blob: ff3dacbaade6ae14b39fbab11efd9952a0620888 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9#include <linux/acpi.h>
10#include <linux/module.h>
11#include <linux/pwm.h>
12#include <linux/radix-tree.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/debugfs.h>
19#include <linux/seq_file.h>
20
21#include <dt-bindings/pwm/pwm.h>
22
23#define MAX_PWMS 1024
24
25static DEFINE_MUTEX(pwm_lookup_lock);
26static LIST_HEAD(pwm_lookup_list);
27static DEFINE_MUTEX(pwm_lock);
28static LIST_HEAD(pwm_chips);
29static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
30static RADIX_TREE(pwm_tree, GFP_KERNEL);
31
32static struct pwm_device *pwm_to_device(unsigned int pwm)
33{
34 return radix_tree_lookup(&pwm_tree, pwm);
35}
36
37static int alloc_pwms(int pwm, unsigned int count)
38{
39 unsigned int from = 0;
40 unsigned int start;
41
42 if (pwm >= MAX_PWMS)
43 return -EINVAL;
44
45 if (pwm >= 0)
46 from = pwm;
47
48 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
49 count, 0);
50
51 if (pwm >= 0 && start != pwm)
52 return -EEXIST;
53
54 if (start + count > MAX_PWMS)
55 return -ENOSPC;
56
57 return start;
58}
59
60static void free_pwms(struct pwm_chip *chip)
61{
62 unsigned int i;
63
64 for (i = 0; i < chip->npwm; i++) {
65 struct pwm_device *pwm = &chip->pwms[i];
66
67 radix_tree_delete(&pwm_tree, pwm->pwm);
68 }
69
70 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
71
72 kfree(chip->pwms);
73 chip->pwms = NULL;
74}
75
76static struct pwm_chip *pwmchip_find_by_name(const char *name)
77{
78 struct pwm_chip *chip;
79
80 if (!name)
81 return NULL;
82
83 mutex_lock(&pwm_lock);
84
85 list_for_each_entry(chip, &pwm_chips, list) {
86 const char *chip_name = dev_name(chip->dev);
87
88 if (chip_name && strcmp(chip_name, name) == 0) {
89 mutex_unlock(&pwm_lock);
90 return chip;
91 }
92 }
93
94 mutex_unlock(&pwm_lock);
95
96 return NULL;
97}
98
99static int pwm_device_request(struct pwm_device *pwm, const char *label)
100{
101 int err;
102
103 if (test_bit(PWMF_REQUESTED, &pwm->flags))
104 return -EBUSY;
105
106 if (!try_module_get(pwm->chip->ops->owner))
107 return -ENODEV;
108
109 if (pwm->chip->ops->request) {
110 err = pwm->chip->ops->request(pwm->chip, pwm);
111 if (err) {
112 module_put(pwm->chip->ops->owner);
113 return err;
114 }
115 }
116
117 set_bit(PWMF_REQUESTED, &pwm->flags);
118 pwm->label = label;
119
120 return 0;
121}
122
123struct pwm_device *
124of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
125{
126 struct pwm_device *pwm;
127
128 /* check, whether the driver supports a third cell for flags */
129 if (pc->of_pwm_n_cells < 3)
130 return ERR_PTR(-EINVAL);
131
132 /* flags in the third cell are optional */
133 if (args->args_count < 2)
134 return ERR_PTR(-EINVAL);
135
136 if (args->args[0] >= pc->npwm)
137 return ERR_PTR(-EINVAL);
138
139 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
140 if (IS_ERR(pwm))
141 return pwm;
142
143 pwm->args.period = args->args[1];
144 pwm->args.polarity = PWM_POLARITY_NORMAL;
145
146 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
147 pwm->args.polarity = PWM_POLARITY_INVERSED;
148
149 return pwm;
150}
151EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
152
153static struct pwm_device *
154of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
155{
156 struct pwm_device *pwm;
157
158 /* sanity check driver support */
159 if (pc->of_pwm_n_cells < 2)
160 return ERR_PTR(-EINVAL);
161
162 /* all cells are required */
163 if (args->args_count != pc->of_pwm_n_cells)
164 return ERR_PTR(-EINVAL);
165
166 if (args->args[0] >= pc->npwm)
167 return ERR_PTR(-EINVAL);
168
169 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
170 if (IS_ERR(pwm))
171 return pwm;
172
173 pwm->args.period = args->args[1];
174
175 return pwm;
176}
177
178static void of_pwmchip_add(struct pwm_chip *chip)
179{
180 if (!chip->dev || !chip->dev->of_node)
181 return;
182
183 if (!chip->of_xlate) {
184 chip->of_xlate = of_pwm_simple_xlate;
185 chip->of_pwm_n_cells = 2;
186 }
187
188 of_node_get(chip->dev->of_node);
189}
190
191static void of_pwmchip_remove(struct pwm_chip *chip)
192{
193 if (chip->dev)
194 of_node_put(chip->dev->of_node);
195}
196
197/**
198 * pwm_set_chip_data() - set private chip data for a PWM
199 * @pwm: PWM device
200 * @data: pointer to chip-specific data
201 *
202 * Returns: 0 on success or a negative error code on failure.
203 */
204int pwm_set_chip_data(struct pwm_device *pwm, void *data)
205{
206 if (!pwm)
207 return -EINVAL;
208
209 pwm->chip_data = data;
210
211 return 0;
212}
213EXPORT_SYMBOL_GPL(pwm_set_chip_data);
214
215/**
216 * pwm_get_chip_data() - get private chip data for a PWM
217 * @pwm: PWM device
218 *
219 * Returns: A pointer to the chip-private data for the PWM device.
220 */
221void *pwm_get_chip_data(struct pwm_device *pwm)
222{
223 return pwm ? pwm->chip_data : NULL;
224}
225EXPORT_SYMBOL_GPL(pwm_get_chip_data);
226
227static bool pwm_ops_check(const struct pwm_ops *ops)
228{
229 /* driver supports legacy, non-atomic operation */
230 if (ops->config && ops->enable && ops->disable)
231 return true;
232
233 /* driver supports atomic operation */
234 if (ops->apply)
235 return true;
236
237 return false;
238}
239
240/**
241 * pwmchip_add_with_polarity() - register a new PWM chip
242 * @chip: the PWM chip to add
243 * @polarity: initial polarity of PWM channels
244 *
245 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
246 * will be used. The initial polarity for all channels is specified by the
247 * @polarity parameter.
248 *
249 * Returns: 0 on success or a negative error code on failure.
250 */
251int pwmchip_add_with_polarity(struct pwm_chip *chip,
252 enum pwm_polarity polarity)
253{
254 struct pwm_device *pwm;
255 unsigned int i;
256 int ret;
257
258 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
259 return -EINVAL;
260
261 if (!pwm_ops_check(chip->ops))
262 return -EINVAL;
263
264 mutex_lock(&pwm_lock);
265
266 ret = alloc_pwms(chip->base, chip->npwm);
267 if (ret < 0)
268 goto out;
269
270 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
271 if (!chip->pwms) {
272 ret = -ENOMEM;
273 goto out;
274 }
275
276 chip->base = ret;
277
278 for (i = 0; i < chip->npwm; i++) {
279 pwm = &chip->pwms[i];
280
281 pwm->chip = chip;
282 pwm->pwm = chip->base + i;
283 pwm->hwpwm = i;
284 pwm->state.polarity = polarity;
285 pwm->state.output_type = PWM_OUTPUT_FIXED;
286
287 if (chip->ops->get_state)
288 chip->ops->get_state(chip, pwm, &pwm->state);
289
290 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
291 }
292
293 bitmap_set(allocated_pwms, chip->base, chip->npwm);
294
295 INIT_LIST_HEAD(&chip->list);
296 list_add(&chip->list, &pwm_chips);
297
298 ret = 0;
299
300 if (IS_ENABLED(CONFIG_OF))
301 of_pwmchip_add(chip);
302
303out:
304 mutex_unlock(&pwm_lock);
305
306 if (!ret)
307 pwmchip_sysfs_export(chip);
308
309 return ret;
310}
311EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
312
313/**
314 * pwmchip_add() - register a new PWM chip
315 * @chip: the PWM chip to add
316 *
317 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
318 * will be used. The initial polarity for all channels is normal.
319 *
320 * Returns: 0 on success or a negative error code on failure.
321 */
322int pwmchip_add(struct pwm_chip *chip)
323{
324 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
325}
326EXPORT_SYMBOL_GPL(pwmchip_add);
327
328/**
329 * pwmchip_remove() - remove a PWM chip
330 * @chip: the PWM chip to remove
331 *
332 * Removes a PWM chip. This function may return busy if the PWM chip provides
333 * a PWM device that is still requested.
334 *
335 * Returns: 0 on success or a negative error code on failure.
336 */
337int pwmchip_remove(struct pwm_chip *chip)
338{
339 unsigned int i;
340 int ret = 0;
341
342 pwmchip_sysfs_unexport(chip);
343
344 mutex_lock(&pwm_lock);
345
346 for (i = 0; i < chip->npwm; i++) {
347 struct pwm_device *pwm = &chip->pwms[i];
348
349 if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
350 ret = -EBUSY;
351 goto out;
352 }
353 }
354
355 list_del_init(&chip->list);
356
357 if (IS_ENABLED(CONFIG_OF))
358 of_pwmchip_remove(chip);
359
360 free_pwms(chip);
361
362out:
363 mutex_unlock(&pwm_lock);
364 return ret;
365}
366EXPORT_SYMBOL_GPL(pwmchip_remove);
367
368/**
369 * pwm_request() - request a PWM device
370 * @pwm: global PWM device index
371 * @label: PWM device label
372 *
373 * This function is deprecated, use pwm_get() instead.
374 *
375 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
376 * failure.
377 */
378struct pwm_device *pwm_request(int pwm, const char *label)
379{
380 struct pwm_device *dev;
381 int err;
382
383 if (pwm < 0 || pwm >= MAX_PWMS)
384 return ERR_PTR(-EINVAL);
385
386 mutex_lock(&pwm_lock);
387
388 dev = pwm_to_device(pwm);
389 if (!dev) {
390 dev = ERR_PTR(-EPROBE_DEFER);
391 goto out;
392 }
393
394 err = pwm_device_request(dev, label);
395 if (err < 0)
396 dev = ERR_PTR(err);
397
398out:
399 mutex_unlock(&pwm_lock);
400
401 return dev;
402}
403EXPORT_SYMBOL_GPL(pwm_request);
404
405/**
406 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
407 * @chip: PWM chip
408 * @index: per-chip index of the PWM to request
409 * @label: a literal description string of this PWM
410 *
411 * Returns: A pointer to the PWM device at the given index of the given PWM
412 * chip. A negative error code is returned if the index is not valid for the
413 * specified PWM chip or if the PWM device cannot be requested.
414 */
415struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
416 unsigned int index,
417 const char *label)
418{
419 struct pwm_device *pwm;
420 int err;
421
422 if (!chip || index >= chip->npwm)
423 return ERR_PTR(-EINVAL);
424
425 mutex_lock(&pwm_lock);
426 pwm = &chip->pwms[index];
427
428 err = pwm_device_request(pwm, label);
429 if (err < 0)
430 pwm = ERR_PTR(err);
431
432 mutex_unlock(&pwm_lock);
433 return pwm;
434}
435EXPORT_SYMBOL_GPL(pwm_request_from_chip);
436
437/**
438 * pwm_free() - free a PWM device
439 * @pwm: PWM device
440 *
441 * This function is deprecated, use pwm_put() instead.
442 */
443void pwm_free(struct pwm_device *pwm)
444{
445 pwm_put(pwm);
446}
447EXPORT_SYMBOL_GPL(pwm_free);
448
449/**
450 * pwm_apply_state() - atomically apply a new state to a PWM device
451 * @pwm: PWM device
452 * @state: new state to apply
453 */
454int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
455{
456 struct pwm_chip *chip;
457 int err;
458
459 if (!pwm || !state || !state->period ||
460 state->duty_cycle > state->period)
461 return -EINVAL;
462
463 chip = pwm->chip;
464
465 if (state->period == pwm->state.period &&
466 state->duty_cycle == pwm->state.duty_cycle &&
467 state->polarity == pwm->state.polarity &&
468 state->enabled == pwm->state.enabled)
469 return 0;
470
471 if (chip->ops->apply) {
472 err = chip->ops->apply(chip, pwm, state);
473 if (err)
474 return err;
475
476 pwm->state = *state;
477 } else {
478 /*
479 * FIXME: restore the initial state in case of error.
480 */
481 if (state->polarity != pwm->state.polarity) {
482 if (!chip->ops->set_polarity)
483 return -ENOTSUPP;
484
485 /*
486 * Changing the polarity of a running PWM is
487 * only allowed when the PWM driver implements
488 * ->apply().
489 */
490 if (pwm->state.enabled) {
491 chip->ops->disable(chip, pwm);
492 pwm->state.enabled = false;
493 }
494
495 err = chip->ops->set_polarity(chip, pwm,
496 state->polarity);
497 if (err)
498 return err;
499
500 pwm->state.polarity = state->polarity;
501 }
502
503 if (state->period != pwm->state.period ||
504 state->duty_cycle != pwm->state.duty_cycle) {
505 err = chip->ops->config(pwm->chip, pwm,
506 state->duty_cycle,
507 state->period);
508 if (err)
509 return err;
510
511 pwm->state.duty_cycle = state->duty_cycle;
512 pwm->state.period = state->period;
513 }
514
515 if (state->enabled != pwm->state.enabled) {
516 if (state->enabled) {
517 err = chip->ops->enable(chip, pwm);
518 if (err)
519 return err;
520 } else {
521 chip->ops->disable(chip, pwm);
522 }
523
524 pwm->state.enabled = state->enabled;
525 }
526 }
527
528 return 0;
529}
530EXPORT_SYMBOL_GPL(pwm_apply_state);
531
532/**
533 * pwm_capture() - capture and report a PWM signal
534 * @pwm: PWM device
535 * @result: structure to fill with capture result
536 * @timeout: time to wait, in milliseconds, before giving up on capture
537 *
538 * Returns: 0 on success or a negative error code on failure.
539 */
540int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
541 unsigned long timeout)
542{
543 int err;
544
545 if (!pwm || !pwm->chip->ops)
546 return -EINVAL;
547
548 if (!pwm->chip->ops->capture)
549 return -ENOSYS;
550
551 mutex_lock(&pwm_lock);
552 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
553 mutex_unlock(&pwm_lock);
554
555 return err;
556}
557EXPORT_SYMBOL_GPL(pwm_capture);
558
559/**
560 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
561 * @pwm: PWM device
562 *
563 * This function will adjust the PWM config to the PWM arguments provided
564 * by the DT or PWM lookup table. This is particularly useful to adapt
565 * the bootloader config to the Linux one.
566 */
567int pwm_adjust_config(struct pwm_device *pwm)
568{
569 struct pwm_state state;
570 struct pwm_args pargs;
571
572 pwm_get_args(pwm, &pargs);
573 pwm_get_state(pwm, &state);
574
575 /*
576 * If the current period is zero it means that either the PWM driver
577 * does not support initial state retrieval or the PWM has not yet
578 * been configured.
579 *
580 * In either case, we setup the new period and polarity, and assign a
581 * duty cycle of 0.
582 */
583 if (!state.period) {
584 state.duty_cycle = 0;
585 state.period = pargs.period;
586 state.polarity = pargs.polarity;
587
588 return pwm_apply_state(pwm, &state);
589 }
590
591 /*
592 * Adjust the PWM duty cycle/period based on the period value provided
593 * in PWM args.
594 */
595 if (pargs.period != state.period) {
596 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
597
598 do_div(dutycycle, state.period);
599 state.duty_cycle = dutycycle;
600 state.period = pargs.period;
601 }
602
603 /*
604 * If the polarity changed, we should also change the duty cycle.
605 */
606 if (pargs.polarity != state.polarity) {
607 state.polarity = pargs.polarity;
608 state.duty_cycle = state.period - state.duty_cycle;
609 }
610
611 return pwm_apply_state(pwm, &state);
612}
613EXPORT_SYMBOL_GPL(pwm_adjust_config);
614
615static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
616{
617 struct pwm_chip *chip;
618
619 mutex_lock(&pwm_lock);
620
621 list_for_each_entry(chip, &pwm_chips, list)
622 if (chip->dev && chip->dev->of_node == np) {
623 mutex_unlock(&pwm_lock);
624 return chip;
625 }
626
627 mutex_unlock(&pwm_lock);
628
629 return ERR_PTR(-EPROBE_DEFER);
630}
631
632static struct device_link *pwm_device_link_add(struct device *dev,
633 struct pwm_device *pwm)
634{
635 struct device_link *dl;
636
637 if (!dev) {
638 /*
639 * No device for the PWM consumer has been provided. It may
640 * impact the PM sequence ordering: the PWM supplier may get
641 * suspended before the consumer.
642 */
643 dev_warn(pwm->chip->dev,
644 "No consumer device specified to create a link to\n");
645 return NULL;
646 }
647
648 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
649 if (!dl) {
650 dev_err(dev, "failed to create device link to %s\n",
651 dev_name(pwm->chip->dev));
652 return ERR_PTR(-EINVAL);
653 }
654
655 return dl;
656}
657
658/**
659 * of_pwm_get() - request a PWM via the PWM framework
660 * @dev: device for PWM consumer
661 * @np: device node to get the PWM from
662 * @con_id: consumer name
663 *
664 * Returns the PWM device parsed from the phandle and index specified in the
665 * "pwms" property of a device tree node or a negative error-code on failure.
666 * Values parsed from the device tree are stored in the returned PWM device
667 * object.
668 *
669 * If con_id is NULL, the first PWM device listed in the "pwms" property will
670 * be requested. Otherwise the "pwm-names" property is used to do a reverse
671 * lookup of the PWM index. This also means that the "pwm-names" property
672 * becomes mandatory for devices that look up the PWM device via the con_id
673 * parameter.
674 *
675 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
676 * error code on failure.
677 */
678struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
679 const char *con_id)
680{
681 struct pwm_device *pwm = NULL;
682 struct of_phandle_args args;
683 struct device_link *dl;
684 struct pwm_chip *pc;
685 int index = 0;
686 int err;
687
688 if (con_id) {
689 index = of_property_match_string(np, "pwm-names", con_id);
690 if (index < 0)
691 return ERR_PTR(index);
692 }
693
694 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
695 &args);
696 if (err) {
697 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
698 return ERR_PTR(err);
699 }
700
701 pc = of_node_to_pwmchip(args.np);
702 if (IS_ERR(pc)) {
703 if (PTR_ERR(pc) != -EPROBE_DEFER)
704 pr_err("%s(): PWM chip not found\n", __func__);
705
706 pwm = ERR_CAST(pc);
707 goto put;
708 }
709
710 pwm = pc->of_xlate(pc, &args);
711 if (IS_ERR(pwm))
712 goto put;
713
714 dl = pwm_device_link_add(dev, pwm);
715 if (IS_ERR(dl)) {
716 /* of_xlate ended up calling pwm_request_from_chip() */
717 pwm_free(pwm);
718 pwm = ERR_CAST(dl);
719 goto put;
720 }
721
722 /*
723 * If a consumer name was not given, try to look it up from the
724 * "pwm-names" property if it exists. Otherwise use the name of
725 * the user device node.
726 */
727 if (!con_id) {
728 err = of_property_read_string_index(np, "pwm-names", index,
729 &con_id);
730 if (err < 0)
731 con_id = np->name;
732 }
733
734 pwm->label = con_id;
735
736put:
737 of_node_put(args.np);
738
739 return pwm;
740}
741EXPORT_SYMBOL_GPL(of_pwm_get);
742
743#if IS_ENABLED(CONFIG_ACPI)
744static struct pwm_chip *device_to_pwmchip(struct device *dev)
745{
746 struct pwm_chip *chip;
747
748 mutex_lock(&pwm_lock);
749
750 list_for_each_entry(chip, &pwm_chips, list) {
751 struct acpi_device *adev = ACPI_COMPANION(chip->dev);
752
753 if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
754 mutex_unlock(&pwm_lock);
755 return chip;
756 }
757 }
758
759 mutex_unlock(&pwm_lock);
760
761 return ERR_PTR(-EPROBE_DEFER);
762}
763#endif
764
765/**
766 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
767 * @fwnode: firmware node to get the "pwm" property from
768 *
769 * Returns the PWM device parsed from the fwnode and index specified in the
770 * "pwms" property or a negative error-code on failure.
771 * Values parsed from the device tree are stored in the returned PWM device
772 * object.
773 *
774 * This is analogous to of_pwm_get() except con_id is not yet supported.
775 * ACPI entries must look like
776 * Package () {"pwms", Package ()
777 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
778 *
779 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
780 * error code on failure.
781 */
782static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
783{
784 struct pwm_device *pwm = ERR_PTR(-ENODEV);
785#if IS_ENABLED(CONFIG_ACPI)
786 struct fwnode_reference_args args;
787 struct acpi_device *acpi;
788 struct pwm_chip *chip;
789 int ret;
790
791 memset(&args, 0, sizeof(args));
792
793 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
794 if (ret < 0)
795 return ERR_PTR(ret);
796
797 acpi = to_acpi_device_node(args.fwnode);
798 if (!acpi)
799 return ERR_PTR(-EINVAL);
800
801 if (args.nargs < 2)
802 return ERR_PTR(-EPROTO);
803
804 chip = device_to_pwmchip(&acpi->dev);
805 if (IS_ERR(chip))
806 return ERR_CAST(chip);
807
808 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
809 if (IS_ERR(pwm))
810 return pwm;
811
812 pwm->args.period = args.args[1];
813 pwm->args.polarity = PWM_POLARITY_NORMAL;
814
815 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
816 pwm->args.polarity = PWM_POLARITY_INVERSED;
817#endif
818
819 return pwm;
820}
821
822/**
823 * pwm_add_table() - register PWM device consumers
824 * @table: array of consumers to register
825 * @num: number of consumers in table
826 */
827void pwm_add_table(struct pwm_lookup *table, size_t num)
828{
829 mutex_lock(&pwm_lookup_lock);
830
831 while (num--) {
832 list_add_tail(&table->list, &pwm_lookup_list);
833 table++;
834 }
835
836 mutex_unlock(&pwm_lookup_lock);
837}
838
839/**
840 * pwm_remove_table() - unregister PWM device consumers
841 * @table: array of consumers to unregister
842 * @num: number of consumers in table
843 */
844void pwm_remove_table(struct pwm_lookup *table, size_t num)
845{
846 mutex_lock(&pwm_lookup_lock);
847
848 while (num--) {
849 list_del(&table->list);
850 table++;
851 }
852
853 mutex_unlock(&pwm_lookup_lock);
854}
855
856/**
857 * pwm_get() - look up and request a PWM device
858 * @dev: device for PWM consumer
859 * @con_id: consumer name
860 *
861 * Lookup is first attempted using DT. If the device was not instantiated from
862 * a device tree, a PWM chip and a relative index is looked up via a table
863 * supplied by board setup code (see pwm_add_table()).
864 *
865 * Once a PWM chip has been found the specified PWM device will be requested
866 * and is ready to be used.
867 *
868 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
869 * error code on failure.
870 */
871struct pwm_device *pwm_get(struct device *dev, const char *con_id)
872{
873 const char *dev_id = dev ? dev_name(dev) : NULL;
874 struct pwm_device *pwm;
875 struct pwm_chip *chip;
876 struct device_link *dl;
877 unsigned int best = 0;
878 struct pwm_lookup *p, *chosen = NULL;
879 unsigned int match;
880 int err;
881
882 /* look up via DT first */
883 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
884 return of_pwm_get(dev, dev->of_node, con_id);
885
886 /* then lookup via ACPI */
887 if (dev && is_acpi_node(dev->fwnode)) {
888 pwm = acpi_pwm_get(dev->fwnode);
889 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
890 return pwm;
891 }
892
893 /*
894 * We look up the provider in the static table typically provided by
895 * board setup code. We first try to lookup the consumer device by
896 * name. If the consumer device was passed in as NULL or if no match
897 * was found, we try to find the consumer by directly looking it up
898 * by name.
899 *
900 * If a match is found, the provider PWM chip is looked up by name
901 * and a PWM device is requested using the PWM device per-chip index.
902 *
903 * The lookup algorithm was shamelessly taken from the clock
904 * framework:
905 *
906 * We do slightly fuzzy matching here:
907 * An entry with a NULL ID is assumed to be a wildcard.
908 * If an entry has a device ID, it must match
909 * If an entry has a connection ID, it must match
910 * Then we take the most specific entry - with the following order
911 * of precedence: dev+con > dev only > con only.
912 */
913 mutex_lock(&pwm_lookup_lock);
914
915 list_for_each_entry(p, &pwm_lookup_list, list) {
916 match = 0;
917
918 if (p->dev_id) {
919 if (!dev_id || strcmp(p->dev_id, dev_id))
920 continue;
921
922 match += 2;
923 }
924
925 if (p->con_id) {
926 if (!con_id || strcmp(p->con_id, con_id))
927 continue;
928
929 match += 1;
930 }
931
932 if (match > best) {
933 chosen = p;
934
935 if (match != 3)
936 best = match;
937 else
938 break;
939 }
940 }
941
942 mutex_unlock(&pwm_lookup_lock);
943
944 if (!chosen)
945 return ERR_PTR(-ENODEV);
946
947 chip = pwmchip_find_by_name(chosen->provider);
948
949 /*
950 * If the lookup entry specifies a module, load the module and retry
951 * the PWM chip lookup. This can be used to work around driver load
952 * ordering issues if driver's can't be made to properly support the
953 * deferred probe mechanism.
954 */
955 if (!chip && chosen->module) {
956 err = request_module(chosen->module);
957 if (err == 0)
958 chip = pwmchip_find_by_name(chosen->provider);
959 }
960
961 if (!chip)
962 return ERR_PTR(-EPROBE_DEFER);
963
964 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
965 if (IS_ERR(pwm))
966 return pwm;
967
968 dl = pwm_device_link_add(dev, pwm);
969 if (IS_ERR(dl)) {
970 pwm_free(pwm);
971 return ERR_CAST(dl);
972 }
973
974 pwm->args.period = chosen->period;
975 pwm->args.polarity = chosen->polarity;
976
977 return pwm;
978}
979EXPORT_SYMBOL_GPL(pwm_get);
980
981/**
982 * pwm_put() - release a PWM device
983 * @pwm: PWM device
984 */
985void pwm_put(struct pwm_device *pwm)
986{
987 if (!pwm)
988 return;
989
990 mutex_lock(&pwm_lock);
991
992 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
993 pr_warn("PWM device already freed\n");
994 goto out;
995 }
996
997 if (pwm->chip->ops->free)
998 pwm->chip->ops->free(pwm->chip, pwm);
999
1000 pwm_set_chip_data(pwm, NULL);
1001 pwm->label = NULL;
1002
1003 module_put(pwm->chip->ops->owner);
1004out:
1005 mutex_unlock(&pwm_lock);
1006}
1007EXPORT_SYMBOL_GPL(pwm_put);
1008
1009static void devm_pwm_release(struct device *dev, void *res)
1010{
1011 pwm_put(*(struct pwm_device **)res);
1012}
1013
1014/**
1015 * devm_pwm_get() - resource managed pwm_get()
1016 * @dev: device for PWM consumer
1017 * @con_id: consumer name
1018 *
1019 * This function performs like pwm_get() but the acquired PWM device will
1020 * automatically be released on driver detach.
1021 *
1022 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1023 * error code on failure.
1024 */
1025struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1026{
1027 struct pwm_device **ptr, *pwm;
1028
1029 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1030 if (!ptr)
1031 return ERR_PTR(-ENOMEM);
1032
1033 pwm = pwm_get(dev, con_id);
1034 if (!IS_ERR(pwm)) {
1035 *ptr = pwm;
1036 devres_add(dev, ptr);
1037 } else {
1038 devres_free(ptr);
1039 }
1040
1041 return pwm;
1042}
1043EXPORT_SYMBOL_GPL(devm_pwm_get);
1044
1045/**
1046 * devm_of_pwm_get() - resource managed of_pwm_get()
1047 * @dev: device for PWM consumer
1048 * @np: device node to get the PWM from
1049 * @con_id: consumer name
1050 *
1051 * This function performs like of_pwm_get() but the acquired PWM device will
1052 * automatically be released on driver detach.
1053 *
1054 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1055 * error code on failure.
1056 */
1057struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1058 const char *con_id)
1059{
1060 struct pwm_device **ptr, *pwm;
1061
1062 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1063 if (!ptr)
1064 return ERR_PTR(-ENOMEM);
1065
1066 pwm = of_pwm_get(dev, np, con_id);
1067 if (!IS_ERR(pwm)) {
1068 *ptr = pwm;
1069 devres_add(dev, ptr);
1070 } else {
1071 devres_free(ptr);
1072 }
1073
1074 return pwm;
1075}
1076EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1077
1078/**
1079 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1080 * @dev: device for PWM consumer
1081 * @fwnode: firmware node to get the PWM from
1082 * @con_id: consumer name
1083 *
1084 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1085 * acpi_pwm_get() for a detailed description.
1086 *
1087 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1088 * error code on failure.
1089 */
1090struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1091 struct fwnode_handle *fwnode,
1092 const char *con_id)
1093{
1094 struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1095
1096 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1097 if (!ptr)
1098 return ERR_PTR(-ENOMEM);
1099
1100 if (is_of_node(fwnode))
1101 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1102 else if (is_acpi_node(fwnode))
1103 pwm = acpi_pwm_get(fwnode);
1104
1105 if (!IS_ERR(pwm)) {
1106 *ptr = pwm;
1107 devres_add(dev, ptr);
1108 } else {
1109 devres_free(ptr);
1110 }
1111
1112 return pwm;
1113}
1114EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1115
1116static int devm_pwm_match(struct device *dev, void *res, void *data)
1117{
1118 struct pwm_device **p = res;
1119
1120 if (WARN_ON(!p || !*p))
1121 return 0;
1122
1123 return *p == data;
1124}
1125
1126/**
1127 * devm_pwm_put() - resource managed pwm_put()
1128 * @dev: device for PWM consumer
1129 * @pwm: PWM device
1130 *
1131 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1132 * function is usually not needed because devm-allocated resources are
1133 * automatically released on driver detach.
1134 */
1135void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1136{
1137 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1138}
1139EXPORT_SYMBOL_GPL(devm_pwm_put);
1140
1141#ifdef CONFIG_DEBUG_FS
1142static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1143{
1144 unsigned int i;
1145
1146 for (i = 0; i < chip->npwm; i++) {
1147 struct pwm_device *pwm = &chip->pwms[i];
1148 struct pwm_state state;
1149
1150 pwm_get_state(pwm, &state);
1151
1152 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1153
1154 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1155 seq_puts(s, " requested");
1156
1157 if (state.enabled)
1158 seq_puts(s, " enabled");
1159
1160 seq_printf(s, " period: %llu ns", state.period);
1161 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1162 seq_printf(s, " polarity: %s",
1163 state.polarity ? "inverse" : "normal");
1164
1165 seq_puts(s, "\n");
1166 }
1167}
1168
1169static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1170{
1171 mutex_lock(&pwm_lock);
1172 s->private = "";
1173
1174 return seq_list_start(&pwm_chips, *pos);
1175}
1176
1177static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1178{
1179 s->private = "\n";
1180
1181 return seq_list_next(v, &pwm_chips, pos);
1182}
1183
1184static void pwm_seq_stop(struct seq_file *s, void *v)
1185{
1186 mutex_unlock(&pwm_lock);
1187}
1188
1189static int pwm_seq_show(struct seq_file *s, void *v)
1190{
1191 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1192
1193 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1194 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1195 dev_name(chip->dev), chip->npwm,
1196 (chip->npwm != 1) ? "s" : "");
1197
1198 pwm_dbg_show(chip, s);
1199
1200 return 0;
1201}
1202
1203static const struct seq_operations pwm_seq_ops = {
1204 .start = pwm_seq_start,
1205 .next = pwm_seq_next,
1206 .stop = pwm_seq_stop,
1207 .show = pwm_seq_show,
1208};
1209
1210static int pwm_seq_open(struct inode *inode, struct file *file)
1211{
1212 return seq_open(file, &pwm_seq_ops);
1213}
1214
1215static const struct file_operations pwm_debugfs_ops = {
1216 .owner = THIS_MODULE,
1217 .open = pwm_seq_open,
1218 .read = seq_read,
1219 .llseek = seq_lseek,
1220 .release = seq_release,
1221};
1222
1223static int __init pwm_debugfs_init(void)
1224{
1225 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1226 &pwm_debugfs_ops);
1227
1228 return 0;
1229}
1230subsys_initcall(pwm_debugfs_init);
1231#endif /* CONFIG_DEBUG_FS */