blob: 1536d53a7af7f3be8fec6f8d2664cb322676cfc0 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * RTC subsystem, interface functions
4 *
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * based on arch/arm/common/rtctime.c
9 */
10
11#include <linux/rtc.h>
12#include <linux/sched.h>
13#include <linux/module.h>
14#include <linux/log2.h>
15#include <linux/workqueue.h>
16
17#define CREATE_TRACE_POINTS
18#include <trace/events/rtc.h>
19
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24{
25 time64_t secs;
26
27 if (!rtc->offset_secs)
28 return;
29
30 secs = rtc_tm_to_time64(tm);
31
32 /*
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
36 * the offset.
37 */
38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 (rtc->start_secs < rtc->range_min &&
40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 return;
42
43 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44}
45
46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47{
48 time64_t secs;
49
50 if (!rtc->offset_secs)
51 return;
52
53 secs = rtc_tm_to_time64(tm);
54
55 /*
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
60 */
61 if (secs >= rtc->range_min && secs <= rtc->range_max)
62 return;
63
64 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65}
66
67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68{
69 if (rtc->range_min != rtc->range_max) {
70 time64_t time = rtc_tm_to_time64(tm);
71 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 rtc->range_min;
73 time64_t range_max = rtc->set_start_time ?
74 (rtc->start_secs + rtc->range_max - rtc->range_min) :
75 rtc->range_max;
76
77 if (time < range_min || time > range_max)
78 return -ERANGE;
79 }
80
81 return 0;
82}
83
84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
85{
86 int err;
87
88 if (!rtc->ops) {
89 err = -ENODEV;
90 } else if (!rtc->ops->read_time) {
91 err = -EINVAL;
92 } else {
93 memset(tm, 0, sizeof(struct rtc_time));
94 err = rtc->ops->read_time(rtc->dev.parent, tm);
95 if (err < 0) {
96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 err);
98 return err;
99 }
100
101 rtc_add_offset(rtc, tm);
102
103 err = rtc_valid_tm(tm);
104 if (err < 0)
105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
106 }
107 return err;
108}
109
110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111{
112 int err;
113
114 err = mutex_lock_interruptible(&rtc->ops_lock);
115 if (err)
116 return err;
117
118 err = __rtc_read_time(rtc, tm);
119 mutex_unlock(&rtc->ops_lock);
120
121 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 return err;
123}
124EXPORT_SYMBOL_GPL(rtc_read_time);
125
126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
127{
128 int err, uie;
129
130 err = rtc_valid_tm(tm);
131 if (err != 0)
132 return err;
133
134 err = rtc_valid_range(rtc, tm);
135 if (err)
136 return err;
137
138 rtc_subtract_offset(rtc, tm);
139
140#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142#else
143 uie = rtc->uie_rtctimer.enabled;
144#endif
145 if (uie) {
146 err = rtc_update_irq_enable(rtc, 0);
147 if (err)
148 return err;
149 }
150
151 err = mutex_lock_interruptible(&rtc->ops_lock);
152 if (err)
153 return err;
154
155 if (!rtc->ops)
156 err = -ENODEV;
157 else if (rtc->ops->set_time)
158 err = rtc->ops->set_time(rtc->dev.parent, tm);
159 else
160 err = -EINVAL;
161
162 pm_stay_awake(rtc->dev.parent);
163 mutex_unlock(&rtc->ops_lock);
164 /* A timer might have just expired */
165 schedule_work(&rtc->irqwork);
166
167 if (uie) {
168 err = rtc_update_irq_enable(rtc, 1);
169 if (err)
170 return err;
171 }
172
173 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
174 return err;
175}
176EXPORT_SYMBOL_GPL(rtc_set_time);
177
178static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 struct rtc_wkalrm *alarm)
180{
181 int err;
182
183 err = mutex_lock_interruptible(&rtc->ops_lock);
184 if (err)
185 return err;
186
187 if (!rtc->ops) {
188 err = -ENODEV;
189 } else if (!rtc->ops->read_alarm) {
190 err = -EINVAL;
191 } else {
192 alarm->enabled = 0;
193 alarm->pending = 0;
194 alarm->time.tm_sec = -1;
195 alarm->time.tm_min = -1;
196 alarm->time.tm_hour = -1;
197 alarm->time.tm_mday = -1;
198 alarm->time.tm_mon = -1;
199 alarm->time.tm_year = -1;
200 alarm->time.tm_wday = -1;
201 alarm->time.tm_yday = -1;
202 alarm->time.tm_isdst = -1;
203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
204 }
205
206 mutex_unlock(&rtc->ops_lock);
207
208 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
209 return err;
210}
211
212int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
213{
214 int err;
215 struct rtc_time before, now;
216 int first_time = 1;
217 time64_t t_now, t_alm;
218 enum { none, day, month, year } missing = none;
219 unsigned int days;
220
221 /* The lower level RTC driver may return -1 in some fields,
222 * creating invalid alarm->time values, for reasons like:
223 *
224 * - The hardware may not be capable of filling them in;
225 * many alarms match only on time-of-day fields, not
226 * day/month/year calendar data.
227 *
228 * - Some hardware uses illegal values as "wildcard" match
229 * values, which non-Linux firmware (like a BIOS) may try
230 * to set up as e.g. "alarm 15 minutes after each hour".
231 * Linux uses only oneshot alarms.
232 *
233 * When we see that here, we deal with it by using values from
234 * a current RTC timestamp for any missing (-1) values. The
235 * RTC driver prevents "periodic alarm" modes.
236 *
237 * But this can be racey, because some fields of the RTC timestamp
238 * may have wrapped in the interval since we read the RTC alarm,
239 * which would lead to us inserting inconsistent values in place
240 * of the -1 fields.
241 *
242 * Reading the alarm and timestamp in the reverse sequence
243 * would have the same race condition, and not solve the issue.
244 *
245 * So, we must first read the RTC timestamp,
246 * then read the RTC alarm value,
247 * and then read a second RTC timestamp.
248 *
249 * If any fields of the second timestamp have changed
250 * when compared with the first timestamp, then we know
251 * our timestamp may be inconsistent with that used by
252 * the low-level rtc_read_alarm_internal() function.
253 *
254 * So, when the two timestamps disagree, we just loop and do
255 * the process again to get a fully consistent set of values.
256 *
257 * This could all instead be done in the lower level driver,
258 * but since more than one lower level RTC implementation needs it,
259 * then it's probably best best to do it here instead of there..
260 */
261
262 /* Get the "before" timestamp */
263 err = rtc_read_time(rtc, &before);
264 if (err < 0)
265 return err;
266 do {
267 if (!first_time)
268 memcpy(&before, &now, sizeof(struct rtc_time));
269 first_time = 0;
270
271 /* get the RTC alarm values, which may be incomplete */
272 err = rtc_read_alarm_internal(rtc, alarm);
273 if (err)
274 return err;
275
276 /* full-function RTCs won't have such missing fields */
277 err = rtc_valid_tm(&alarm->time);
278 if (!err)
279 goto done;
280
281 /* get the "after" timestamp, to detect wrapped fields */
282 err = rtc_read_time(rtc, &now);
283 if (err < 0)
284 return err;
285
286 /* note that tm_sec is a "don't care" value here: */
287 } while (before.tm_min != now.tm_min ||
288 before.tm_hour != now.tm_hour ||
289 before.tm_mon != now.tm_mon ||
290 before.tm_year != now.tm_year);
291
292 /* Fill in the missing alarm fields using the timestamp; we
293 * know there's at least one since alarm->time is invalid.
294 */
295 if (alarm->time.tm_sec == -1)
296 alarm->time.tm_sec = now.tm_sec;
297 if (alarm->time.tm_min == -1)
298 alarm->time.tm_min = now.tm_min;
299 if (alarm->time.tm_hour == -1)
300 alarm->time.tm_hour = now.tm_hour;
301
302 /* For simplicity, only support date rollover for now */
303 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
304 alarm->time.tm_mday = now.tm_mday;
305 missing = day;
306 }
307 if ((unsigned int)alarm->time.tm_mon >= 12) {
308 alarm->time.tm_mon = now.tm_mon;
309 if (missing == none)
310 missing = month;
311 }
312 if (alarm->time.tm_year == -1) {
313 alarm->time.tm_year = now.tm_year;
314 if (missing == none)
315 missing = year;
316 }
317
318 /* Can't proceed if alarm is still invalid after replacing
319 * missing fields.
320 */
321 err = rtc_valid_tm(&alarm->time);
322 if (err)
323 goto done;
324
325 /* with luck, no rollover is needed */
326 t_now = rtc_tm_to_time64(&now);
327 t_alm = rtc_tm_to_time64(&alarm->time);
328 if (t_now < t_alm)
329 goto done;
330
331 switch (missing) {
332 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
333 * that will trigger at 5am will do so at 5am Tuesday, which
334 * could also be in the next month or year. This is a common
335 * case, especially for PCs.
336 */
337 case day:
338 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
339 t_alm += 24 * 60 * 60;
340 rtc_time64_to_tm(t_alm, &alarm->time);
341 break;
342
343 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
344 * be next month. An alarm matching on the 30th, 29th, or 28th
345 * may end up in the month after that! Many newer PCs support
346 * this type of alarm.
347 */
348 case month:
349 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
350 do {
351 if (alarm->time.tm_mon < 11) {
352 alarm->time.tm_mon++;
353 } else {
354 alarm->time.tm_mon = 0;
355 alarm->time.tm_year++;
356 }
357 days = rtc_month_days(alarm->time.tm_mon,
358 alarm->time.tm_year);
359 } while (days < alarm->time.tm_mday);
360 break;
361
362 /* Year rollover ... easy except for leap years! */
363 case year:
364 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
365 do {
366 alarm->time.tm_year++;
367 } while (!is_leap_year(alarm->time.tm_year + 1900) &&
368 rtc_valid_tm(&alarm->time) != 0);
369 break;
370
371 default:
372 dev_warn(&rtc->dev, "alarm rollover not handled\n");
373 }
374
375 err = rtc_valid_tm(&alarm->time);
376
377done:
378 if (err)
379 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
380 &alarm->time);
381 else
382 rtc_add_offset(rtc, &alarm->time);
383
384 return err;
385}
386
387int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
388{
389 int err;
390
391 err = mutex_lock_interruptible(&rtc->ops_lock);
392 if (err)
393 return err;
394 if (!rtc->ops) {
395 err = -ENODEV;
396 } else if (!rtc->ops->read_alarm) {
397 err = -EINVAL;
398 } else {
399 memset(alarm, 0, sizeof(struct rtc_wkalrm));
400 alarm->enabled = rtc->aie_timer.enabled;
401 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
402 }
403 mutex_unlock(&rtc->ops_lock);
404
405 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
406 return err;
407}
408EXPORT_SYMBOL_GPL(rtc_read_alarm);
409
410static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
411{
412 struct rtc_time tm;
413 time64_t now, scheduled;
414 int err;
415
416 err = rtc_valid_tm(&alarm->time);
417 if (err)
418 return err;
419
420 scheduled = rtc_tm_to_time64(&alarm->time);
421
422 /* Make sure we're not setting alarms in the past */
423 err = __rtc_read_time(rtc, &tm);
424 if (err)
425 return err;
426 now = rtc_tm_to_time64(&tm);
427 if (scheduled <= now)
428 return -ETIME;
429 /*
430 * XXX - We just checked to make sure the alarm time is not
431 * in the past, but there is still a race window where if
432 * the is alarm set for the next second and the second ticks
433 * over right here, before we set the alarm.
434 */
435
436 rtc_subtract_offset(rtc, &alarm->time);
437
438 if (!rtc->ops)
439 err = -ENODEV;
440 else if (!rtc->ops->set_alarm)
441 err = -EINVAL;
442 else
443 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
444
445 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
446 return err;
447}
448
449int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
450{
451 int err;
452
453 if (!rtc->ops)
454 return -ENODEV;
455 else if (!rtc->ops->set_alarm)
456 return -EINVAL;
457
458 err = rtc_valid_tm(&alarm->time);
459 if (err != 0)
460 return err;
461
462 err = rtc_valid_range(rtc, &alarm->time);
463 if (err)
464 return err;
465
466 err = mutex_lock_interruptible(&rtc->ops_lock);
467 if (err)
468 return err;
469 if (rtc->aie_timer.enabled)
470 rtc_timer_remove(rtc, &rtc->aie_timer);
471
472 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
473 rtc->aie_timer.period = 0;
474 if (alarm->enabled)
475 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
476
477 mutex_unlock(&rtc->ops_lock);
478
479 return err;
480}
481EXPORT_SYMBOL_GPL(rtc_set_alarm);
482
483/* Called once per device from rtc_device_register */
484int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
485{
486 int err;
487 struct rtc_time now;
488
489 err = rtc_valid_tm(&alarm->time);
490 if (err != 0)
491 return err;
492
493 err = rtc_read_time(rtc, &now);
494 if (err)
495 return err;
496
497 err = mutex_lock_interruptible(&rtc->ops_lock);
498 if (err)
499 return err;
500
501 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
502 rtc->aie_timer.period = 0;
503
504 /* Alarm has to be enabled & in the future for us to enqueue it */
505 if (alarm->enabled && (rtc_tm_to_ktime(now) <
506 rtc->aie_timer.node.expires)) {
507 rtc->aie_timer.enabled = 1;
508 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
509 trace_rtc_timer_enqueue(&rtc->aie_timer);
510 }
511 mutex_unlock(&rtc->ops_lock);
512 return err;
513}
514EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
515
516int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
517{
518 int err;
519
520 err = mutex_lock_interruptible(&rtc->ops_lock);
521 if (err)
522 return err;
523
524 if (rtc->aie_timer.enabled != enabled) {
525 if (enabled)
526 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
527 else
528 rtc_timer_remove(rtc, &rtc->aie_timer);
529 }
530
531 if (err)
532 /* nothing */;
533 else if (!rtc->ops)
534 err = -ENODEV;
535 else if (!rtc->ops->alarm_irq_enable)
536 err = -EINVAL;
537 else
538 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
539
540 mutex_unlock(&rtc->ops_lock);
541
542 trace_rtc_alarm_irq_enable(enabled, err);
543 return err;
544}
545EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
546
547int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
548{
549 int err;
550
551 err = mutex_lock_interruptible(&rtc->ops_lock);
552 if (err)
553 return err;
554
555#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
556 if (enabled == 0 && rtc->uie_irq_active) {
557 mutex_unlock(&rtc->ops_lock);
558 return rtc_dev_update_irq_enable_emul(rtc, 0);
559 }
560#endif
561 /* make sure we're changing state */
562 if (rtc->uie_rtctimer.enabled == enabled)
563 goto out;
564
565 if (rtc->uie_unsupported) {
566 err = -EINVAL;
567 goto out;
568 }
569
570 if (enabled) {
571 struct rtc_time tm;
572 ktime_t now, onesec;
573
574 __rtc_read_time(rtc, &tm);
575 onesec = ktime_set(1, 0);
576 now = rtc_tm_to_ktime(tm);
577 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
578 rtc->uie_rtctimer.period = ktime_set(1, 0);
579 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
580 } else {
581 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
582 }
583
584out:
585 mutex_unlock(&rtc->ops_lock);
586#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
587 /*
588 * Enable emulation if the driver returned -EINVAL to signal that it has
589 * been configured without interrupts or they are not available at the
590 * moment.
591 */
592 if (err == -EINVAL)
593 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
594#endif
595 return err;
596}
597EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
598
599/**
600 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
601 * @rtc: pointer to the rtc device
602 *
603 * This function is called when an AIE, UIE or PIE mode interrupt
604 * has occurred (or been emulated).
605 *
606 */
607void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
608{
609 unsigned long flags;
610
611 /* mark one irq of the appropriate mode */
612 spin_lock_irqsave(&rtc->irq_lock, flags);
613 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
614 spin_unlock_irqrestore(&rtc->irq_lock, flags);
615
616 wake_up_interruptible(&rtc->irq_queue);
617 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
618}
619
620/**
621 * rtc_aie_update_irq - AIE mode rtctimer hook
622 * @rtc: pointer to the rtc_device
623 *
624 * This functions is called when the aie_timer expires.
625 */
626void rtc_aie_update_irq(struct rtc_device *rtc)
627{
628 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
629}
630
631/**
632 * rtc_uie_update_irq - UIE mode rtctimer hook
633 * @rtc: pointer to the rtc_device
634 *
635 * This functions is called when the uie_timer expires.
636 */
637void rtc_uie_update_irq(struct rtc_device *rtc)
638{
639 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
640}
641
642/**
643 * rtc_pie_update_irq - PIE mode hrtimer hook
644 * @timer: pointer to the pie mode hrtimer
645 *
646 * This function is used to emulate PIE mode interrupts
647 * using an hrtimer. This function is called when the periodic
648 * hrtimer expires.
649 */
650enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
651{
652 struct rtc_device *rtc;
653 ktime_t period;
654 u64 count;
655
656 rtc = container_of(timer, struct rtc_device, pie_timer);
657
658 period = NSEC_PER_SEC / rtc->irq_freq;
659 count = hrtimer_forward_now(timer, period);
660
661 rtc_handle_legacy_irq(rtc, count, RTC_PF);
662
663 return HRTIMER_RESTART;
664}
665
666/**
667 * rtc_update_irq - Triggered when a RTC interrupt occurs.
668 * @rtc: the rtc device
669 * @num: how many irqs are being reported (usually one)
670 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
671 * Context: any
672 */
673void rtc_update_irq(struct rtc_device *rtc,
674 unsigned long num, unsigned long events)
675{
676 if (IS_ERR_OR_NULL(rtc))
677 return;
678
679 pm_stay_awake(rtc->dev.parent);
680 schedule_work(&rtc->irqwork);
681}
682EXPORT_SYMBOL_GPL(rtc_update_irq);
683
684struct rtc_device *rtc_class_open(const char *name)
685{
686 struct device *dev;
687 struct rtc_device *rtc = NULL;
688
689 dev = class_find_device_by_name(rtc_class, name);
690 if (dev)
691 rtc = to_rtc_device(dev);
692
693 if (rtc) {
694 if (!try_module_get(rtc->owner)) {
695 put_device(dev);
696 rtc = NULL;
697 }
698 }
699
700 return rtc;
701}
702EXPORT_SYMBOL_GPL(rtc_class_open);
703
704void rtc_class_close(struct rtc_device *rtc)
705{
706 module_put(rtc->owner);
707 put_device(&rtc->dev);
708}
709EXPORT_SYMBOL_GPL(rtc_class_close);
710
711static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
712{
713 /*
714 * We always cancel the timer here first, because otherwise
715 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
716 * when we manage to start the timer before the callback
717 * returns HRTIMER_RESTART.
718 *
719 * We cannot use hrtimer_cancel() here as a running callback
720 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
721 * would spin forever.
722 */
723 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
724 return -1;
725
726 if (enabled) {
727 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
728
729 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
730 }
731 return 0;
732}
733
734/**
735 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
736 * @rtc: the rtc device
737 * @enabled: true to enable periodic IRQs
738 * Context: any
739 *
740 * Note that rtc_irq_set_freq() should previously have been used to
741 * specify the desired frequency of periodic IRQ.
742 */
743int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
744{
745 int err = 0;
746
747 while (rtc_update_hrtimer(rtc, enabled) < 0)
748 cpu_relax();
749
750 rtc->pie_enabled = enabled;
751
752 trace_rtc_irq_set_state(enabled, err);
753 return err;
754}
755
756/**
757 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
758 * @rtc: the rtc device
759 * @freq: positive frequency
760 * Context: any
761 *
762 * Note that rtc_irq_set_state() is used to enable or disable the
763 * periodic IRQs.
764 */
765int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
766{
767 int err = 0;
768
769 if (freq <= 0 || freq > RTC_MAX_FREQ)
770 return -EINVAL;
771
772 rtc->irq_freq = freq;
773 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
774 cpu_relax();
775
776 trace_rtc_irq_set_freq(freq, err);
777 return err;
778}
779
780/**
781 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
782 * @rtc rtc device
783 * @timer timer being added.
784 *
785 * Enqueues a timer onto the rtc devices timerqueue and sets
786 * the next alarm event appropriately.
787 *
788 * Sets the enabled bit on the added timer.
789 *
790 * Must hold ops_lock for proper serialization of timerqueue
791 */
792static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
793{
794 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
795 struct rtc_time tm;
796 ktime_t now;
797 int err;
798
799 err = __rtc_read_time(rtc, &tm);
800 if (err)
801 return err;
802
803 timer->enabled = 1;
804 now = rtc_tm_to_ktime(tm);
805
806 /* Skip over expired timers */
807 while (next) {
808 if (next->expires >= now)
809 break;
810 next = timerqueue_iterate_next(next);
811 }
812
813 timerqueue_add(&rtc->timerqueue, &timer->node);
814 trace_rtc_timer_enqueue(timer);
815 if (!next || ktime_before(timer->node.expires, next->expires)) {
816 struct rtc_wkalrm alarm;
817
818 alarm.time = rtc_ktime_to_tm(timer->node.expires);
819 alarm.enabled = 1;
820 err = __rtc_set_alarm(rtc, &alarm);
821 if (err == -ETIME) {
822 pm_stay_awake(rtc->dev.parent);
823 schedule_work(&rtc->irqwork);
824 } else if (err) {
825 timerqueue_del(&rtc->timerqueue, &timer->node);
826 trace_rtc_timer_dequeue(timer);
827 timer->enabled = 0;
828 return err;
829 }
830 }
831 return 0;
832}
833
834static void rtc_alarm_disable(struct rtc_device *rtc)
835{
836 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
837 return;
838
839 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
840 trace_rtc_alarm_irq_enable(0, 0);
841}
842
843/**
844 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
845 * @rtc rtc device
846 * @timer timer being removed.
847 *
848 * Removes a timer onto the rtc devices timerqueue and sets
849 * the next alarm event appropriately.
850 *
851 * Clears the enabled bit on the removed timer.
852 *
853 * Must hold ops_lock for proper serialization of timerqueue
854 */
855static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
856{
857 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
858
859 timerqueue_del(&rtc->timerqueue, &timer->node);
860 trace_rtc_timer_dequeue(timer);
861 timer->enabled = 0;
862 if (next == &timer->node) {
863 struct rtc_wkalrm alarm;
864 int err;
865
866 next = timerqueue_getnext(&rtc->timerqueue);
867 if (!next) {
868 rtc_alarm_disable(rtc);
869 return;
870 }
871 alarm.time = rtc_ktime_to_tm(next->expires);
872 alarm.enabled = 1;
873 err = __rtc_set_alarm(rtc, &alarm);
874 if (err == -ETIME) {
875 pm_stay_awake(rtc->dev.parent);
876 schedule_work(&rtc->irqwork);
877 }
878 }
879}
880
881/**
882 * rtc_timer_do_work - Expires rtc timers
883 * @rtc rtc device
884 * @timer timer being removed.
885 *
886 * Expires rtc timers. Reprograms next alarm event if needed.
887 * Called via worktask.
888 *
889 * Serializes access to timerqueue via ops_lock mutex
890 */
891void rtc_timer_do_work(struct work_struct *work)
892{
893 struct rtc_timer *timer;
894 struct timerqueue_node *next;
895 ktime_t now;
896 struct rtc_time tm;
897 int err;
898
899 struct rtc_device *rtc =
900 container_of(work, struct rtc_device, irqwork);
901
902 mutex_lock(&rtc->ops_lock);
903again:
904 err = __rtc_read_time(rtc, &tm);
905 if (err) {
906 mutex_unlock(&rtc->ops_lock);
907 return;
908 }
909 now = rtc_tm_to_ktime(tm);
910 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
911 if (next->expires > now)
912 break;
913
914 /* expire timer */
915 timer = container_of(next, struct rtc_timer, node);
916 timerqueue_del(&rtc->timerqueue, &timer->node);
917 trace_rtc_timer_dequeue(timer);
918 timer->enabled = 0;
919 if (timer->func)
920 timer->func(timer->rtc);
921
922 trace_rtc_timer_fired(timer);
923 /* Re-add/fwd periodic timers */
924 if (ktime_to_ns(timer->period)) {
925 timer->node.expires = ktime_add(timer->node.expires,
926 timer->period);
927 timer->enabled = 1;
928 timerqueue_add(&rtc->timerqueue, &timer->node);
929 trace_rtc_timer_enqueue(timer);
930 }
931 }
932
933 /* Set next alarm */
934 if (next) {
935 struct rtc_wkalrm alarm;
936 int err;
937 int retry = 3;
938
939 alarm.time = rtc_ktime_to_tm(next->expires);
940 alarm.enabled = 1;
941reprogram:
942 err = __rtc_set_alarm(rtc, &alarm);
943 if (err == -ETIME) {
944 goto again;
945 } else if (err) {
946 if (retry-- > 0)
947 goto reprogram;
948
949 timer = container_of(next, struct rtc_timer, node);
950 timerqueue_del(&rtc->timerqueue, &timer->node);
951 trace_rtc_timer_dequeue(timer);
952 timer->enabled = 0;
953 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
954 goto again;
955 }
956 } else {
957 rtc_alarm_disable(rtc);
958 }
959
960 pm_relax(rtc->dev.parent);
961 mutex_unlock(&rtc->ops_lock);
962}
963
964/* rtc_timer_init - Initializes an rtc_timer
965 * @timer: timer to be intiialized
966 * @f: function pointer to be called when timer fires
967 * @rtc: pointer to the rtc_device
968 *
969 * Kernel interface to initializing an rtc_timer.
970 */
971void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
972 struct rtc_device *rtc)
973{
974 timerqueue_init(&timer->node);
975 timer->enabled = 0;
976 timer->func = f;
977 timer->rtc = rtc;
978}
979
980/* rtc_timer_start - Sets an rtc_timer to fire in the future
981 * @ rtc: rtc device to be used
982 * @ timer: timer being set
983 * @ expires: time at which to expire the timer
984 * @ period: period that the timer will recur
985 *
986 * Kernel interface to set an rtc_timer
987 */
988int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
989 ktime_t expires, ktime_t period)
990{
991 int ret = 0;
992
993 mutex_lock(&rtc->ops_lock);
994 if (timer->enabled)
995 rtc_timer_remove(rtc, timer);
996
997 timer->node.expires = expires;
998 timer->period = period;
999
1000 ret = rtc_timer_enqueue(rtc, timer);
1001
1002 mutex_unlock(&rtc->ops_lock);
1003 return ret;
1004}
1005
1006/* rtc_timer_cancel - Stops an rtc_timer
1007 * @ rtc: rtc device to be used
1008 * @ timer: timer being set
1009 *
1010 * Kernel interface to cancel an rtc_timer
1011 */
1012void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1013{
1014 mutex_lock(&rtc->ops_lock);
1015 if (timer->enabled)
1016 rtc_timer_remove(rtc, timer);
1017 mutex_unlock(&rtc->ops_lock);
1018}
1019
1020/**
1021 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1022 * @ rtc: rtc device to be used
1023 * @ offset: the offset in parts per billion
1024 *
1025 * see below for details.
1026 *
1027 * Kernel interface to read rtc clock offset
1028 * Returns 0 on success, or a negative number on error.
1029 * If read_offset() is not implemented for the rtc, return -EINVAL
1030 */
1031int rtc_read_offset(struct rtc_device *rtc, long *offset)
1032{
1033 int ret;
1034
1035 if (!rtc->ops)
1036 return -ENODEV;
1037
1038 if (!rtc->ops->read_offset)
1039 return -EINVAL;
1040
1041 mutex_lock(&rtc->ops_lock);
1042 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1043 mutex_unlock(&rtc->ops_lock);
1044
1045 trace_rtc_read_offset(*offset, ret);
1046 return ret;
1047}
1048
1049/**
1050 * rtc_set_offset - Adjusts the duration of the average second
1051 * @ rtc: rtc device to be used
1052 * @ offset: the offset in parts per billion
1053 *
1054 * Some rtc's allow an adjustment to the average duration of a second
1055 * to compensate for differences in the actual clock rate due to temperature,
1056 * the crystal, capacitor, etc.
1057 *
1058 * The adjustment applied is as follows:
1059 * t = t0 * (1 + offset * 1e-9)
1060 * where t0 is the measured length of 1 RTC second with offset = 0
1061 *
1062 * Kernel interface to adjust an rtc clock offset.
1063 * Return 0 on success, or a negative number on error.
1064 * If the rtc offset is not setable (or not implemented), return -EINVAL
1065 */
1066int rtc_set_offset(struct rtc_device *rtc, long offset)
1067{
1068 int ret;
1069
1070 if (!rtc->ops)
1071 return -ENODEV;
1072
1073 if (!rtc->ops->set_offset)
1074 return -EINVAL;
1075
1076 mutex_lock(&rtc->ops_lock);
1077 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1078 mutex_unlock(&rtc->ops_lock);
1079
1080 trace_rtc_set_offset(offset, ret);
1081 return ret;
1082}