if (entry->irq != 0)
882 avail++;
883 }
884 if (avail != 0)
885 ret = avail;
886 }
887
888out_free:
889 free_msi_irqs(dev);
890
891out_disable:
892 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE, 0);
893
894 return ret;
895}
896
897/**
898 * pci_msi_supported - check whether MSI may be enabled on a device
899 * @dev: pointer to the pci_dev data structure of MSI device function
900 * @nvec: how many MSIs have been requested?
901 *
902 * Look at global flags, the device itself, and its parent buses
903 * to determine if MSI/-X are supported for the device. If MSI/-X is
904 * supported return 1, else return 0.
905 **/
906static int pci_msi_supported(struct pci_dev *dev, int nvec)
907{
908 struct pci_bus *bus;
909
910 /* MSI must be globally enabled and supported by the device */
911 if (!pci_msi_enable)
912 return 0;
913
914 if (!dev || dev->no_msi || dev->current_state != PCI_D0)
915 return 0;
916
917 /*
918 * You can't ask to have 0 or less MSIs configured.
919 * a) it's stupid ..
920 * b) the list manipulation code assumes nvec >= 1.
921 */
922 if (nvec < 1)
923 return 0;
924
925 /*
926 * Any bridge which does NOT route MSI transactions from its
927 * secondary bus to its primary bus must set NO_MSI flag on
928 * the secondary pci_bus.
929 * We expect only arch-specific PCI host bus controller driver
930 * or quirks for specific PCI bridges to be setting NO_MSI.
931 */
932 for (bus = dev->bus; bus; bus = bus->parent)
933 if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
934 return 0;
935
936 return 1;
937}
938
939/**
940 * pci_msi_vec_count - Return the number of MSI vectors a device can send
941 * @dev: device to report about
942 *
943 * This function returns the number of MSI vectors a device requested via
944 * Multiple Message Capable register. It returns a negative errno if the
945 * device is not capable sending MSI interrupts. Otherwise, the call succeeds
946 * and returns a power of two, up to a maximum of 2^5 (32), according to the
947 * MSI specification.
948 **/
949int pci_msi_vec_count(struct pci_dev *dev)
950{
951 int ret;
952 u16 msgctl;
953
954 if (!dev->msi_cap)
955 return -EINVAL;
956
957 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
958 ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
959
960 return ret;
961}
962EXPORT_SYMBOL(pci_msi_vec_count);
963
964static void pci_msi_shutdown(struct pci_dev *dev)
965{
966 struct msi_desc *desc;
967 u32 mask;
968
969 if (!pci_msi_enable || !dev || !dev->msi_enabled)
970 return;
971
972 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
973 desc = first_pci_msi_entry(dev);
974
975 pci_msi_set_enable(dev, 0);
976 pci_intx_for_msi(dev, 1);
977 dev->msi_enabled = 0;
978
979 /* Return the device with MSI unmasked as initial states */
980 mask = msi_mask(desc->msi_attrib.multi_cap);
981 msi_mask_irq(desc, mask, 0);
982
983 /* Restore dev->irq to its default pin-assertion IRQ */
984 dev->irq = desc->msi_attrib.default_irq;
985 pcibios_alloc_irq(dev);
986}
987
988void pci_disable_msi(struct pci_dev *dev)
989{
990 if (!pci_msi_enable || !dev || !dev->msi_enabled)
991 return;
992
993 pci_msi_shutdown(dev);
994 free_msi_irqs(dev);
995}
996EXPORT_SYMBOL(pci_disable_msi);
997
998/**
999 * pci_msix_vec_count - return the number of device's MSI-X table entries
1000 * @dev: pointer to the pci_dev data structure of MSI-X device function
1001 * This function returns the number of device's MSI-X table entries and
1002 * therefore the number of MSI-X vectors device is capable of sending.
1003 * It returns a negative errno if the device is not capable of sending MSI-X
1004 * interrupts.
1005 **/
1006int pci_msix_vec_count(struct pci_dev *dev)
1007{
1008 u16 control;
1009
1010 if (!dev->msix_cap)
1011 return -EINVAL;
1012
1013 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
1014 return msix_table_size(control);
1015}
1016EXPORT_SYMBOL(pci_msix_vec_count);
1017
1018static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
1019 int nvec, struct irq_affinity *affd, int flags)
1020{
1021 int nr_entries;
1022 int i, j;
1023
1024 if (!pci_msi_supported(dev, nvec))
1025 return -EINVAL;
1026
1027 nr_entries = pci_msix_vec_count(dev);
1028 if (nr_entries < 0)
1029 return nr_entries;
1030 if (nvec > nr_entries && !(flags & PCI_IRQ_VIRTUAL))
1031 return nr_entries;
1032
1033 if (entries) {
1034 /* Check for any invalid entries */
1035 for (i = 0; i < nvec; i++) {
1036 if (entries[i].entry >= nr_entries)
1037 return -EINVAL; /* invalid entry */
1038 for (j = i + 1; j < nvec; j++) {
1039 if (entries[i].entry == entries[j].entry)
1040 return -EINVAL; /* duplicate entry */
1041 }
1042 }
1043 }
1044
1045 /* Check whether driver already requested for MSI IRQ */
1046 if (dev->msi_enabled) {
1047 pci_info(dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
1048 return -EINVAL;
1049 }
1050 return msix_capability_init(dev, entries, nvec, affd);
1051}
1052
1053static void pci_msix_shutdown(struct pci_dev *dev)
1054{
1055 struct msi_desc *entry;
1056
1057 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1058 return;
1059
1060 if (pci_dev_is_disconnected(dev)) {
1061 dev->msix_enabled = 0;
1062 return;
1063 }
1064
1065 /* Return the device with MSI-X masked as initial states */
1066 for_each_pci_msi_entry(entry, dev)
1067 __pci_msix_desc_mask_irq(entry, 1);
1068
1069 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
1070 pci_intx_for_msi(dev, 1);
1071 dev->msix_enabled = 0;
1072 pcibios_alloc_irq(dev);
1073}
1074
1075void pci_disable_msix(struct pci_dev *dev)
1076{
1077 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1078 return;
1079
1080 pci_msix_shutdown(dev);
1081 free_msi_irqs(dev);
1082}
1083EXPORT_SYMBOL(pci_disable_msix);
1084
1085void pci_no_msi(void)
1086{
1087 pci_msi_enable = 0;
1088}
1089
1090/**
1091 * pci_msi_enabled - is MSI enabled?
1092 *
1093 * Returns true if MSI has not been disabled by the command-line option
1094 * pci=nomsi.
1095 **/
1096int pci_msi_enabled(void)
1097{
1098 return pci_msi_enable;
1099}
1100EXPORT_SYMBOL(pci_msi_enabled);
1101
1102static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
1103 struct irq_affinity *affd)
1104{
1105 int nvec;
1106 int rc;
1107
1108 if (!pci_msi_supported(dev, minvec))
1109 return -EINVAL;
1110
1111 /* Check whether driver already requested MSI-X IRQs */
1112 if (dev->msix_enabled) {
1113 pci_info(dev, "can't enable MSI (MSI-X already enabled)\n");
1114 return -EINVAL;
1115 }
1116
1117 if (maxvec < minvec)
1118 return -ERANGE;
1119
1120 if (WARN_ON_ONCE(dev->msi_enabled))
1121 return -EINVAL;
1122
1123 nvec = pci_msi_vec_count(dev);
1124 if (nvec < 0)
1125 return nvec;
1126 if (nvec < minvec)
1127 return -ENOSPC;
1128
1129 if (nvec > maxvec)
1130 nvec = maxvec;
1131
1132 for (;;) {
1133 if (affd) {
1134 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1135 if (nvec < minvec)
1136 return -ENOSPC;
1137 }
1138
1139 rc = msi_capability_init(dev, nvec, affd);
1140 if (rc == 0)
1141 return nvec;
1142
1143 if (rc < 0)
1144 return rc;
1145 if (rc < minvec)
1146 return -ENOSPC;
1147
1148 nvec = rc;
1149 }
1150}
1151
1152/* deprecated, don't use */
1153int pci_enable_msi(struct pci_dev *dev)
1154{
1155 int rc = __pci_enable_msi_range(dev, 1, 1, NULL);
1156 if (rc < 0)
1157 return rc;
1158 return 0;
1159}
1160EXPORT_SYMBOL(pci_enable_msi);
1161
1162static int __pci_enable_msix_range(struct pci_dev *dev,
1163 struct msix_entry *entries, int minvec,
1164 int maxvec, struct irq_affinity *affd,
1165 int flags)
1166{
1167 int rc, nvec = maxvec;
1168
1169 if (maxvec < minvec)
1170 return -ERANGE;
1171
1172 if (WARN_ON_ONCE(dev->msix_enabled))
1173 return -EINVAL;
1174
1175 for (;;) {
1176 if (affd) {
1177 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1178 if (nvec < minvec)
1179 return -ENOSPC;
1180 }
1181
1182 rc = __pci_enable_msix(dev, entries, nvec, affd, flags);
1183 if (rc == 0)
1184 return nvec;
1185
1186 if (rc < 0)
1187 return rc;
1188 if (rc < minvec)
1189 return -ENOSPC;
1190
1191 nvec = rc;
1192 }
1193}
1194
1195/**
1196 * pci_enable_msix_range - configure device's MSI-X capability structure
1197 * @dev: pointer to the pci_dev data structure of MSI-X device function
1198 * @entries: pointer to an array of MSI-X entries
1199 * @minvec: minimum number of MSI-X IRQs requested
1200 * @maxvec: maximum number of MSI-X IRQs requested
1201 *
1202 * Setup the MSI-X capability structure of device function with a maximum
1203 * possible number of interrupts in the range between @minvec and @maxvec
1204 * upon its software driver call to request for MSI-X mode enabled on its
1205 * hardware device function. It returns a negative errno if an error occurs.
1206 * If it succeeds, it returns the actual number of interrupts allocated and
1207 * indicates the successful configuration of MSI-X capability structure
1208 * with new allocated MSI-X interrupts.
1209 **/
1210int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
1211 int minvec, int maxvec)
1212{
1213 return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL, 0);
1214}
1215EXPORT_SYMBOL(pci_enable_msix_range);
1216
1217/**
1218 * pci_alloc_irq_vectors_affinity - allocate multiple IRQs for a device
1219 * @dev: PCI device to operate on
1220 * @min_vecs: minimum number of vectors required (must be >= 1)
1221 * @max_vecs: maximum (desired) number of vectors
1222 * @flags: flags or quirks for the allocation
1223 * @affd: optional description of the affinity requirements
1224 *
1225 * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
1226 * vectors if available, and fall back to a single legacy vector
1227 * if neither is available. Return the number of vectors allocated,
1228 * (which might be smaller than @max_vecs) if successful, or a negative
1229 * error code on error. If less than @min_vecs interrupt vectors are
1230 * available for @dev the function will fail with -ENOSPC.
1231 *
1232 * To get the Linux IRQ number used for a vector that can be passed to
1233 * request_irq() use the pci_irq_vector() helper.
1234 */
1235int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs,
1236 unsigned int max_vecs, unsigned int flags,
1237 struct irq_affinity *affd)
1238{
1239 struct irq_affinity msi_default_affd = {0};
1240 int msix_vecs = -ENOSPC;
1241 int msi_vecs = -ENOSPC;
1242
1243 if (flags & PCI_IRQ_AFFINITY) {
1244 if (!affd)
1245 affd = &msi_default_affd;
1246 } else {
1247 if (WARN_ON(affd))
1248 affd = NULL;
1249 }
1250
1251 if (flags & PCI_IRQ_MSIX) {
1252 msix_vecs = __pci_enable_msix_range(dev, NULL, min_vecs,
1253 max_vecs, affd, flags);
1254 if (msix_vecs > 0)
1255 return msix_vecs;
1256 }
1257
1258 if (flags & PCI_IRQ_MSI) {
1259 msi_vecs = __pci_enable_msi_range(dev, min_vecs, max_vecs,
1260 affd);
1261 if (msi_vecs > 0)
1262 return msi_vecs;
1263 }
1264
1265 /* use legacy IRQ if allowed */
1266 if (flags & PCI_IRQ_LEGACY) {
1267 if (min_vecs == 1 && dev->irq) {
1268 /*
1269 * Invoke the affinity spreading logic to ensure that
1270 * the device driver can adjust queue configuration
1271 * for the single interrupt case.
1272 */
1273 if (affd)
1274 irq_create_affinity_masks(1, affd);
1275 pci_intx(dev, 1);
1276 return 1;
1277 }
1278 }
1279
1280 if (msix_vecs == -ENOSPC)
1281 return -ENOSPC;
1282 return msi_vecs;
1283}
1284EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity);
1285
1286/**
1287 * pci_free_irq_vectors - free previously allocated IRQs for a device
1288 * @dev: PCI device to operate on
1289 *
1290 * Undoes the allocations and enabling in pci_alloc_irq_vectors().
1291 */
1292void pci_free_irq_vectors(struct pci_dev *dev)
1293{
1294 pci_disable_msix(dev);
1295 pci_disable_msi(dev);
1296}
1297EXPORT_SYMBOL(pci_free_irq_vectors);
1298
1299/**
1300 * pci_irq_vector - return Linux IRQ number of a device vector
1301 * @dev: PCI device to operate on
1302 * @nr: Interrupt vector index (0-based)
1303 *
1304 * @nr has the following meanings depending on the interrupt mode:
1305 * MSI-X: The index in the MSI-X vector table
1306 * MSI: The index of the enabled MSI vectors
1307 * INTx: Must be 0
1308 *
1309 * Return: The Linux interrupt number or -EINVAl if @nr is out of range.
1310 */
1311int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
1312{
1313 if (dev->msix_enabled) {
1314 struct msi_desc *entry;
1315
1316 for_each_pci_msi_entry(entry, dev) {
1317 if (entry->msi_attrib.entry_nr == nr)
1318 return entry->irq;
1319 }
1320 WARN_ON_ONCE(1);
1321 return -EINVAL;
1322 }
1323
1324 if (dev->msi_enabled) {
1325 struct msi_desc *entry = first_pci_msi_entry(dev);
1326
1327 if (WARN_ON_ONCE(nr >= entry->nvec_used))
1328 return -EINVAL;
1329 } else {
1330 if (WARN_ON_ONCE(nr > 0))
1331 return -EINVAL;
1332 }
1333
1334 return dev->irq + nr;
1335}
1336EXPORT_SYMBOL(pci_irq_vector);
1337
1338/**
1339 * pci_irq_get_affinity - return the affinity of a particular MSI vector
1340 * @dev: PCI device to operate on
1341 * @nr: device-relative interrupt vector index (0-based).
1342 *
1343 * @nr has the following meanings depending on the interrupt mode:
1344 * MSI-X: The index in the MSI-X vector table
1345 * MSI: The index of the enabled MSI vectors
1346 * INTx: Must be 0
1347 *
1348 * Return: A cpumask pointer or NULL if @nr is out of range
1349 */
1350const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
1351{
1352 if (dev->msix_enabled) {
1353 struct msi_desc *entry;
1354
1355 for_each_pci_msi_entry(entry, dev) {
1356 if (entry->msi_attrib.entry_nr == nr)
1357 return &entry->affinity->mask;
1358 }
1359 WARN_ON_ONCE(1);
1360 return NULL;
1361 } else if (dev->msi_enabled) {
1362 struct msi_desc *entry = first_pci_msi_entry(dev);
1363
1364 if (WARN_ON_ONCE(!entry || !entry->affinity ||
1365 nr >= entry->nvec_used))
1366 return NULL;
1367
1368 return &entry->affinity[nr].mask;
1369 } else {
1370 return cpu_possible_mask;
1371 }
1372}
1373EXPORT_SYMBOL(pci_irq_get_affinity);
1374
1375/**
1376 * pci_irq_get_node - return the NUMA node of a particular MSI vector
1377 * @pdev: PCI device to operate on
1378 * @vec: device-relative interrupt vector index (0-based).
1379 */
1380int pci_irq_get_node(struct pci_dev *pdev, int vec)
1381{
1382 const struct cpumask *mask;
1383
1384 mask = pci_irq_get_affinity(pdev, vec);
1385 if (mask)
1386 return local_memory_node(cpu_to_node(cpumask_first(mask)));
1387 return dev_to_node(&pdev->dev);
1388}
1389EXPORT_SYMBOL(pci_irq_get_node);
1390
1391struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
1392{
1393 return to_pci_dev(desc->dev);
1394}
1395EXPORT_SYMBOL(msi_desc_to_pci_dev);
1396
1397void *msi_desc_to_pci_sysdata(struct msi_desc *desc)
1398{
1399 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1400
1401 return dev->bus->sysdata;
1402}
1403EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata);
1404
1405#ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
1406/**
1407 * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space
1408 * @irq_data: Pointer to interrupt data of the MSI interrupt
1409 * @msg: Pointer to the message
1410 */
1411void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg)
1412{
1413 struct msi_desc *desc = irq_data_get_msi_desc(irq_data);
1414
1415 /*
1416 * For MSI-X desc->irq is always equal to irq_data->irq. For
1417 * MSI only the first interrupt of MULTI MSI passes the test.
1418 */
1419 if (desc->irq == irq_data->irq)
1420 __pci_write_msi_msg(desc, msg);
1421}
1422
1423/**
1424 * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source
1425 * @dev: Pointer to the PCI device
1426 * @desc: Pointer to the MSI descriptor
1427 *
1428 * The ID number is only used within the irqdomain.
1429 */
1430irq_hw_number_t pci_msi_domain_calc_hwirq(struct pci_dev *dev,
1431 struct msi_desc *desc)
1432{
1433 return (irq_hw_number_t)desc->msi_attrib.entry_nr |
1434 pci_dev_id(dev) << 11 |
1435 ((irq_hw_number_t)(pci_domain_nr(dev->bus) & 0xFFFFFFFF)) << 27;
1436}
1437
1438static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc)
1439{
1440 return !desc->msi_attrib.is_msix && desc->nvec_used > 1;
1441}
1442
1443/**
1444 * pci_msi_domain_check_cap - Verify that @domain supports the capabilities
1445 * for @dev
1446 * @domain: The interrupt domain to check
1447 * @info: The domain info for verification
1448 * @dev: The device to check
1449 *
1450 * Returns:
1451 * 0 if the functionality is supported
1452 * 1 if Multi MSI is requested, but the domain does not support it
1453 * -ENOTSUPP otherwise
1454 */
1455int pci_msi_domain_check_cap(struct irq_domain *domain,
1456 struct msi_domain_info *info, struct device *dev)
1457{
1458 struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev));
1459
1460 /* Special handling to support __pci_enable_msi_range() */
1461 if (pci_msi_desc_is_multi_msi(desc) &&
1462 !(info->flags & MSI_FLAG_MULTI_PCI_MSI))
1463 return 1;
1464 else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX))
1465 return -ENOTSUPP;
1466
1467 return 0;
1468}
1469
1470static int pci_msi_domain_handle_error(struct irq_domain *domain,
1471 struct msi_desc *desc, int error)
1472{
1473 /* Special handling to support __pci_enable_msi_range() */
1474 if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC)
1475 return 1;
1476
1477 return error;
1478}
1479
1480#ifdef GENERIC_MSI_DOMAIN_OPS
1481static void pci_msi_domain_set_desc(msi_alloc_info_t *arg,
1482 struct msi_desc *desc)
1483{
1484 arg->desc = desc;
1485 arg->hwirq = pci_msi_domain_calc_hwirq(msi_desc_to_pci_dev(desc),
1486 desc);
1487}
1488#else
1489#define pci_msi_domain_set_desc NULL
1490#endif
1491
1492static struct msi_domain_ops pci_msi_domain_ops_default = {
1493 .set_desc = pci_msi_domain_set_desc,
1494 .msi_check = pci_msi_domain_check_cap,
1495 .handle_error = pci_msi_domain_handle_error,
1496};
1497
1498static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info)
1499{
1500 struct msi_domain_ops *ops = info->ops;
1501
1502 if (ops == NULL) {
1503 info->ops = &pci_msi_domain_ops_default;
1504 } else {
1505 if (ops->set_desc == NULL)
1506 ops->set_desc = pci_msi_domain_set_desc;
1507 if (ops->msi_check == NULL)
1508 ops->msi_check = pci_msi_domain_check_cap;
1509 if (ops->handle_error == NULL)
1510 ops->handle_error = pci_msi_domain_handle_error;
1511 }
1512}
1513
1514static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info)
1515{
1516 struct irq_chip *chip = info->chip;
1517
1518 BUG_ON(!chip);
1519 if (!chip->irq_write_msi_msg)
1520 chip->irq_write_msi_msg = pci_msi_domain_write_msg;
1521 if (!chip->irq_mask)
1522 chip->irq_mask = pci_msi_mask_irq;
1523 if (!chip->irq_unmask)
1524 chip->irq_unmask = pci_msi_unmask_irq;
1525}
1526
1527/**
1528 * pci_msi_create_irq_domain - Create a MSI interrupt domain
1529 * @fwnode: Optional fwnode of the interrupt controller
1530 * @info: MSI domain info
1531 * @parent: Parent irq domain
1532 *
1533 * Updates the domain and chip ops and creates a MSI interrupt domain.
1534 *
1535 * Returns:
1536 * A domain pointer or NULL in case of failure.
1537 */
1538struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode,
1539 struct msi_domain_info *info,
1540 struct irq_domain *parent)
1541{
1542 struct irq_domain *domain;
1543
1544 if (WARN_ON(info->flags & MSI_FLAG_LEVEL_CAPABLE))
1545 info->flags &= ~MSI_FLAG_LEVEL_CAPABLE;
1546
1547 if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
1548 pci_msi_domain_update_dom_ops(info);
1549 if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
1550 pci_msi_domain_update_chip_ops(info);
1551
1552 info->flags |= MSI_FLAG_ACTIVATE_EARLY;
1553 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
1554 info->flags |= MSI_FLAG_MUST_REACTIVATE;
1555
1556 /* PCI-MSI is oneshot-safe */
1557 info->chip->flags |= IRQCHIP_ONESHOT_SAFE;
1558
1559 domain = msi_create_irq_domain(fwnode, info, parent);
1560 if (!domain)
1561 return NULL;
1562
1563 irq_domain_update_bus_token(domain, DOMAIN_BUS_PCI_MSI);
1564 return domain;
1565}
1566EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain);
1567
1568/*
1569 * Users of the generic MSI infrastructure expect a device to have a single ID,
1570 * so with DMA aliases we have to pick the least-worst compromise. Devices with
1571 * DMA phantom functions tend to still emit MSIs from the real function number,
1572 * so we ignore those and only consider topological aliases where either the
1573 * alias device or RID appears on a different bus number. We also make the
1574 * reasonable assumption that bridges are walked in an upstream direction (so
1575 * the last one seen wins), and the much braver assumption that the most likely
1576 * case is that of PCI->PCIe so we should always use the alias RID. This echoes
1577 * the logic from intel_irq_remapping's set_msi_sid(), which presumably works
1578 * well enough in practice; in the face of the horrible PCIe<->PCI-X conditions
1579 * for taking ownership all we can really do is close our eyes and hope...
1580 */
1581static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data)
1582{
1583 u32 *pa = data;
1584 u8 bus = PCI_BUS_NUM(*pa);
1585
1586 if (pdev->bus->number != bus || PCI_BUS_NUM(alias) != bus)
1587 *pa = alias;
1588
1589 return 0;
1590}
1591
1592/**
1593 * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID)
1594 * @domain: The interrupt domain
1595 * @pdev: The PCI device.
1596 *
1597 * The RID for a device is formed from the alias, with a firmware
1598 * supplied mapping applied
1599 *
1600 * Returns: The RID.
1601 */
1602u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev)
1603{
1604 struct device_node *of_node;
1605 u32 rid = pci_dev_id(pdev);
1606
1607 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1608
1609 of_node = irq_domain_get_of_node(domain);
1610 rid = of_node ? of_msi_map_id(&pdev->dev, of_node, rid) :
1611 iort_msi_map_id(&pdev->dev, rid);
1612
1613 return rid;
1614}
1615
1616/**
1617 * pci_msi_get_device_domain - Get the MSI domain for a given PCI device
1618 * @pdev: The PCI device
1619 *
1620 * Use the firmware data to find a device-specific MSI domain
1621 * (i.e. not one that is set as a default).
1622 *
1623 * Returns: The corresponding MSI domain or NULL if none has been found.
1624 */
1625struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev)
1626{
1627 struct irq_domain *dom;
1628 u32 rid = pci_dev_id(pdev);
1629
1630 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1631 dom = of_msi_map_get_device_domain(&pdev->dev, rid, DOMAIN_BUS_PCI_MSI);
1632 if (!dom)
1633 dom = iort_get_device_domain(&pdev->dev, rid,
1634 DOMAIN_BUS_PCI_MSI);
1635 return dom;
1636}
1637#endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */