blob: d0b5db88cd164406f1e6240c6f9e2340eafc86c1 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2//
3// Copyright (C) 2018 Macronix International Co., Ltd.
4//
5// Authors:
6// Mason Yang <masonccyang@mxic.com.tw>
7// zhengxunli <zhengxunli@mxic.com.tw>
8// Boris Brezillon <boris.brezillon@bootlin.com>
9//
10
11#include <linux/clk.h>
12#include <linux/io.h>
13#include <linux/iopoll.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/pm_runtime.h>
17#include <linux/spi/spi.h>
18#include <linux/spi/spi-mem.h>
19
20#define HC_CFG 0x0
21#define HC_CFG_IF_CFG(x) ((x) << 27)
22#define HC_CFG_DUAL_SLAVE BIT(31)
23#define HC_CFG_INDIVIDUAL BIT(30)
24#define HC_CFG_NIO(x) (((x) / 4) << 27)
25#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
26#define HC_CFG_TYPE_SPI_NOR 0
27#define HC_CFG_TYPE_SPI_NAND 1
28#define HC_CFG_TYPE_SPI_RAM 2
29#define HC_CFG_TYPE_RAW_NAND 3
30#define HC_CFG_SLV_ACT(x) ((x) << 21)
31#define HC_CFG_CLK_PH_EN BIT(20)
32#define HC_CFG_CLK_POL_INV BIT(19)
33#define HC_CFG_BIG_ENDIAN BIT(18)
34#define HC_CFG_DATA_PASS BIT(17)
35#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
36#define HC_CFG_MAN_START_EN BIT(3)
37#define HC_CFG_MAN_START BIT(2)
38#define HC_CFG_MAN_CS_EN BIT(1)
39#define HC_CFG_MAN_CS_ASSERT BIT(0)
40
41#define INT_STS 0x4
42#define INT_STS_EN 0x8
43#define INT_SIG_EN 0xc
44#define INT_STS_ALL GENMASK(31, 0)
45#define INT_RDY_PIN BIT(26)
46#define INT_RDY_SR BIT(25)
47#define INT_LNR_SUSP BIT(24)
48#define INT_ECC_ERR BIT(17)
49#define INT_CRC_ERR BIT(16)
50#define INT_LWR_DIS BIT(12)
51#define INT_LRD_DIS BIT(11)
52#define INT_SDMA_INT BIT(10)
53#define INT_DMA_FINISH BIT(9)
54#define INT_RX_NOT_FULL BIT(3)
55#define INT_RX_NOT_EMPTY BIT(2)
56#define INT_TX_NOT_FULL BIT(1)
57#define INT_TX_EMPTY BIT(0)
58
59#define HC_EN 0x10
60#define HC_EN_BIT BIT(0)
61
62#define TXD(x) (0x14 + ((x) * 4))
63#define RXD 0x24
64
65#define SS_CTRL(s) (0x30 + ((s) * 4))
66#define LRD_CFG 0x44
67#define LWR_CFG 0x80
68#define RWW_CFG 0x70
69#define OP_READ BIT(23)
70#define OP_DUMMY_CYC(x) ((x) << 17)
71#define OP_ADDR_BYTES(x) ((x) << 14)
72#define OP_CMD_BYTES(x) (((x) - 1) << 13)
73#define OP_OCTA_CRC_EN BIT(12)
74#define OP_DQS_EN BIT(11)
75#define OP_ENHC_EN BIT(10)
76#define OP_PREAMBLE_EN BIT(9)
77#define OP_DATA_DDR BIT(8)
78#define OP_DATA_BUSW(x) ((x) << 6)
79#define OP_ADDR_DDR BIT(5)
80#define OP_ADDR_BUSW(x) ((x) << 3)
81#define OP_CMD_DDR BIT(2)
82#define OP_CMD_BUSW(x) (x)
83#define OP_BUSW_1 0
84#define OP_BUSW_2 1
85#define OP_BUSW_4 2
86#define OP_BUSW_8 3
87
88#define OCTA_CRC 0x38
89#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
90#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
91#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
92
93#define ONFI_DIN_CNT(s) (0x3c + (s))
94
95#define LRD_CTRL 0x48
96#define RWW_CTRL 0x74
97#define LWR_CTRL 0x84
98#define LMODE_EN BIT(31)
99#define LMODE_SLV_ACT(x) ((x) << 21)
100#define LMODE_CMD1(x) ((x) << 8)
101#define LMODE_CMD0(x) (x)
102
103#define LRD_ADDR 0x4c
104#define LWR_ADDR 0x88
105#define LRD_RANGE 0x50
106#define LWR_RANGE 0x8c
107
108#define AXI_SLV_ADDR 0x54
109
110#define DMAC_RD_CFG 0x58
111#define DMAC_WR_CFG 0x94
112#define DMAC_CFG_PERIPH_EN BIT(31)
113#define DMAC_CFG_ALLFLUSH_EN BIT(30)
114#define DMAC_CFG_LASTFLUSH_EN BIT(29)
115#define DMAC_CFG_QE(x) (((x) + 1) << 16)
116#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
117#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
118#define DMAC_CFG_DIR_READ BIT(1)
119#define DMAC_CFG_START BIT(0)
120
121#define DMAC_RD_CNT 0x5c
122#define DMAC_WR_CNT 0x98
123
124#define SDMA_ADDR 0x60
125
126#define DMAM_CFG 0x64
127#define DMAM_CFG_START BIT(31)
128#define DMAM_CFG_CONT BIT(30)
129#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
130#define DMAM_CFG_DIR_READ BIT(1)
131#define DMAM_CFG_EN BIT(0)
132
133#define DMAM_CNT 0x68
134
135#define LNR_TIMER_TH 0x6c
136
137#define RDM_CFG0 0x78
138#define RDM_CFG0_POLY(x) (x)
139
140#define RDM_CFG1 0x7c
141#define RDM_CFG1_RDM_EN BIT(31)
142#define RDM_CFG1_SEED(x) (x)
143
144#define LWR_SUSP_CTRL 0x90
145#define LWR_SUSP_CTRL_EN BIT(31)
146
147#define DMAS_CTRL 0x9c
148#define DMAS_CTRL_DIR_READ BIT(31)
149#define DMAS_CTRL_EN BIT(30)
150
151#define DATA_STROB 0xa0
152#define DATA_STROB_EDO_EN BIT(2)
153#define DATA_STROB_INV_POL BIT(1)
154#define DATA_STROB_DELAY_2CYC BIT(0)
155
156#define IDLY_CODE(x) (0xa4 + ((x) * 4))
157#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
158
159#define GPIO 0xc4
160#define GPIO_PT(x) BIT(3 + ((x) * 16))
161#define GPIO_RESET(x) BIT(2 + ((x) * 16))
162#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
163#define GPIO_WPB(x) BIT((x) * 16)
164
165#define HC_VER 0xd0
166
167#define HW_TEST(x) (0xe0 + ((x) * 4))
168
169struct mxic_spi {
170 struct clk *ps_clk;
171 struct clk *send_clk;
172 struct clk *send_dly_clk;
173 void __iomem *regs;
174 u32 cur_speed_hz;
175};
176
177static int mxic_spi_clk_enable(struct mxic_spi *mxic)
178{
179 int ret;
180
181 ret = clk_prepare_enable(mxic->send_clk);
182 if (ret)
183 return ret;
184
185 ret = clk_prepare_enable(mxic->send_dly_clk);
186 if (ret)
187 goto err_send_dly_clk;
188
189 return ret;
190
191err_send_dly_clk:
192 clk_disable_unprepare(mxic->send_clk);
193
194 return ret;
195}
196
197static void mxic_spi_clk_disable(struct mxic_spi *mxic)
198{
199 clk_disable_unprepare(mxic->send_clk);
200 clk_disable_unprepare(mxic->send_dly_clk);
201}
202
203static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
204{
205 writel(IDLY_CODE_VAL(0, idly_code) |
206 IDLY_CODE_VAL(1, idly_code) |
207 IDLY_CODE_VAL(2, idly_code) |
208 IDLY_CODE_VAL(3, idly_code),
209 mxic->regs + IDLY_CODE(0));
210 writel(IDLY_CODE_VAL(4, idly_code) |
211 IDLY_CODE_VAL(5, idly_code) |
212 IDLY_CODE_VAL(6, idly_code) |
213 IDLY_CODE_VAL(7, idly_code),
214 mxic->regs + IDLY_CODE(1));
215}
216
217static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
218{
219 int ret;
220
221 ret = clk_set_rate(mxic->send_clk, freq);
222 if (ret)
223 return ret;
224
225 ret = clk_set_rate(mxic->send_dly_clk, freq);
226 if (ret)
227 return ret;
228
229 /*
230 * A constant delay range from 0x0 ~ 0x1F for input delay,
231 * the unit is 78 ps, the max input delay is 2.418 ns.
232 */
233 mxic_spi_set_input_delay_dqs(mxic, 0xf);
234
235 /*
236 * Phase degree = 360 * freq * output-delay
237 * where output-delay is a constant value 1 ns in FPGA.
238 *
239 * Get Phase degree = 360 * freq * 1 ns
240 * = 360 * freq * 1 sec / 1000000000
241 * = 9 * freq / 25000000
242 */
243 ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
244 if (ret)
245 return ret;
246
247 return 0;
248}
249
250static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
251{
252 int ret;
253
254 if (mxic->cur_speed_hz == freq)
255 return 0;
256
257 mxic_spi_clk_disable(mxic);
258 ret = mxic_spi_clk_setup(mxic, freq);
259 if (ret)
260 return ret;
261
262 ret = mxic_spi_clk_enable(mxic);
263 if (ret)
264 return ret;
265
266 mxic->cur_speed_hz = freq;
267
268 return 0;
269}
270
271static void mxic_spi_hw_init(struct mxic_spi *mxic)
272{
273 writel(0, mxic->regs + DATA_STROB);
274 writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
275 writel(0, mxic->regs + HC_EN);
276 writel(0, mxic->regs + LRD_CFG);
277 writel(0, mxic->regs + LRD_CTRL);
278 writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NAND) |
279 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
280 mxic->regs + HC_CFG);
281}
282
283static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
284 void *rxbuf, unsigned int len)
285{
286 unsigned int pos = 0;
287
288 while (pos < len) {
289 unsigned int nbytes = len - pos;
290 u32 data = 0xffffffff;
291 u32 sts;
292 int ret;
293
294 if (nbytes > 4)
295 nbytes = 4;
296
297 if (txbuf)
298 memcpy(&data, txbuf + pos, nbytes);
299
300 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
301 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
302 if (ret)
303 return ret;
304
305 writel(data, mxic->regs + TXD(nbytes % 4));
306
307 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
308 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
309 if (ret)
310 return ret;
311
312 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
313 sts & INT_RX_NOT_EMPTY, 0,
314 USEC_PER_SEC);
315 if (ret)
316 return ret;
317
318 data = readl(mxic->regs + RXD);
319 if (rxbuf) {
320 data >>= (8 * (4 - nbytes));
321 memcpy(rxbuf + pos, &data, nbytes);
322 }
323 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
324
325 pos += nbytes;
326 }
327
328 return 0;
329}
330
331static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
332 const struct spi_mem_op *op)
333{
334 if (op->data.buswidth > 4 || op->addr.buswidth > 4 ||
335 op->dummy.buswidth > 4 || op->cmd.buswidth > 4)
336 return false;
337
338 if (op->data.nbytes && op->dummy.nbytes &&
339 op->data.buswidth != op->dummy.buswidth)
340 return false;
341
342 if (op->addr.nbytes > 7)
343 return false;
344
345 return true;
346}
347
348static int mxic_spi_mem_exec_op(struct spi_mem *mem,
349 const struct spi_mem_op *op)
350{
351 struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
352 int nio = 1, i, ret;
353 u32 ss_ctrl;
354 u8 addr[8];
355
356 ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
357 if (ret)
358 return ret;
359
360 if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
361 nio = 4;
362 else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
363 nio = 2;
364
365 writel(HC_CFG_NIO(nio) |
366 HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
367 HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) |
368 HC_CFG_MAN_CS_EN,
369 mxic->regs + HC_CFG);
370 writel(HC_EN_BIT, mxic->regs + HC_EN);
371
372 ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1);
373
374 if (op->addr.nbytes)
375 ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
376 OP_ADDR_BUSW(fls(op->addr.buswidth) - 1);
377
378 if (op->dummy.nbytes)
379 ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes);
380
381 if (op->data.nbytes) {
382 ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1);
383 if (op->data.dir == SPI_MEM_DATA_IN)
384 ss_ctrl |= OP_READ;
385 }
386
387 writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select));
388
389 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
390 mxic->regs + HC_CFG);
391
392 ret = mxic_spi_data_xfer(mxic, &op->cmd.opcode, NULL, 1);
393 if (ret)
394 goto out;
395
396 for (i = 0; i < op->addr.nbytes; i++)
397 addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
398
399 ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
400 if (ret)
401 goto out;
402
403 ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
404 if (ret)
405 goto out;
406
407 ret = mxic_spi_data_xfer(mxic,
408 op->data.dir == SPI_MEM_DATA_OUT ?
409 op->data.buf.out : NULL,
410 op->data.dir == SPI_MEM_DATA_IN ?
411 op->data.buf.in : NULL,
412 op->data.nbytes);
413
414out:
415 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
416 mxic->regs + HC_CFG);
417 writel(0, mxic->regs + HC_EN);
418
419 return ret;
420}
421
422static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
423 .supports_op = mxic_spi_mem_supports_op,
424 .exec_op = mxic_spi_mem_exec_op,
425};
426
427static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
428{
429 struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
430
431 if (!lvl) {
432 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
433 mxic->regs + HC_CFG);
434 writel(HC_EN_BIT, mxic->regs + HC_EN);
435 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
436 mxic->regs + HC_CFG);
437 } else {
438 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
439 mxic->regs + HC_CFG);
440 writel(0, mxic->regs + HC_EN);
441 }
442}
443
444static int mxic_spi_transfer_one(struct spi_master *master,
445 struct spi_device *spi,
446 struct spi_transfer *t)
447{
448 struct mxic_spi *mxic = spi_master_get_devdata(master);
449 unsigned int busw = OP_BUSW_1;
450 int ret;
451
452 if (t->rx_buf && t->tx_buf) {
453 if (((spi->mode & SPI_TX_QUAD) &&
454 !(spi->mode & SPI_RX_QUAD)) ||
455 ((spi->mode & SPI_TX_DUAL) &&
456 !(spi->mode & SPI_RX_DUAL)))
457 return -ENOTSUPP;
458 }
459
460 ret = mxic_spi_set_freq(mxic, t->speed_hz);
461 if (ret)
462 return ret;
463
464 if (t->tx_buf) {
465 if (spi->mode & SPI_TX_QUAD)
466 busw = OP_BUSW_4;
467 else if (spi->mode & SPI_TX_DUAL)
468 busw = OP_BUSW_2;
469 } else if (t->rx_buf) {
470 if (spi->mode & SPI_RX_QUAD)
471 busw = OP_BUSW_4;
472 else if (spi->mode & SPI_RX_DUAL)
473 busw = OP_BUSW_2;
474 }
475
476 writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
477 OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
478 mxic->regs + SS_CTRL(0));
479
480 ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
481 if (ret)
482 return ret;
483
484 spi_finalize_current_transfer(master);
485
486 return 0;
487}
488
489static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
490{
491 struct spi_master *master = dev_get_drvdata(dev);
492 struct mxic_spi *mxic = spi_master_get_devdata(master);
493
494 mxic_spi_clk_disable(mxic);
495 clk_disable_unprepare(mxic->ps_clk);
496
497 return 0;
498}
499
500static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
501{
502 struct spi_master *master = dev_get_drvdata(dev);
503 struct mxic_spi *mxic = spi_master_get_devdata(master);
504 int ret;
505
506 ret = clk_prepare_enable(mxic->ps_clk);
507 if (ret) {
508 dev_err(dev, "Cannot enable ps_clock.\n");
509 return ret;
510 }
511
512 return mxic_spi_clk_enable(mxic);
513}
514
515static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
516 SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
517 mxic_spi_runtime_resume, NULL)
518};
519
520static int mxic_spi_probe(struct platform_device *pdev)
521{
522 struct spi_master *master;
523 struct resource *res;
524 struct mxic_spi *mxic;
525 int ret;
526
527 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
528 if (!master)
529 return -ENOMEM;
530
531 platform_set_drvdata(pdev, master);
532
533 mxic = spi_master_get_devdata(master);
534
535 master->dev.of_node = pdev->dev.of_node;
536
537 mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
538 if (IS_ERR(mxic->ps_clk))
539 return PTR_ERR(mxic->ps_clk);
540
541 mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
542 if (IS_ERR(mxic->send_clk))
543 return PTR_ERR(mxic->send_clk);
544
545 mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
546 if (IS_ERR(mxic->send_dly_clk))
547 return PTR_ERR(mxic->send_dly_clk);
548
549 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
550 mxic->regs = devm_ioremap_resource(&pdev->dev, res);
551 if (IS_ERR(mxic->regs))
552 return PTR_ERR(mxic->regs);
553
554 pm_runtime_enable(&pdev->dev);
555 master->auto_runtime_pm = true;
556
557 master->num_chipselect = 1;
558 master->mem_ops = &mxic_spi_mem_ops;
559
560 master->set_cs = mxic_spi_set_cs;
561 master->transfer_one = mxic_spi_transfer_one;
562 master->bits_per_word_mask = SPI_BPW_MASK(8);
563 master->mode_bits = SPI_CPOL | SPI_CPHA |
564 SPI_RX_DUAL | SPI_TX_DUAL |
565 SPI_RX_QUAD | SPI_TX_QUAD;
566
567 mxic_spi_hw_init(mxic);
568
569 ret = spi_register_master(master);
570 if (ret) {
571 dev_err(&pdev->dev, "spi_register_master failed\n");
572 pm_runtime_disable(&pdev->dev);
573 }
574
575 return ret;
576}
577
578static int mxic_spi_remove(struct platform_device *pdev)
579{
580 struct spi_master *master = platform_get_drvdata(pdev);
581
582 pm_runtime_disable(&pdev->dev);
583 spi_unregister_master(master);
584
585 return 0;
586}
587
588static const struct of_device_id mxic_spi_of_ids[] = {
589 { .compatible = "mxicy,mx25f0a-spi", },
590 { /* sentinel */ }
591};
592MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
593
594static struct platform_driver mxic_spi_driver = {
595 .probe = mxic_spi_probe,
596 .remove = mxic_spi_remove,
597 .driver = {
598 .name = "mxic-spi",
599 .of_match_table = mxic_spi_of_ids,
600 .pm = &mxic_spi_dev_pm_ops,
601 },
602};
603module_platform_driver(mxic_spi_driver);
604
605MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
606MODULE_DESCRIPTION("MX25F0A SPI controller driver");
607MODULE_LICENSE("GPL v2");