blob: b377872a8f9d61268f4eacc36b623a9e2eac4d4e [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2#undef DEBUG
3
4/*
5 * ARM performance counter support.
6 *
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 *
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
12 */
13#define pr_fmt(fmt) "hw perfevents: " fmt
14
15#include <linux/bitmap.h>
16#include <linux/cpumask.h>
17#include <linux/cpu_pm.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/perf/arm_pmu.h>
21#include <linux/slab.h>
22#include <linux/sched/clock.h>
23#include <linux/spinlock.h>
24#include <linux/irq.h>
25#include <linux/irqdesc.h>
26
27#include <asm/irq_regs.h>
28
29static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
30static DEFINE_PER_CPU(int, cpu_irq);
31
32static inline u64 arm_pmu_event_max_period(struct perf_event *event)
33{
34 if (event->hw.flags & ARMPMU_EVT_64BIT)
35 return GENMASK_ULL(63, 0);
36 else
37 return GENMASK_ULL(31, 0);
38}
39
40static int
41armpmu_map_cache_event(const unsigned (*cache_map)
42 [PERF_COUNT_HW_CACHE_MAX]
43 [PERF_COUNT_HW_CACHE_OP_MAX]
44 [PERF_COUNT_HW_CACHE_RESULT_MAX],
45 u64 config)
46{
47 unsigned int cache_type, cache_op, cache_result, ret;
48
49 cache_type = (config >> 0) & 0xff;
50 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
51 return -EINVAL;
52
53 cache_op = (config >> 8) & 0xff;
54 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
55 return -EINVAL;
56
57 cache_result = (config >> 16) & 0xff;
58 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
59 return -EINVAL;
60
61 if (!cache_map)
62 return -ENOENT;
63
64 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
65
66 if (ret == CACHE_OP_UNSUPPORTED)
67 return -ENOENT;
68
69 return ret;
70}
71
72static int
73armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
74{
75 int mapping;
76
77 if (config >= PERF_COUNT_HW_MAX)
78 return -EINVAL;
79
80 if (!event_map)
81 return -ENOENT;
82
83 mapping = (*event_map)[config];
84 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
85}
86
87static int
88armpmu_map_raw_event(u32 raw_event_mask, u64 config)
89{
90 return (int)(config & raw_event_mask);
91}
92
93int
94armpmu_map_event(struct perf_event *event,
95 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
96 const unsigned (*cache_map)
97 [PERF_COUNT_HW_CACHE_MAX]
98 [PERF_COUNT_HW_CACHE_OP_MAX]
99 [PERF_COUNT_HW_CACHE_RESULT_MAX],
100 u32 raw_event_mask)
101{
102 u64 config = event->attr.config;
103 int type = event->attr.type;
104
105 if (type == event->pmu->type)
106 return armpmu_map_raw_event(raw_event_mask, config);
107
108 switch (type) {
109 case PERF_TYPE_HARDWARE:
110 return armpmu_map_hw_event(event_map, config);
111 case PERF_TYPE_HW_CACHE:
112 return armpmu_map_cache_event(cache_map, config);
113 case PERF_TYPE_RAW:
114 return armpmu_map_raw_event(raw_event_mask, config);
115 }
116
117 return -ENOENT;
118}
119
120int armpmu_event_set_period(struct perf_event *event)
121{
122 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
123 struct hw_perf_event *hwc = &event->hw;
124 s64 left = local64_read(&hwc->period_left);
125 s64 period = hwc->sample_period;
126 u64 max_period;
127 int ret = 0;
128
129 max_period = arm_pmu_event_max_period(event);
130 if (unlikely(left <= -period)) {
131 left = period;
132 local64_set(&hwc->period_left, left);
133 hwc->last_period = period;
134 ret = 1;
135 }
136
137 if (unlikely(left <= 0)) {
138 left += period;
139 local64_set(&hwc->period_left, left);
140 hwc->last_period = period;
141 ret = 1;
142 }
143
144 /*
145 * Limit the maximum period to prevent the counter value
146 * from overtaking the one we are about to program. In
147 * effect we are reducing max_period to account for
148 * interrupt latency (and we are being very conservative).
149 */
150 if (left > (max_period >> 1))
151 left = (max_period >> 1);
152
153 local64_set(&hwc->prev_count, (u64)-left);
154
155 armpmu->write_counter(event, (u64)(-left) & max_period);
156
157 perf_event_update_userpage(event);
158
159 return ret;
160}
161
162u64 armpmu_event_update(struct perf_event *event)
163{
164 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
165 struct hw_perf_event *hwc = &event->hw;
166 u64 delta, prev_raw_count, new_raw_count;
167 u64 max_period = arm_pmu_event_max_period(event);
168
169again:
170 prev_raw_count = local64_read(&hwc->prev_count);
171 new_raw_count = armpmu->read_counter(event);
172
173 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
174 new_raw_count) != prev_raw_count)
175 goto again;
176
177 delta = (new_raw_count - prev_raw_count) & max_period;
178
179 local64_add(delta, &event->count);
180 local64_sub(delta, &hwc->period_left);
181
182 return new_raw_count;
183}
184
185static void
186armpmu_read(struct perf_event *event)
187{
188 armpmu_event_update(event);
189}
190
191static void
192armpmu_stop(struct perf_event *event, int flags)
193{
194 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
195 struct hw_perf_event *hwc = &event->hw;
196
197 /*
198 * ARM pmu always has to update the counter, so ignore
199 * PERF_EF_UPDATE, see comments in armpmu_start().
200 */
201 if (!(hwc->state & PERF_HES_STOPPED)) {
202 armpmu->disable(event);
203 armpmu_event_update(event);
204 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
205 }
206}
207
208static void armpmu_start(struct perf_event *event, int flags)
209{
210 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
211 struct hw_perf_event *hwc = &event->hw;
212
213 /*
214 * ARM pmu always has to reprogram the period, so ignore
215 * PERF_EF_RELOAD, see the comment below.
216 */
217 if (flags & PERF_EF_RELOAD)
218 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
219
220 hwc->state = 0;
221 /*
222 * Set the period again. Some counters can't be stopped, so when we
223 * were stopped we simply disabled the IRQ source and the counter
224 * may have been left counting. If we don't do this step then we may
225 * get an interrupt too soon or *way* too late if the overflow has
226 * happened since disabling.
227 */
228 armpmu_event_set_period(event);
229 armpmu->enable(event);
230}
231
232static void
233armpmu_del(struct perf_event *event, int flags)
234{
235 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
236 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
237 struct hw_perf_event *hwc = &event->hw;
238 int idx = hwc->idx;
239
240 armpmu_stop(event, PERF_EF_UPDATE);
241 hw_events->events[idx] = NULL;
242 armpmu->clear_event_idx(hw_events, event);
243 perf_event_update_userpage(event);
244 /* Clear the allocated counter */
245 hwc->idx = -1;
246}
247
248static int
249armpmu_add(struct perf_event *event, int flags)
250{
251 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
252 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
253 struct hw_perf_event *hwc = &event->hw;
254 int idx;
255
256 /* An event following a process won't be stopped earlier */
257 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
258 return -ENOENT;
259
260 /* If we don't have a space for the counter then finish early. */
261 idx = armpmu->get_event_idx(hw_events, event);
262 if (idx < 0)
263 return idx;
264
265 /*
266 * If there is an event in the counter we are going to use then make
267 * sure it is disabled.
268 */
269 event->hw.idx = idx;
270 armpmu->disable(event);
271 hw_events->events[idx] = event;
272
273 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
274 if (flags & PERF_EF_START)
275 armpmu_start(event, PERF_EF_RELOAD);
276
277 /* Propagate our changes to the userspace mapping. */
278 perf_event_update_userpage(event);
279
280 return 0;
281}
282
283static int
284validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
285 struct perf_event *event)
286{
287 struct arm_pmu *armpmu;
288
289 if (is_software_event(event))
290 return 1;
291
292 /*
293 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
294 * core perf code won't check that the pmu->ctx == leader->ctx
295 * until after pmu->event_init(event).
296 */
297 if (event->pmu != pmu)
298 return 0;
299
300 if (event->state < PERF_EVENT_STATE_OFF)
301 return 1;
302
303 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
304 return 1;
305
306 armpmu = to_arm_pmu(event->pmu);
307 return armpmu->get_event_idx(hw_events, event) >= 0;
308}
309
310static int
311validate_group(struct perf_event *event)
312{
313 struct perf_event *sibling, *leader = event->group_leader;
314 struct pmu_hw_events fake_pmu;
315
316 /*
317 * Initialise the fake PMU. We only need to populate the
318 * used_mask for the purposes of validation.
319 */
320 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
321
322 if (!validate_event(event->pmu, &fake_pmu, leader))
323 return -EINVAL;
324
325 if (event == leader)
326 return 0;
327
328 for_each_sibling_event(sibling, leader) {
329 if (!validate_event(event->pmu, &fake_pmu, sibling))
330 return -EINVAL;
331 }
332
333 if (!validate_event(event->pmu, &fake_pmu, event))
334 return -EINVAL;
335
336 return 0;
337}
338
339static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
340{
341 struct arm_pmu *armpmu;
342 int ret;
343 u64 start_clock, finish_clock;
344
345 /*
346 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
347 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
348 * do any necessary shifting, we just need to perform the first
349 * dereference.
350 */
351 armpmu = *(void **)dev;
352 if (WARN_ON_ONCE(!armpmu))
353 return IRQ_NONE;
354
355 start_clock = sched_clock();
356 ret = armpmu->handle_irq(armpmu);
357 finish_clock = sched_clock();
358
359 perf_sample_event_took(finish_clock - start_clock);
360 return ret;
361}
362
363static int
364__hw_perf_event_init(struct perf_event *event)
365{
366 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
367 struct hw_perf_event *hwc = &event->hw;
368 int mapping;
369
370 hwc->flags = 0;
371 mapping = armpmu->map_event(event);
372
373 if (mapping < 0) {
374 pr_debug("event %x:%llx not supported\n", event->attr.type,
375 event->attr.config);
376 return mapping;
377 }
378
379 /*
380 * We don't assign an index until we actually place the event onto
381 * hardware. Use -1 to signify that we haven't decided where to put it
382 * yet. For SMP systems, each core has it's own PMU so we can't do any
383 * clever allocation or constraints checking at this point.
384 */
385 hwc->idx = -1;
386 hwc->config_base = 0;
387 hwc->config = 0;
388 hwc->event_base = 0;
389
390 /*
391 * Check whether we need to exclude the counter from certain modes.
392 */
393 if (armpmu->set_event_filter &&
394 armpmu->set_event_filter(hwc, &event->attr)) {
395 pr_debug("ARM performance counters do not support "
396 "mode exclusion\n");
397 return -EOPNOTSUPP;
398 }
399
400 /*
401 * Store the event encoding into the config_base field.
402 */
403 hwc->config_base |= (unsigned long)mapping;
404
405 if (!is_sampling_event(event)) {
406 /*
407 * For non-sampling runs, limit the sample_period to half
408 * of the counter width. That way, the new counter value
409 * is far less likely to overtake the previous one unless
410 * you have some serious IRQ latency issues.
411 */
412 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
413 hwc->last_period = hwc->sample_period;
414 local64_set(&hwc->period_left, hwc->sample_period);
415 }
416
417 return validate_group(event);
418}
419
420static int armpmu_event_init(struct perf_event *event)
421{
422 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
423
424 /*
425 * Reject CPU-affine events for CPUs that are of a different class to
426 * that which this PMU handles. Process-following events (where
427 * event->cpu == -1) can be migrated between CPUs, and thus we have to
428 * reject them later (in armpmu_add) if they're scheduled on a
429 * different class of CPU.
430 */
431 if (event->cpu != -1 &&
432 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
433 return -ENOENT;
434
435 /* does not support taken branch sampling */
436 if (has_branch_stack(event))
437 return -EOPNOTSUPP;
438
439 if (armpmu->map_event(event) == -ENOENT)
440 return -ENOENT;
441
442 return __hw_perf_event_init(event);
443}
444
445static void armpmu_enable(struct pmu *pmu)
446{
447 struct arm_pmu *armpmu = to_arm_pmu(pmu);
448 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
449 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
450
451 /* For task-bound events we may be called on other CPUs */
452 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
453 return;
454
455 if (enabled)
456 armpmu->start(armpmu);
457}
458
459static void armpmu_disable(struct pmu *pmu)
460{
461 struct arm_pmu *armpmu = to_arm_pmu(pmu);
462
463 /* For task-bound events we may be called on other CPUs */
464 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
465 return;
466
467 armpmu->stop(armpmu);
468}
469
470/*
471 * In heterogeneous systems, events are specific to a particular
472 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
473 * the same microarchitecture.
474 */
475static int armpmu_filter_match(struct perf_event *event)
476{
477 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
478 unsigned int cpu = smp_processor_id();
479 int ret;
480
481 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
482 if (ret && armpmu->filter_match)
483 return armpmu->filter_match(event);
484
485 return ret;
486}
487
488static ssize_t armpmu_cpumask_show(struct device *dev,
489 struct device_attribute *attr, char *buf)
490{
491 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
492 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
493}
494
495static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
496
497static struct attribute *armpmu_common_attrs[] = {
498 &dev_attr_cpus.attr,
499 NULL,
500};
501
502static struct attribute_group armpmu_common_attr_group = {
503 .attrs = armpmu_common_attrs,
504};
505
506/* Set at runtime when we know what CPU type we are. */
507static struct arm_pmu *__oprofile_cpu_pmu;
508
509/*
510 * Despite the names, these two functions are CPU-specific and are used
511 * by the OProfile/perf code.
512 */
513const char *perf_pmu_name(void)
514{
515 if (!__oprofile_cpu_pmu)
516 return NULL;
517
518 return __oprofile_cpu_pmu->name;
519}
520EXPORT_SYMBOL_GPL(perf_pmu_name);
521
522int perf_num_counters(void)
523{
524 int max_events = 0;
525
526 if (__oprofile_cpu_pmu != NULL)
527 max_events = __oprofile_cpu_pmu->num_events;
528
529 return max_events;
530}
531EXPORT_SYMBOL_GPL(perf_num_counters);
532
533static int armpmu_count_irq_users(const int irq)
534{
535 int cpu, count = 0;
536
537 for_each_possible_cpu(cpu) {
538 if (per_cpu(cpu_irq, cpu) == irq)
539 count++;
540 }
541
542 return count;
543}
544
545void armpmu_free_irq(int irq, int cpu)
546{
547 if (per_cpu(cpu_irq, cpu) == 0)
548 return;
549 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
550 return;
551
552 if (!irq_is_percpu_devid(irq))
553 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
554 else if (armpmu_count_irq_users(irq) == 1)
555 free_percpu_irq(irq, &cpu_armpmu);
556
557 per_cpu(cpu_irq, cpu) = 0;
558}
559
560int armpmu_request_irq(int irq, int cpu)
561{
562 int err = 0;
563 const irq_handler_t handler = armpmu_dispatch_irq;
564 if (!irq)
565 return 0;
566
567 if (!irq_is_percpu_devid(irq)) {
568 unsigned long irq_flags;
569
570 err = irq_force_affinity(irq, cpumask_of(cpu));
571
572 if (err && num_possible_cpus() > 1) {
573 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
574 irq, cpu);
575 goto err_out;
576 }
577
578 irq_flags = IRQF_PERCPU |
579 IRQF_NOBALANCING |
580 IRQF_NO_THREAD;
581
582 irq_set_status_flags(irq, IRQ_NOAUTOEN);
583 err = request_irq(irq, handler, irq_flags, "arm-pmu",
584 per_cpu_ptr(&cpu_armpmu, cpu));
585 } else if (armpmu_count_irq_users(irq) == 0) {
586 err = request_percpu_irq(irq, handler, "arm-pmu",
587 &cpu_armpmu);
588 }
589
590 if (err)
591 goto err_out;
592
593 per_cpu(cpu_irq, cpu) = irq;
594 return 0;
595
596err_out:
597 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
598 return err;
599}
600
601static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
602{
603 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
604 return per_cpu(hw_events->irq, cpu);
605}
606
607/*
608 * PMU hardware loses all context when a CPU goes offline.
609 * When a CPU is hotplugged back in, since some hardware registers are
610 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
611 * junk values out of them.
612 */
613static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
614{
615 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
616 int irq;
617
618 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
619 return 0;
620 if (pmu->reset)
621 pmu->reset(pmu);
622
623 per_cpu(cpu_armpmu, cpu) = pmu;
624
625 irq = armpmu_get_cpu_irq(pmu, cpu);
626 if (irq) {
627 if (irq_is_percpu_devid(irq))
628 enable_percpu_irq(irq, IRQ_TYPE_NONE);
629 else
630 enable_irq(irq);
631 }
632
633 return 0;
634}
635
636static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
637{
638 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
639 int irq;
640
641 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
642 return 0;
643
644 irq = armpmu_get_cpu_irq(pmu, cpu);
645 if (irq) {
646 if (irq_is_percpu_devid(irq))
647 disable_percpu_irq(irq);
648 else
649 disable_irq_nosync(irq);
650 }
651
652 per_cpu(cpu_armpmu, cpu) = NULL;
653
654 return 0;
655}
656
657#ifdef CONFIG_CPU_PM
658static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
659{
660 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
661 struct perf_event *event;
662 int idx;
663
664 for (idx = 0; idx < armpmu->num_events; idx++) {
665 event = hw_events->events[idx];
666 if (!event)
667 continue;
668
669 switch (cmd) {
670 case CPU_PM_ENTER:
671 /*
672 * Stop and update the counter
673 */
674 armpmu_stop(event, PERF_EF_UPDATE);
675 break;
676 case CPU_PM_EXIT:
677 case CPU_PM_ENTER_FAILED:
678 /*
679 * Restore and enable the counter.
680 * armpmu_start() indirectly calls
681 *
682 * perf_event_update_userpage()
683 *
684 * that requires RCU read locking to be functional,
685 * wrap the call within RCU_NONIDLE to make the
686 * RCU subsystem aware this cpu is not idle from
687 * an RCU perspective for the armpmu_start() call
688 * duration.
689 */
690 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
691 break;
692 default:
693 break;
694 }
695 }
696}
697
698static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
699 void *v)
700{
701 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
702 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
703 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
704
705 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
706 return NOTIFY_DONE;
707
708 /*
709 * Always reset the PMU registers on power-up even if
710 * there are no events running.
711 */
712 if (cmd == CPU_PM_EXIT && armpmu->reset)
713 armpmu->reset(armpmu);
714
715 if (!enabled)
716 return NOTIFY_OK;
717
718 switch (cmd) {
719 case CPU_PM_ENTER:
720 armpmu->stop(armpmu);
721 cpu_pm_pmu_setup(armpmu, cmd);
722 break;
723 case CPU_PM_EXIT:
724 case CPU_PM_ENTER_FAILED:
725 cpu_pm_pmu_setup(armpmu, cmd);
726 armpmu->start(armpmu);
727 break;
728 default:
729 return NOTIFY_DONE;
730 }
731
732 return NOTIFY_OK;
733}
734
735static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
736{
737 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
738 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
739}
740
741static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
742{
743 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
744}
745#else
746static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
747static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
748#endif
749
750static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
751{
752 int err;
753
754 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
755 &cpu_pmu->node);
756 if (err)
757 goto out;
758
759 err = cpu_pm_pmu_register(cpu_pmu);
760 if (err)
761 goto out_unregister;
762
763 return 0;
764
765out_unregister:
766 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
767 &cpu_pmu->node);
768out:
769 return err;
770}
771
772static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
773{
774 cpu_pm_pmu_unregister(cpu_pmu);
775 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
776 &cpu_pmu->node);
777}
778
779static struct arm_pmu *__armpmu_alloc(gfp_t flags)
780{
781 struct arm_pmu *pmu;
782 int cpu;
783
784 pmu = kzalloc(sizeof(*pmu), flags);
785 if (!pmu) {
786 pr_info("failed to allocate PMU device!\n");
787 goto out;
788 }
789
790 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
791 if (!pmu->hw_events) {
792 pr_info("failed to allocate per-cpu PMU data.\n");
793 goto out_free_pmu;
794 }
795
796 pmu->pmu = (struct pmu) {
797 .pmu_enable = armpmu_enable,
798 .pmu_disable = armpmu_disable,
799 .event_init = armpmu_event_init,
800 .add = armpmu_add,
801 .del = armpmu_del,
802 .start = armpmu_start,
803 .stop = armpmu_stop,
804 .read = armpmu_read,
805 .filter_match = armpmu_filter_match,
806 .attr_groups = pmu->attr_groups,
807 /*
808 * This is a CPU PMU potentially in a heterogeneous
809 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
810 * and we have taken ctx sharing into account (e.g. with our
811 * pmu::filter_match callback and pmu::event_init group
812 * validation).
813 */
814 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
815 };
816
817 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
818 &armpmu_common_attr_group;
819
820 for_each_possible_cpu(cpu) {
821 struct pmu_hw_events *events;
822
823 events = per_cpu_ptr(pmu->hw_events, cpu);
824 raw_spin_lock_init(&events->pmu_lock);
825 events->percpu_pmu = pmu;
826 }
827
828 return pmu;
829
830out_free_pmu:
831 kfree(pmu);
832out:
833 return NULL;
834}
835
836struct arm_pmu *armpmu_alloc(void)
837{
838 return __armpmu_alloc(GFP_KERNEL);
839}
840
841struct arm_pmu *armpmu_alloc_atomic(void)
842{
843 return __armpmu_alloc(GFP_ATOMIC);
844}
845
846
847void armpmu_free(struct arm_pmu *pmu)
848{
849 free_percpu(pmu->hw_events);
850 kfree(pmu);
851}
852
853int armpmu_register(struct arm_pmu *pmu)
854{
855 int ret;
856
857 ret = cpu_pmu_init(pmu);
858 if (ret)
859 return ret;
860
861 if (!pmu->set_event_filter)
862 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
863
864 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
865 if (ret)
866 goto out_destroy;
867
868 if (!__oprofile_cpu_pmu)
869 __oprofile_cpu_pmu = pmu;
870
871 pr_info("enabled with %s PMU driver, %d counters available\n",
872 pmu->name, pmu->num_events);
873
874 return 0;
875
876out_destroy:
877 cpu_pmu_destroy(pmu);
878 return ret;
879}
880
881static int arm_pmu_hp_init(void)
882{
883 int ret;
884
885 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
886 "perf/arm/pmu:starting",
887 arm_perf_starting_cpu,
888 arm_perf_teardown_cpu);
889 if (ret)
890 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
891 ret);
892 return ret;
893}
894subsys_initcall(arm_pmu_hp_init);