blob: edb26b0857063d4a2787d1bc6b1bd2ab602d94db [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH MSIOF SPI Controller Interface
4 *
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8 */
9
10#include <linux/bitmap.h>
11#include <linux/clk.h>
12#include <linux/completion.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/dmaengine.h>
16#include <linux/err.h>
17#include <linux/gpio.h>
18#include <linux/gpio/consumer.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/iopoll.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/sh_dma.h>
29
30#include <linux/spi/sh_msiof.h>
31#include <linux/spi/spi.h>
32
33#include <asm/unaligned.h>
34
35#define SH_MSIOF_FLAG_FIXED_DTDL_200 BIT(0)
36
37struct sh_msiof_chipdata {
38 u32 bits_per_word_mask;
39 u16 tx_fifo_size;
40 u16 rx_fifo_size;
41 u16 ctlr_flags;
42 u16 min_div_pow;
43 u32 flags;
44};
45
46struct sh_msiof_spi_priv {
47 struct spi_controller *ctlr;
48 void __iomem *mapbase;
49 struct clk *clk;
50 struct platform_device *pdev;
51 struct sh_msiof_spi_info *info;
52 struct completion done;
53 struct completion done_txdma;
54 unsigned int tx_fifo_size;
55 unsigned int rx_fifo_size;
56 unsigned int min_div_pow;
57 void *tx_dma_page;
58 void *rx_dma_page;
59 dma_addr_t tx_dma_addr;
60 dma_addr_t rx_dma_addr;
61 unsigned short unused_ss;
62 bool native_cs_inited;
63 bool native_cs_high;
64 bool slave_aborted;
65};
66
67#define MAX_SS 3 /* Maximum number of native chip selects */
68
69#define TMDR1 0x00 /* Transmit Mode Register 1 */
70#define TMDR2 0x04 /* Transmit Mode Register 2 */
71#define TMDR3 0x08 /* Transmit Mode Register 3 */
72#define RMDR1 0x10 /* Receive Mode Register 1 */
73#define RMDR2 0x14 /* Receive Mode Register 2 */
74#define RMDR3 0x18 /* Receive Mode Register 3 */
75#define TSCR 0x20 /* Transmit Clock Select Register */
76#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
77#define CTR 0x28 /* Control Register */
78#define FCTR 0x30 /* FIFO Control Register */
79#define STR 0x40 /* Status Register */
80#define IER 0x44 /* Interrupt Enable Register */
81#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
82#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
83#define TFDR 0x50 /* Transmit FIFO Data Register */
84#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
85#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
86#define RFDR 0x60 /* Receive FIFO Data Register */
87
88/* TMDR1 and RMDR1 */
89#define MDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
90#define MDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
91#define MDR1_SYNCMD_SPI (2 << 28)/* Level mode/SPI */
92#define MDR1_SYNCMD_LR (3 << 28)/* L/R mode */
93#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
94#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
95#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
96#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
97#define MDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
98#define MDR1_FLD_SHIFT 2
99#define MDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
100/* TMDR1 */
101#define TMDR1_PCON BIT(30) /* Transfer Signal Connection */
102#define TMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
103#define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
104
105/* TMDR2 and RMDR2 */
106#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
107#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
108#define MDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
109
110/* TSCR and RSCR */
111#define SCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
112#define SCR_BRPS(i) (((i) - 1) << 8)
113#define SCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
114#define SCR_BRDV_DIV_2 0
115#define SCR_BRDV_DIV_4 1
116#define SCR_BRDV_DIV_8 2
117#define SCR_BRDV_DIV_16 3
118#define SCR_BRDV_DIV_32 4
119#define SCR_BRDV_DIV_1 7
120
121/* CTR */
122#define CTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
123#define CTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
124#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
125#define CTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
126#define CTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
127#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
128#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
129#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
130#define CTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
131#define CTR_TXDIZ_LOW (0 << 22) /* 0 */
132#define CTR_TXDIZ_HIGH (1 << 22) /* 1 */
133#define CTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
134#define CTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
135#define CTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
136#define CTR_TXE BIT(9) /* Transmit Enable */
137#define CTR_RXE BIT(8) /* Receive Enable */
138#define CTR_TXRST BIT(1) /* Transmit Reset */
139#define CTR_RXRST BIT(0) /* Receive Reset */
140
141/* FCTR */
142#define FCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
143#define FCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */
144#define FCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */
145#define FCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */
146#define FCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */
147#define FCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */
148#define FCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */
149#define FCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */
150#define FCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */
151#define FCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
152#define FCTR_TFUA_SHIFT 20
153#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
154#define FCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
155#define FCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
156#define FCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
157#define FCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
158#define FCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
159#define FCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
160#define FCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
161#define FCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
162#define FCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
163#define FCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
164#define FCTR_RFUA_SHIFT 4
165#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
166
167/* STR */
168#define STR_TFEMP BIT(29) /* Transmit FIFO Empty */
169#define STR_TDREQ BIT(28) /* Transmit Data Transfer Request */
170#define STR_TEOF BIT(23) /* Frame Transmission End */
171#define STR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
172#define STR_TFOVF BIT(20) /* Transmit FIFO Overflow */
173#define STR_TFUDF BIT(19) /* Transmit FIFO Underflow */
174#define STR_RFFUL BIT(13) /* Receive FIFO Full */
175#define STR_RDREQ BIT(12) /* Receive Data Transfer Request */
176#define STR_REOF BIT(7) /* Frame Reception End */
177#define STR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
178#define STR_RFUDF BIT(4) /* Receive FIFO Underflow */
179#define STR_RFOVF BIT(3) /* Receive FIFO Overflow */
180
181/* IER */
182#define IER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
183#define IER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
184#define IER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
185#define IER_TEOFE BIT(23) /* Frame Transmission End Enable */
186#define IER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
187#define IER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
188#define IER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
189#define IER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
190#define IER_RFFULE BIT(13) /* Receive FIFO Full Enable */
191#define IER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
192#define IER_REOFE BIT(7) /* Frame Reception End Enable */
193#define IER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
194#define IER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
195#define IER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
196
197
198static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
199{
200 switch (reg_offs) {
201 case TSCR:
202 case RSCR:
203 return ioread16(p->mapbase + reg_offs);
204 default:
205 return ioread32(p->mapbase + reg_offs);
206 }
207}
208
209static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
210 u32 value)
211{
212 switch (reg_offs) {
213 case TSCR:
214 case RSCR:
215 iowrite16(value, p->mapbase + reg_offs);
216 break;
217 default:
218 iowrite32(value, p->mapbase + reg_offs);
219 break;
220 }
221}
222
223static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
224 u32 clr, u32 set)
225{
226 u32 mask = clr | set;
227 u32 data;
228
229 data = sh_msiof_read(p, CTR);
230 data &= ~clr;
231 data |= set;
232 sh_msiof_write(p, CTR, data);
233
234 return readl_poll_timeout_atomic(p->mapbase + CTR, data,
235 (data & mask) == set, 1, 100);
236}
237
238static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
239{
240 struct sh_msiof_spi_priv *p = data;
241
242 /* just disable the interrupt and wake up */
243 sh_msiof_write(p, IER, 0);
244 complete(&p->done);
245
246 return IRQ_HANDLED;
247}
248
249static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
250{
251 u32 mask = CTR_TXRST | CTR_RXRST;
252 u32 data;
253
254 data = sh_msiof_read(p, CTR);
255 data |= mask;
256 sh_msiof_write(p, CTR, data);
257
258 readl_poll_timeout_atomic(p->mapbase + CTR, data, !(data & mask), 1,
259 100);
260}
261
262static const u32 sh_msiof_spi_div_array[] = {
263 SCR_BRDV_DIV_1, SCR_BRDV_DIV_2, SCR_BRDV_DIV_4,
264 SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
265};
266
267static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
268 unsigned long parent_rate, u32 spi_hz)
269{
270 unsigned long div;
271 u32 brps, scr;
272 unsigned int div_pow = p->min_div_pow;
273
274 if (!spi_hz || !parent_rate) {
275 WARN(1, "Invalid clock rate parameters %lu and %u\n",
276 parent_rate, spi_hz);
277 return;
278 }
279
280 div = DIV_ROUND_UP(parent_rate, spi_hz);
281 if (div <= 1024) {
282 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
283 if (!div_pow && div <= 32 && div > 2)
284 div_pow = 1;
285
286 if (div_pow)
287 brps = (div + 1) >> div_pow;
288 else
289 brps = div;
290
291 for (; brps > 32; div_pow++)
292 brps = (brps + 1) >> 1;
293 } else {
294 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
295 dev_err(&p->pdev->dev,
296 "Requested SPI transfer rate %d is too low\n", spi_hz);
297 div_pow = 5;
298 brps = 32;
299 }
300
301 scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
302 sh_msiof_write(p, TSCR, scr);
303 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
304 sh_msiof_write(p, RSCR, scr);
305}
306
307static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
308{
309 /*
310 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
311 * b'000 : 0
312 * b'001 : 100
313 * b'010 : 200
314 * b'011 (SYNCDL only) : 300
315 * b'101 : 50
316 * b'110 : 150
317 */
318 if (dtdl_or_syncdl % 100)
319 return dtdl_or_syncdl / 100 + 5;
320 else
321 return dtdl_or_syncdl / 100;
322}
323
324static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
325{
326 u32 val;
327
328 if (!p->info)
329 return 0;
330
331 /* check if DTDL and SYNCDL is allowed value */
332 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
333 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
334 return 0;
335 }
336
337 /* check if the sum of DTDL and SYNCDL becomes an integer value */
338 if ((p->info->dtdl + p->info->syncdl) % 100) {
339 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
340 return 0;
341 }
342
343 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
344 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
345
346 return val;
347}
348
349static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
350 u32 cpol, u32 cpha,
351 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
352{
353 u32 tmp;
354 int edge;
355
356 /*
357 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
358 * 0 0 10 10 1 1
359 * 0 1 10 10 0 0
360 * 1 0 11 11 0 0
361 * 1 1 11 11 1 1
362 */
363 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
364 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
365 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
366 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
367 if (spi_controller_is_slave(p->ctlr)) {
368 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
369 } else {
370 sh_msiof_write(p, TMDR1,
371 tmp | MDR1_TRMD | TMDR1_PCON |
372 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
373 }
374 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
375 /* These bits are reserved if RX needs TX */
376 tmp &= ~0x0000ffff;
377 }
378 sh_msiof_write(p, RMDR1, tmp);
379
380 tmp = 0;
381 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
382 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
383
384 edge = cpol ^ !cpha;
385
386 tmp |= edge << CTR_TEDG_SHIFT;
387 tmp |= edge << CTR_REDG_SHIFT;
388 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
389 sh_msiof_write(p, CTR, tmp);
390}
391
392static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
393 const void *tx_buf, void *rx_buf,
394 u32 bits, u32 words)
395{
396 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
397
398 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
399 sh_msiof_write(p, TMDR2, dr2);
400 else
401 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
402
403 if (rx_buf)
404 sh_msiof_write(p, RMDR2, dr2);
405}
406
407static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
408{
409 sh_msiof_write(p, STR,
410 sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
411}
412
413static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
414 const void *tx_buf, int words, int fs)
415{
416 const u8 *buf_8 = tx_buf;
417 int k;
418
419 for (k = 0; k < words; k++)
420 sh_msiof_write(p, TFDR, buf_8[k] << fs);
421}
422
423static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
424 const void *tx_buf, int words, int fs)
425{
426 const u16 *buf_16 = tx_buf;
427 int k;
428
429 for (k = 0; k < words; k++)
430 sh_msiof_write(p, TFDR, buf_16[k] << fs);
431}
432
433static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
434 const void *tx_buf, int words, int fs)
435{
436 const u16 *buf_16 = tx_buf;
437 int k;
438
439 for (k = 0; k < words; k++)
440 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
441}
442
443static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
444 const void *tx_buf, int words, int fs)
445{
446 const u32 *buf_32 = tx_buf;
447 int k;
448
449 for (k = 0; k < words; k++)
450 sh_msiof_write(p, TFDR, buf_32[k] << fs);
451}
452
453static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
454 const void *tx_buf, int words, int fs)
455{
456 const u32 *buf_32 = tx_buf;
457 int k;
458
459 for (k = 0; k < words; k++)
460 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
461}
462
463static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
464 const void *tx_buf, int words, int fs)
465{
466 const u32 *buf_32 = tx_buf;
467 int k;
468
469 for (k = 0; k < words; k++)
470 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
471}
472
473static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
474 const void *tx_buf, int words, int fs)
475{
476 const u32 *buf_32 = tx_buf;
477 int k;
478
479 for (k = 0; k < words; k++)
480 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
481}
482
483static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
484 void *rx_buf, int words, int fs)
485{
486 u8 *buf_8 = rx_buf;
487 int k;
488
489 for (k = 0; k < words; k++)
490 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
491}
492
493static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
494 void *rx_buf, int words, int fs)
495{
496 u16 *buf_16 = rx_buf;
497 int k;
498
499 for (k = 0; k < words; k++)
500 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
501}
502
503static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
504 void *rx_buf, int words, int fs)
505{
506 u16 *buf_16 = rx_buf;
507 int k;
508
509 for (k = 0; k < words; k++)
510 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
511}
512
513static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
514 void *rx_buf, int words, int fs)
515{
516 u32 *buf_32 = rx_buf;
517 int k;
518
519 for (k = 0; k < words; k++)
520 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
521}
522
523static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
524 void *rx_buf, int words, int fs)
525{
526 u32 *buf_32 = rx_buf;
527 int k;
528
529 for (k = 0; k < words; k++)
530 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
531}
532
533static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
534 void *rx_buf, int words, int fs)
535{
536 u32 *buf_32 = rx_buf;
537 int k;
538
539 for (k = 0; k < words; k++)
540 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
541}
542
543static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
544 void *rx_buf, int words, int fs)
545{
546 u32 *buf_32 = rx_buf;
547 int k;
548
549 for (k = 0; k < words; k++)
550 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
551}
552
553static int sh_msiof_spi_setup(struct spi_device *spi)
554{
555 struct sh_msiof_spi_priv *p =
556 spi_controller_get_devdata(spi->controller);
557 u32 clr, set, tmp;
558
559 if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
560 return 0;
561
562 if (p->native_cs_inited &&
563 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
564 return 0;
565
566 /* Configure native chip select mode/polarity early */
567 clr = MDR1_SYNCMD_MASK;
568 set = MDR1_SYNCMD_SPI;
569 if (spi->mode & SPI_CS_HIGH)
570 clr |= BIT(MDR1_SYNCAC_SHIFT);
571 else
572 set |= BIT(MDR1_SYNCAC_SHIFT);
573 pm_runtime_get_sync(&p->pdev->dev);
574 tmp = sh_msiof_read(p, TMDR1) & ~clr;
575 sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
576 tmp = sh_msiof_read(p, RMDR1) & ~clr;
577 sh_msiof_write(p, RMDR1, tmp | set);
578 pm_runtime_put(&p->pdev->dev);
579 p->native_cs_high = spi->mode & SPI_CS_HIGH;
580 p->native_cs_inited = true;
581 return 0;
582}
583
584static int sh_msiof_prepare_message(struct spi_controller *ctlr,
585 struct spi_message *msg)
586{
587 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
588 const struct spi_device *spi = msg->spi;
589 u32 ss, cs_high;
590
591 /* Configure pins before asserting CS */
592 if (spi->cs_gpiod) {
593 ss = p->unused_ss;
594 cs_high = p->native_cs_high;
595 } else {
596 ss = spi->chip_select;
597 cs_high = !!(spi->mode & SPI_CS_HIGH);
598 }
599 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
600 !!(spi->mode & SPI_CPHA),
601 !!(spi->mode & SPI_3WIRE),
602 !!(spi->mode & SPI_LSB_FIRST), cs_high);
603 return 0;
604}
605
606static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
607{
608 bool slave = spi_controller_is_slave(p->ctlr);
609 int ret = 0;
610
611 /* setup clock and rx/tx signals */
612 if (!slave)
613 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
614 if (rx_buf && !ret)
615 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
616 if (!ret)
617 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
618
619 /* start by setting frame bit */
620 if (!ret && !slave)
621 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
622
623 return ret;
624}
625
626static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
627{
628 bool slave = spi_controller_is_slave(p->ctlr);
629 int ret = 0;
630
631 /* shut down frame, rx/tx and clock signals */
632 if (!slave)
633 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
634 if (!ret)
635 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
636 if (rx_buf && !ret)
637 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
638 if (!ret && !slave)
639 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
640
641 return ret;
642}
643
644static int sh_msiof_slave_abort(struct spi_controller *ctlr)
645{
646 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
647
648 p->slave_aborted = true;
649 complete(&p->done);
650 complete(&p->done_txdma);
651 return 0;
652}
653
654static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
655 struct completion *x)
656{
657 if (spi_controller_is_slave(p->ctlr)) {
658 if (wait_for_completion_interruptible(x) ||
659 p->slave_aborted) {
660 dev_dbg(&p->pdev->dev, "interrupted\n");
661 return -EINTR;
662 }
663 } else {
664 if (!wait_for_completion_timeout(x, HZ)) {
665 dev_err(&p->pdev->dev, "timeout\n");
666 return -ETIMEDOUT;
667 }
668 }
669
670 return 0;
671}
672
673static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
674 void (*tx_fifo)(struct sh_msiof_spi_priv *,
675 const void *, int, int),
676 void (*rx_fifo)(struct sh_msiof_spi_priv *,
677 void *, int, int),
678 const void *tx_buf, void *rx_buf,
679 int words, int bits)
680{
681 int fifo_shift;
682 int ret;
683
684 /* limit maximum word transfer to rx/tx fifo size */
685 if (tx_buf)
686 words = min_t(int, words, p->tx_fifo_size);
687 if (rx_buf)
688 words = min_t(int, words, p->rx_fifo_size);
689
690 /* the fifo contents need shifting */
691 fifo_shift = 32 - bits;
692
693 /* default FIFO watermarks for PIO */
694 sh_msiof_write(p, FCTR, 0);
695
696 /* setup msiof transfer mode registers */
697 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
698 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
699
700 /* write tx fifo */
701 if (tx_buf)
702 tx_fifo(p, tx_buf, words, fifo_shift);
703
704 reinit_completion(&p->done);
705 p->slave_aborted = false;
706
707 ret = sh_msiof_spi_start(p, rx_buf);
708 if (ret) {
709 dev_err(&p->pdev->dev, "failed to start hardware\n");
710 goto stop_ier;
711 }
712
713 /* wait for tx fifo to be emptied / rx fifo to be filled */
714 ret = sh_msiof_wait_for_completion(p, &p->done);
715 if (ret)
716 goto stop_reset;
717
718 /* read rx fifo */
719 if (rx_buf)
720 rx_fifo(p, rx_buf, words, fifo_shift);
721
722 /* clear status bits */
723 sh_msiof_reset_str(p);
724
725 ret = sh_msiof_spi_stop(p, rx_buf);
726 if (ret) {
727 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
728 return ret;
729 }
730
731 return words;
732
733stop_reset:
734 sh_msiof_reset_str(p);
735 sh_msiof_spi_stop(p, rx_buf);
736stop_ier:
737 sh_msiof_write(p, IER, 0);
738 return ret;
739}
740
741static void sh_msiof_dma_complete(void *arg)
742{
743 complete(arg);
744}
745
746static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
747 void *rx, unsigned int len)
748{
749 u32 ier_bits = 0;
750 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
751 dma_cookie_t cookie;
752 int ret;
753
754 /* First prepare and submit the DMA request(s), as this may fail */
755 if (rx) {
756 ier_bits |= IER_RDREQE | IER_RDMAE;
757 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
758 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
759 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
760 if (!desc_rx)
761 return -EAGAIN;
762
763 desc_rx->callback = sh_msiof_dma_complete;
764 desc_rx->callback_param = &p->done;
765 cookie = dmaengine_submit(desc_rx);
766 if (dma_submit_error(cookie))
767 return cookie;
768 }
769
770 if (tx) {
771 ier_bits |= IER_TDREQE | IER_TDMAE;
772 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
773 p->tx_dma_addr, len, DMA_TO_DEVICE);
774 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
775 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
776 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
777 if (!desc_tx) {
778 ret = -EAGAIN;
779 goto no_dma_tx;
780 }
781
782 desc_tx->callback = sh_msiof_dma_complete;
783 desc_tx->callback_param = &p->done_txdma;
784 cookie = dmaengine_submit(desc_tx);
785 if (dma_submit_error(cookie)) {
786 ret = cookie;
787 goto no_dma_tx;
788 }
789 }
790
791 /* 1 stage FIFO watermarks for DMA */
792 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
793
794 /* setup msiof transfer mode registers (32-bit words) */
795 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
796
797 sh_msiof_write(p, IER, ier_bits);
798
799 reinit_completion(&p->done);
800 if (tx)
801 reinit_completion(&p->done_txdma);
802 p->slave_aborted = false;
803
804 /* Now start DMA */
805 if (rx)
806 dma_async_issue_pending(p->ctlr->dma_rx);
807 if (tx)
808 dma_async_issue_pending(p->ctlr->dma_tx);
809
810 ret = sh_msiof_spi_start(p, rx);
811 if (ret) {
812 dev_err(&p->pdev->dev, "failed to start hardware\n");
813 goto stop_dma;
814 }
815
816 if (tx) {
817 /* wait for tx DMA completion */
818 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
819 if (ret)
820 goto stop_reset;
821 }
822
823 if (rx) {
824 /* wait for rx DMA completion */
825 ret = sh_msiof_wait_for_completion(p, &p->done);
826 if (ret)
827 goto stop_reset;
828
829 sh_msiof_write(p, IER, 0);
830 } else {
831 /* wait for tx fifo to be emptied */
832 sh_msiof_write(p, IER, IER_TEOFE);
833 ret = sh_msiof_wait_for_completion(p, &p->done);
834 if (ret)
835 goto stop_reset;
836 }
837
838 /* clear status bits */
839 sh_msiof_reset_str(p);
840
841 ret = sh_msiof_spi_stop(p, rx);
842 if (ret) {
843 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
844 return ret;
845 }
846
847 if (rx)
848 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
849 p->rx_dma_addr, len, DMA_FROM_DEVICE);
850
851 return 0;
852
853stop_reset:
854 sh_msiof_reset_str(p);
855 sh_msiof_spi_stop(p, rx);
856stop_dma:
857 if (tx)
858 dmaengine_terminate_all(p->ctlr->dma_tx);
859no_dma_tx:
860 if (rx)
861 dmaengine_terminate_all(p->ctlr->dma_rx);
862 sh_msiof_write(p, IER, 0);
863 return ret;
864}
865
866static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
867{
868 /* src or dst can be unaligned, but not both */
869 if ((unsigned long)src & 3) {
870 while (words--) {
871 *dst++ = swab32(get_unaligned(src));
872 src++;
873 }
874 } else if ((unsigned long)dst & 3) {
875 while (words--) {
876 put_unaligned(swab32(*src++), dst);
877 dst++;
878 }
879 } else {
880 while (words--)
881 *dst++ = swab32(*src++);
882 }
883}
884
885static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
886{
887 /* src or dst can be unaligned, but not both */
888 if ((unsigned long)src & 3) {
889 while (words--) {
890 *dst++ = swahw32(get_unaligned(src));
891 src++;
892 }
893 } else if ((unsigned long)dst & 3) {
894 while (words--) {
895 put_unaligned(swahw32(*src++), dst);
896 dst++;
897 }
898 } else {
899 while (words--)
900 *dst++ = swahw32(*src++);
901 }
902}
903
904static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
905{
906 memcpy(dst, src, words * 4);
907}
908
909static int sh_msiof_transfer_one(struct spi_controller *ctlr,
910 struct spi_device *spi,
911 struct spi_transfer *t)
912{
913 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
914 void (*copy32)(u32 *, const u32 *, unsigned int);
915 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
916 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
917 const void *tx_buf = t->tx_buf;
918 void *rx_buf = t->rx_buf;
919 unsigned int len = t->len;
920 unsigned int bits = t->bits_per_word;
921 unsigned int bytes_per_word;
922 unsigned int words;
923 int n;
924 bool swab;
925 int ret;
926
927 /* reset registers */
928 sh_msiof_spi_reset_regs(p);
929
930 /* setup clocks (clock already enabled in chipselect()) */
931 if (!spi_controller_is_slave(p->ctlr))
932 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
933
934 while (ctlr->dma_tx && len > 15) {
935 /*
936 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
937 * words, with byte resp. word swapping.
938 */
939 unsigned int l = 0;
940
941 if (tx_buf)
942 l = min(round_down(len, 4), p->tx_fifo_size * 4);
943 if (rx_buf)
944 l = min(round_down(len, 4), p->rx_fifo_size * 4);
945
946 if (bits <= 8) {
947 copy32 = copy_bswap32;
948 } else if (bits <= 16) {
949 copy32 = copy_wswap32;
950 } else {
951 copy32 = copy_plain32;
952 }
953
954 if (tx_buf)
955 copy32(p->tx_dma_page, tx_buf, l / 4);
956
957 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
958 if (ret == -EAGAIN) {
959 dev_warn_once(&p->pdev->dev,
960 "DMA not available, falling back to PIO\n");
961 break;
962 }
963 if (ret)
964 return ret;
965
966 if (rx_buf) {
967 copy32(rx_buf, p->rx_dma_page, l / 4);
968 rx_buf += l;
969 }
970 if (tx_buf)
971 tx_buf += l;
972
973 len -= l;
974 if (!len)
975 return 0;
976 }
977
978 if (bits <= 8 && len > 15) {
979 bits = 32;
980 swab = true;
981 } else {
982 swab = false;
983 }
984
985 /* setup bytes per word and fifo read/write functions */
986 if (bits <= 8) {
987 bytes_per_word = 1;
988 tx_fifo = sh_msiof_spi_write_fifo_8;
989 rx_fifo = sh_msiof_spi_read_fifo_8;
990 } else if (bits <= 16) {
991 bytes_per_word = 2;
992 if ((unsigned long)tx_buf & 0x01)
993 tx_fifo = sh_msiof_spi_write_fifo_16u;
994 else
995 tx_fifo = sh_msiof_spi_write_fifo_16;
996
997 if ((unsigned long)rx_buf & 0x01)
998 rx_fifo = sh_msiof_spi_read_fifo_16u;
999 else
1000 rx_fifo = sh_msiof_spi_read_fifo_16;
1001 } else if (swab) {
1002 bytes_per_word = 4;
1003 if ((unsigned long)tx_buf & 0x03)
1004 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1005 else
1006 tx_fifo = sh_msiof_spi_write_fifo_s32;
1007
1008 if ((unsigned long)rx_buf & 0x03)
1009 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1010 else
1011 rx_fifo = sh_msiof_spi_read_fifo_s32;
1012 } else {
1013 bytes_per_word = 4;
1014 if ((unsigned long)tx_buf & 0x03)
1015 tx_fifo = sh_msiof_spi_write_fifo_32u;
1016 else
1017 tx_fifo = sh_msiof_spi_write_fifo_32;
1018
1019 if ((unsigned long)rx_buf & 0x03)
1020 rx_fifo = sh_msiof_spi_read_fifo_32u;
1021 else
1022 rx_fifo = sh_msiof_spi_read_fifo_32;
1023 }
1024
1025 /* transfer in fifo sized chunks */
1026 words = len / bytes_per_word;
1027
1028 while (words > 0) {
1029 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1030 words, bits);
1031 if (n < 0)
1032 return n;
1033
1034 if (tx_buf)
1035 tx_buf += n * bytes_per_word;
1036 if (rx_buf)
1037 rx_buf += n * bytes_per_word;
1038 words -= n;
1039
1040 if (words == 0 && (len % bytes_per_word)) {
1041 words = len % bytes_per_word;
1042 bits = t->bits_per_word;
1043 bytes_per_word = 1;
1044 tx_fifo = sh_msiof_spi_write_fifo_8;
1045 rx_fifo = sh_msiof_spi_read_fifo_8;
1046 }
1047 }
1048
1049 return 0;
1050}
1051
1052static const struct sh_msiof_chipdata sh_data = {
1053 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1054 .tx_fifo_size = 64,
1055 .rx_fifo_size = 64,
1056 .ctlr_flags = 0,
1057 .min_div_pow = 0,
1058};
1059
1060static const struct sh_msiof_chipdata rcar_gen2_data = {
1061 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1062 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1063 .tx_fifo_size = 64,
1064 .rx_fifo_size = 64,
1065 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1066 .min_div_pow = 0,
1067};
1068
1069static const struct sh_msiof_chipdata rcar_gen3_data = {
1070 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1071 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1072 .tx_fifo_size = 64,
1073 .rx_fifo_size = 64,
1074 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1075 .min_div_pow = 1,
1076};
1077
1078static const struct sh_msiof_chipdata rcar_r8a7795_data = {
1079 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1080 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1081 .tx_fifo_size = 64,
1082 .rx_fifo_size = 64,
1083 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1084 .min_div_pow = 1,
1085 .flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1086};
1087
1088static const struct of_device_id sh_msiof_match[] = {
1089 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1090 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1091 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1092 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1093 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1094 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1095 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1096 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1097 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1098 { .compatible = "renesas,msiof-r8a7795", .data = &rcar_r8a7795_data },
1099 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1100 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1101 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1102 {},
1103};
1104MODULE_DEVICE_TABLE(of, sh_msiof_match);
1105
1106#ifdef CONFIG_OF
1107static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1108{
1109 struct sh_msiof_spi_info *info;
1110 struct device_node *np = dev->of_node;
1111 u32 num_cs = 1;
1112
1113 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1114 if (!info)
1115 return NULL;
1116
1117 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1118 : MSIOF_SPI_MASTER;
1119
1120 /* Parse the MSIOF properties */
1121 if (info->mode == MSIOF_SPI_MASTER)
1122 of_property_read_u32(np, "num-cs", &num_cs);
1123 of_property_read_u32(np, "renesas,tx-fifo-size",
1124 &info->tx_fifo_override);
1125 of_property_read_u32(np, "renesas,rx-fifo-size",
1126 &info->rx_fifo_override);
1127 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1128 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1129
1130 info->num_chipselect = num_cs;
1131
1132 return info;
1133}
1134#else
1135static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1136{
1137 return NULL;
1138}
1139#endif
1140
1141static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1142{
1143 struct device *dev = &p->pdev->dev;
1144 unsigned int used_ss_mask = 0;
1145 unsigned int cs_gpios = 0;
1146 unsigned int num_cs, i;
1147 int ret;
1148
1149 ret = gpiod_count(dev, "cs");
1150 if (ret <= 0)
1151 return 0;
1152
1153 num_cs = max_t(unsigned int, ret, p->ctlr->num_chipselect);
1154 for (i = 0; i < num_cs; i++) {
1155 struct gpio_desc *gpiod;
1156
1157 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1158 if (!IS_ERR(gpiod)) {
1159 devm_gpiod_put(dev, gpiod);
1160 cs_gpios++;
1161 continue;
1162 }
1163
1164 if (PTR_ERR(gpiod) != -ENOENT)
1165 return PTR_ERR(gpiod);
1166
1167 if (i >= MAX_SS) {
1168 dev_err(dev, "Invalid native chip select %d\n", i);
1169 return -EINVAL;
1170 }
1171 used_ss_mask |= BIT(i);
1172 }
1173 p->unused_ss = ffz(used_ss_mask);
1174 if (cs_gpios && p->unused_ss >= MAX_SS) {
1175 dev_err(dev, "No unused native chip select available\n");
1176 return -EINVAL;
1177 }
1178 return 0;
1179}
1180
1181static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1182 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1183{
1184 dma_cap_mask_t mask;
1185 struct dma_chan *chan;
1186 struct dma_slave_config cfg;
1187 int ret;
1188
1189 dma_cap_zero(mask);
1190 dma_cap_set(DMA_SLAVE, mask);
1191
1192 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1193 (void *)(unsigned long)id, dev,
1194 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1195 if (!chan) {
1196 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1197 return NULL;
1198 }
1199
1200 memset(&cfg, 0, sizeof(cfg));
1201 cfg.direction = dir;
1202 if (dir == DMA_MEM_TO_DEV) {
1203 cfg.dst_addr = port_addr;
1204 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1205 } else {
1206 cfg.src_addr = port_addr;
1207 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1208 }
1209
1210 ret = dmaengine_slave_config(chan, &cfg);
1211 if (ret) {
1212 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1213 dma_release_channel(chan);
1214 return NULL;
1215 }
1216
1217 return chan;
1218}
1219
1220static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1221{
1222 struct platform_device *pdev = p->pdev;
1223 struct device *dev = &pdev->dev;
1224 const struct sh_msiof_spi_info *info = p->info;
1225 unsigned int dma_tx_id, dma_rx_id;
1226 const struct resource *res;
1227 struct spi_controller *ctlr;
1228 struct device *tx_dev, *rx_dev;
1229
1230 if (dev->of_node) {
1231 /* In the OF case we will get the slave IDs from the DT */
1232 dma_tx_id = 0;
1233 dma_rx_id = 0;
1234 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1235 dma_tx_id = info->dma_tx_id;
1236 dma_rx_id = info->dma_rx_id;
1237 } else {
1238 /* The driver assumes no error */
1239 return 0;
1240 }
1241
1242 /* The DMA engine uses the second register set, if present */
1243 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1244 if (!res)
1245 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1246
1247 ctlr = p->ctlr;
1248 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1249 dma_tx_id, res->start + TFDR);
1250 if (!ctlr->dma_tx)
1251 return -ENODEV;
1252
1253 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1254 dma_rx_id, res->start + RFDR);
1255 if (!ctlr->dma_rx)
1256 goto free_tx_chan;
1257
1258 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1259 if (!p->tx_dma_page)
1260 goto free_rx_chan;
1261
1262 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1263 if (!p->rx_dma_page)
1264 goto free_tx_page;
1265
1266 tx_dev = ctlr->dma_tx->device->dev;
1267 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1268 DMA_TO_DEVICE);
1269 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1270 goto free_rx_page;
1271
1272 rx_dev = ctlr->dma_rx->device->dev;
1273 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1274 DMA_FROM_DEVICE);
1275 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1276 goto unmap_tx_page;
1277
1278 dev_info(dev, "DMA available");
1279 return 0;
1280
1281unmap_tx_page:
1282 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1283free_rx_page:
1284 free_page((unsigned long)p->rx_dma_page);
1285free_tx_page:
1286 free_page((unsigned long)p->tx_dma_page);
1287free_rx_chan:
1288 dma_release_channel(ctlr->dma_rx);
1289free_tx_chan:
1290 dma_release_channel(ctlr->dma_tx);
1291 ctlr->dma_tx = NULL;
1292 return -ENODEV;
1293}
1294
1295static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1296{
1297 struct spi_controller *ctlr = p->ctlr;
1298
1299 if (!ctlr->dma_tx)
1300 return;
1301
1302 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1303 DMA_FROM_DEVICE);
1304 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1305 DMA_TO_DEVICE);
1306 free_page((unsigned long)p->rx_dma_page);
1307 free_page((unsigned long)p->tx_dma_page);
1308 dma_release_channel(ctlr->dma_rx);
1309 dma_release_channel(ctlr->dma_tx);
1310}
1311
1312static int sh_msiof_spi_probe(struct platform_device *pdev)
1313{
1314 struct spi_controller *ctlr;
1315 const struct sh_msiof_chipdata *chipdata;
1316 struct sh_msiof_spi_info *info;
1317 struct sh_msiof_spi_priv *p;
1318 int i;
1319 int ret;
1320
1321 chipdata = of_device_get_match_data(&pdev->dev);
1322 if (chipdata) {
1323 info = sh_msiof_spi_parse_dt(&pdev->dev);
1324 } else {
1325 chipdata = (const void *)pdev->id_entry->driver_data;
1326 info = dev_get_platdata(&pdev->dev);
1327 }
1328
1329 if (!info) {
1330 dev_err(&pdev->dev, "failed to obtain device info\n");
1331 return -ENXIO;
1332 }
1333
1334 if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1335 info->dtdl = 200;
1336
1337 if (info->mode == MSIOF_SPI_SLAVE)
1338 ctlr = spi_alloc_slave(&pdev->dev,
1339 sizeof(struct sh_msiof_spi_priv));
1340 else
1341 ctlr = spi_alloc_master(&pdev->dev,
1342 sizeof(struct sh_msiof_spi_priv));
1343 if (ctlr == NULL)
1344 return -ENOMEM;
1345
1346 p = spi_controller_get_devdata(ctlr);
1347
1348 platform_set_drvdata(pdev, p);
1349 p->ctlr = ctlr;
1350 p->info = info;
1351 p->min_div_pow = chipdata->min_div_pow;
1352
1353 init_completion(&p->done);
1354 init_completion(&p->done_txdma);
1355
1356 p->clk = devm_clk_get(&pdev->dev, NULL);
1357 if (IS_ERR(p->clk)) {
1358 dev_err(&pdev->dev, "cannot get clock\n");
1359 ret = PTR_ERR(p->clk);
1360 goto err1;
1361 }
1362
1363 i = platform_get_irq(pdev, 0);
1364 if (i < 0) {
1365 ret = i;
1366 goto err1;
1367 }
1368
1369 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1370 if (IS_ERR(p->mapbase)) {
1371 ret = PTR_ERR(p->mapbase);
1372 goto err1;
1373 }
1374
1375 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1376 dev_name(&pdev->dev), p);
1377 if (ret) {
1378 dev_err(&pdev->dev, "unable to request irq\n");
1379 goto err1;
1380 }
1381
1382 p->pdev = pdev;
1383 pm_runtime_enable(&pdev->dev);
1384
1385 /* Platform data may override FIFO sizes */
1386 p->tx_fifo_size = chipdata->tx_fifo_size;
1387 p->rx_fifo_size = chipdata->rx_fifo_size;
1388 if (p->info->tx_fifo_override)
1389 p->tx_fifo_size = p->info->tx_fifo_override;
1390 if (p->info->rx_fifo_override)
1391 p->rx_fifo_size = p->info->rx_fifo_override;
1392
1393 /* Setup GPIO chip selects */
1394 ctlr->num_chipselect = p->info->num_chipselect;
1395 ret = sh_msiof_get_cs_gpios(p);
1396 if (ret)
1397 goto err1;
1398
1399 /* init controller code */
1400 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1401 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1402 ctlr->flags = chipdata->ctlr_flags;
1403 ctlr->bus_num = pdev->id;
1404 ctlr->dev.of_node = pdev->dev.of_node;
1405 ctlr->setup = sh_msiof_spi_setup;
1406 ctlr->prepare_message = sh_msiof_prepare_message;
1407 ctlr->slave_abort = sh_msiof_slave_abort;
1408 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1409 ctlr->auto_runtime_pm = true;
1410 ctlr->transfer_one = sh_msiof_transfer_one;
1411 ctlr->use_gpio_descriptors = true;
1412
1413 ret = sh_msiof_request_dma(p);
1414 if (ret < 0)
1415 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1416
1417 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1418 if (ret < 0) {
1419 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1420 goto err2;
1421 }
1422
1423 return 0;
1424
1425 err2:
1426 sh_msiof_release_dma(p);
1427 pm_runtime_disable(&pdev->dev);
1428 err1:
1429 spi_controller_put(ctlr);
1430 return ret;
1431}
1432
1433static int sh_msiof_spi_remove(struct platform_device *pdev)
1434{
1435 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1436
1437 sh_msiof_release_dma(p);
1438 pm_runtime_disable(&pdev->dev);
1439 return 0;
1440}
1441
1442static const struct platform_device_id spi_driver_ids[] = {
1443 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1444 {},
1445};
1446MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1447
1448#ifdef CONFIG_PM_SLEEP
1449static int sh_msiof_spi_suspend(struct device *dev)
1450{
1451 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1452
1453 return spi_controller_suspend(p->ctlr);
1454}
1455
1456static int sh_msiof_spi_resume(struct device *dev)
1457{
1458 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1459
1460 return spi_controller_resume(p->ctlr);
1461}
1462
1463static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1464 sh_msiof_spi_resume);
1465#define DEV_PM_OPS &sh_msiof_spi_pm_ops
1466#else
1467#define DEV_PM_OPS NULL
1468#endif /* CONFIG_PM_SLEEP */
1469
1470static struct platform_driver sh_msiof_spi_drv = {
1471 .probe = sh_msiof_spi_probe,
1472 .remove = sh_msiof_spi_remove,
1473 .id_table = spi_driver_ids,
1474 .driver = {
1475 .name = "spi_sh_msiof",
1476 .pm = DEV_PM_OPS,
1477 .of_match_table = of_match_ptr(sh_msiof_match),
1478 },
1479};
1480module_platform_driver(sh_msiof_spi_drv);
1481
1482MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1483MODULE_AUTHOR("Magnus Damm");
1484MODULE_LICENSE("GPL v2");
1485MODULE_ALIAS("platform:spi_sh_msiof");