b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Support for asr spi controller dma mode |
| 4 | * |
| 5 | * Copyright (C) 2019 ASR Micro Limited |
| 6 | * |
| 7 | * Tim Wang <timwang@asrmicro.com> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/device.h> |
| 11 | #include <linux/dma-mapping.h> |
| 12 | #include <linux/dmaengine.h> |
| 13 | #include <linux/scatterlist.h> |
| 14 | #include <linux/sizes.h> |
| 15 | #include <linux/spi/spi.h> |
| 16 | #include <linux/delay.h> |
| 17 | |
| 18 | #include "spi-asr.h" |
| 19 | |
| 20 | #define MAX_SEG_SIZE SZ_4K |
| 21 | |
| 22 | static int asr_spi_map_dma_buffer(struct spi_driver_data *drv_data, |
| 23 | enum dma_data_direction dir) |
| 24 | { |
| 25 | int i, nents, len = drv_data->len; |
| 26 | struct scatterlist *sg; |
| 27 | struct device *dmadev; |
| 28 | struct sg_table *sgt; |
| 29 | void *buf, *pbuf; |
| 30 | int desc_len; |
| 31 | size_t bytes; |
| 32 | struct page *vm_page; |
| 33 | bool vmalloced_buf = false; |
| 34 | |
| 35 | if (dir == DMA_TO_DEVICE) { |
| 36 | dmadev = drv_data->tx_chan->device->dev; |
| 37 | sgt = &drv_data->tx_sgt; |
| 38 | buf = drv_data->tx; |
| 39 | drv_data->tx_map_len = len; |
| 40 | } else { |
| 41 | dmadev = drv_data->rx_chan->device->dev; |
| 42 | sgt = &drv_data->rx_sgt; |
| 43 | buf = drv_data->rx; |
| 44 | drv_data->rx_map_len = len; |
| 45 | } |
| 46 | |
| 47 | desc_len = MAX_SEG_SIZE; |
| 48 | if (buf && is_vmalloc_addr(buf)) { |
| 49 | vmalloced_buf = true; |
| 50 | desc_len = min_t(unsigned long, MAX_SEG_SIZE, PAGE_SIZE); |
| 51 | nents = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); |
| 52 | } else { |
| 53 | nents = DIV_ROUND_UP(len, desc_len); |
| 54 | } |
| 55 | |
| 56 | if (nents != sgt->nents) { |
| 57 | int ret; |
| 58 | |
| 59 | sg_free_table(sgt); |
| 60 | ret = sg_alloc_table(sgt, nents, GFP_ATOMIC); |
| 61 | if (ret) |
| 62 | return ret; |
| 63 | } |
| 64 | |
| 65 | pbuf = buf; |
| 66 | for_each_sg(sgt->sgl, sg, sgt->nents, i) { |
| 67 | |
| 68 | if (vmalloced_buf) { |
| 69 | bytes = min_t(size_t, desc_len, |
| 70 | min_t(size_t, len, |
| 71 | PAGE_SIZE - offset_in_page(pbuf))); |
| 72 | vm_page = vmalloc_to_page(pbuf); |
| 73 | if (!vm_page) { |
| 74 | return -ENOMEM; |
| 75 | } |
| 76 | sg_set_page(sg, vm_page, |
| 77 | bytes, offset_in_page(pbuf)); |
| 78 | } else if (buf) { |
| 79 | bytes = min_t(size_t, len, desc_len); |
| 80 | sg_set_buf(sg, pbuf, bytes); |
| 81 | } else { |
| 82 | bytes = min_t(size_t, len, desc_len); |
| 83 | sg_set_buf(sg, drv_data->dummy, bytes); |
| 84 | } |
| 85 | |
| 86 | pbuf += bytes; |
| 87 | len -= bytes; |
| 88 | } |
| 89 | |
| 90 | nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir); |
| 91 | if (!nents) |
| 92 | return -ENOMEM; |
| 93 | |
| 94 | return nents; |
| 95 | } |
| 96 | |
| 97 | static void asr_spi_unmap_dma_buffer(struct spi_driver_data *drv_data, |
| 98 | enum dma_data_direction dir) |
| 99 | { |
| 100 | struct device *dmadev; |
| 101 | struct sg_table *sgt; |
| 102 | |
| 103 | if (dir == DMA_TO_DEVICE) { |
| 104 | dmadev = drv_data->tx_chan->device->dev; |
| 105 | sgt = &drv_data->tx_sgt; |
| 106 | } else { |
| 107 | dmadev = drv_data->rx_chan->device->dev; |
| 108 | sgt = &drv_data->rx_sgt; |
| 109 | } |
| 110 | |
| 111 | dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir); |
| 112 | } |
| 113 | |
| 114 | static void asr_spi_unmap_dma_buffers(struct spi_driver_data *drv_data) |
| 115 | { |
| 116 | if (!drv_data->dma_mapped) |
| 117 | return; |
| 118 | |
| 119 | asr_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE); |
| 120 | asr_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); |
| 121 | |
| 122 | drv_data->dma_mapped = 0; |
| 123 | } |
| 124 | |
| 125 | static void asr_spi_dma_transfer_complete(struct spi_driver_data *drv_data, |
| 126 | bool error) |
| 127 | { |
| 128 | struct spi_message *msg = drv_data->cur_msg; |
| 129 | |
| 130 | /* |
| 131 | * It is possible that one CPU is handling ROR interrupt and other |
| 132 | * just gets DMA completion. Calling pump_transfers() twice for the |
| 133 | * same transfer leads to problems thus we prevent concurrent calls |
| 134 | * by using ->dma_running. |
| 135 | */ |
| 136 | if (atomic_dec_and_test(&drv_data->dma_running)) { |
| 137 | /* |
| 138 | * If the other CPU is still handling the ROR interrupt we |
| 139 | * might not know about the error yet. So we re-check the |
| 140 | * ROR bit here before we clear the status register. |
| 141 | */ |
| 142 | if (!error) { |
| 143 | u32 status = asr_spi_read(drv_data, STATUS) |
| 144 | & drv_data->mask_sr; |
| 145 | error = status & STATUS_ROR; |
| 146 | } |
| 147 | |
| 148 | /* Clear status & disable interrupts */ |
| 149 | asr_spi_write(drv_data, FIFO_CTRL, |
| 150 | asr_spi_read(drv_data, FIFO_CTRL) |
| 151 | & ~drv_data->dma_fifo_ctrl); |
| 152 | asr_spi_write(drv_data, TOP_CTRL, |
| 153 | asr_spi_read(drv_data, TOP_CTRL) |
| 154 | & ~drv_data->dma_top_ctrl); |
| 155 | asr_spi_write(drv_data, STATUS, drv_data->clear_sr); |
| 156 | asr_spi_write(drv_data, TO, 0); |
| 157 | |
| 158 | if (drv_data->xfer_way == XFER_SPIMEM) { |
| 159 | asr_spi_unmap_dma_buffers(drv_data); |
| 160 | |
| 161 | complete(&drv_data->dma_completion); |
| 162 | return; |
| 163 | } |
| 164 | |
| 165 | if (!error) { |
| 166 | asr_spi_unmap_dma_buffers(drv_data); |
| 167 | |
| 168 | drv_data->tx += drv_data->tx_map_len; |
| 169 | drv_data->rx += drv_data->rx_map_len; |
| 170 | |
| 171 | msg->actual_length += drv_data->len; |
| 172 | msg->state = asr_spi_next_transfer(drv_data); |
| 173 | } else { |
| 174 | /* In case we got an error we disable the SSP now */ |
| 175 | asr_spi_write(drv_data, TOP_CTRL, |
| 176 | asr_spi_read(drv_data, TOP_CTRL) |
| 177 | & ~TOP_SSE); |
| 178 | |
| 179 | msg->state = ERROR_STATE; |
| 180 | } |
| 181 | asr_spi_pump_transfers(drv_data); |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | static void asr_spi_dma_callback(void *data) |
| 186 | { |
| 187 | asr_spi_dma_transfer_complete(data, false); |
| 188 | } |
| 189 | |
| 190 | static struct dma_async_tx_descriptor * |
| 191 | asr_spi_dma_prepare_one(struct spi_driver_data *drv_data, |
| 192 | enum dma_transfer_direction dir) |
| 193 | { |
| 194 | struct chip_data *chip = drv_data->cur_chip; |
| 195 | enum dma_slave_buswidth width; |
| 196 | struct dma_slave_config cfg; |
| 197 | struct dma_chan *chan; |
| 198 | struct sg_table *sgt; |
| 199 | int nents, ret; |
| 200 | |
| 201 | switch (drv_data->n_bytes) { |
| 202 | case 1: |
| 203 | width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| 204 | break; |
| 205 | case 2: |
| 206 | width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| 207 | break; |
| 208 | default: |
| 209 | width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 210 | break; |
| 211 | } |
| 212 | |
| 213 | memset(&cfg, 0, sizeof(cfg)); |
| 214 | cfg.direction = dir; |
| 215 | |
| 216 | if (dir == DMA_MEM_TO_DEV) { |
| 217 | cfg.dst_addr = drv_data->ssdr_physical; |
| 218 | cfg.dst_addr_width = width; |
| 219 | cfg.dst_maxburst = chip->dma_burst_size; |
| 220 | |
| 221 | sgt = &drv_data->tx_sgt; |
| 222 | nents = drv_data->tx_nents; |
| 223 | chan = drv_data->tx_chan; |
| 224 | } else { |
| 225 | cfg.src_addr = drv_data->ssdr_physical; |
| 226 | cfg.src_addr_width = width; |
| 227 | cfg.src_maxburst = chip->dma_burst_size; |
| 228 | |
| 229 | sgt = &drv_data->rx_sgt; |
| 230 | nents = drv_data->rx_nents; |
| 231 | chan = drv_data->rx_chan; |
| 232 | } |
| 233 | |
| 234 | ret = dmaengine_slave_config(chan, &cfg); |
| 235 | if (ret) { |
| 236 | dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); |
| 237 | return NULL; |
| 238 | } |
| 239 | |
| 240 | return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, |
| 241 | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| 242 | } |
| 243 | |
| 244 | bool asr_spi_dma_is_possible(size_t len) |
| 245 | { |
| 246 | return len <= MAX_DMA_LEN; |
| 247 | } |
| 248 | |
| 249 | int asr_spi_map_dma_buffers(struct spi_driver_data *drv_data) |
| 250 | { |
| 251 | const struct chip_data *chip = drv_data->cur_chip; |
| 252 | int ret; |
| 253 | |
| 254 | if (!chip->enable_dma) |
| 255 | return 0; |
| 256 | |
| 257 | /* Don't bother with DMA if we can't do even a single burst */ |
| 258 | if (drv_data->len < chip->dma_burst_size) |
| 259 | return 0; |
| 260 | |
| 261 | ret = asr_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE); |
| 262 | if (ret <= 0) { |
| 263 | dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n"); |
| 264 | return 0; |
| 265 | } |
| 266 | |
| 267 | drv_data->tx_nents = ret; |
| 268 | |
| 269 | ret = asr_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE); |
| 270 | if (ret <= 0) { |
| 271 | asr_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); |
| 272 | dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n"); |
| 273 | return 0; |
| 274 | } |
| 275 | |
| 276 | drv_data->rx_nents = ret; |
| 277 | return 1; |
| 278 | } |
| 279 | |
| 280 | irqreturn_t asr_spi_dma_transfer(struct spi_driver_data *drv_data) |
| 281 | { |
| 282 | u32 status; |
| 283 | |
| 284 | status = asr_spi_read(drv_data, STATUS) & drv_data->mask_sr; |
| 285 | |
| 286 | if ( status & STATUS_ROR ) { |
| 287 | dmaengine_terminate_all(drv_data->rx_chan); |
| 288 | dmaengine_terminate_all(drv_data->tx_chan); |
| 289 | asr_spi_dma_transfer_complete(drv_data, true); |
| 290 | return IRQ_HANDLED; |
| 291 | } |
| 292 | |
| 293 | return IRQ_NONE; |
| 294 | } |
| 295 | |
| 296 | void asr_spi_slave_sw_timeout_callback(struct spi_driver_data *drv_data) |
| 297 | { |
| 298 | dmaengine_terminate_all(drv_data->rx_chan); |
| 299 | dmaengine_terminate_all(drv_data->tx_chan); |
| 300 | asr_spi_dma_transfer_complete(drv_data, true); |
| 301 | } |
| 302 | |
| 303 | int asr_spi_dma_prepare(struct spi_driver_data *drv_data, u32 dma_burst) |
| 304 | { |
| 305 | struct dma_async_tx_descriptor *tx_desc, *rx_desc; |
| 306 | |
| 307 | tx_desc = asr_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); |
| 308 | if (!tx_desc) { |
| 309 | dev_err(&drv_data->pdev->dev, |
| 310 | "failed to get DMA TX descriptor\n"); |
| 311 | return -EBUSY; |
| 312 | } |
| 313 | |
| 314 | rx_desc = asr_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); |
| 315 | if (!rx_desc) { |
| 316 | dev_err(&drv_data->pdev->dev, |
| 317 | "failed to get DMA RX descriptor\n"); |
| 318 | return -EBUSY; |
| 319 | } |
| 320 | |
| 321 | /* We are ready when RX completes */ |
| 322 | rx_desc->callback = asr_spi_dma_callback; |
| 323 | rx_desc->callback_param = drv_data; |
| 324 | |
| 325 | dmaengine_submit(rx_desc); |
| 326 | dmaengine_submit(tx_desc); |
| 327 | return 0; |
| 328 | } |
| 329 | |
| 330 | void asr_spi_dma_start(struct spi_driver_data *drv_data) |
| 331 | { |
| 332 | |
| 333 | if (drv_data->xfer_way == XFER_SPIMEM) |
| 334 | reinit_completion(&drv_data->dma_completion); |
| 335 | |
| 336 | dma_async_issue_pending(drv_data->rx_chan); |
| 337 | dma_async_issue_pending(drv_data->tx_chan); |
| 338 | |
| 339 | atomic_set(&drv_data->dma_running, 1); |
| 340 | } |
| 341 | |
| 342 | int asr_spi_dma_setup(struct spi_driver_data *drv_data) |
| 343 | { |
| 344 | struct asr_spi_master *pdata = drv_data->master_info; |
| 345 | struct device *dev = &drv_data->pdev->dev; |
| 346 | dma_cap_mask_t mask; |
| 347 | |
| 348 | dma_cap_zero(mask); |
| 349 | dma_cap_set(DMA_SLAVE, mask); |
| 350 | |
| 351 | drv_data->dummy = devm_kzalloc(dev, MAX_SEG_SIZE, GFP_KERNEL); |
| 352 | if (!drv_data->dummy) |
| 353 | return -ENOMEM; |
| 354 | |
| 355 | drv_data->tx_chan = dma_request_slave_channel_compat(mask, |
| 356 | pdata->dma_filter, pdata->tx_param, dev, "tx"); |
| 357 | if (!drv_data->tx_chan) |
| 358 | return -ENODEV; |
| 359 | |
| 360 | drv_data->rx_chan = dma_request_slave_channel_compat(mask, |
| 361 | pdata->dma_filter, pdata->rx_param, dev, "rx"); |
| 362 | if (!drv_data->rx_chan) { |
| 363 | dma_release_channel(drv_data->tx_chan); |
| 364 | drv_data->tx_chan = NULL; |
| 365 | return -ENODEV; |
| 366 | } |
| 367 | |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | void asr_spi_dma_release(struct spi_driver_data *drv_data) |
| 372 | { |
| 373 | if (drv_data->rx_chan) { |
| 374 | dmaengine_terminate_all(drv_data->rx_chan); |
| 375 | dma_release_channel(drv_data->rx_chan); |
| 376 | sg_free_table(&drv_data->rx_sgt); |
| 377 | drv_data->rx_chan = NULL; |
| 378 | } |
| 379 | if (drv_data->tx_chan) { |
| 380 | dmaengine_terminate_all(drv_data->tx_chan); |
| 381 | dma_release_channel(drv_data->tx_chan); |
| 382 | sg_free_table(&drv_data->tx_sgt); |
| 383 | drv_data->tx_chan = NULL; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | int asr_spi_set_dma_burst_and_threshold(struct chip_data *chip, |
| 388 | struct spi_device *spi, |
| 389 | u8 bits_per_word, u32 *burst_code, |
| 390 | u32 *threshold) |
| 391 | { |
| 392 | /* |
| 393 | * If the DMA burst size is given in chip_info we use |
| 394 | * that, otherwise we set it to half of FIFO size; SPI |
| 395 | * FIFO has 16 entry, so FIFO size = 16*bits_per_word/8; |
| 396 | * Also we use the default FIFO thresholds for now. |
| 397 | */ |
| 398 | if (chip && chip->dma_burst_size) |
| 399 | *burst_code = chip->dma_burst_size; |
| 400 | else if (bits_per_word <= 8) { |
| 401 | *burst_code = 8; |
| 402 | } |
| 403 | else if (bits_per_word <= 16) |
| 404 | *burst_code = 16; |
| 405 | else |
| 406 | *burst_code = 32; |
| 407 | |
| 408 | *threshold = FIFO_RxTresh(RX_THRESH_DFLT) |
| 409 | | FIFO_TxTresh(TX_THRESH_DFLT); |
| 410 | |
| 411 | return 0; |
| 412 | } |