blob: 0f1e544ac8db12042feabb9347e04d9354e04b10 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0+
2//
3// Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
4
5#include <linux/init.h>
6#include <linux/io.h>
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/of.h>
10#include <linux/of_device.h>
11#include <linux/platform_device.h>
12#include <linux/pm_wakeirq.h>
13#include <linux/rtc.h>
14#include <linux/clk.h>
15#include <linux/mfd/syscon.h>
16#include <linux/regmap.h>
17
18#define SNVS_LPREGISTER_OFFSET 0x34
19
20/* These register offsets are relative to LP (Low Power) range */
21#define SNVS_LPCR 0x04
22#define SNVS_LPSR 0x18
23#define SNVS_LPSRTCMR 0x1c
24#define SNVS_LPSRTCLR 0x20
25#define SNVS_LPTAR 0x24
26#define SNVS_LPPGDR 0x30
27
28#define SNVS_LPCR_SRTC_ENV (1 << 0)
29#define SNVS_LPCR_LPTA_EN (1 << 1)
30#define SNVS_LPCR_LPWUI_EN (1 << 3)
31#define SNVS_LPSR_LPTA (1 << 0)
32
33#define SNVS_LPPGDR_INIT 0x41736166
34#define CNTR_TO_SECS_SH 15
35
36/* The maximum RTC clock cycles that are allowed to pass between two
37 * consecutive clock counter register reads. If the values are corrupted a
38 * bigger difference is expected. The RTC frequency is 32kHz. With 320 cycles
39 * we end at 10ms which should be enough for most cases. If it once takes
40 * longer than expected we do a retry.
41 */
42#define MAX_RTC_READ_DIFF_CYCLES 320
43
44struct snvs_rtc_data {
45 struct rtc_device *rtc;
46 struct regmap *regmap;
47 int offset;
48 int irq;
49 struct clk *clk;
50};
51
52/* Read 64 bit timer register, which could be in inconsistent state */
53static u64 rtc_read_lpsrt(struct snvs_rtc_data *data)
54{
55 u32 msb, lsb;
56
57 regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &msb);
58 regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &lsb);
59 return (u64)msb << 32 | lsb;
60}
61
62/* Read the secure real time counter, taking care to deal with the cases of the
63 * counter updating while being read.
64 */
65static u32 rtc_read_lp_counter(struct snvs_rtc_data *data)
66{
67 u64 read1, read2;
68 s64 diff;
69 unsigned int timeout = 100;
70
71 /* As expected, the registers might update between the read of the LSB
72 * reg and the MSB reg. It's also possible that one register might be
73 * in partially modified state as well.
74 */
75 read1 = rtc_read_lpsrt(data);
76 do {
77 read2 = read1;
78 read1 = rtc_read_lpsrt(data);
79 diff = read1 - read2;
80 } while (((diff < 0) || (diff > MAX_RTC_READ_DIFF_CYCLES)) && --timeout);
81 if (!timeout)
82 dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
83
84 /* Convert 47-bit counter to 32-bit raw second count */
85 return (u32) (read1 >> CNTR_TO_SECS_SH);
86}
87
88/* Just read the lsb from the counter, dealing with inconsistent state */
89static int rtc_read_lp_counter_lsb(struct snvs_rtc_data *data, u32 *lsb)
90{
91 u32 count1, count2;
92 s32 diff;
93 unsigned int timeout = 100;
94
95 regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
96 do {
97 count2 = count1;
98 regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
99 diff = count1 - count2;
100 } while (((diff < 0) || (diff > MAX_RTC_READ_DIFF_CYCLES)) && --timeout);
101 if (!timeout) {
102 dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
103 return -ETIMEDOUT;
104 }
105
106 *lsb = count1;
107 return 0;
108}
109
110static int rtc_write_sync_lp(struct snvs_rtc_data *data)
111{
112 u32 count1, count2;
113 u32 elapsed;
114 unsigned int timeout = 1000;
115 int ret;
116
117 ret = rtc_read_lp_counter_lsb(data, &count1);
118 if (ret)
119 return ret;
120
121 /* Wait for 3 CKIL cycles, about 61.0-91.5 µs */
122 do {
123 ret = rtc_read_lp_counter_lsb(data, &count2);
124 if (ret)
125 return ret;
126 elapsed = count2 - count1; /* wrap around _is_ handled! */
127 } while (elapsed < 3 && --timeout);
128 if (!timeout) {
129 dev_err(&data->rtc->dev, "Timeout waiting for LPSRT Counter to change\n");
130 return -ETIMEDOUT;
131 }
132 return 0;
133}
134
135static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
136{
137 int timeout = 1000;
138 u32 lpcr;
139
140 regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_SRTC_ENV,
141 enable ? SNVS_LPCR_SRTC_ENV : 0);
142
143 while (--timeout) {
144 regmap_read(data->regmap, data->offset + SNVS_LPCR, &lpcr);
145
146 if (enable) {
147 if (lpcr & SNVS_LPCR_SRTC_ENV)
148 break;
149 } else {
150 if (!(lpcr & SNVS_LPCR_SRTC_ENV))
151 break;
152 }
153 }
154
155 if (!timeout)
156 return -ETIMEDOUT;
157
158 return 0;
159}
160
161static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
162{
163 struct snvs_rtc_data *data = dev_get_drvdata(dev);
164 unsigned long time = rtc_read_lp_counter(data);
165
166 rtc_time64_to_tm(time, tm);
167
168 return 0;
169}
170
171static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
172{
173 struct snvs_rtc_data *data = dev_get_drvdata(dev);
174 unsigned long time = rtc_tm_to_time64(tm);
175 int ret;
176
177 /* Disable RTC first */
178 ret = snvs_rtc_enable(data, false);
179 if (ret)
180 return ret;
181
182 /* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
183 regmap_write(data->regmap, data->offset + SNVS_LPSRTCLR, time << CNTR_TO_SECS_SH);
184 regmap_write(data->regmap, data->offset + SNVS_LPSRTCMR, time >> (32 - CNTR_TO_SECS_SH));
185
186 /* Enable RTC again */
187 ret = snvs_rtc_enable(data, true);
188
189 return ret;
190}
191
192static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
193{
194 struct snvs_rtc_data *data = dev_get_drvdata(dev);
195 u32 lptar, lpsr;
196
197 regmap_read(data->regmap, data->offset + SNVS_LPTAR, &lptar);
198 rtc_time64_to_tm(lptar, &alrm->time);
199
200 regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
201 alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
202
203 return 0;
204}
205
206static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
207{
208 struct snvs_rtc_data *data = dev_get_drvdata(dev);
209
210 regmap_update_bits(data->regmap, data->offset + SNVS_LPCR,
211 (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN),
212 enable ? (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN) : 0);
213
214 return rtc_write_sync_lp(data);
215}
216
217static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
218{
219 struct snvs_rtc_data *data = dev_get_drvdata(dev);
220 unsigned long time = rtc_tm_to_time64(&alrm->time);
221 int ret;
222
223 regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_LPTA_EN, 0);
224 ret = rtc_write_sync_lp(data);
225 if (ret)
226 return ret;
227 regmap_write(data->regmap, data->offset + SNVS_LPTAR, time);
228
229 /* Clear alarm interrupt status bit */
230 regmap_write(data->regmap, data->offset + SNVS_LPSR, SNVS_LPSR_LPTA);
231
232 return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
233}
234
235static const struct rtc_class_ops snvs_rtc_ops = {
236 .read_time = snvs_rtc_read_time,
237 .set_time = snvs_rtc_set_time,
238 .read_alarm = snvs_rtc_read_alarm,
239 .set_alarm = snvs_rtc_set_alarm,
240 .alarm_irq_enable = snvs_rtc_alarm_irq_enable,
241};
242
243static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
244{
245 struct device *dev = dev_id;
246 struct snvs_rtc_data *data = dev_get_drvdata(dev);
247 u32 lpsr;
248 u32 events = 0;
249
250 if (data->clk)
251 clk_enable(data->clk);
252
253 regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
254
255 if (lpsr & SNVS_LPSR_LPTA) {
256 events |= (RTC_AF | RTC_IRQF);
257
258 /* RTC alarm should be one-shot */
259 snvs_rtc_alarm_irq_enable(dev, 0);
260
261 rtc_update_irq(data->rtc, 1, events);
262 }
263
264 /* clear interrupt status */
265 regmap_write(data->regmap, data->offset + SNVS_LPSR, lpsr);
266
267 if (data->clk)
268 clk_disable(data->clk);
269
270 return events ? IRQ_HANDLED : IRQ_NONE;
271}
272
273static const struct regmap_config snvs_rtc_config = {
274 .reg_bits = 32,
275 .val_bits = 32,
276 .reg_stride = 4,
277};
278
279static int snvs_rtc_probe(struct platform_device *pdev)
280{
281 struct snvs_rtc_data *data;
282 int ret;
283 void __iomem *mmio;
284
285 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
286 if (!data)
287 return -ENOMEM;
288
289 data->rtc = devm_rtc_allocate_device(&pdev->dev);
290 if (IS_ERR(data->rtc))
291 return PTR_ERR(data->rtc);
292
293 data->regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap");
294
295 if (IS_ERR(data->regmap)) {
296 dev_warn(&pdev->dev, "snvs rtc: you use old dts file, please update it\n");
297
298 mmio = devm_platform_ioremap_resource(pdev, 0);
299 if (IS_ERR(mmio))
300 return PTR_ERR(mmio);
301
302 data->regmap = devm_regmap_init_mmio(&pdev->dev, mmio, &snvs_rtc_config);
303 } else {
304 data->offset = SNVS_LPREGISTER_OFFSET;
305 of_property_read_u32(pdev->dev.of_node, "offset", &data->offset);
306 }
307
308 if (IS_ERR(data->regmap)) {
309 dev_err(&pdev->dev, "Can't find snvs syscon\n");
310 return -ENODEV;
311 }
312
313 data->irq = platform_get_irq(pdev, 0);
314 if (data->irq < 0)
315 return data->irq;
316
317 data->clk = devm_clk_get(&pdev->dev, "snvs-rtc");
318 if (IS_ERR(data->clk)) {
319 data->clk = NULL;
320 } else {
321 ret = clk_prepare_enable(data->clk);
322 if (ret) {
323 dev_err(&pdev->dev,
324 "Could not prepare or enable the snvs clock\n");
325 return ret;
326 }
327 }
328
329 platform_set_drvdata(pdev, data);
330
331 /* Initialize glitch detect */
332 regmap_write(data->regmap, data->offset + SNVS_LPPGDR, SNVS_LPPGDR_INIT);
333
334 /* Clear interrupt status */
335 regmap_write(data->regmap, data->offset + SNVS_LPSR, 0xffffffff);
336
337 /* Enable RTC */
338 ret = snvs_rtc_enable(data, true);
339 if (ret) {
340 dev_err(&pdev->dev, "failed to enable rtc %d\n", ret);
341 goto error_rtc_device_register;
342 }
343
344 device_init_wakeup(&pdev->dev, true);
345 ret = dev_pm_set_wake_irq(&pdev->dev, data->irq);
346 if (ret)
347 dev_err(&pdev->dev, "failed to enable irq wake\n");
348
349 ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
350 IRQF_SHARED, "rtc alarm", &pdev->dev);
351 if (ret) {
352 dev_err(&pdev->dev, "failed to request irq %d: %d\n",
353 data->irq, ret);
354 goto error_rtc_device_register;
355 }
356
357 data->rtc->ops = &snvs_rtc_ops;
358 data->rtc->range_max = U32_MAX;
359 ret = rtc_register_device(data->rtc);
360 if (ret) {
361 dev_err(&pdev->dev, "failed to register rtc: %d\n", ret);
362 goto error_rtc_device_register;
363 }
364
365 return 0;
366
367error_rtc_device_register:
368 if (data->clk)
369 clk_disable_unprepare(data->clk);
370
371 return ret;
372}
373
374static int __maybe_unused snvs_rtc_suspend_noirq(struct device *dev)
375{
376 struct snvs_rtc_data *data = dev_get_drvdata(dev);
377
378 if (data->clk)
379 clk_disable_unprepare(data->clk);
380
381 return 0;
382}
383
384static int __maybe_unused snvs_rtc_resume_noirq(struct device *dev)
385{
386 struct snvs_rtc_data *data = dev_get_drvdata(dev);
387
388 if (data->clk)
389 return clk_prepare_enable(data->clk);
390
391 return 0;
392}
393
394static const struct dev_pm_ops snvs_rtc_pm_ops = {
395 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(snvs_rtc_suspend_noirq, snvs_rtc_resume_noirq)
396};
397
398static const struct of_device_id snvs_dt_ids[] = {
399 { .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
400 { /* sentinel */ }
401};
402MODULE_DEVICE_TABLE(of, snvs_dt_ids);
403
404static struct platform_driver snvs_rtc_driver = {
405 .driver = {
406 .name = "snvs_rtc",
407 .pm = &snvs_rtc_pm_ops,
408 .of_match_table = snvs_dt_ids,
409 },
410 .probe = snvs_rtc_probe,
411};
412module_platform_driver(snvs_rtc_driver);
413
414MODULE_AUTHOR("Freescale Semiconductor, Inc.");
415MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
416MODULE_LICENSE("GPL");